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Dynamics of evaporative cooling for Bose-Einstein condensation
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We have simulated the evaporative cooling of a dilute gas of Bose particles including quantum statistics
using a Monte Carlo method. This approach can model situations which are far away from quasiequilibrium
such as occur during forced evaporative cooling. We have also simulated the dynamical formation of Bose-
Einstein condensate for homogeneous and inhomogeneous Bose gases under the random-phase approximation.
It was found that the rate of accumulation of Bose particles into low-energy states through collisions is
increased by forced evaporation; and a macroscopic population at ground state can be reached at a time scale
characterized by classical collision time for an inhomogeneous gas in a harmonic potential. We present the
results of simulations for the evaporative cooling and formation of a Bose-Einstein condensate in one-, two-,
and three-dimensional position cuts and energy cuts.@S1050-2947~97!04506-X#

PACS number~s!: 03.75.Fi, 32.80.Pj, 67.65.1z
lly

et

m
es
m
co
en
he
at
t
de
.
in
ffi
er
ti
n
de
o
.
b
la
ity
ee
i-
o
o

u
on
a
e
-
tio
fo

of
ous
po-
sta-
ely
h

the
eir
ate.
po-
uts

for
ses.
of
the

mal

ire
us
s-
ends
th
o-
the

r-
gies
de-

ms
par-

rec-
ra-
ad
-
p-
I. INTRODUCTION

The technique of evaporative cooling of magnetica
trapped atoms was first applied to atomic hydrogen@1,2# and
recently it has been used very successfully on alkali-m
atoms@3,4# leading to Bose-Einstein condensation@5–7#. It
relies on the escape from an isolated system, such as a
netic trap, of a small portion of atoms having the larg
energy, and on the rethermalization of the remaining ato
to a lower temperature. When this process is repeated
tinuously by, for example, progressively reducing the pot
tial barrier confining the atoms, it is possible to bring t
remaining atoms to a very low temperature. This schem
description of the evaporative cooling process shows tha
is necessary to have short interatomic collision times in or
to produce a rapid thermalization of the atoms in the trap

Theoretical models of evaporative cooling are useful
understanding experiments and optimizing them to give e
cient cooling and a large final number of atoms. So far th
have been four methods developed to study evapora
cooling @8–12#. Except for the Bird method introduced i
Ref. @11# and used in this paper, the other three consi
energy evolution and use the assumption of sufficient erg
icity @13# for simplifying the description of a gas in a trap
The use of the classical Monte Carlo method developed
Bird for gas dynamics enables a direct Monte Carlo simu
tion to be carried out, which gives the position and veloc
of each atom at each time step, without the need to k
close to quasiequilibrium distributions for velocity or pos
tion. Bird’s method was developed through consideration
the physics of the way a gas flows, that is, the motion
atoms and collisions between them@14#. This Monte Carlo
method gives an accurate representation in the molec
flow regime and is consistent with the Boltzmann equati
Furthermore, since Bird’s method does not rely on the
sumption of inverse collisions~the same cross section for th
time-reversed situation!, it can be applied to describe com
plex phenomena such as associative ionization, dissocia
and trap loss, which are inaccessible to the Boltzmann
mulation.
561050-2947/97/56~1!/560~10!/$10.00
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In this paper we present the results of direct simulation
population dynamics of homogeneous and inhomogene
gases by using the Bird method. In the simulation of eva
rative cooling presented here we have considered Bose
tistics, while all the simulations published before were pur
classical@8–11#. Our numerical analysis is performed wit
parameters corresponding to those of Refs.@5,6# for alkali-
metal systems, and our simulations give the values of
fraction of atoms remaining after evaporative cooling, th
temperature, and the fraction of atoms in the ground st
Using these simulations we study the efficiency of the eva
rative cooling for different evaporation procedures, e.g., c
in energy or position.

In our analysis we have concentrated on the time scale
the rethermalization and the evaporative cooling proces
Depending on the interatomic collision rate, the speed
ramping down the trap depth in forced evaporation, and
geometric structure of a trap@11,13#, the distribution of at-
oms in phase space may deviate significantly from ther
equilibrium.

As an important feature, the Bird method does not requ
the assumption of sufficient ergodicity, as in most previo
analysis of evaporative cooling. Sufficient ergodicity a
sumes that the distribution of atoms in phase space dep
only on their energy. This will be the case in a trap wi
single-particle motion, in which case all parts of the equip
tential hypersurface corresponding to the total energy of
atom are sampled with equal probability@13#. If the ergodic
mixing time is longer than the elastic collision time, the e
godicity assumption is not valid, because the atomic ener
along different directions are separable and cannot be
scribed by a single temperature@11,12#. If evaporative cool-
ing is operated in these conditions the removing of hot ato
becomes based on the selection of energy along some
ticular directions instead of their total energy@12#. It could
be stated that due to the difference between different di
tions in kinetic or potential energies or their sum, evapo
tive cooling in one or two dimensions formally cannot le
to an ergodic system@11#. Even if the most recent evapora
tive cooling experiments of alkali-metal atoms were su
560 © 1997 The American Physical Society
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56 561DYNAMICS OF EVAPORATIVE COOLING FOR BOSE- . . .
posed to have operated in conditions of sufficient ergodic
the conditions should be tested more carefully in the futu
In any case, a nonergodic situation has been realized in
eral atomic traps@4,15,16#, where ergodic mixing of many
seconds was observed, much longer than typical elastic
lision times of milliseconds to a second@12#. As a result of
our numerical simulations in a previous work@11#, a differ-
ence in atomic temperature~mean energy! between different
directions was observed, directly proving that a nonergo
system may be created by evaporative cooling. In the pre
work, we derive an atomic distribution which cannot be fi
ted within the frame of the ergodicity assumption, and
results point out that our approach produces a better des
tion of the evaporative cooling process.

Section II presents the simulation method and discus
how the quantum statistics effects of the Bose atoms
included into the simulation process. Section III describ
the results of our simulations: the evaporative cooling
sodium atoms is investigated for efficiency in final tempe
ture, and remaining fraction of atoms following differe
evaporation processes and varying the rates of evapor
cooling. The last part of Sec. III presents a comparison w
a previous analysis of evaporative cooling.

II. THE BASIS OF THE THEORY

A. The simulation method

The basic principle of the Bird method has been descri
elsewhere@11,14#. Here we give a brief description of thi
distinguished method, which is a well-known technique
molecular gas dynamics. Bird’s method was develop
through consideration of the physics of gas flow, i.e.,
motion of atoms and collisions between them@11,14#, which
is in contrast with the mathematical description of the Bo
zmann equation@9,17#. It has been proven that the Bir
method gives an accurate representation in the molec
flow regime and that it is consistent with the Boltzma
equation in phase space@14#. This very powerful method is
widely applied in many areas, such as nonequilibrium fl
of gas @18,19#, evaporation and condensation for plasm
facing materials in fusion reaction@20,21#, wake effects in
aerospace@22#, vacuum deposition@23#, Rayleigh-Be´nard
convection@24#, and expansion cooling of vapors@25–27#.

The microscopic model of gas recognizes the particu
structure of the gas as a myriad of discrete atoms or m
ecules and ideally provides information on the position a
velocity of every atom at all times when internal degrees
freedom are neglected. For a real gas, once an atom’s in
momentum and position are specified, it is sufficient to
termine completely its future information, if it were not fo
the interaction with other atoms. Although collisions are ra
in the region of interest where mean free pathl is much
larger than the characteristic dimensionL, or the Knudsen
numberKn5l/L is much larger than one~we note that, in
fact, the mean free path is comparable to the trap dimen
by the end of evaporation in Ref.@6,38#!, they are frequent
enough to make the accurate simulation of the trajectorie
an individual atom a quite impractical task. The intermolec
lar collisions not only result in the difficulty of direct simu
lation of gas flow, but also make the direct solution of t
Boltzmann equation in six-dimensional phase space to
,
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nearly impossible. However, the discrete structure of the
at the molecular gas level enables these difficulties to
circumvented through direct physical modeling when one
sential feature of Bird’s method is applied: allowing the m
lecular motion and the intermolecular collisions to be u
coupled over a small time intervalDtm . It has been proved
that so long asDtm is much less than the mean collision tim
Dtc , this model can give a very accurate description of g
flow @14#. For this physical model the calculation time
linearly proportional to the number of atoms in the simu
tion and it is numerically stable—methods involving th
nonlinear Boltzmann equation do not share these chara
istics. In this model, the simulated position space is divid
into many cells within which atoms are randomly locate
These cells are an array of points. An atom is said to be
cell when it is nearest to the point which specifies that c
The point reference scheme avoids the necessity of provid
an analytical description of the cell boundaries and provi
more continuous distribution of atoms in position space. T
dimensionsDr of the cells must be such that the change
vapor properties across each cell must be small. Time
advanced in discrete steps of magnitudeDtm , which are
small compared with mean collision time and ensure the
tance through which an atom moves in a given time step
is not large compared to the changes in the potential. In
calculation, the time step was chosen to be betw
0.05Dtc to 0.0002Dtc . The calculation proceeds as follow
In the first step all the atoms are moved through distan
appropriate to their velocity componentsVn and
Dtm :rn115rn1VnDtm . Appropriate action is taken if the
atom crosses boundaries representing the edge of the p
tial, i.e., it is reflected or lost. The second step is to comp
the effect of collisions among the atoms in each cell dur
Dtm . The interatomic collisions are assumed to be bin
and instantaneous. They are treated consistently with cla
cal collision dynamics, i.e., the conservation of moment
and energy is strictly obeyed and the uncertainty principle
not considered. The choice of the pairs of atoms in a c
which might collide is made randomly: but whether or n
they do actually collide is determined using an acceptan
rejection method@28#—the probability of the collision being
proportional to their relative velocity as usual in kinet
theory. By this procedure the calculation time is proportion
to the number of atoms instead of its square@14#. The pre-
collision velocity components of the pair of colliding atom
are replaced by the postcollision values. Thus a collision
simply equivalent to a jump in velocity space, while the p
sitions of the colliding atoms remain unchanged. The co
sion dynamics is dealt with in the center of mass frame a
the resultant velocity is obtained by transforming back to
laboratory coordinate system. When the scattering is iso
pic, two scattering angles,f52pRrandom(0,1) and
cosu5(122)3Rrandom(0,1), are used to parametrize the sc
tering process. The random numberRrandomis uniformly se-
lected between 0 and 1. The hard-sphere model is used s
in evaporative cooling thes-wave elastic scattering is dom
nant, although a variable hard-sphere model and variable
model can be implemented in this method@14#. The third
stage is to consider the change of the velocity component
atoms, of massM , resulting from the gradient of the poten
tial U(r )
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Dvn5
2¹U~r !

M
Dtm . ~1!

In this paper we consider a three-dimensional harmonic
tential to describe the magnetic trap where evaporative c
ing of alkali-metal cold atoms has been performed

U~r !5 1
2M ~vx

2x21vy
2y21vz

2z2!, ~2!

herev i is the angular oscillation frequency of atoms in t
potential.

As the final part of the description of this method, w
discuss the effects of the statistical fluctuations and rand
walk that are inevitable in all results from the Monte Ca
method. A cell of volumeV contains a numberN of atoms
and this number is subject to statistical fluctuation about
mean valuenV, wheren is the mean density. The probabilit
P(N) of a particular value ofN is given by the Poisson
distribution

P~N!5~nV!Nexp~2nV!/N! ~3!

For large values ofnV, this distribution becomes indistin
guishable from a Gaussian distribution

P~N!.~2pnV!21/2exp@2~N2nV!2/~2nV!#. ~4!

For this distribution the standard deviation for the fluctuat
of N from its mean value is 1/AnV, and for lowN values this
fluctuation could be relevant. Random walks can arise wh
ever one of the atomic quantities is conserved only on
average, rather than exactly, in any of the simulation pro
dures. The atomic quantities of interest are the position
ordinates and the velocity components. Random walks a
because the position and velocity are rounded off in orde
be stored as a discrete value rather than as an exact nu
at the final stage of simulation when results are output. T
effect of random walks also appears in quantum Monte C
simulation @29#. Due to the limited precision with which
variables are manipulated, some degree of rounding is
avoidable. This effect was investigated in the present sim
lation by monitoring the total energy in a direct simulatio
with a fixed sample of 10 000 atoms in a harmonic poten
and in a homogeneous gas. After each atom experienced
collisions in average, the total energy was found to fluctu
by no more than one part in a hundred. This shows that
error caused by random walks is of acceptable magnit
@11#.

B. Collision rate

The collision rate, whose increase results in run-aw
evaporation, is an important parameter in evaporative c
ing. It is especially important to calculate the collision ra
correctly since in our calculations time is expressed in u
of initial collision times and, therefore, one needs to kn
what this is in order to compare it with reality. In therm
equilibrium the phase-space distributionf (r,p) of a classical
ideal gas in a potential fieldU(r ) is described by

f ~r,p !5n0~2pMkBT!23/2e[2„U~r !1p2/2M …/kBT] , ~5!
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wherekB is the Boltzmann constant andp is the magnitude
of atomic momentump. The central densityn0 is chosen in
such a way that the phase-space distribution funct
f (r,p) is normalized to the total particle numbe
N5*d3rd3p f(r,p), where the integration is over the avai
able phase space. By integrating over the whole momen
space we obtain the spatial density distribution

n~r !5n0e
2U~r !/kBT. ~6!

For any thermal distribution we may write the collision eve
rate as@13,30#

Gc5
1

2ME d3r E d3p1E up22p1us f ~r,p1! f ~r,p2!d3p2 .

~7!

When the elastic hard-sphere model is used, the collis
cross sections will be independent of the relative momen
tumpr5p22p1 and positionr . In evaporative cooling, atom
with energy larger than potential barrierUm escape from the
trap and a truncated distribution is obtained because the
tegration is over all (r,p), for which

U~r !1p1,2
2 /2M<Um . ~8!

Thus the integration boundaries ofr andp are coupled to-
gether through Eq.~8!. So the evaluation ofGc involves a
complicated nested triple integral. When we start with a n
stationary Maxwell-Boltzmann distribution as the initial di
tribution ~the cut energy of the potential is much larger th
the mean energy of the atomic cloud!, the boundaries ofr
andp can be set to infinity. Then the calculation of the initi
collision rate is much simpler. Bringing Eq.~5! into Eq. ~7!,
using the center-of-mass frame and reexpressing the re
ing equation in terms of velocities for convenienc
vm5(v21v1)/2,vr5(v22v1), we find

Gc5
sM3

2~2pkBT!3
E n0

2e22U~r !/kBTd3r

3E e2Mvm
2 /kBTd3vmE v re

2Mvr
2/4kBTd3v r

5
sNM3n~r !

2~2pkBT!3
E d3vme

2Mvm
2 /kBTE d3v rv re

2Mvr
2/4kBT

5
1

A2
Nn~r !s v̄, ~9!

where the mean density is defined as

n~r !5

E n0
2e22U~r !/kBTd3r

N
5

E n2~r !d3r

E n~r !d3r
~10!

and v̄5A8kBT/pM . The mean collision rate for each ato
is then

n̄5
2Gc

N
5A2 n~r !s v̄, ~11!
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56 563DYNAMICS OF EVAPORATIVE COOLING FOR BOSE- . . .
where the factor 2 indicates each collision involving tw
atoms. It is important to note that Eq.~11! can be applied to
homogeneous and inhomogeneous gases. The initial colli
time t i , which is used as time unit in the following section
is defined as the inverse of the initial mean collision rate

t i51/n̄ i . ~12!

For a thermal equilibrium gas in a harmonic potential, t
central density is

n05NvxvyvzS M

2pkBT
D 3/2. ~13!

The mean density is

n~r !5NvxvyvzS M

4pkBT
D 3/2. ~14!

Hence,

n0 /n~r !5A8. ~15!

The mean collision rate of the cloud can be obtained in
alternative way, starting from the local collision rate

n~r !5n~r !sv r , ~16!

where vr5v22v1. The mean collision rate is obtained b
summing over all velocity classes and therefore over all v
ues ofv r , i.e.,

n̄5n~r !sv r . ~17!

Because the hard-sphere model is used,s is a constant~i.e.,
independent ofv r). The separation,n(r )v r5n(r )v r only
holds when the limits of the position and velocity~momen-
tum! integrals are infinity. The average valuen(r ) is ob-
tained from the definition

n~r !5
*2`

` n2~r !dx dy dz

*2`
` n~r !dx dy dz

. ~18!

This is the form used in the computations and is obviou
equivalent to Eq.~10! wheren(r ) is Gaussian. The averag
value ofv r is obtained from the following expression:

v r5E E
2`

`

v r f ~v1! f ~v2!dv1dv2, ~19!

which, for Maxwellian velocity distribution f (v1) and
f (v2), gives the well-known kinetic theory resu
v r5A2va. Hence, this method gives Eq.~11!.

C. Scattering of two Bose particles

The dynamical formation of the Bose-Einstein condens
can be classified into three stages: kinetic evolution, the
mation of short-range order and the off-diagonal long-ran
order@32–34#. The time scale for the first stage is charact
ized by interatomic collision time and is much longer th
the second stage and can be comparable to the third stag
the kinetic evolution basically determines the time scale
on

e

n

l-

y

te
r-
e
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r

the formation of the Bose-Einstein condensate. During
first stage, Bose particles are pushed by scattering into
energy regimes which are less than the interaction ene
among particles. At this stage the random-phase approxi
tion is valid but it breaks down when local-range order a
pears@31–35#. Under this approximation our model cann
study the appearance of coherence among Bose particles
allows us to study the population dynamics of a condens

In terms of Bose statistics, the probability of two boso
with wave vectorsk1,k2 scattering intok3,k4 is @31,32#,

S~k1,k2;k3,k4!5Tm
2 d~k11k22k32k4!d~E11E22E32E4!

3 f ~k1! f ~k2!@11 f ~k3!#@11 f ~k4!#, ~20!

where Tm is the matrix element of the interaction, an
Tm
2 f (k1) f (k2) shows the classical rate where the effects

quantum statistics can be ignored. The most important
tors in Eq.~20! are@11 f (k3)# and@11 f (k4)#, which means
that in a collision for Bosons, the scattering probability into
state which already containsf (ki) Bose particles is
11 f (ki) times stronger than it would be if there were n
Bose particles present. This stimulated scattering process
be put into the simulation straightforwardly by using the a
ceptance and rejection method in Monte Carlo simulat
@14,28#. That is to say that at each collision we make t
probability distribution of the final velocities depend on th
velocity distribution already existingin that particular re-
gion of velocity spacein a way which takes into account th
bosonic enhancement factors@11 f (ki)#. It took around two
hours to run a calculation of 20 initial collision times wit
;106 atoms on a DEC alpha Server 2100 Open Vms A
6.1 machine.

III. SIMULATION RESULTS

A. A homogeneous gas

In order to make a comparison with inhomogeneous
and also with a previous work@31#, we first study a homo-
geneous gas consisting of;106 sodium atoms. In fact, for
inhomogeneous gases in an external potential, when the
tential is balanced by the interaction energy among ato
the properties of the gas should be similar to that of
homogeneous case. The initial density is 1.531014 cm23,
and the initial temperatureT0 is 2mK. For sodium atoms the
chosen initial density corresponds to the critical one requi
for Bose-Einstein condensation at the temperatureT0
@6,38,12#.

In Fig. 1~a! the full curve shows the particle energy di
tribution n(E) after 80 scattering events. We note that ev
after experiencing more than 80 scattering events for e
bosons~not shown!, there is still a particle energy flux to
wards the low-energy regime, which indicates the equil
rium state has not yet been reached. This overall behavio
similar to that observed by Snoke and Wolfe@31#. It can be
noted in Fig. 1~a! that the energy distribution is well fit by
the Bose-Einstein distribution functionf (E,m,T), which is
indicated by the dotted line,

f ~E,m,T!5
1

e~E2m!/kBT21
5

1

e~e1a!21
, ~21!
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whereE is the single-particle energy,m is the chemical po-
tential, T is the temperature,e5E/kBT, anda52m/kBT.
The use of this distribution function requires the validity
sufficient ergodicity, i.e., that the phase-space distribution
particles is only a function of the single-particle energyE.
Note that this hypothesis of ergodicity is not being intr
duced into our numerical simulation, and that the fit of t
particle energy distribution by Eq.~21! allows us to verify
the validity of ergodicity assumption during the time evol
tion of evaporation.

When fitting the particle energy distribution, we multip
Eq. ~21! by the density of states which is proportional
E1/2 for constant potential energy and proportional toE2 for
a harmonic potential. By using Eq.~21! to fit the particle
energy distribution, we can get the chemical potential a
the temperature of the Bose gas, as shown in Figs. 2~b! and
2~c!. For a homogeneous Bose gas, the total numbe
bosonsN and the total energyU are given by@31,37#

N5VS 2pM

h2 D 3/2~kBT!3/2E f ~e,a!e1/2de1N0 ,

U5VS 2pM

h2 D 3/2~kBT!5/2E f ~e,a!e3/2de, ~22!

FIG. 1. In ~a! particle energy distribution for a homogeneo
sodium gas after 80 scattering events per particle; the dotted lin
best fit by Bose-Einstein distribution of Eq.~21!; in ~b! temperature
T from the best fits of the Bose-Einstein distribution vs scatter
events;~c! the normalized chemical potential from the best fits
scattering events. Initial valuesT052 mK and n051.531014

cm23.
f

d

of

whereV is the volume of the gas,h is the Planck’s constant
and N0 is the population at zero kinetic energy~for spin-
polarized atomic gases the degeneracy factor is unity!. For a
system with constant energy, the mean energyĒ per particle,
initially equal to 3kBT0/2, is thus

Ē5U/N5~kBT!G~a!. ~23!

For a classical gas where the normalized chemical poten
a is much larger than 1, the functionG(a) has the well-
known value of 3/2 and decreases to zero asa decreases.

Our results for the homogeneous gas are in reason
agreement with a previous work@31#, however, since we
consider the momentum and position of each boson ins
of their energy, we can observe the evolution of veloc
distribution which has been taken as one aspect for diag
ing the presence of the Bose-Einstein condensate experim
tally @5,6#. In Fig. 2 the dynamical evolution of the velocit
distribution is shown. It is found that after about 20 scatt
ing events, the velocity distribution deviates from the Gau
ian obviously, but the gas is still quite far from the equili
rium state. It is interesting to note that the veloci
distribution after several more scatterings in Fig. 2 can
decomposed into two components: the central narrow p
for the low-energy Bose particles and the Gaussian for
background thermal particles. The observation of the n
Gaussian velocity distribution indicates the accumulation
Bose particles at low-energy states, but it is not necessa
the signature of the appearance of a macroscopic B
Einstein condensate.

B. Inhomogeneous gas in a harmonic potential at a fixed value

We now consider an ensemble of sodium atoms magn
cally trapped in a harmonic potential. In the simulation t
oscillation frequencies of the harmonic oscillat
(vx ,vy ,vz) along three spatial directions ar
(300,400,800)32p rad s21. The initial temperatureT0 of
the gas is 2mK, the initial elastic collision rate 100 s21, and
the elastic collision cross section 6310212 cm2. The central

is

g

FIG. 2. The dynamical evolution of velocity distribution alon
x ~or y,z) direction after different scattering events for the sam
conditions as in Fig. 1. The narrow peak at the central part indic
the accumulation of bosons at low-energy states and the s
Gaussian background accommodates the usual thermal particl
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56 565DYNAMICS OF EVAPORATIVE COOLING FOR BOSE- . . .
densityn0 is two times the critical densitync for the Bose
condensation at temperatureT0, where nc51.531014

cm23. The parameters above and the harmonic poten
model are close to those used in the sodium experimen
observe Bose-Einstein condensation in Refs.@6,38#.

We first consider the case when the threshold is fixed
truncated value of 6kBT0—the atoms whose potential energ
is above this threshold are assumed to be lost during ev
ration, and we call this fixed-threshold evaporation to dist
guish it from forced evaporative cooling~the initial distribu-
tion is a Maxwell-Boltzmann distribution truncated
6kBT0). For the system we are considering, the quant
energy level spacing is much less than the thermal ene
kBT, so the system can be described by a continuum of st
plus the ground state which has the zero-point energy@39#.
The condensate fraction is defined as the population wh
energy is within the lowest-energy bin, with size of 1/1
times kBT0. In Fig. 3 we show the evolution of the energ
distribution in this case. Even though the initial total ener
is truncated at 6kBT0, higher-energy particles are produce
because of interatomic collisions and the natural evapora
loss of atoms is based on the potential energy of atoms b
above the threshold model. In this case the equiparti
theorem between kinetic energy and potential energy is
strictly valid. This leads to a difference between the simu
tion results of the three-dimensional position cut model a
the energy cut model in later sections. One can also note
particle flux towards the low-energy regime. By using t
Bose-Einstein function of Eq.~21! to fit the particle energy
distribution, as shown by the dotted line in Fig. 3, we get
chemical potential and the temperature of the Bose gas.
fit is not particularly good—we attribute the difference eith
to the fact that the gas is quite far away from equilibriu
state or to the fact that the hypothesis of ergodicity requi
for the application of Eq.~21! is not valid. An important
difference from the homogeneous gas is that the tempera
of the Bose gas decreases as scattering proceeds, sinc

FIG. 3. The particle energy distribution for an inhomogeneo
sodium gas at a fixed harmonic potential truncated for nat
evaporation at 6kBT0. The big dotted line shows the best fit by E
~21!. Initial temperature isT052 mK with 1.543106 Bosons and
with a peak density of 331014 cm23. The natural evaporation is
performed in three-dimensional position space. In this and follo
ing figure captions, dimensionless timet5t/t i is used.
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atoms are allowed to escape from the trap, as shown in
4~b!. The production of high-energy Bose particles by elas
scattering is further aided by the 11 f (ki) factor. Due to the
decrease of the temperature, the chemical potential
proaches to zero quickly, as shown in Fig. 4~b! ~at t58t i ,
the fit error of the chemical potential is quite large compa
to its absolute value, so no further values are shown! @40#. In
Fig. 5 the condensate fraction is shown. It can be seen
the condensate fraction is very small and it increases line
with time—we did not observe a sudden increase in cond
sate population. Even for times as long as 200t i ~not shown!
an equilibrium state has not been reached, although the m

s
al

-

FIG. 4. In ~a! normalized chemical potential and in~b! tempera-
ture, as derived from the best fits using Eq.~21!, vs time, in dimen-
sionless units, for an inhomogeneous gas at a fixed harmonic
tential as in Fig. 3. Att58, the fit error of the chemical potential i
comparable to its absolute value so no further value is shown.

FIG. 5. The condensate fraction vs time at a fixed harmo
potential truncated at 6kBT0 with the same initial conditions as in
Fig. 3.
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collision rate increases by a factor of 6. In the simulations
Fig. 4 the mean energy decreases from 1.82mK to 0.76
mK @42#, and the total number of bosons drops fro
1.543106 to 1.133106. Once again the velocity distributio
becomes non-Gaussian, as in Fig. 2, after about 20 scatte
events per particle in average~at t512t i), but the conden-
sate fraction is very small, as shown in Fig. 5. The posit
distribution att5120t i is shown in Fig. 6, where the distri
bution is anisotropic due to the difference between osci
tion frequencies alongx and z. The central peak atz50
deviates from Gaussian. This nonclassical spatial distribu
is similar to that obtained by Plimak and Walls@43#.

C. Inhomogeneous gas in presence of forced evaporation

From the results in Sec. III B it is clear that it is qui
difficult to put most of the bosons into a quantum degene
regime only by Bose scattering and natural evaporation.
in order to speed up kinetic evolution of the Bose gas, for
evaporative cooling has to be applied. To initiate forc
evaporative cooling, we take the final phase-space distr
tion function after natural evaporation att5120t i as the ini-
tial distribution function. The initial mean energy
0.83 mK with 1.153106 bosons. The cutoff energ
Ecut(t50) initially 6kBT0, as in natural evaporation, i
forced evaporation is ramped downwards exponentially.
consider four models for evaporative cooling. The first o
assumes that the bosons are removed in terms of the si
particle energy@8–10#, i.e., the bosons are assumed to be l
when the following relation is valid:

(
i5x,y,z

1

2
Mv i

2xi
21

1

2
Mv i

2.Ecut~ t !5Ecut~0!e2t3 ln2/15t i.

~24!

The other three cuts consider the particle’s position
its potential energy. They are three-, two-, and on
dimensional evaporation, respectively, corresponding

three equations for cutting,Ax21(yvy /vx)
21(zvz /vx)

2

>r initial3e2t3 ln2/30t i, Ax21(yvy /vx)
2>r initiale

2t3 ln2/30t i,

and x>r initial3e2t3 ln2/30t i, respectively, with r initial550
mm. In all cases the forced evaporation is performed in

FIG. 6. The spatial distribution at timet5120 with a fixed har-
monic potential truncated at 6kBT0 with the same initial conditions
as in Fig. 3.
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t i and, in total, the trap depth is decreased by a factor of
After forced evaporation is stopped we let the gas evolve
another 20t i in order to equilibrate different degrees of fre
dom. It is generally thought that the two-dimensional evap
rative cooling model is close to the case in a TOP~time-
averaged orbiting potential! magnetic trap@5,12#, since in a
TOP trap atoms are mainly removed in terms of their rad
positions. On the other hand, the unfavorable oscillation
the center of mass of the atomic cloud, which can be cau
by the initial displacement from the bottom of the potent
when one loads an atomic cloud from a magneto-optical t
into a TOP trap, and the gravity can easily make the forc
evaporation be two- or even one-dimensional@44,45# in
practice. At present it is not clear which evaporation mo
represents the real process in an experiment and the que
needs to be addressed by making a detailed comparison
tween theory and experiments.

Figure 7 shows the simulation results. It can be seen
higher the dimension of the cuts~an energy cut can be
thought as six-dimensional evaporative cooling!, the higher
the efficiency. In Fig. 7~a! we did not observe the cross ove
for two- and three-dimensional evaporation, as in the cla
cal simulation@11#, even when evaporation is deeper a
quicker. Figure 7~b! indicates the macroscopic condensa
fraction at ground state and the formation of quantum deg
eracy in this level—the sharp increase of the condensat
also visible. Figure 7~c! shows the decrease of the me
energy by a factor around 8, and Fig. 7~d! indicates evolution
of the particle energy distribution for three-dimension
evaporation. Evaporative cooling is based on the remova
energetic particles whose production is enhanced by B
scattering properties. Comparing Fig. 7~b! with Fig. 5 one
can note that forced evaporation plays an important role
putting Bosons into the quantum degenerate regime. In Fi
after evaporation stopped, we let the Bose gas evolve
further 20 initial collision times while the energy cut re
mained at the final value, except for one case denoted by
big dotted line. This situation of a fixed final energy c
corresponds closely to what is actually done during the f
mation of the Bose-Einstein condensate in the experime
and seems to produce a higher condensed fraction. The
dotted line in Fig. 7 indicates the case for two-dimensio
evaporative cooling when the cut energy returns to the ini
value of 6kBT0 after evaporation stopped. This would a
proximately correspond experimentally to the case of
evaporation process being switched off while the syst
equilibrates@5,38#. In this case the total number of boson
remains unchanged, as shown by the big dotted line in
7~a!, the mean energy has a weak increase, as shown in
7~b!. However, the condensed fraction is less, and the ab
lute condensate population is also reduced. For the case
the cut remaining at its final value or returning to its initi
value, the condensate population is 1.253105 and
5.923104, respectively.

Figure 8 shows the lag between the axial and the ra
mean energies in two-dimensional evaporation. Even tho
it is quite surprising that even at timet520t i , i.e., after 20
initial collision times, one can still notice some differenc
between the radial and axial energies, it seems to be con
tent with the experimental observation@46#. We have also
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FIG. 7. In ~a! the number of particles; in~b! the condensate
fraction; in ~c! the mean energy vs time for forced evaporati
cooling. The trap depth decreases exponentially by a factor of 1
a time of 60t i . Forced evaporation stops attI560, the gas is al-
lowed to evolve for another 20 initial collision times. Except the b
dotted line@2D in ~c!#, where the cut returns to initial trap depth o
6kBT0, in other cases the cut remains fixed at the value where it
stopped. In~d! particle distribution for three-dimensional force
evaporative cooling.
observed the lag between the axial and the radial mean
ergies for the case of one-dimensional evaporation.

D. Comparison with classical trajectory method

There have been four papers on evaporative cooling p
lished in the last year@8–11#, all of which use quite different
methods of calculation. Our simulation uses Bird’s meth
as described in previous sections. All other ones cons
energy evolution. All four methods considerldB@R0, where
ldB5@2p\2/(mkBT)#

1/2 is the thermal de Broglie wave
length andR0 is the range of the interatomic potential. F
this case, the quantum-mechanical scattering is so
s-wave scattering. In this section we make a comparis
with other methods, in particular, with the classical trajecto
method@10#. In order to make this comparison, we did n
consider the quantum statistics effect, or the 11 f (ki) factor
in the scattering matrix of Eq.~20!, and we had to work with
an energy cutoff rather than a position dependent cutting

The first method, developed by Davis, Mewes, and K
terle @8#, assumes that the atomic energy distribution c
always be described by a truncated Maxwell-Boltzmann d
tribution and calculates the final state after the gas has re
ered thermal equilibrium@1,2,8#. This simple method quali-
tatively tells one how the forced evaporative cooling work
One important result of this work is that the threshold de
sity for accelerated evaporation is higher in a parabolic t
than in a spherical quadrupole~three-dimensional linear!
trap, and the increase in the collision rate in a harmo
potential is small, and only occurs for appropriate cuts in
potential well. In our simulation where a three-dimension
harmonic potential is used, the small increase in the collis
rate is observed when a three-dimensional cut is perform
@11#, which is consistent with their conclusions.

Luiten, Reynolds, and Walraven@9# considered the non
equilibrium process of evaporation by solving the Boltzma
equation, however, because it is extremely difficult to so
this nonlinear six-dimensional equation directly, they intr
duced the assumption of sufficient ergodicity@9,31,33#. One
important result of that work is that the phase-space dis
bution of atoms in a trap can often be described by a tr
cated Maxwell-Boltzmann distribution.

in

s

FIG. 8. The lag between the mean axial energyTz and radial
energy Tr5(Tx1Ty)/2 for two-dimensional forced evaporativ
cooling. After forced evaporation stops att560, the cut energy
returns to 6kBT0.
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Even though the ergodic assumption simplifies the Bo
mann equation significantly, numerically there are still so
difficulties because of its nonlinearity. Therefore, a class
trajectory method~alluding to its similarity with the quantum
trajectory method! was developed by Hollandet al. @10#.
This approach also assumes sufficient ergodicity, with
computation time linearly proportional to the number
points used to sample the distribution function. We ha
made a detailed comparison with this classical traject
method to verify our calculations. The physical paramet
used in Ref. @10# are collision cross section
s51028 m2, massM52.26310225 kg, angular oscilla-
tion frequencies (vx ,vy ,vz)5(9,16,18) rads21 ~i.e., num-
bers include factor 2p), Tinitial525 mK. The cut energy
decreases asEcut5Ecut(0)e

2kt, which is illustrated in Fig.
9~a!, where Ecut(0)/3kB533 mK and cut rate constan
k50.06 s21, the initial mean energy of the atomic clou
being 18.6mK for the truncated Maxwell-Boltzmann distri
bution @42#. The number of atoms within the initial truncate
distribution isN051000. Use of small trap oscillation fre
quencies makes calculation quicker since larger time s
can be used. The evolution was simulated for 10 s.

In Fig. 9 we show the simulation results for these tw
methods, where the solid line is for Bird’s method and t
dashed line is for the trajectory method taken from@10#. It
can be seen that these two methods are consistent. The
ference in the collision rates in Fig. 9~d! arises from the
statistical noise in the simulations~the total increase of col
lision rates is only around 5%, and the fluctuation is arou
1%, it may take large number of simulations to get rid of th
statistical noise!. In both approaches, a tiny increase of t
collision rate is observed. This means that, in the case of
energy cut, it is possible to reach runaway evaporation.

FIG. 9. Comparison of our calculations using Bird’s meth
~solid line! and the results of classical trajectory method of Holla
et al. @10# ~dashed line!. ~a! Cut energy divided by 3kB used in
these two methods;~b! the calculated mean energy of the distrib
tion divided by 3kB ; ~c! number of atoms remaining in the trap;~d!
collision rate of atoms. The difference between the two meth
arises from statistical fluctuations.
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IV. CONCLUSION

By using molecular gas dynamics we have simula
forced evaporative cooling incorporating quantum statist
while all the simulations published before were purely cla
sical @8–11#. Our powerful approach does not need the co
mon assumption of sufficient ergodicity or quasiequilibriu
during forced evaporation as other methods. Therefore
allows us to study rapid forced evaporative cooling far fro
the equilibrium state in one-, two-, and three-dimensio
position cuts. In the simulations of one- and two-dimensio
cuts, it was found that when the cut was stopped there w
difference in energy between axial and radial directions.
have also studied the dynamical formation of the Bo
Einstein condensate in homogeneous and inhomogen
gases considering quantum statistics under the random-p
approximation. It was found that it takes quite a long time
reach an equilibrium state for both homogeneous and in
mogeneous gases. The dynamical evolution from a nonc
densed system to a Bose condensate is purely a noneq
rium process. For a homogeneous Bose gas the temper
increases as the formation of quantum degeneracy du
energy conservation, while it decreases for an inhomo
neous gas in a finite potential due to evaporation. The ob
vation of the non-Gaussian velocity distribution indicates
accumulation of low-energy Bose particles but does not n
essarily indicate the formation of a macroscopic populat
at ground state. For an inhomogeneous gas in a potential
Bose scattering process, which puts bosons into the gro
state, is further aided by forced evaporation and a mac
scopic population accumulation at ground level can
reached, which is consistent with experimental results. In
simulations we have assumed an initial density large eno
to produce a runaway evaporative cooling. The present
proach could be also applied to investigate the evolution
clouds of cold atoms with an initial atomic density low
than the value required for runaway evaporation, with
spring constant of the harmonic potential ramped up to
crease the atomic density.

In the future it will be very interesting to make a compa
son between our present results and that obtained using
quantum kinetic master equation@36#. This equation pre-
serves the full quantum-mechanical description of the c
densate and considers the modification of the nonconden
spectrum by the condensate by separating coherent proc
from scattering processes. Moreover, hopefully, our calcu
tions will be compared to experimental measurements to
whether the cutting is effective only in the radial directio
~two dimensional! in a TOP trap, and whether the gravit
effect can effectively make the evaporation two- or ev
one-dimensional.
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