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Quantum kinetic theory. II. Simulation of the quantum Boltzmann master equation

D. Jaksch,1 C. W. Gardiner,2 and P. Zoller1
1Institut für Theoretische Physik, Universita¨t Innsbruck, 6020 Innsbruck, Austria

2Physics Department, Victoria University, Wellington, New Zealand
~Received 16 December 1996!

We present results of simulations of aquantum Boltzmann master equation~QBME! describing the kinetics
of a dilute Bose gas confined in a trapping potential in the regime of Bose condensation. The QBME is the
simplest version of a quantum kinetic master equation derived in previous work. We consider two cases of
trapping potentials: a three-dimensional square-well potential with periodic boundary conditions and an iso-
tropic harmonic oscillator. We discuss the stationary solutions and relaxation to equilibrium. In particular, we
calculate particle distribution functions, fluctuations in the occupation numbers, the time between collisions,
and the mean occupation numbers of the one-particle states in the regime of onset of Bose condensation.
@S1050-2947~97!01507-2#
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I. INTRODUCTION

In a previous paper@1#, a fully quantum mechanical ki
netic theory for Bose gases was developed. One of the
plest versions of the quantum kinetic master equat
~QKME! neglects all spatial dependence and yields a ma
equation, which we have named the quantum Boltzm
master equation~QBME!. In contrast to the familiar quantum
Boltzmann equation~QBE! @2,3#, which is an equation of the
single-particle distribution function, the QBME is a
N-atom stochastic equation. The aim of the present pape
to present results of numerical simulations of this equat
for finite-size systems consisting typically of a few hundr
atoms. Although the exclusion of the spatial dependenc
an extreme simplification, these simulations will give us
first orientation about the kind of solutions the QKME w
yield. These simulations can thus serve as a guideline for
type of approximations of the QKME one may use to fi
numerical solutions of this much more interesting, but u
wieldy, equation.

Furthermore, we will concentrate our attention on tho
results of the QBME that cannot be obtained using equat
like the QBE. We also restrict our work to the region
temperatures that are less than or not much higher than
critical temperature of the gas, because at much higher t
peratures quantum effects do not play a crucial role
simulations of the classical Boltzmann equation, which
valid in that case, have already been performed@4#.

The QBME is a genuineN-atom equation like the
QKME, but it neglects all the coherences contained in
QKME: It is thus intermediate between the QKME and t
description of the system with kinetic equations for sing
particle distribution functions. Its irreversibility comes fro
the Markov assumption employed in deriving the QKME.

The paper is organized as follows. In Sec. II we revi
the derivation of the QBME in@1#, discuss properties of th
QBME, and compare it with the QBE. Furthermore, we gi
a brief description of the simulation algorithm. In Secs.
and IV we apply the QBME to study a Bose gas confined
a three-dimensional~3D! box and in a 3D harmonic oscilla
tor. In particular, we discuss simulations results for therm
561050-2947/97/56~1!/575~12!/$10.00
-
n
er
n

is
n

is

he

-

e
s

he
m-
d
s

e

-

n

-

dynamic quantities, the mean time between collisions,
the fluctuations of the occupation numbers of the condens
For the 3D harmonic oscillator we also simulate a gas tha
evaporatively cooled.

II. THE QUANTUM BOLTZMANN MASTER EQUATION

In this section we will first summarize the derivation
the quantum Boltzmann master equation as given in@1#. Fur-
thermore, we discuss properties of this equation and its
lutions that are relevant for our numerical studies presen
in Secs. III and IV and conclude with a comparison of t
QBME with the QBE.

A. Derivation and validity of the QBME

The second quantized form of the Hamilton operator fo
Bose gas with pair particle interaction can be writt
H5H01HI , where

H05(
mi

\vmi
ami

† ami
, ~1!

HI5
1

2 (
m1 ,m2 ,m3 ,m4

Um1 ,m2 ,m3 ,m4
am1

† am2

† am3
am4

. ~2!

HereH0 is the system Hamilton operator of the nonintera
ing Bose gas, whereami

† is the creation operator of a particl

in the eigenstate ofH0 labeledmi with energy\vmi
. The

trapping potential is included inH0.
The interaction HamiltonianHI describes two-body inter

actions in the Bose gas. In the regime we want to study, o
s-wave scattering plays an important role, allowing us
write

Um1 ,m2 ,m3 ,m4

5
4p\2a

m E
R3
d3xCm1

* ~x!Cm2
* ~x!Cm3

~x!Cm4
~x!. ~3!
575 © 1997 The American Physical Society
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In Eq. ~3! Cmi
(x) denotes an eigenfunction of the trappin

potential in coordinate space labeled by quantum numb
i . Below we will specify the potential to be a 3D box wit
periodic boundary conditions~Sec. III! or a 3D isotropic os-
cillator ~Sec. IV!, and will give expressions for the matri
elementsUm1 ,m2 ,m3 ,m4

for these specific cases. For conv

nience we will use the notationi instead ofmi below. The
scattering length of the gas isa and the mass of the ga
particles ism. We will treat systems with a finite number o
particlesN. This is the starting point from which the QKME
is derived in@1#. The following assumptions and approxim
tions are made.

1. Forward scattering terms

All the terms ofHI @see@1#, Eq. ~67!# that commute with
the system HamiltonianH0 describe forward scattering an
give rise to the mean field. These terms can be included w
H0. Forward scattering does not change the occupation o
one-particle eigenstates, so we will neglect the influence
these terms on the eigenstates ofH in the simulations.

2. Collision terms

The remaining terms inHI describe collisions that chang
the occupation numbers of the one-particle states of the t
ping potential. We assume that this part ofHI can be treated
perturbatively, using the Born approximation and the M
kov approximation~@1#, Sec. IV C 3!. The Born approxima-
ed
o
-
y
o

t
ev
es

r

te
n
rg
rs

th
he
of

p-

-

tion is valid when the interaction between the particles
small compared to the system HamiltonianH0 @5#. For the
Markov approximation to be valid it is required that the fr
quency spectrum is effectively continuous, which means t
the separation between the energy levels is much sm
than the energy range of occupied states. The use of
Markov approximation gives the QKME its irreversible cha
acter. We will neglect the influence of collisional shifts o
eigenstates ofH.

3. Reduction of the QKME to the QBME

To reduce the QKME to the QBME it is assumed that t
coherent terms@i.e., Hamiltonian terms in@1#, Eq. ~77!# can
be neglected. The QBME is an equation for the diago
elementswn[^nurun& of the density operator and takes th
form @@1#, Eq. ~101!#

ẇn52
p

\ (
1,2,3,4

d„\~v11v22v32v4!…uU1234u2

3$n1n2~n311!~n411!@wn2wn1e1234
#

1~n111!~n211!n3n4@wn2wn2e1234
#%. ~4!

Here un&5un0 ,n1 ,n2 , . . . & is a Fock state of theN-particle
system, giving the occupation numbersni of the eigenstates
C i(x) andn denotes the vector consisting of the occupat
numbersni . The vectore1234 is defined similarly ton as
e12345@0, . . . ,0,1
1

,0, . . . ,0,1
2

,0, . . . ,0,21
3

,0, . . . ,0,21
4

,0, . . . ,0#, ~5!
he
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which describes two-particle collisions. The stateun2e1234&
can thus be reached fromun& by the collision 112→314.

The d function in the discrete sum of the QBME~4! has
its origin in the use of the Markov approximation as outlin
in @1#. Since we do not replace these sums by integrals in
simulations thisd function requires interpretation. We con
centrate energy regions ofDe to one single discrete energ
level. The energy interval is described by the properties
the closest one-particle state ofH0. The choice ofDe de-
pends on the trapping potential and is such that each of
one-particle states serves as one of the discrete energy l
with energy ei that determine the properties of particl
within the energy range@ei2De/2,ei1De/2#. Implicitly,
this includes the interpretation ofni as being an integral ove
a smooth distribution functionf (e):

ni5E
ei2De/2

ei1De/2

de
f ~e!

De
, ~6!

where f (e) gives the number of particles occupying a sta
with energye. Among the degenerate one-particle eige
states the particles are distributed according to similar a
ments as in Eq.~6!. Thed function in the QBME~4! there-
fore has to be interpreted as
ur

f

he
els
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d~e!5
de,0
De

~7!

and wn in the QBME ~4! is the probability of findingni
particles within the energy interval@ei2De/2,ei1De/2#.
dx,y denotes the Kronecker delta.

In @1# it is shown that the kernel of the integral where t
Markov approximation is made@@1#, Eq. ~68!# has a width
given by the temperature\/kT. This width determines the
range of possible outcomes of a collision. As long as\/kT is
much smaller than the time between two collisions the f
evolution after the kernel has reached zero will fix the ene
of the particles within a range of\/tcoll before the next col-
lision occurs. We already assumed that it is possible to
scribe the system in terms of one-particle eigenstates of
trapping potential, which is valid only if the level broadenin
coming from the collisions is much less than the level sp
ing. Hence we are able to decide which of our one-parti
states describes the properties of a particle best before
particle collides again.

4. Discussion

Since there are no classical assumptions in deriving
QBME ~4!, it should be valid even when the Bose gas b
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56 577QUANTUM KINETIC THEORY. II. SIMULATION OF . . .
comes degenerate, within the limits of the approximatio
made in its derivation. The quantum statistics is containe
the 11ni factors in Eq.~4!. This allows us to study the onse
of Bose-Einstein condensation~BEC!, in the sense of obtain
ing a macroscopic occupation in the ground state@6#, and in
particular finite-number effects, which are important wh
the number of atoms is not large.

The QBME~4! is a fullN-particle equation in the form o
a stochastic master equation that describesN particles inter-
acting with each other by two-particle collisions. These c
lisions are responsible for the equilibration process. In c
trast, the QBE~see Sec. IID! considers the motion of on
particle interacting with a mean distribution of the other
oms in the gas.

No mean-field effects are included in the present form
the QBME~4!. As soon as the temperatureT of the gas is far
below the critical temperatureTc and most of the particles
have accumulated in the ground state, the mean field
duced by these condensed particles must be taken into
count. We estimate the effect of the mean field for a Bo
gas confined in a 3D harmonic trap. AtT50 the ratio be-
tween the interaction energyEint and the level spacing\v
can be approximated by@7#

Eint

N\v
5

Na

aHO
, ~8!

where N is the number of particles in the trap an
aHO5A\/mv is the size of the ground state of the trap up
a factor 2. In typical experiments the ratioa/aHO'1023. If
we neglect the effect of the thermal particles on the inter
tion energy we can replaceN by Nc in Eq. ~8! to get an
estimate for the interaction energy at finite temperatu
Therefore, we find thatEint is smaller than the oscillato
energy as long as the condensate does not contain more
Nc51000 particles. Furthermore, the derivation of t
QBME assumes that the width of the energy levels and
lisional shift in addition to the mean field is small relative
the level spacingDe.

B. Quantities of interest

For comparison with the simulations discussed in the
lowing sections, we summarize below properties of the s
tionary solutions, the particle distributions, and collisi
times.

1. Stationary solution

The QBME conserves energyE and number of particles
N. According to@1# the stationary solution of the QBME~4!
is

wn5const, ~9!

corresponding to a microcanonical ensemble.
We will also compare our simulations results with t

grand canonical ensemble. For the mean occupation num
one obtains~compare@1#, Sec. V A 2!
s
in
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^ni&5
1

expS \v i2m

kT D21

. ~10!

In this caseT is the temperature andm is the chemical po-
tential of the system in the grand canonical ensemble. Gi
the mean energy of the systemE and the mean number o
particlesN we can solve the two equations

N5(
i

1

expS \v i2m

kT D21

, ~11a!

E5(
i

\v i

expS \v i2m

kT D21

~11b!

for m andT numerically. We will compare this result below
with the one we get from our simulations. In the framewo
of the QBME these grand canonical results are obtaine
we assume that in steady state the expectation values o
ni factorize~which is an approximation!.

2. Particle distributions

The QBME is a stochastic equation for the diagonal e
ments of the density operator in the basis of the eigenst
of H0. We are interested in calculating the probability dist
bution of particles in the one-particle states. They are defi
as

Wi~ j !5 (
n

ni5 j

wn ~12!

and give the probability of findingj particles in the one-
particle eigenstate labeledi . The sum runs over alln with
( ini5N and\( iv ini5E, the constant number of particle
in the gas and the energy of the system, respectively. We
compute these distributions for the 3D box in Sec. III B 4

For highly excited statesi , whose mean occupation num
ber is much less than 1, the probabilityWi( j ) is substantially
different from zero only forj50 and j51, which leads to
^ni

2&2^ni&
2'^ni&. On the other hand, approximate expre

sions can be derived for low-lying states, including t
ground state, on the following arguments. Assuming t
there is no restriction on how the particles are distribu
among degenerate energy levels, we can writeWi( j ) in
terms of energy levels@8#

Wī ~ j !5
1

Z (
n̄

g l̄ n l̄ 5 j

)
l̄

~g l̄ n l̄ 1g l̄ 21!!

~g l̄ n l̄ !! ~g l̄ 21!!
. ~13!

Here l̄ are sets of indices of degenerate eigenlevels,g l̄ is
the number of elements ofl̄ , andg l̄ n l̄ gives the total num-
ber of particles in the stateslP l̄ . The normalization con-
stant is denoted byZ and n̄ is a vector containing then ī .
This formula is only approximate because it includes co
figurations of the system that cannot occur in the simulati
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since they are not connected by collisions with the init
configuration. For small temperatures the sum in Eq.~13! is
readily calculated numerically, and we will compare th
with our simulation results in Sec. III B4.

3. Collision time

For any given configurationn of the system we calculat
the sum over all the transition matrix elements for collisio
that can occur. This sum is the value of the right-hand sid
Eq. ~4! for a givenn, the correspondingwn51, and all the
other wm equal to zero. A single possible collisio
112→314 contributes to this sum

P~12→34!5
4p

\De
uU1234u2n1n2~n311!~n411!, ~14!

where the factor of 4 is due to different permutations of
indices that describe the same collision. We call a collis
possibleif it conserves energy andU1234Þ0, and we call
P(12→34) the transition probability per unit timefor this
particular collision.

C. Ergodic approximation

In solving the QBE or the classical Boltzmann equation
is a common approximation to simplify this equation by
o
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ergodic assumption@4,9,10,2,3#. In a classical context this
corresponds to the assumption that the phase-space de
f t(p,x) depends only on the energye of the particles at
position x with momentump at time t. Quantum mechani-
cally, it is postulated that degenerate energy levels ca
equal populations at all times, i.e., the populations of deg
erate eigenlevels equalize on a time scale much faster
collisions between levels of different energies. This impl
that the occupation numbersni in the QBME should be re-
placed by

ni→n ī 5
1

g ī
(
iP ī

ni . ~15!

Here we define sets of indicesī that contain all the indices
of one-particles states with the same energy\v i ; g ī is the
degeneracy factor of states with energyv ī . We note that the
n ī are no longer integers. In our simulation this correspon
to a distribution function that is completely specified by t
occupation numbers of~the block of! degenerate energy lev
els, i.e.,wn→wn̄ , wheren̄ is a vector containing the numbe
of particles in the degenerate eigenlevelsn ī . Removing or
adding a particle to a stateī changesn ī by 1/g ī . Therefore,
we use a vectore1̄ 2̄ 3̄ 4̄ , which is defined by
e1̄ 2̄ 3̄ 4̄5@0, . . .,0,1/g1̄
1̄

,0, . . . ,0,1/g2̄
2̄

,0, . . . ,0,21/g3̄
3̄

,0, . . . ,0,21/g4̄
4̄

,0, . . . 0# ~16!
nd
f a
ic
a-
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r-
to describe collisions in the ergodic case.
Using these definitions, we can write the ergodic form

Eq. ~4! as

ẇn̄52
p

\ (
1̄ , 2̄, 3̄, 4̄ S (

1P 1̄ ,2P 2̄
3P 3̄ ,4P 4̄

d„\~v11v2

2v32v4!…uU1234u2D $n 1̄n 2̄~n 3̄11!~n 4̄11!

3@wn̄2wn̄1e1̄ 2̄ 3̄ 4̄
#1~n 1̄11!~n 2̄11!

3n 3̄n 4̄@wn̄2wn̄2e1̄ 2̄ 3̄ 4̄
#%. ~17!

Transition probabilitiesP( 1̄ 2̄→ 3̄ 4̄ ) are calculated accord
ing to

P~ 1̄ 2̄→ 3̄ 4̄ !5 (
1P 1̄ ,2P 2̄
3P 3̄ ,4P 4̄

P~12→34!, ~18!

where the sum runs over all the elements of a particular
of degenerate states. Collisions that do not change the en
distribution are thus no longer taken into account.

We note that the ergodic assumption yields the corr
steady-state distribution, but we expect differences in the
f

et
rgy

ct
e-

tails of the dynamics. A comparison of the kinetics with a
without the ergodic assumption will be given in the case o
3D box in Sec. III; our simulation results for the harmon
oscillator in Sec. IV will be based on the ergodic approxim
tion.

D. Comparison between the QBME and the QBE

Recent work of kinetics in relation to Bose condensat
in trapping potentials by Holland and collaborators@4# is
based on the QBE with an ergodic assumption~for a classi-
cal Boltzmann equation see also@9#!. The derivation of the
QBE is based on factorizing mean valu
^n1n2•••ni&5^n1&^n2&•••^ni& with ^ni&5(nniwn . In the
ergodic approximation one obtains

g 1̄^ṅ 1̄&5
4p

\ (
2̄ 3̄ 4̄

$2^n 1̄&^n 2̄&~^n 3̄&11!~^n 4̄&11!

1~^n 1̄&11!~^n 2̄&11!^n 3̄&^n 4̄&%

3S (
1P 1̄ ,2P 2̄
3P 3̄ ,4P 4̄

uU1234u2d„\~v11v22v32v4!…D .
~19!

In this equation̂ n ī & is the mean occupation of the degene
ate states. The discrete^n ī & replace the particle distribution
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56 579QUANTUM KINETIC THEORY. II. SIMULATION OF . . .
function f (e) used in the classical version@9#. The QBE
describes the time evolution of the single-particle distrib
tion function in the mean distribution of the other particle
In contrast to simulations of the QBME, fluctuations in t
occupation numbers are thus not described by the Q
Moreover, it is not possible to simulate systems far fro
equilibrium where the factorization of the mean values is
valid. The results presented in Sec. III B4 can be obtai
only by using the QBME. On the other hand, the QBE h
the advantage that it allows simulations with much larg
particle numbers than the QBME.

E. Simulation of the QBME

Since the QBME is a stochastic master equation
~quantum-mechanical! occupation probabilities, we ca
simulate its time evolution as a series of jumps. A jum
describes the collision of two particles 112→314, which
is represented as an instantaneous change of the corres
ing occupation numbers. The simulation method is of
used for rate equations and works as follows.

~i! Take an initial configuration of particlesn @represent-
ing an initial density operatorr l(t50)5un&^nu#, where the
energyE and the total number of particlesN are fixed.

~ii ! Calculate all the transition probabilities per unit tim
P(12→34) for the givenn.

~iii ! The total collision rate is now proportional to the
sum over all transition probabilities per unit time.

~iv! The next jump occurs at timetm since the last jump,
which can be calculated by choosing a random num
rP]0,1] from a uniform distribution and using

tm52
ln~r !

(1,2,3,4P~12→34!
. ~20!

~v! All the possible collisions are lined up with th
length P~12→34!. Another random number sP#0,
(1,2,3,4P(12→34)] is chosen from a uniform distribution
The transition selected by this random numbers gives the
particular collision 12→34 that occurs.

~vi! The last step now is to sett:5t1tm ,
un&:5un2e1234&, andr l :5un&^nu.

~vii ! Go back to~ii !.
~viii ! Repeat this simulation to obtainr5const3( lr l .
In every collision only four of the occupation numbers a

changed and therefore only a few of the transition ma
elements are modified by the change in the occupation n
bers. Thus it is not necessary to calculate all transition pr
abilities after each step since only those involving t
n1 ,n2 ,n3 ,n4 that define the collision will have bee
changed.~This is, however, more complicated than is t
case for the Boltzmann master equation, where the 11ni
factors do not occur.!

For integer occupation numbers it is not possible to
glect the 11ni factors above a certain energy by arguing th
the mean occupation of highly excited states is much sma
than one. For highly excited states these factors are e
1 or 2, etc., and cannot be replaced by 1. We have to acc
for them regardless of the energy of the one-particle st
involved into the collision. In our simulation method we d
not restrict the number states available for the particles of
-
.
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gas. We keep track of each of the particles rather than
certain number of one-particle states. This limits the num
of particles we are able to consider.

III. 3D SQUARE-WELL POTENTIAL WITH PERIODIC
BOUNDARY CONDITIONS

A. Description of the system

First, we will simulate the QBME for a 3D cube of lengt
L with periodic boundary conditions. This corresponds to
simplest version of the QBME. In the language of@1#,
dx5L is the length of the phase space cells. From this
immediately find the spacing of the cells in momentum to
dp52p\/L, which is equal to the momentum spacing of t
discrete energy levels in the box. The wavelet functions@in-
troduced in@1#, Eq. ~26!# are therefore reduced to

vk~x!5
eik•x

L3/2
. ~21!

We have droppedr of @1# in the equation above becaus
there is only one phase-space cell in coordinate space.
wave numbersk take on the discrete values

k5
2p

L
m, ~22!

wherem is a vector consisting of integer values. Since o
system has the finite volumeL3, the wavelet functions are
orthogonal in the sense

E
L3
d3xvki~x!vkl* ~x!5d i ,l . ~23!

With these wave functions we can now calculateU1234 to be

U12345
4p\2a

mL3
dm11m2 ,m31m4

. ~24!

In the case of the 3D boxDe52\2p2/mL2. Using
s58pa2 @10# for the cross section,n̄5N/L3, and
v152p\/mL, which is the magnitude of velocity of a par
ticle in the first excited state, we get

P~12→34!5s n̄v1
2

Np
dm11m2 ,m31m4

n1n2~n311!~n411!.

~25!

The number of possible collisions is restricted by two Kr
neckerd functions that ensure energy and momentum c
servation. The overlap integral isU123454p\2a/mL3 for all
the possible collisions and does not depend on energy
momentum of the involved one-particle states.

In semiclassical treatments of the QBE, the ergodic
sumption is often made@2,3#. The density of states is ap
proximated to be proportional toAe. It is then shown that the
transition matrix elements are proportional toAemin, where
emin is the minimum energy of the colliding particles~com-
pare the Appendix!. In the case of a smoothly varying
strictly decreasing functionf (e), one can therefore argu
that most of the collisions happen between particles w
almost the same energy. In the cases we are interested i
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580 56D. JAKSCH, C. W. GARDINER, AND P. ZOLLER
cannot make these assumptions. The occupation num
can vary strongly and the degeneracy of states that we c
exactly is not proportional toAe in the energy range in
which our simulations are performed.

B. Results of simulations

All the simulations we report contain a statistical erro
Unless this statistical error is given explicitly, it is less th
5%.

1. Thermodynamic quantities

There are two ways of computing the stationary solut
of the QBME~4!. The first is to calculate it directly from Eq
~9!; this is feasible only for very few atoms. The seco
possibility is to obtain the stationary solution from simul
tions by assuming that the time average over a sufficie
long time period equals the ensemble average. To find
time we wait until the simulation results agree with a Bos
Einstein distribution~10!. This also allows us to assign
temperatureT to the system. All the results are scaled to t
critical temperature in the thermodynamic lim
Tc5(2\2p/mL2k)@N/z(3/2)#2/3 @11#. There are three pa
rameters of the system:E, L, andN, which give a certain
T, Tc , andN in thermodynamic equilibrium. In the simula
tion we fix E andN, and the scaling to the critical temper
ture is equivalent to scaling to a certain particle dens
N/L3 in the box.

The expressionTc for the critical temperature is, o
course, valid only in the thermodynamic limit because in
derivation@12# sums over energies are replaced by integr
that over- or underestimate the sums for finite systems
pending on the density of states. In the thermodynamic li
the energy spectrum becomes continuous and summ
yields the same result as integrating. For a finite numbe
particles we therefore do not expect the critical tempera
and the condensate fraction versus temperature to be
same as in thermodynamic limit.

Figure 1 shows the comparison of the results from

FIG. 1. Condensate fraction versus temperature in thermal e
librium for the 3D square-well potential.~a! Thermodynamic limit,
~b! grand canonical solution forN5500 ~solid line! and results
from the simulation~1!, and ~c! grand canonical solution fo
N5100 ~solid line! and results from the simulation~o!.
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simulations and the grand canonical expression~11!. The
degeneraciesg ī in Eq. ~11! are calculated by counting a
ways of combining different integer numbersmi

x ,mi
y ,mi

z

consistent with the definite energy

\v i5
2p2\2

mL2
@~mi

x!21~mi
y!21~mi

z!2#. ~26!

The simulation and the grand canonical result both giv
higher number of particles in the condensate than expe
from the thermodynamic result. The results for finite numb
of particles, however, approach the thermodynamic lim
with increasingN very quickly. Around the critical tempera
ture there is a slight deviation of the simulated results fr
the grand canonical results@13#, whereas forT!Tc there is
almost no difference. This is due to a bigger statistical er
in the simulation because of the large fluctuations in
region around the critical temperature. Note also that we
comparing two different statistical ensembles and that
finite systems we would not expect exact agreement betw
the results from different ensembles.

2. Occupation of the ground state

We want to investigate the scaling of the one-parti
state occupation with the number of particles in the gas.
BEC we expect@10# the occupation of the ground state to b

n0
L3

5
N

L3F12S TTcD
3/2G , ~27!

while for excited states

^ni&
L3

<
T

L

mk

2p2\2mi
2 →
L→`

0. ~28!

Figure 2 shows the occupation numbers of the ground s
and the first excited state. At a givenT/Tc the number of
particles in the ground state increases linearly with the to
number, whereas the slope of the occupation of the first
cited state becomes smaller with increasing number of p
ticles. From this numerical result we conclude that t
QBME does really describe a macroscopic occupation an
consistent with expecting BEC below the critical temperat
Tc .

i-

FIG. 2. Occupation numbers for the ground stateNc and the first
excited staten1 against the total number of particlesN in thermal
equilibrium forT50.5Tc .
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3. Collision times with and without the ergodic assumption

Obviously, the results given in Secs. III B1 and III B2 a
the same with or without use of the ergodic assumption. T
is expected, because in thermal equilibrium all degene
eigenlevels should have the same occupation number
without the ergodic assumption. The mean time between
collisions in thermal equilibrium is computed by taking th
average over all the calculated timestm from Eq. ~20!. This
time has to be multiplied byN/2 because one particular pa
ticle is involved in one out ofN/2 collisions.

In Fig. 3 we plot the mean collision timetcoll
ne for one

particle versus the temperature without the ergodic assu
tion. The classical elastic mean collision time calcula
from tcoll

c 5(s n̄vT)
21, wherevT is the mean thermal veloc

ity of the gasvT5N21( iA2\v i /m^ni& and^ni& is the mean
occupation of thei th energy level obtained from the simula
tion. As soon as the gas becomes degenerate the 11ni fac-
tors in Eq.~4! become important and increase the collisi
rate compared to the classical case. For temperatures clo
zero the collision time increases again because there are
a few particles outside the condensate that can take pa
collisions. Figure 4 shows the comparison between
curves for the ergodic collision timetcoll

e and tcoll
ne . For very

small temperatures, the ergodic assumption allows for co
sions that cannot occur in the nonergodic case because
corresponding states are not occupied. As soon as the
perature is close toTc , those collisions in the nonergodi
case that change only the direction of the momentum of
individual particle decreasetcoll

ne compared to the ergodi
case. Since this type of collisions leaves the energy of
particles unchanged, they are not included in the ergo
calculations.

4. Particle distributions

While the mean values for the occupation numbers
easy to calculate it takes more effort to find the particle d
tributionWi( j ) of the one-particle states. There are two wa
of calculating these distributions. Either we calculate
time a state was occupied by a certain number of parti

FIG. 3. Mean collision time per particle versus temperature
N5500 of the 3D box without ergodic assumption. Result of t
simulation ~1! and result fortcoll5(s n̄vT)

21 ~dashed line!. The
time scale is normalized to (n̄sv12/N)

21. v1 is the magnitude of
velocity of a particle in a first excited state as defined in the te
is
te
en
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p-
d

to
nly
in
e

i-
the
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e
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e
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~time average! or we record the number of particles in th
state after a certain time for many different trajectories~en-
semble average!. Both results need not necessarily be t
same unless the system has the stationary solution~9!. We
used both methods to calculate particle distributions for
condensate and some of the excited states for different t
peratures.

In Fig. 5 particle distributions for the ground state a
plotted. Particle distributions of the condensate are well
proximated by a Gaussian for temperatures belowTc . How-
ever, they are not completely symmetric around the m
value, unlike the Gaussian there is a slight asymmetry
increases with temperature. The shape of the distribu
changes close to the critical temperature. ForN5500 at
T51.1Tc the distribution develops a second local maximu
at Nc50 and atT51.2Tc the peak at finite number of con
densate particles has disappeared. Well aboveTc at
T51.7Tc it agrees with a Bose-Einstein distribution

p~Nc!5~12h!hNc, ~29!

with ^Nc&5h/(12h).
The particle distribution of the first excited state in Fig.

can be approximated by the Bose-Einstein distribution~29!

r FIG. 4. Mean collision time per particle versus temperatu
for N5100 for the 3D box. Results of the simulation~a! with and
~b! without the ergodic assumption and result fortcoll5(s n̄vT)

21

~dashed line!. The time scale is normalized to (n̄sv12/N)
21. v1 is

the magnitude of velocity of a particle in a first excited state
defined in the text.

FIG. 5. Probability distribution of particles in the condensate
the 3D box without the ergodic assumption. Results of the simu
tion ~bars! and fits~solid lines! are calculated forN5500.
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582 56D. JAKSCH, C. W. GARDINER, AND P. ZOLLER
for T!Tc andT@Tc . Particle distributions of highly excited
states agree with the Bose-Einstein probability distribut
~29! at all temperatures.

In Fig. 7 we plot the standard deviations(Nc) of the
particle distribution of the condensate in thermal equil
rium. The error bars are calculated according
As„(Nc2^Nc&)

2
…/^Nc&, which is the variance of the stan

dard deviation normalized to the mean number of particle
the condensate. This gives the mean deviation of the s
dard deviation from its calculated value. For small tempe
turess(Nc) rises almost linearly with temperature. The num
ber of possible states with different number of particles in
condensate increases, which leads to a larger width of
distribution. Close toTc we get a very broad particle distr

FIG. 6. Probability distribution of particles in one of the fir
excited states for the 3D box without the ergodic assumption.
sults of the simulation~bars! and fits~solid lines! are calculated for
N5500.

FIG. 7. Fluctuation of the condensate fraction versus temp
ture in thermal equilibrium for the 3D square-well potential. Resu
of the simulation forN5500. The crosses give the results from t
numerical summation of Eq.~13!. The dashed line isANc, which
would be equal tos(Nc) if the fluctuations in the condensate we
Poissonian.
n

-

in
n-
-
-
e
he

bution with a very large standard deviation. ForT.Tc the
standard deviation will tend to go to the mean number
particles in the condensate, which agrees with the fit to
Bose-Einstein distribution, which has a standard deviation
Nc(Nc11) going toNc for Nc!1.

This also agrees with the calculation performed in S
IIB2 for the case of very small mean occupation of a sta
At small temperatures we calculate the particle distribut
in the condensate according to Eq.~13!. To compute the sum
in Eq. ~13! we assume that most of the fluctuations com
from the exchange of particles of the condensate with
first few excited states. The particles in higher excited sta
should not have a significant influence on the fluctuations
the condensate, but they should ensure that particles in
lowest-lying states can be distributed among degene
eigenlevels, without restrictions due to conservation la
The derivation of Eq.~13! is based on the assumption th
the particle distribution among degenerate eigenlevels is
restricted by conservation laws. Using Eq.~13!, we obtain
particle number fluctuations of the condensate due to
change with low-lying levels. In particular we calcula
W0( j ) from Eq. ~13! by taking into account the first 17 en
ergy levels. The particle distributions we get agree well w
the ones from the simulations. In Fig. 7 the results of b
calculation methods are compared for temperatu
T,0.5Tc . The crosses correspond to the numerical calcu
tions on Eq.~13! and agree well with the simulation result

5. Growth of the condensate

Here we want to investigate how the condensate builds
when the simulation is started in a nonequilibrium distrib
tion. As the initial state we choose a Gaussian-like distrib
tion: We first distribute the particles randomly into stat
with energies between that of the first excited state and tw
the mean energy, and then move particles to higher-
lower-energy states until the given fixed energyE of the
system is exactly reached.

Whenever possible we avoid putting particles in the co
densate at the beginning of the simulation. As can be see
Fig. 8, the condensate growth is well fitted b
Nc@12exp(2t/t)#, whereNc is the number of particles in the

e-

a-
s

FIG. 8. Buildup of the condensate for the 3D box forN5500.
The energy is chosen such that in equilibriumT50.5Tc . The time
scale is normalized to (n̄sv12/N)

21 in thermal equilibrium. The
dashed line is a fit of the formNc@12exp(2t/t)#, with
t50.0013 andNc5368, as explained in the text.
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56 583QUANTUM KINETIC THEORY. II. SIMULATION OF . . .
condensate in thermal equilibrium and the time constantt is
found by fitting this function to the simulation. This holds
long as the fraction of condensate particles in thermal e
librium is not much less than one.

6. Time to reach an ergodic distribution

While with the ergodic assumption all degenerate lev
are equally occupied at all times, in the nonergodic c
collisions themselves are responsible for equalizing the
cupations of degenerate levels. To check the relaxation t
for a distribution to become ergodic we disturb a system
thermal equilibrium by puttingall particles with energyDe
into two of the first excited states~with opposite momentum
so that the total momentum is unchanged!. As is shown in
Fig. 9, the particle distribution comes to equilibrium in a
proximately 10tcoll

ne . Collisions therefore transfer the occup
tion between degenerate levels at a time scale of the ord
the mean collision time in the gas. We conclude that for
ergodic assumption to be valid, strictly speaking, it is reas
able to look only at quantities that are mean values o
several collision times.

IV. 3D ISOTROPIC HARMONIC OSCILLATOR

A. Description of the system

In this section we will study Bose particles trapped in
isotropic harmonic trap with trap frequencyv. The vector
un& now gives the occupations of the trap levels andU1234

contains the spatial eigenfunctions of the harmonic osc
tor. For the low-lying levels these integrals can be evalua
numerically, but for highly excited states it is difficult to g
reliable results forU1234. Therefore, we will limit ourselves
to using the ergodic form of the QBME as explained in S
IIC. As is shown in@10#, the transition matrix elements o
transitions that change the energy distribution function
be approximated by

FIG. 9. Distortion of an ergodic distribution into a nonergod
one for the 3D box. Particle distribution of the depleted lev
@P(n1

e)# and of the filled levels@P(n1
f )# at time t after the distor-

tion. Simulation forN5500 atT50.4Tc .
i-

s
e
c-
e
n

of
e
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n

P~ 1̄ 2̄→ 3̄ 4̄ !5
4p

\2v

msv3\

4p3 gmin~ 1̄ 2̄ 3̄ 4̄ !

h

3n 1̄n 2̄~n 3̄11!~n 4̄11!

5 n̄ h
0sv0~2N!21gmin~ 1̄ 2̄ 3̄ 4̄ !

h

3n 1̄n 2̄~n 3̄11!~n 4̄11!. ~30!

Here g j̄
h

5( j11)( j12)/2 is the degeneracy factor of th
j th eigenstate with energyj\v, v05A4\v/pm is the mean
magnitude of velocity of a particle in the ground state of t
oscillator, andn̄ h

0 is the mean particle density if all the pa
ticles are within a cube of lengthA\p/mv. This is the semi-
classical expression obtained in the Appendix. According
Ref. @10#, numerical calculation shows that this expression
a good approximation even for low-lying energy levels.

B. Results of simulations

1. Stationary solutions

To obtain the grand canonical stationary solutions for
3D harmonic oscillator we have to replaceg ī by g ī

h in Eq.
~11!. The critical temperature for an ideal Bose gas in a
isotropic trap in the thermodynamic limit~i.e. when the sums
over the discrete energy levels are replaced by integrals! is
given by Tc5(\v/k)@N/z(3)#1/3 @12#. Our simulation re-
sults for the condensate fraction versus temperature
shown in Fig. 10. The continuum approximation increas
the condensate fraction for a finite number of particles co
pared to the simulation results. The reason for this is that
density of states rises much faster than for the 3D box. A
the case of the square-well potential, the results for the
crocanonical simulations and the grand canonical calc
tions agree very well. Comparing the two curves f
N5500 of Figs. 1 and 10, we find that the phase transition
more pronounced in the harmonic oscillator compared to
much smoother transition for the 3D box. This behavior c
also be seen by plotting the energy versus temperature in
11. There is a visible change in the slope of the energy

FIG. 10. Condensate fraction versus temperature in ther
equilibrium for the 3D harmonic oscillator.~a! Thermodynamic
limit, ~b! grand canonical solution forN5500 ~solid line! and re-
sults from the simulation~1!, and~c! grand canonical solution for
N5300 ~solid line! and results from the simulation~o!.
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584 56D. JAKSCH, C. W. GARDINER, AND P. ZOLLER
the harmonic oscillator even forN5500. For the ideal gas
the heat capacity has a jump at the critical temperature in
thermodynamic limit in the harmonic oscillator, whereas
case of the 3D box only the slope of the heat capacity
discontinuous at the critical temperature@12#. This makes
clear that the thermodynamically expected differences in
condensation process between the harmonic oscillator
the free gas can also be seen in finite systems for s
particle numbers.

2. Collision times

We will now compare the mean collision time obtained
our simulationstcoll

he with the elastic collision time defined a
tcoll
hc 5( n̄ hsv th)

21. The superscript ‘‘he’’ stands for harmoni
oscillator with ergodic assumption, while ‘‘hc’’ indicate
that the classical value for the harmonic oscillator is cal
lated. We determinev th and n̄ h with the assumption that th
mean kinetic energy of the particles is equal to their me
potential energy. Then we find for the mean density and
thermal velocity n̄ h5(3N/4p)(mv2/E3/2)

3/2 and v th
5AE1/2/m, respectively, withEs5@(1/N)( i(\v i)

s^ni&#1/s.
In Fig. 12 we plot the mean collision time versus tempe

ture. For temperatures higher than the critical tempera
the simulation agrees well with the classical result~dashed
curve!. For temperatures far belowTc , the result of the
simulation is approximately equal to the dotted curve that
obtained by the assumption that the size of the cloud is
ground-state size and only the thermal velocity varies w
temperature. Around the critical temperature the size of
cloud shrinks faster than expected from the classical appr
mation.

3. Evaporative cooling

Currently, BEC is achieved in experiments by evaporat
cooling, i.e., by removing particles with a high energy fro
the trap~for a review see@14#!. Elastic collisions between th
particles thermalize the particle distribution that leads to
decreasing temperature. To simulate a Bose gas tha
evaporatively cooled we cut off the trap at a certain ene

FIG. 11. Total energy of the system versus temperature.~a! data
for harmonic oscillator and~b! data for the 3D box each with
N5500. Energy is normalized to the level spacingDe. 1, results
from the microcanonical simulation; solid line, result of the gra
canonical calculation.
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level Eb(t), with Eb(t) a given function of time. Each par
ticle that is scattered into an energy level aboveEb(t) after a
collision is considered as lost. In our simulations we st
with N05800 particles in the thermodynamic equilibrium
a temperature ofT'1.4Tc . Then all particles with an energ
larger thanEb(t50)565\v are removed. During the simu
lation we decreaseEb exponentially according to

Eb~ t !5@Eb~0!2El #e
2gt1El , ~31!

whereEl58\v. In Fig. 13 the total number of particles i
the gasN and the number of particles in the condensateNc
are plotted as a function of time for different parametersg.
First the particles in the highest-energy levels are evapor
quickly. During the cooling process, the collision time d
creases by an order of magnitude as shown in Fig. 14; n
ertheless, the number of particles evaporated per unit t

FIG. 12. Mean collision time per particle versus temperature
N5500 for the harmonic oscillator. Result of the simulation~solid
line! and result fortcoll5(s n̄ hvT)

21 ~dashed line!. The dotted line
shows the collision time with the assumption of a fixed dens
equal to the ground-state density. The time scale is normalize
( n̄ h

0sv02/N)
21. v0 is the amount of velocity of a particle in th

ground state as defined in the text.

FIG. 13. Total number of particlesN and number of particles in
the condensateNc for g51/10 ~solid line!, g51/2 ~dashed line!,
andg53/2 ~dotted line! against timet. g is the time constant from
Eq. ~31! normalized tos n̄ h

0v02/N. The time t is normalized to
(s n̄ h

0v02/N)
21.
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56 585QUANTUM KINETIC THEORY. II. SIMULATION OF . . .
does not increase during the cooling process. The reaso
that most of the collisions occur between particles with
most the same energy and thus many collisions are nece
to redistribute the particles when some of them are eva
rated. If the collision rate did not increase so rapidly partic
might be lost from the trap faster than evaporative cooling
possible. As soon as the condensate builds up the mean
lision time increases again. This expected behavior ag
qualitatively with Fig. 12.

In order for the evaporative cooling to be efficient it
important to quickly put as many particles as possible i
the condensate. We therefore have calculated the size o
condensate divided by the time needed to reach 90% of
equilibrium condensate fraction for different values ofg as
shown in Fig. 15. The size of the condensate is limited by
initial number of particles in the gas, the initial size of th
cutoff Eb(0), and theinitial energy E ~for g!tcoll

21). For
g>tcoll

21 only few collisions will occur while the cutoff is
ramped down. The number of particles that reach the c
densate is therefore mainly determined by the collision r
As can be seen from the Fig. 15 there is a value for the ra
rateg, which maximizes the number of particles transferr
into the condensate per unit time and therefore optimizes
cooling process under the assumption that additional
rates from the trap do not change while the gas is coole

FIG. 14. Mean collision timetcoll versus timet for g51/10
~solid line!, g51/2 ~dashed line!, andg53/2 ~dotted line! against
time t. g is the time constant from Eq.~31! normalized to
s n̄ h

0v02/N. The timet is normalized to (s n̄ h
0v02/N)

21.

FIG. 15. Size of condensate divided by time to reach 90% of
final size of the condensate versus time constantg. g is the time
constant from Eq.~31! normalized tos n̄ h

0v02/N.
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We also performed some evaporative cooling simulatio
for a gas in a 3D box. Because the density of states in
case does not rise as quickly as in the harmonic oscilla
particle energies are changed more during a collision tha
the harmonic oscillator. Therefore, it is also possible to c
evaporatively a gas in a box quickly even though the co
sion rate does not rise as much as in the harmonic trap.

V. CONCLUSION

We have simulated stationary and nonstationary prop
ties of a Bose gas in a trapping potential with a finite num
of particles in the framework of the quantum Boltzma
master equation. For a gas confined in a 3D box we h
found that the number of particles in the condensate a
given temperature is larger than expected from the ther
dynamic limit. We have also computed the mean collisi
time of particles in the gas. A comparison with the classi
result shows that boson statistics tends to decreases the
lision time close to the critical temperature. Calculations
fluctuations in the number of particles in the one-parti
ground state have shown that the standard deviation
creases almost linearly with temperature until the criti
temperature is reached. For temperatures aboveTc the stan-
dard deviation decreases again and the distribution beco
Poissonian for high temperatures. We have also found
population is transferred at a time scale of the order of
collision time, which is important for the range of validity o
the ergodic form of the QBME.

Our simulations of a Bose gas in an isotropic harmo
trap were restricted to the ergodic form of the QBME.
contrast to the 3D box the number of particles in the cond
sate is decreased relative to the usual continuum~thermody-
namic! limit at a given temperature. We found that the me
collision time decreases significantly as temperature reac
the critical point from above. This is due to the increase
the density, as soon as the ground state is macroscopi
occupied. Simulations of evaporative cooling have sho
that there is a ramp rate to lower the cutoff energy of the t
with the goal of transferring as many particles as possible
unit time to the ground state.

The present formalism is readily extended to inclu
mean-field effects, and pumping and loss of particles from
degenerate Bose gas. This is relevant for modeling atom
sers based on collisions@15,16#.
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APPENDIX: THE CLASSICAL LIMIT

To connect the present paper with Ref.@9# we briefly
rederive the classical Boltzmann equation with the ergo
approximation from the QBE~19!. We assume that the dis
tance between energy levels is small compared to the m
energy of a particle so that the sum can be replaced by
integral. In the classical limit we get, for the density of sta
at energye,

e
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r~e!5
1

~2p\!3
E d3pd3xdS e2U~x!2

p2

2mD , ~A1!

whereU(x) is the trapping potential. The degeneracy of t
coarse-grained one-particle statesg(e) is connected to the
density of states byg(e)5Der(e). We replace

(
iP ī

C i* ~x!C i~x8!

→
De

~2p\!3
E d3pidS ei2U~x!2

pi
2

2mDei ~x2x8!pi /\,

~A2!

whereei5\v i . The factorDe in Eq. ~A2! ensures the nor
malization of the sum over the wave functions tog(ei). In-
serting replacement Eq.~A2! into uU1234u2 and integrating
over x8 yields a d function of the four momenta time
(2p\)3. Integrating overp4, i.e., settingp45p11p22p3,
we obtain

(
1P 1̄ ,2P 2̄
3P 3̄ ,4P 4̄

uU1234u2d~e11e22e32e4!

5
16p2\4a2

m2

De4

~2p\!9
E d3p1d

3p2d
3p3

3)
i51

4

dS ei2U~x!2
pi
2

2mD d~e11e22e32e4!.

~A3!
h.

m

a

n
t
rg
We define the total momentumP5p11p2 and the relative
momenta q85(p12p2)/2 and q5(p32p4)/2. Integrating
over the azimuthal angles of the two relative momentaq and
q8 and over the length of the relative momentumq and cal-
culating the remaining integral similarly to@9# we obtain

(
1P 1̄ ,2P 2̄
3P 3̄ ,4P 4̄

uU1234u2d~e11e22e32e4!

5
2mDe4a2

p2\2 r~emin!d~e11e22e32e4!. ~A4!

We insert expression~A4! into the QBE ~19!, divide by
De, replace the notation̂n ī & by f (ei) and the(De3 by
*de2de3de4, and obtain finally

r~e1! ḟ ~e1!5
8pma2

p2\3 E de2de3de4d~e11e22e32e4!

3$2 f ~e1! f ~e2!1 f ~e3! f ~e4!%r~emin!.

~A5!

In Eq. ~A5! the 11 f factors are neglected by assuming th
in the classical limit the mean occupation of a quantum le
is much less than one. Settings58pa2 this is the ergodic
form of the classical Boltzmann equation from Ref.@9#.
s.

A

r,
@1# C. W. Gardiner and P. Zoller, Phys. Rev. A55, 2902~1997!.
@2# Yu. M. Kagan, B. V. Svistunov, and G. V. Shlyapnikov, Z

Eksp. Teor. Fiz.74, 523 ~1992! @JETP75, 387 ~1992!#.
@3# D. V. Semikoz and I. I. Tkachev, Phys. Rev. Lett.74, 3093

~1995!.
@4# M. Holland, J. Williams, K. Coakley, and J. Cooper, Quantu

Semiclass. Opt.8, 571 ~1996!.
@5# The description of the system can be extended from a bin

collision model to aT-matrix description of the interaction
between the particles.

@6# Note that we concentrate a whole energy region into the o
particle ground state of the system. Therefore, the onse
BEC means to get a macroscopic occupation in this ene
region not in a single quantum state.

@7# S. Giorgini, L.P. Pitaevskii, and S. Stringari~unpublished!.
ry

e-
of
y

@8# K. Huang,Statistical Mechanics~Wiley, New York, 1987!.
@9# O. J. Luiten, M. W. Reynolds, and J. T. M. Walraven, Phy

Rev. A 53, 381 ~1996!.
@10# M. Holland, J. Williams, and J. Cooper, Phys. Rev. A55, 3670

~1997!.
@11# R.K. Pathria,Statistical Mechanics~Pergamon, New York,

1972!, Vol. 45.
@12# V. Bagnato, D. E. Pritchard, and D. Kleppner, Phys. Rev.

35, 4354~1987!.
@13# S. Grossmann and M. Holthaus, Phys. Rev. E54, 3495~1996!.
@14# W. Ketterle and N.J. van Druten, Adv. At. Mol. Phys.37, 181

~1996!.
@15# M. Holland, K. Burnett, C. Gardiner, J. I. Cirac, and P. Zolle

Phys. Rev. A54, R1757~1996!.
@16# H.M. Wiseman~unpublished!.


