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Quantum kinetic theory. Il. Simulation of the quantum Boltzmann master equation
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We present results of simulations ofjgantum Boltzmann master equati@BME) describing the kinetics

of a dilute Bose gas confined in a trapping potential in the regime of Bose condensation. The QBME is the
simplest version of a quantum kinetic master equation derived in previous work. We consider two cases of
trapping potentials: a three-dimensional square-well potential with periodic boundary conditions and an iso-
tropic harmonic oscillator. We discuss the stationary solutions and relaxation to equilibrium. In particular, we
calculate particle distribution functions, fluctuations in the occupation numbers, the time between collisions,
and the mean occupation numbers of the one-particle states in the regime of onset of Bose condensation.
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PACS numbegps): 03.75.Fi, 05.30.Jp

I. INTRODUCTION dynamic quantities, the mean time between collisions, and
the fluctuations of the occupation numbers of the condensate.
In a previous papefl], a fully quantum mechanical ki- For the 3D harmonic oscillator we also simulate a gas that is
netic theory for Bose gases was developed. One of the singvaporatively cooled.
plest versions of the quantum Kkinetic master equation
(QKM.E) neglgcts all spatial dependence and yields a masten, e QUANTUM BOLTZMANN MASTER EQUATION
equation, which we have named the quantum Boltzmann
master equatiof@BME). In contrast to the familiar quantum In this section we will first summarize the derivation of
Boltzmann equatiofQBE) [2,3], which is an equation of the the quantum Boltzmann master equation as givgd jnFur-
single-particle distribution function, the QBME is an thermore, we discuss properties of this equation and its so-
N-atom stochastic equation. The aim of the present paper isitions that are relevant for our numerical studies presented
to present results of numerical simulations of this equationn Secs. lll and IV and conclude with a comparison of the
for finite-size systems consisting typically of a few hundredQBME with the QBE.
atoms. Although the exclusion of the spatial dependence is
an extreme simplification, these simulations will give us a
first orientation about the kind of solutions the QKME will
yield. These simulations can thus serve as a guideline for the The second quantized form of the Hamilton operator for a
type of approximations of the QKME one may use to findBose gas with pair particle interaction can be written
numerical solutions of this much more interesting, but un-H=Hy+H,, where
wieldy, equation.
Furthermore, we will concentrate our attenti_on on thc_)se Ho=2 ﬁwm-a:n.am-r 1)
results of the QBME that cannot be obtained using equations m; e
like the QBE. We also restrict our work to the region of

A. Derivation and validity of the QBME

temperatures that are less than or not much higher than the 1
iti i _ t ot
critical temperature of the gas, because at much higher tem- H,_E U, my.mg.m,8m, 8m,amam,  (2)
peratures quantum effects do not play a crucial role and my M2, Mg, My
simulations of the classical Boltzmann equation, which is
valid in that case, have already been performéd HereHj is the system Hamilton operator of the noninteract-

The OBME is a genuineN-atom equation like the ing Bose gas, whereLi is the creation operator of a particle

QKME, bqt it neglects all .the coherences contained in thg, ne eigenstate ofl, labeledm; with energy% w,,. The
QKME: It is thus intermediate between the QKME and the . o . '
trapping potential is included iH ;.

ription of th m with kineti ions for single- - . o . .
description of the syste t etic equations for single The interaction Hamiltoniakl, describes two-body inter-

particle distribution functions. Its irreversibility comes from . . ;
the Markov assumption employed in deriving the QKME. actions in the B.OSE gas. In th_e regime we want to s_tudy, only
s-wave scattering plays an important role, allowing us to

The paper is organized as follows. In Sec. Il we review> .
the derivation of the QBME ifl], discuss properties of the write
QBME, and compare it with the QBE. Furthermore, we give
a brief description of the simulation algorithm. In Secs. 1ll Um, m, m;.m,
and 1V we apply the QBME to study a Bose gas confined in Ami?a
a three-dimensiondBD) box and in a 3D harmonic oscilla- _am 3ok *
tor. In particular, we discuss simulations results for thermo- ~  m J'de x\Ifml(x)\Ifmz(x)\Ifms(x)\Ifm4(x). ©)
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In Eq. (3) lI’mi(x) denotes an eigenfunction of the trapping tion is valid when the interaction between the particles is

potential in coordinate space labeled by quantum numbergmall compared to the system Hamiltonibiig [5]. For the

i. Below we will specify the potential to be a 3D box with Markov approximation to be valid it is required that the fre-
periodic boundary conditionSec. Il)) or a 3D isotropic os- duency spectrum is effectively continuous, which means that
cillator (Sec. V), and will give expressions for the matrix the separation between the energy levels is much smaller
elementsUp,_ m m,.m, for these specific cases. For conve- than the energy range .of occupied states. The use of the
nience we will use the notationinstead ofm; below. The Markov approximation gives the QKME its “T“?Vers'b"’r char-
scattering length of the gas & and the mE;SS of the gas acter. We will neglect the influence of collisional shifts on

particles ism. We will treat systems with a finite number of eigenstates of.
partic!esN . This is the star;ing point fro_m which the QK_ME 3. Reduction of the QKME to the QBME
is derived in[1]. The following assumptions and approxima-
tions are made. To reduce the QKME to the QBME it is assumed that the
coherent termgi.e., Hamiltonian terms ifl1], Eq. (77)] can
1. Forward scattering terms be neglected. The QBME is an equation for the diagonal

All the terms ofH, [see[1], Eq.(67)] that commute with elementsw,=(n|p|n) of the density operator and takes the

the system Hamiltoniai, describe forward scattering and form {1}, Eq. (101}
give rise to the mean field. These terms can be included with

. an
Ho. Forward scattering does not change the occupation of the ~ w,=— +

> 45(ﬁ(w1+ wy— 03— wy))|U 1342

one-particle eigenstates, so we will neglect the influence of h12%,
these terms on the eigenstates-bin the simulations. X {N1N5(Ng+ 1) (Ng+ 1)[Wy—Woe, ]
123
2. Collision terms +(Ng+ 1) (Nt DNgg[Wo =Wy e, I} (4

The remaining terms ik, describe collisions that change
the occupation numbers of the one-particle states of the trapgdere|n)=|ng,ny,n,, . ..) is a Fock state of th&l-particle
ping potential. We assume that this part-bfcan be treated system, giving the occupation numbersof the eigenstates
perturbatively, using the Born approximation and the Mar-¥;(x) andn denotes the vector consisting of the occupation
kov approximation(1], Sec. IV C 3. The Born approxima- numbersn;. The vectore,,s,is defined similarly ton as

es~[0,...,0,10,...,0,10, ...,0-10,...,0-1,0, ...,0, (5)

which describes two-particle collisions. The sthte-e;534 Se0
can thus be reached from) by the collision 2—3+4. 5&)=7e )
The 6 function in the discrete sum of the QBM®&) has

its origin in the use of the Markov approximation as outlined 4,4 w, in the QBME (4) is the probability of findingn,

in [1]. Since we do not replace these sums by integrals in 0Ugaticles within the energy intervdle,— Ae/2,e + Ae/2].
simulations thisé function requires interpretation. We con- 5 jenotes the Kronecker delta
X .

centrate energy regions dfe to one single discrete energy "', 1] it is shown that the kernel of the integral where the
level. The energy inFervaI is described by 'the properties of\arkov approximation is madg1], Eq. (68)] has a width
the closest one-particle state . The choice ofAe de-  given py the temperaturg/kT. This width determines the
pends on the trapping potential and is such that each of thFange of possible outcomes of a collision. As longi&eT is
one-particle states serves as one of the discrete energy 1evelg,ch smaller than the time between two collisions the free
with energy €; that determine the properties of particles gy o|ytion after the kernel has reached zero will fix the energy
within the energy rangde —Ae/2,e+Ae/2]. Implicitly,  of the particles within a range df/t., before the next col-
this includes the interpretation af as being an integral over |ision occurs. We already assumed that it is possible to de-
a smooth distribution functiofi(e): scribe the system in terms of one-particle eigenstates of the
trapping potential, which is valid only if the level broadening
- J'ei”e’z R (6 coming from the collisions is much less than the level spac-
" )e-ner  Ae’ ing. Hence we are able to decide which of our one-particle
states describes the properties of a particle best before this

wheref(e) gives the number of particles occupying a stateParticle collides again.
with energye. Among the degenerate one-particle eigen-
states the particles are distributed according to similar argu-
ments as in Eq(6). The 6 function in the QBME(4) there- Since there are no classical assumptions in deriving the
fore has to be interpreted as QBME (4), it should be valid even when the Bose gas be-

4. Discussion
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comes degenerate, within the limits of the approximations 1

made in its derivation. The quantum statistics is contained in ()= P (10)
the 14 n; factors in Eq(4). This allows us to study the onset exp( A 1

of Bose-Einstein condensati¢BEC), in the sense of obtain- kT

ing a macroscopic occupation in the ground sféfeand in
particular finite-number effects, which are important when
the number of atoms is not large.

The QBME(4) is a full N-particle equation in the form of
a stochastic master equation that descridgzarticles inter-

In this caseT is the temperature and is the chemical po-
tential of the system in the grand canonical ensemble. Given
the mean energy of the systdfand the mean number of
particlesN we can solve the two equations

acting with each other by two-particle collisions. These col- 1
lisions are responsible for the equilibration process. In con- N=, , (113
trast, the QBE(see Sec. I1D considers the motion of one [ ex%ﬁ“’i_“) 1
particle interacting with a mean distribution of the other at- kT
oms in the gas.
No mean-field effects are included in the present form of hw;
the QBME(4). As soon as the temperatuFeof the gas is far E= Z ho—u (11b
below the critical temperaturé; and most of the particles exp( KT )—1

have accumulated in the ground state, the mean field pro-

duced by these condensed particles must be taken into agsy ,, and T numerically. We will compare this result below
count. We estimate the effect of the mean field for a Bosgyjth the one we get from our simulations. In the framework
gas confined in a 3D harmonic trap. At=0 the ratio be-  f the QBME these grand canonical results are obtained if
tween the interaction enerdy,, and the level spacindw  \ve assume that in steady state the expectation values of the

can be approximated K] n; factorize(which is an approximation
E.x. Na 2. Particle distributions
Nhw ano’ (8) The QBME is a stochastic equation for the diagonal ele-

ments of the density operator in the basis of the eigenstates
of Hy. We are interested in calculating the probability distri-
where N is the number of particles in the trap and bution of particles in the one-particle states. They are defined
ayo= Vhi/mw is the size of the ground state of the trap up toas
a factor 2. In typical experiments the ratida,o~10 3. If
we neglect the effect of the thermal particles on the interac- .
tion energy we can replacd by N. in Eqg. (8) to get an Wi)) = zn:
estimate for the interaction energy at finite temperatures. n=
Therefore, we find thag;, is smaller than the oscillator . - o ) )
energy as long as the condensate does not contain more th@Rd give the probability of finding particles in the one-
N.=1000 particles. Furthermore, the derivation of theParticle eigenstate labeldd The sum runs over al with
QBME assumes that the width of the energy levels and col=iNi=N and#ZX;w;n;=E, the constant number of particles

lisional shift in addition to the mean field is small relative to in the gas and the energy of the system, respectively. We will
the level spacing\e. compute these distributions for the 3D box in Sec. IlIB 4.

For highly excited statel§ whose mean occupation num-
3 _ ber is much less than 1, the probability(j) is substantially
B. Quantities of interest different from zero only forj=0 andj=1, which leads to

) ) ) ) ) ) 2 _ -

For comparison with the simulations discussed in the fol{N7)—(n;)*~(n;). On the other hand, approximate expres-
lowing sections, we summarize below properties of the stasions can be derived for low-lying states, including the
tionary solutions, the particle distributions, and collisionground state, on the following arguments. Assuming that

Wp (12
i

times. there is no restriction on how the particles are distributed
among degenerate energy levels, we can WWit€j) in
1. Stationary solution terms of energy levelg3]
The QBME conserves enerdy and number of particles 1 a— 1)
N. According to[ 1] the stationary solution of the QBM&) N T E H (gmitgi—1)! 13
! Witi)=5 2 — . (13
'S "o (gmDH(gr= D!
ginr=l
W, =const, 9 Here | are sets of indices of degenerate eigenlevglsjs
the number of elements df, anc&mrgives the total num-
corresponding to a microcanonical ensemble. ber of particles in the statds= | . The normalization con-

We will also compare our simulations results with the stant is denoted bZ andn is a vector containing thei~.
grand canonical ensemble. For the mean occupation numbefdis formula is only approximate because it includes con-
one obtaingcomparg1], Sec. VA2 figurations of the system that cannot occur in the simulations
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since they are not connected by collisions with the initialergodic assumptiof4,9,10,2,3. In a classical context this
configuration. For small temperatures the sum in @8) is  corresponds to the assumption that the phase-space density
readily calculated numerically, and we will compare thisf,(p,x) depends only on the energy of the particles at

with our simulation results in Sec. IlIB4. position x with momentump at timet. Quantum mechani-
S cally, it is postulated that degenerate energy levels carry
3. Collision time equal populations at all times, i.e., the populations of degen-

For any given configuration of the system we calculate €rate eigenlevels equalize on a time scale much faster than
the sum over all the transition matrix elements for collisionscOllisions between levels of different energies. This implies
that can occur. This sum is the value of the right-hand side ofhat the occupation numbers in the QBME should be re-

Eq. (4) for a givenn, the correspondingv,=1, and all the ~Placed by
other w,, equal to zero. A single possible collision
1+2—3+4 contributes to this sum ni_mi—:iiE_ni . (15)
4m Jiiei
P(12-34)= - |U12342n1n5(ng+ 1) (N + 1), (14)

. ] ) Here we define sets of indicds that contain all the indices
where the factor of 4 is due to different permutations of thesf one-particles states with the same enefigy ; gi-is the
indices that describe the same collision. We call a collisiorgegeneracy factor of states with enetgly. We note that the
possibleif it conserves energy antd,34#0, and we call  n—are no longer integers. In our simulation this corresponds
P(12—34) thetransition probability per unit timefor this g a distribution function that is completely specified by the

particular collision. occupation numbers dfthe block of degenerate energy lev-
. o els, i.e.,w,— W5, wheren is a vector containing the number
C. Ergodic approximation of particles in the degenerate eigenleveis. Removing or

In solving the QBE or the classical Boltzmann equation itadding a particle to a state changesi;i by 1/g7~. Therefore,
is a common approximation to simplify this equation by anwe use a vectoe; 534, which is defined by

1 2 3 4
€732=10,...,0,16,,0,...,0,1¢,,0,...,0~1/g35,0, ...,0;-1/g,,0, ... 0O (16
|
to describe collisions in the ergodic case. tails of the dynamics. A comparison of the kinetics with and
Using these definitions, we can write the ergodic form ofwithout the ergodic assumption will be given in the case of a
Eqg. (4) as 3D box in Sec. Ill; our simulation results for the harmonic
oscillator in Sec. IV will be based on the ergodic approxima-
: ™ tion.
Wn="7% > ( Y 8w+ o,
1,2,3,4 | 1e1,2e2
3e3,4e4 D. Comparison between the QBME and the QBE
5 B - Recent work of kinetics in relation to Bose condensation
— w3~ ®4))|U1234® | {nN2(N3+1)(n5+ 1) in trapping potentials by Holland and collaboratdd is
based on the QBE with an ergodic assumpiifam a classi-
cal Boltzmann equation see alg®]). The derivation of the
X[Wn=Wni e d t (N D (03 1) QBE is based on factorizing mean values
(N1ng- - -n)=(ng)(nz)- - () with (n)==,niw,. In the
X NgNaf Wa— Wiz g5 1} 17 ergodic approximation one obtains
Transition probabilitied?(12— 3 4) are calculated accord- . Am
panston P (Rem= oD =72 {~ (DD (D) + D5+ 1)
234
—_— + (N7 +1)((n7)+1)(n3)(N
P(12—34)= 2 P(12-34), (18) (M) D)+ 1)(ng) ()
lel2e2
363_,464 X Z _|U1234|25(ﬁ(w1+w2_(1)3_(1)4)) .
lel,2e2
where the sum runs over all the elements of a particular set 3e3,4e4

of degenerate states. Collisions that do not change the energy (19)
distribution are thus no longer taken into account.

We note that the ergodic assumption yields the correcin this equationn7) is the mean occupation of the degener-
steady-state distribution, but we expect differences in the deate states. The discreta;) replace the particle distribution
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function f(e) used in the classical versid®]. The QBE gas. We keep track of each of the particles rather than of a
describes the time evolution of the single-particle distribu-certain number of one-particle states. This limits the number
tion function in the mean distribution of the other particles. of particles we are able to consider.

In contrast to simulations of the QBME, fluctuations in the

occupation numbers are thus not described by the QBE. |iI. 3D SQUARE-WELL POTENTIAL WITH PERIODIC
Moreover, it is not possible to simulate systems far from BOUNDARY CONDITIONS

equilibrium where the factorization of the mean values is not
valid. The results presented in Sec. IlIB4 can be obtained
only by using the QBME. On the other hand, the QBE has First, we will simulate the QBME for a 3D cube of length
the advantage that it allows simulations with much largen_ with periodic boundary conditions. This corresponds to the

A. Description of the system

particle numbers than the QBME. simplest version of the QBME. In the language [df],
ox=L is the length of the phase space cells. From this we
E. Simulation of the QBME immediately find the spacing of the cells in momentum to be

. ) . . op=_2mxhl/L, which is equal to the momentum spacing of the
Since the QBME is a stochastic master equation foryiscrete energy levels in the box. The wavelet functipns

(quantum-mechanicpl occupation probabilities, we can oduced in[1], Eq. (26)] are therefore reduced to
simulate its time evolution as a series of jumps. A jump

describes the collision of two particlest2— 3+ 4, which gkx

is represented as an instantaneous change of the correspond- vi(X)= 132 (21
ing occupation numbers. The simulation method is often

used for rate equations and works as follows. We have dropped of [1] in the equation above because

(i) Take an initial configuration of particles [represent- there is only one phase-space cell in coordinate space. The
ing an initial density operatop,(t=0)=|n)(n|], where the wave numberk take on the discrete values
energyE and the total number of particléé are fixed.

(i) Calculate all the transition probabilities per unit time k— 2_7Tm 22)
P(12—34) for the givenn. L "

(iii) The total collision rateis now proportional to the
sum over all transition probabilities per unit time. wherem is a vector consisting of integer values. Since our

(iv) The next jump occurs at tinig, since the last jump, System has the finite volumie®, the wavelet functions are
which can be calculated by choosing a random numbe@rthogonal in the sense
r €]0,1] from a uniform distribution and using

3 * —_ s
t In(r) 0 fLsd XUy (X)vi (X) =6 - (23
m: - .
21238(12-34) With these wave functions we can now calculbitg, to be
(v) All the possible collisions are lined up with the 47hla
length P(12—34). Another random numberse]0, Ui2as= mL3 5m1+mz,m3+m4' (24)
21234, (12—34)] is chosen from a uniform distribution.
The transition selected by this random numbegives the In the case of the 3D boxAe=2#27w?/mL?. Using
particular collision 1234 that occurs. o=8ma® [10] for the cross section,n=N/L3, and
(vi) The last step now is to sett:=t+ty,, y,=27A#/mL, which is the magnitude of velocity of a par-
[n):=|n—eyn39, andp;:=|n)(n|. ticle in the first excited state, we get

(vii) Go back to(ii).

(viii) Repeat this simulation to obtaji=const< X, p, . _ 2

In every%ollision only four of the occﬁ;)ation nurlnpblers areP(12=34)=0nvy 5 dm, +my my+m,NiN2(Ng+1)(Ng+1).
changed and therefore only a few of the transition matrix (25)
elements are modified by the change in the occupation num-
bers. Thus it is not necessary to calculate all transition probThe number of possible collisions is restricted by two Kro-
abilities after each step since only those involving theneckers functions that ensure energy and momentum con-
ny,N,,Ns,n, that define the collision will have been servation. The overlap integral i$;3,=4 w4 %a/mL2 for all
changed.(This is, however, more complicated than is thethe possible collisions and does not depend on energy or
case for the Boltzmann master equation, where thenl momentum of the involved one-particle states.
factors do not occur. In semiclassical treatments of the QBE, the ergodic as-

For integer occupation numbers it is not possible to nesumption is often madg2,3]. The density of states is ap-
glect the 1 n; factors above a certain energy by arguing thatproximated to be proportional tge. It is then shown that the
the mean occupation of highly excited states is much smalletransition matrix elements are proportional {e,,,, where
than one. For highly excited states these factors are eithex,, is the minimum energy of the colliding particlésom-
1 or 2, etc., and cannot be replaced by 1. We have to accoupare the Appendix In the case of a smoothly varying,
for them regardless of the energy of the one-particle statestrictly decreasing functiorf(e), one can therefore argue
involved into the collision. In our simulation method we do that most of the collisions happen between particles with
not restrict the number states available for the particles of thalmost the same energy. In the cases we are interested in we
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T excited staten; against the total number of particlésin thermal
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c

FIG. 1. Condensate fraction versus temperature in thermal equimulations and the grand canonical expressibf). The
librium for the 3D square-well potentiala) Thermodynamic limit, ~degeneraciegi—in Eq. (11) are calculated by counting all
(b) grand canonical solution foN=500 (solid line) and results Ways of combining different integer numbers;,m),m{
from the simulation(+), and (c) grand canonical solution for consistent with the definite energy
N=100 (solid line) and results from the simulatio).

2m°h? X2 ¥\ 2 72
cannot make these assumptions. The occupation numbers hwj=—rz [(M{) "+ (M) "+ (m)7]. (26)
can vary strongly and the degeneracy of states that we count

exactly is not proportional to/e in the energy range in The simulation and the grand canonical result both give a

which our simulations are performed. higher number of particles in the condensate than expected
from the thermodynamic result. The results for finite number
B. Results of simulations of particles, however, approach the thermodynamic limit

) . _ . with increasingN very quickly. Around the critical tempera-
All the simulations we report contain a statistical error. ¢ e there is a slight deviation of the simulated results from
Unless this statistical error is given explicitly, it is less thanq grand canonical resulf$3], whereas foiT <T, there is
5%. almost no difference. This is due to a bigger statistical error
in the simulation because of the large fluctuations in the
region around the critical temperature. Note also that we are
There are two ways of computing the stationary solutioncomparing two different statistical ensembles and that for
of the QBME(4). The first is to calculate it directly from Eq. finite systems we would not expect exact agreement between
(9); this is feasible only for very few atoms. The secondthe results from different ensembles.
possibility is to obtain the stationary solution from simula-
tions by assuming that the time average over a sufficiently 2. Occupation of the ground state

long time period equals the ensemble average. To find this We want to investigate the scaling of the one-particle

time we wait until the simulation results agree with a BoSe-g¢a1e occupation with the number of particles in the gas. For

Einstein distribution(10). This also allows us to assign a BEC we expecf10] the occupation of the ground state to be
temperaturd to the system. All the results are scaled to the

T 3/2

—) } (27)

critical temperature in the thermodynamic limit no N
Te

1. Thermodynamic quantities

Te=(2A27/mL2k)[N/£(3/2)]?® [11]. There are three pa- L
rameters of the systent, L, and N, which give a certain
T, T., andN in thermodynamic equilibrium. In the simula-
tion we fix E andN, and the scaling to the critical tempera-
ture is equivalent to scaling to a certain particle density .
N/L2 in the box. () _T _mk =
. . : T 722 — 0. (28)

The expressionT, for the critical temperature is, of L L 27°h°m;
course, valid only in the thermodynamic limit because in the
derivation[12] sums over energies are replaced by integrald=igure 2 shows the occupation numbers of the ground state
that over- or underestimate the sums for finite systems deand the first excited state. At a givei T, the number of
pending on the density of states. In the thermodynamic limiparticles in the ground state increases linearly with the total
the energy spectrum becomes continuous and summingumber, whereas the slope of the occupation of the first ex-
yields the same result as integrating. For a finite number o€ited state becomes smaller with increasing number of par-
particles we therefore do not expect the critical temperaturéicles. From this numerical result we conclude that the
and the condensate fraction versus temperature to be tH@BME does really describe a macroscopic occupation and is
same as in thermodynamic limit. consistent with expecting BEC below the critical temperature

Figure 1 shows the comparison of the results from therl..

while for excited states
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FIG. 3. Mean collision time per particle versus temperature for FIG. 4. Mean collision time per particle versus temperature
N=500 of the 3D box without ergo@ assumption. Result of thefor N=100 for the 3D box. Results of the simulatié® with and
simulation (+) and result f(ﬂcm,:(anvﬁ’l (dashed ling The (b) without the ergodic assumption and result fgs=(onvy) *
time scale is normalized ton(ev,2/N) 1. v, is the magnitude of (dashed ling The time scale is normalized tmgv;2/N) L. v, is
velocity of a particle in a first excited state as defined in the text. the magnitude of velocity of a patrticle in a first excited state as

defined in the text.

3. Collision times with and without the ergodic assumption
. . . (time averaggor we record the number of particles in that
Obviously, the results given in Secs. llIB1 and Il B2 are state after a certain time for many different trajectofies-

fche same with or Withogt use of the erg_c_Jdi_c assumption. Thi%emble average Both results need not necessarily be the
is expected, because in thermal equilibrium all degeneratgame unless the system has the stationary sol€ipriwe

peratures.
In Fig. 5 particle distributions for the ground state are
plotted. Particle distributions of the condensate are well ap-

average over all the calculated timgsfrom Eq. (20). This
time has to be multiplied biX/2 because one particular par-

ticle is involved in one out oN/2 collisions. . proximated by a Gaussian for temperatures belgwHow-

In Fig. 3 we plot the mean collision timtg for one  gyer they are not completely symmetric around the mean
particle versus the temperature without the ergodic assumpr,ye, unlike the Gaussian there is a slight asymmetry that
tion. The classical elastic mean collision time calculated,reases with temperature. The shape of the distribution
from teg=(onvr) _,1i wherevy is the mean thermal veloc- changes close to the critical temperature. Rbe500 at
ity of the gasur=N""%; 2 w;/m(n;) and(n;) is the mean  T=1.1T, the distribution develops a second local maximum
occupation of theth energy level obtained from the simula- at N.=0 and atT=1.2T, the peak at finite number of con-
tion. As soon as the gas becomes degenerate the, fac-  densate particles has disappeared. Well abdye at

tors in Eq.(4) become important and increase the collisionT=1.7T, it agrees with a Bose-Einstein distribution
rate compared to the classical case. For temperatures close to

zero the collision time increases again because there are only pP(No) = (1—7) 7N, (29)
a few particles outside the condensate that can take part in
collisions. Figure 4 shows the comparison between th%vith (N =7/(1— 7)

c .

curves for the ergodic collision timeg, andtcg, . For very The particle distribution of the first excited state in Fig. 6

small temperatures, the (_argodlc assumption allows for collic5n pe approximated by the Bose-Einstein distribut®)
sions that cannot occur in the nonergodic case because the

corresponding states are not occupied. As soon as the tem-
perature is close td ., those collisions in the nonergodic

case that change only the direction of the momentum of an
individual particle decreasély; compared to the ergodic P (Ne)
case. Since this type of collisions leaves the energy of the
particles unchanged, they are not included in the ergodic
calculations.

0.05

P (N;)o01

4. Particle distributions

While the mean values for the occupation numbers are
easy to calculate it takes more effort to find the particle dis-
tribution W;(j) of the one-particle states. There are two ways FIG. 5. Probability distribution of particles in the condensate for
of calculating these distributions. Either we calculate thethe 3D box without the ergodic assumption. Results of the simula-
time a state was occupied by a certain number of particleson (barg and fits(solid lineg are calculated foN=500.
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t
0.1 T=12T,
P (nl) FIG. 8. Buildup of the condensate for the 3D box fér=500.
The energy is chosen such that in equilibridi 0.5T.. The time
0 scale is normalized tor(ov,2/N) "1 in thermal equilibrium. The
0 10 20n 30 40 50 dashed line is a fit of the formN1—exp(—t/7)], with
1 7=0.0013 and\.=368, as explained in the text.

FIG. 6. Probability distribution of particles in one of the first
excited states for the 3D box without the ergodic assumption. Re
sults of the simulatioribar9 and fits(solid lineg are calculated for
N=500.

bution with a very large standard deviation. For T the
standard deviation will tend to go to the mean number of
particles in the condensate, which agrees with the fit to the
Bose-Einstein distribution, which has a standard deviation of
. . ) . N:(N;+1) going toN. for N.<1.
for T<T.andT>T,. Particle distributions of highly excited This also agrees with the calculation performed in Sec.
states agree with the Bose-Einstein probability distribution; g5 tor the case of very small mean occupation of a state.
(29) at all temperatures. o At small temperatures we calculate the particle distribution
In Fig. 7 we plot the standard deviation(N.) of the i, the condensate according to E&j3). To compute the sum
particle distribution of the condensate in thermal equilib-j, Eq. (13) we assume that most of the fluctuations come
rum. The error bars are calculated according 1Ofom the exchange of particles of the condensate with the
Vo (Ne—(Ne)/(N¢), which is the variance of the stan- first few excited states. The particles in higher excited states
dard deviation normalized to the mean number of particles ihould not have a significant influence on the fluctuations in
the condensate. This gives the mean deviation of the stafhe condensate, but they should ensure that particles in the
dard deviation from its calculated value. For small temperamwest-lying states can be distributed among degenerate
tureso(N,) rises almost linearly with temperature. The num-gjgenlevels, without restrictions due to conservation laws.
ber of possible states with different number of particles in therhe derivation of Eq(13) is based on the assumption that
condensate increases, which leads to a larger width of thge particle distribution among degenerate eigenlevels is not
distribution. Close tOTC we get avery broad pal’tiC|e distri- restricted by conservation laws. Using Hq_s), we obtain
particle number fluctuations of the condensate due to ex-
change with low-lying levels. In particular we calculate
W,y(j) from Eg.(13) by taking into account the first 17 en-
ergy levels. The particle distributions we get agree well with
the ones from the simulations. In Fig. 7 the results of both
calculation methods are compared for temperatures
T<0.5T.. The crosses correspond to the numerical calcula-
tions on Eq.(13) and agree well with the simulation results.

5. Growth of the condensate

Here we want to investigate how the condensate builds up
when the simulation is started in a nonequilibrium distribu-
tion. As the initial state we choose a Gaussian-like distribu-
+ tion: We first distribute the particles randomly into states
T with energies between that of the first excited state and twice
the mean energy, and then move particles to higher- or

FIG. 7. Fluctuation of the condensate fraction versus temperaloWer-energy states until the given fixed energyof the

ture in thermal equilibrium for the 3D square-well potential. ResultsSyStem is exactly reached. _ _ _
of the simulation folN="500. The crosses give the results from the ~ Whenever possible we avoid putting particles in the con-

numerical summation of Eq13). The dashed line is/N,, which ~ densate at the beginning of the simulation. As can be seen in

would be equal tar(N,) if the fluctuations in the condensate were Fig. 8, the condensate growth is well fitted by
Poissonian. N[ 1—exp(—t/7)], whereN. is the number of particles in the
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ny n1 FIG. 10. Condensate fraction versus temperature in thermal

equilibrium for the 3D harmonic oscillatofa) Thermodynamic
FIG. 9. Distortion of an ergodic distribution into a nonergodic imit, (b) grand canonical solution fdX =500 (solid line) and re-
one for the 3D box. Particle distribution of the depleted levelsSults from the simulatiori+), and(c) grand canonical solution for
[P(n$)] and of the filled level§ P(n!)] at timet after the distor- ~N=300(solid line) and results from the simulatiofo).

tion. Simulation forN=500 atT=0.4T,.
— 47 mooh h

P(12—34)= 1 0,
condensate in thermal equilibrium and the time constaist Ao 4me Tmin1234)
found by fitting this function to the simulation. This holds as % ) (e 1
long as the fraction of condensate particles in thermal equi- ninz(ng+ 1)(ng+1)
librium is not much less than one. —0 —1.h
=nNpove(2N) Inin(1234)
6. Time to reach an ergodic distribution Xniny(nz+1)(nz=+1). (30

While with the ergodic assumption all degenerate levelg o o gf;_:(j +1)(j+2)/2 is the degeneracy factor of the

are equally occupied at all times, in the nonergodic case, eigenstate with energyi o, vo= &% olam is the mean

collisions themselves are responsible for equalizing the Oclr'nagnitude of velocity of a particle in the ground state of the

cupations of degenerate levels. To check the relaxation time —0 . o
o . : . oscillator, andny, is the mean particle density if all the par-
for a distribution to become ergodic we disturb a system in

thermal equilibrium by puttingll particles with energye ticles are within a cube of lengt{i m/m. This is the semi-

into two of the first excited stateith opposite momentum classical expression obtamgd in the Append!x. Accord!ng to
that the total ¢ . hanbefs is sh . Ref.[10], numerical calculation shows that this expression is

S0 that the fotal momentum 1s unc angedis IS shown in 5 good approximation even for low-lying energy levels.

Fig. 9, the particle distribution comes to equilibrium in ap-

proximately 1@, . Collisions therefore transfer the occupa-

tion between degenerate levels at a time scale of the order of . .
the mean collision time in the gas. We conclude that for the 1. Stationary solutions

ergodic assumption to be valid, strictly speaking, it is reason- To obtain the grand canonical stationary solutions for the
able to look only at quantities that are mean values ove i i h.
yatq BD harmonic oscillator we have to replagg by g=-in Eq.

several collision times. (11). The critical temperature for an ideal Bose gas in a 3D
isotropic trap in the thermodynamic linfite. when the sums
over the discrete energy levels are replaced by integials
IV. 3D ISOTROPIC HARMONIC OSCILLATOR given by Tc:(ﬁ(1)/|()|:N/é"(3):|1/3 [12] Our simulation re-
sults for the condensate fraction versus temperature are
shown in Fig. 10. The continuum approximation increases
In this section we will study Bose particles trapped in anthe condensate fraction for a finite number of particles com-
isotropic harmonic trap with trap frequeney. The vector  pared to the simulation results. The reason for this is that the
[n) now gives the occupations of the trap levels dhgs,  density of states rises much faster than for the 3D box. As in
contains the spatial eigenfunctions of the harmonic oscillathe case of the square-well potential, the results for the mi-
tor. For the low-lying levels these integrals can be evaluatedrocanonical simulations and the grand canonical calcula-
numerically, but for highly excited states it is difficult to get tions agree very well. Comparing the two curves for
reliable results fotJ,34. Therefore, we will limit ourselves N=500 of Figs. 1 and 10, we find that the phase transition is
to using the ergodic form of the QBME as explained in Secmore pronounced in the harmonic oscillator compared to the
IIC. As is shown in[10], the transition matrix elements of much smoother transition for the 3D box. This behavior can
transitions that change the energy distribution function caralso be seen by plotting the energy versus temperature in Fig.
be approximated by 11. There is a visible change in the slope of the energy for

B. Results of simulations

A. Description of the system
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FIG. 11. Total energy of the system versus temperatayelata o )
for harmonic oscillator andb) data for the 3D box each with FIG. 12. Mean collision time per particle versus temperature for
N=500. Energy is normalized to the level spacihg. +, results N=500 for the harmonic oscillator. Result of the simulatisolid

from the microcanonical simulation; solid line, result of the grandline) and result fort.,;=(onywy) ~* (dashed ling The dotted line
canonical calculation. shows the collision time with the assumption of a fixed density
equal to the ground-state density. The time scale is normalized to

the harmonic oscillator even fo=500. For the ideal gas (Mhov02/N) ™" vg is the amount of velocity of a particle in the
the heat capacity has a jump at the critical temperature in th&ound state as defined in the text.

thermodynamic limit in the harmonic oscillator, whereas in ) ) ] )

case of the 3D box only the slope of the heat capacity id€Vel Ex(t), with Ep(t) a given function of time. Each par-
discontinuous at the critical temperatie2]. This makes ticle thatis scattered into an energy level ab&¢t) after a
clear that the thermodynamically expected differences in th&ollision is considered as lost. In our simulations we start
condensation process between the harmonic oscillator anfith No=2800 particles in the thermodynamic equilibrium at

the free gas can also be seen in finite systems for smaf temperature of ~1.4T.. Then all particles with an energy
particle numbers. larger thanE,(t=0)= 65 w are removed. During the simu-

lation we decreask,, exponentially according to

2. Collision times

_ _ -yt
We will now compare the mean collision time obtained in En(t)=[Ep(0)—EiJe "+ E, (3D

our simulationg"S, with the elastic collision time defined as . . .
t28”=(n—havth)_1. The superscript “he” stands for harmonic whereE,=8%w. In Fig. 13 the tot_al nu_mber of particles in
oscillator with ergodic assumption, while “hc” indicates the 9asN and the number of particles in the condendite
that the classical value for the harmonic oscillator is calcu2ré plotted as a function of time for different parametgrs
lated. We determiney, and ny, with the assumption that the F|r§t the par'Fches in the h|ghest-energy Ievels' are eyaporated
mean kinetic energy of the particles is equal to their meargu'Ckly' During the cooling process, the collision time de-

potential energy. Then we find for the mean density and th&reases by an order of mag”“_“de as shown in Fig. 14.; nev-
thermal velocity ny=(3N/4m)(Mw¥Eg)®? and v ertheless, the number of particles evaporated per unit time
h™— 3/ th

= JEy,»/m, respectively, WithE=[ (1/N)=; (7 w;)(n;)]*.

In Fig. 12 we plot the mean collision time versus tempera- 800
ture. For temperatures higher than the critical temperature
the simulation agrees well with the classical regdished
curve. For temperatures far beloW., the result of the
simulation is approximately equal to the dotted curve that we :
obtained by the assumption that the size of the cloud is the N 400}
ground-state size and only the thermal velocity varies with '
temperature. Around the critical temperature the size of the
cloud shrinks faster than expected from the classical approxi-
mation.

600 |

200

3. Evaporative cooling

Currently, BEC is achieved in experiments by evaporative
cooling, i.e., by removing particles with a high energy from  FIG. 13. Total number of particlés and number of particles in
the trap(for a review se¢14)). Elastic collisions between the the condensatél, for y=1/10 (solid line), y=1/2 (dashed ling
particles thermalize the particle distribution that leads to aandy=3/2 (dotted ling against time. vy is the time constant from
decreasing temperature. To simulate a Bose gas that Bg. (31) normalized toonv2/N. The timet is normalized to
evaporatively cooled we cut off the trap at a certain energyonfv,2/N) 1.
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10° We also performed some evaporative cooling simulations
RUTR for a gas in a 3D box. Because the density of states in that
L e T case does not rise as quickly as in the harmonic oscillator,
LT particle energies are changed more during a collision than in
16"t ,’ the harmonic oscillator. Therefore, it is also possible to cool

evaporatively a gas in a box quickly even though the colli-
sion rate does not rise as much as in the harmonic trap.

V. CONCLUSION

We have simulated stationary and nonstationary proper-
ties of a Bose gas in a trapping potential with a finite number
of particles in the framework of the quantum Boltzmann
master equation. For a gas confined in a 3D box we have

t found that the number of particles in the condensate at a
given temperature is larger than expected from the thermo-

FIG. 14. Mean collision timet.,, versus timet for y=1/10  dynamic limit. We have also computed the mean collision
(solid line), y=1/2 (dashed ling and y=3/2 (dotted ling against time of particles in the gas. A comparison with the classical
time t. y is the time constant from Eq(31) normalized to result shows that boson statistics tends to decreases the col-
on%2/N. The timet is normalized to ¢nCvy2/N) L. lision time close to the critical temperature. Calculations of

fluctuations in the number of particles in the one-particle
does not increase during the cooling process. The reason ggound state have shown that the standard deviation in-
that most of the collisions occur between particles with al-creases almost linearly with temperature until the critical
most the same energy and thus many collisions are necessdgmperature is reached. For temperatures afigube stan-
to redistribute the particles when some of them are evapadard deviation decreases again and the distribution becomes
rated. If the collision rate did not increase so rapidly particles?oissonian for high temperatures. We have also found that
might be lost from the trap faster than evaporative cooling iPopulation is transferred at a time scale of the order of the
possible. As soon as the condensate builds up the mean c@pllision time, which is important for the range of validity of
lision time increases again. This expected behavior agred§e ergodic form of the QBME. . _ _
qualitatively with Fig. 12. Our simulations of a Bose gas in an isotropic harmonic

In order for the evaporative cooling to be efficient it is rap were restricted to the ergodic form of the QBME. In

contrast to the 3D box the number of particles in the conden-

important to quickly put as many particles as possible into ; : ;
the condensate. We therefore have calculated the size of tl*?@te is decreased relative to the usual contindiermody-

o : o amig limit at a given temperature. We found that the mean
condgnsate divided by the tlme need_ed to reach 90% of th%ollision time decreases significantly as temperature reaches
eqU|I|br.|um. condensatg fraction for different yaI_ue_s;obs the critical point from above. This is due to the increase of
;hqwn in Fig. 15. The.5|ze .Of the condensa.te' IS '"T!'ted by thethe density, as soon as the ground state is macroscopically
initial number of particles in the gas, the initial size of the

2= ) occupied. Simulations of evaporative cooling have shown
cutoff Ep(0), and theinitial energy E (for y<t.). FOr  that there is a ramp rate to lower the cutoff energy of the trap

y=tg; only few collisions will occur while the cutoff is  with the goal of transferring as many particles as possible per
ramped down. The number of particles that reach the comunit time to the ground state.

densate is therefore mainly determined by the collision rate. The present formalism is readily extended to include

As can be seen from the Fig. 15 there is a value for the rammean-field effects, and pumping and loss of particles from a
rate y, which maximizes the number of particles transferreddegenerate Bose gas. This is relevant for modeling atom la-
into the condensate per unit time and therefore optimizes theers based on collisior}45,16.

cooling process under the assumption that additional loss
rates from the trap do not change while the gas is cooled.
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30 APPENDIX: THE CLASSICAL LIMIT
20 | To connect the present paper with R3] we briefly
0 1 2 3 4 rederive the classical Boltzmann equation with the ergodic

8 approximation from the QBE19). We assume that the dis-
tance between energy levels is small compared to the mean
FIG. 15. Size of condensate divided by time to reach 90% of theenergy of a particle so that the sum can be replaced by an
final size of the condensate versus time constany is the time  integral. In the classical limit we get, for the density of states
constant from Eq(31) normalized tOUFﬁUOZIN. at energye,
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. p? We define the total momentui®=p,+p, and the relative
p(e)= (2 7y d°pd™d| e-U(x¥)—5 ], (Al)  momentaq'=(p;—p,)/2 and q=(ps—p,)/2. Integrating
over the azimuthal angles of the two relative momeantnd
whereU(x) is the trapping potential. The degeneracy of theq’ and over the length of the relative momentgnand cal-
coarse-grained one-particle stage) is connected to the culating the remaining integral similarly {@] we obtain
density of states bg(e)=Aep(e). We replace

2 T (0W(x) 2 |Uisd?8(e1+e,—es—ey)
iei lel2e2
3e3,4e4

Ae p2
3p. o _ M) Aix=x")p; 1A 2 Aela?
—>—g(277_ﬁ) fd pla(eI U(x) 2m>e , mAe™a

(A2) 252 p(emin)d(e1+e,—es;—ey).  (Ad)

wheree;=7% w;. The factorAe in Eq. (A2) ensures the nor-

malization of the sum over the wave functionsgige;). In-  We insert expressioriA4) into the QBE (19), divide by
serting replacement EqA2) into |Ujp3? and integrating Ae, replace the notatiogin7) by f(e;) and theSAe® by
over X' yields a é function of the four momenta times [de,de;de,, and obtain finally

(27h)3. Integrating overp,, i.e., settingp,=p;+pP>— Pz,

we obtain

. Tma
E U 1054288+ 65— £5—€4) P(el)f(el):Wf de,desde,s(e+e,—e3—€y)
< _ Y123 1T €836y

lel,2e2
3e3,4e4 X{—f(e))f(ey)+f(ez)f(ey)}p(empn).

B 167%h%a?

d®p,d3p,d® (A0)
m2 (2 ﬁ)g pP107p20~ps

i2 In Eq. (A5) the 1+ f factors are neglected by assuming that
x]1 5( g—U(x)— %) o(e;te;—eg—ey). in the classical limit the mean occupation of a quantum level
=1 is much less than one. Settimg=8a? this is the ergodic
(A3)  form of the classical Boltzmann equation from RJf].
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