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Dynamics of evaporative cooling for Bose-Einstein condensation
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We have simulated the evaporative cooling of a dilute gas of Bose particles including quantum statistics
using a Monte Carlo method. This approach can model situations which are far away from quasiequilibrium
such as occur during forced evaporative cooling. We have also simulated the dynamical formation of Bose-
Einstein condensate for homogeneous and inhomogeneous Bose gases under the random-phase approximation.
It was found that the rate of accumulation of Bose particles into low-energy states through collisions is
increased by forced evaporation; and a macroscopic population at ground state can be reached at a time scale
characterized by classical collision time for an inhomogeneous gas in a harmonic potential. We present the
results of simulations for the evaporative cooling and formation of a Bose-Einstein condensate in one-, two-,
and three-dimensional position cuts and energy ¢®%050-294®7)04506-X|

PACS numbsgs): 03.75.Fi, 32.80.Pj, 67.65z

I. INTRODUCTION In this paper we present the results of direct simulation of
population dynamics of homogeneous and inhomogeneous
The technique of evaporative cooling of magneticallygases by using the Bird method. In the simulation of evapo-
trapped atoms was first applied to atomic hydrogeg] and  rative cooling presented here we have considered Bose sta-
recently it has been used very successfully on alkali-metatistics, while all the simulations published before were purely
atoms[3,4] leading to Bose-Einstein condensatid@-7]. It  classical[8—11]. Our numerical analysis is performed with
relies on the escape from an isolated system, such as a mggarameters corresponding to those of Rg&s6] for alkali-
netic trap, of a small portion of atoms having the largestmetal systems, and our simulations give the values of the
energy, and on the rethermalization of the remaining atomfaction of atoms remaining after evaporative cooling, their
to a lower temperature. When this process is repeated cotemperature, and the fraction of atoms in the ground state.
tinuously by, for example, progressively reducing the potenUsing these simulations we study the efficiency of the evapo-
tial barrier confining the atoms, it is possible to bring therative cooling for different evaporation procedures, e.g., cuts
remaining atoms to a very low temperature. This schematiin energy or position.
description of the evaporative cooling process shows that it In our analysis we have concentrated on the time scale for
is necessary to have short interatomic collision times in ordethe rethermalization and the evaporative cooling processes.
to produce a rapid thermalization of the atoms in the trap. Depending on the interatomic collision rate, the speed of
Theoretical models of evaporative cooling are useful inramping down the trap depth in forced evaporation, and the
understanding experiments and optimizing them to give effigeometric structure of a trgd 1,13, the distribution of at-
cient cooling and a large final number of atoms. So far therems in phase space may deviate significantly from thermal
have been four methods developed to study evaporativequilibrium.
cooling [8-12. Except for the Bird method introduced in  As an important feature, the Bird method does not require
Ref. [11] and used in this paper, the other three considethe assumption of sufficient ergodicity, as in most previous
energy evolution and use the assumption of sufficient ergodanalysis of evaporative cooling. Sufficient ergodicity as-
icity [13] for simplifying the description of a gas in a trap. sumes that the distribution of atoms in phase space depends
The use of the classical Monte Carlo method developed bgnly on their energy. This will be the case in a trap with
Bird for gas dynamics enables a direct Monte Carlo simulasingle-particle motion, in which case all parts of the equipo-
tion to be carried out, which gives the position and velocitytential hypersurface corresponding to the total energy of the
of each atom at each time step, without the need to keeptom are sampled with equal probabiljy3]. If the ergodic
close to quasiequilibrium distributions for velocity or posi- mixing time is longer than the elastic collision time, the er-
tion. Bird’s method was developed through consideration ofjodicity assumption is not valid, because the atomic energies
the physics of the way a gas flows, that is, the motion ofalong different directions are separable and cannot be de-
atoms and collisions between thdi¥]. This Monte Carlo  scribed by a single temperaturgl,12. If evaporative cool-
method gives an accurate representation in the moleculang is operated in these conditions the removing of hot atoms
flow regime and is consistent with the Boltzmann equationbecomes based on the selection of energy along some par-
Furthermore, since Bird’s method does not rely on the asticular directions instead of their total enerff}2]. It could
sumption of inverse collisiondhe same cross section for the be stated that due to the difference between different direc-
time-reversed situationit can be applied to describe com- tions in kinetic or potential energies or their sum, evapora-
plex phenomena such as associative ionization, dissociatiotive cooling in one or two dimensions formally cannot lead
and trap loss, which are inaccessible to the Boltzmann forto an ergodic systerfiL1]. Even if the most recent evapora-
mulation. tive cooling experiments of alkali-metal atoms were sup-
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posed to have operated in conditions of sufficient ergodicitynearly impossible. However, the discrete structure of the gas
the conditions should be tested more carefully in the futureat the molecular gas level enables these difficulties to be
In any case, a nonergodic situation has been realized in seeircumvented through direct physical modeling when one es-
eral atomic trap44,15,16, where ergodic mixing of many sential feature of Bird’s method is applied: allowing the mo-
seconds was observed, much longer than typical elastic colecular motion and the intermolecular collisions to be un-
lision times of milliseconds to a secofi#iZ]. As a result of  coupled over a small time intervalt,,,. It has been proved
our numerical simulations in a previous wdrkl], a differ-  that so long adt,, is much less than the mean collision time
ence in atomic temperatuteean energybetween different At this model can give a very accurate description of gas
directions was observed, directly proving that a nonergodiggyy [14]. For this physical model the calculation time is
system may be created by evaporative cooling. In the presefjhearly proportional to the number of atoms in the simula-
work, we derive an atomic distribution which cannot be fit- tjion and it is numerically stable—methods involving the
ted within the frame of the ergodicity assumption, and theyonlinear Boltzmann equation do not share these character-
results point out that our approach produces a better descrigstics. In this model, the simulated position space is divided
tion of the evaporative cooling process. _ into many cells within which atoms are randomly located.
Section Il presents the simulation method and discussegnese cells are an array of points. An atom is said to be in a
how the quantum statistics effects of the Bose atoms arge|| when it is nearest to the point which specifies that cell.
included into the simulation process. Section Il describesrne point reference scheme avoids the necessity of providing
the results of our simulations: the evaporative cooling ofan gnalytical description of the cell boundaries and provides
sodium atoms is investigated for efficiency in final temperamgre continuous distribution of atoms in position space. The
ture, and remaining fraction of atoms following different yimensionsAr of the cells must be such that the change in
evaporation processes and varying the rates of evaporati\(papOr properties across each cell must be small. Time is
cooling. The last part of Sec. lll presents a comparison withyqyanced in discrete steps of magnitule,, which are

a previous analysis of evaporative cooling. small compared with mean collision time and ensure the dis-
tance through which an atom moves in a given time step and
Il. THE BASIS OF THE THEORY is not large compared to the changes in the potential. In our
) ) calculation, the time step was chosen to be between
A. The simulation method 0.053At, to 0.000At.. The calculation proceeds as follows.

The basic principle of the Bird method has been describedn the first step all the atoms are moved through distances
elsewherd 11,14. Here we give a brief description of this appropriate to their velocity components/, and
distinguished method, which is a well-known technique inAty:rn,1=r,+V,At,. Appropriate action is taken if the
molecular gas dynamics. Bird’'s method was developeditom crosses boundaries representing the edge of the poten-
through consideration of the physics of gas flow, i.e., theial, i.e., it is reflected or lost. The second step is to compute
motion of atoms and collisions between thghi, 14, which ~ the effect of collisions among the atoms in each cell during
is in contrast with the mathematical description of the Bolt-At,,,. The interatomic collisions are assumed to be binary
zmann equatior{9,17]. It has been proven that the Bird and instantaneous. They are treated consistently with classi-
method gives an accurate representation in the molecularal collision dynamics, i.e., the conservation of momentum
flow regime and that it is consistent with the Boltzmannand energy is strictly obeyed and the uncertainty principle is
equation in phase spa¢#4]. This very powerful method is not considered. The choice of the pairs of atoms in a cell
widely applied in many areas, such as nonequilibrium flomwhich might collide is made randomly: but whether or not
of gas[18,19, evaporation and condensation for plasma-they do actually collide is determined using an acceptance-
facing materials in fusion reactiof20,21], wake effects in  rejection method28]—the probability of the collision being
aerospacg22], vacuum depositiorj23], Rayleigh-Beard  proportional to their relative velocity as usual in kinetic
convection[24], and expansion cooling of vapoa5—-27. theory. By this procedure the calculation time is proportional

The microscopic model of gas recognizes the particulato the number of atoms instead of its squftd]. The pre-
structure of the gas as a myriad of discrete atoms or moleollision velocity components of the pair of colliding atoms
ecules and ideally provides information on the position ancare replaced by the postcollision values. Thus a collision is
velocity of every atom at all times when internal degrees ofsimply equivalent to a jump in velocity space, while the po-
freedom are neglected. For a real gas, once an atom'’s initiaitions of the colliding atoms remain unchanged. The colli-
momentum and position are specified, it is sufficient to dession dynamics is dealt with in the center of mass frame and
termine completely its future information, if it were not for the resultant velocity is obtained by transforming back to the
the interaction with other atoms. Although collisions are rardaboratory coordinate system. When the scattering is isotro-
in the region of interest where mean free patis much pic, two scattering angles, $=27R;m40n{0,1) and
larger than the characteristic dimensibn or the Knudsen cos9=(1-2)XR,,q40r{0,1), are used to parametrize the scat-
numberK,=X\/L is much larger than onéve note that, in tering process. The random numb®g,4omis uniformly se-
fact, the mean free path is comparable to the trap dimensiolected between 0 and 1. The hard-sphere model is used since
by the end of evaporation in R€i6,38]), they are frequent in evaporative cooling the-wave elastic scattering is domi-
enough to make the accurate simulation of the trajectories afant, although a variable hard-sphere model and variable soft
an individual atom a quite impractical task. The intermolecu-model can be implemented in this methg#]. The third
lar collisions not only result in the difficulty of direct simu- stage is to consider the change of the velocity components of
lation of gas flow, but also make the direct solution of theatoms, of mas$/, resulting from the gradient of the poten-
Boltzmann equation in six-dimensional phase space to bgal U(r)
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—VU(r) wherekg is the Boltzmann constant amlis the magnitude
=—w  Atm- (1) of atomic momentunp. The central density, is chosen in
such a way that the phase-space distribution function

In this paper we consider a three-dimensional harmonic pot(""P) _iS_normalized to the total particle number

= rd3rd3 : on i :
tential to describe the magnetic trap where evaporative coolN=/d"rd"pf(r,p), where the integration is over the avail-
ing of alkali-metal cold atoms has been performed able phase space. By integrating over the whole momentum
space we obtain the spatial density distribution

Av,

U(r)=3M(0ix2+ wfy*+ w2z?), 2 n(r)=ngeY(/keT. ©6)
herew; is the angular oscillation frequency of atoms in the For any thermal distribution we may write the collision event
potential. rate ag 13,30

As the final part of the description of this method, we
discuss the effects of the statistical fluctuations and random 1 3 3 3
walk that are inevitable in all results from the Monte Carlo FC_WI d rf d le' [P2=palof(r,pyf(r,p2)dp,.
method. A cell of volumeV contains a numbeN of atoms (7)
and this number is subject to statistical fluctuation about the

mean valuaV, wheren is the mean density. The probability When the elastic hard-sphere model is used, the collision
P(N) of a particular value oiN is given by the Poisson Cross sectiorr will be independent of the relative momen-

distribution tum p,=p,—p, and positiorr. In evaporative cooling, atoms
with energy larger than potential barrigr,, escape from the
P(N)=(nV)Nexp —nV)/N! (3) trap and a truncated distribution is obtained because the in-
tegration is over all ;p), for which

For large values ohV, this distribution becomes indistin-

2
guishable from a Gaussian distribution U(r)+pL/2M<Uy. ®)

Thus the integration boundaries pfand p are coupled to-
gether through Eq(8). So the evaluation of ; involves a

For this distribution the standard deviation for the fluctuati complicated nested triple integral. When we start with a near
or this distribution the standard deviation for the fluctua Ionstationary Maxwell-Boltzmann distribution as the initial dis-

of N from its mean value is YnV, and for lowN values this iy tion (the cut energy of the potential is much larger than
fluctuation could be relevant. Random walks can arise Whe,e mean energy of the atomic cloudhe boundaries of

ever one of the atomic quantities is conserved only on the,q, can pe set to infinity. Then the calculation of the initial
average, rather than exactly, in any of the simulation procezqjjision rate is much simpler. Bringing E¢6) into Eq. (7),

dures. The atomic quantities of interest are the position COggjng the center-of-mass frame and reexpressing the result-
ordinates and the velocity components. Random walks aris

= ) ) ﬁlg equation in terms of velocities for convenience,
because the position and velocity are rounded off in order tg, = (Vo V) 2,V, = (Vo—V;), we find
be stored as a discrete value rather than as an exact numbét * 2 Y 7°f 2 '
at the final stage of simulation when results are output. The oM3
effect of random walks also appears in quantum Monte Carlo F°:2(27r—kBT)3J nse~2V(N/keTy3y

simulation [29]. Due to the limited precision with which

P(N)=(2mnV) Y2exd —(N—nV)%/(2nV)]. (4

variables are manipulated, some degree of rounding is un- MR /KT A3  MuZakaT a3
avoidable. This effect was investigated in the present simu- Xf e Tmted Umf vee e dCy,
lation by monitoring the total energy in a direct simulation o

with a fixed sample of 10 000 atoms in a harmonic potential oNM3n(r) 3

, , - e MulikgT [ 43, , @~ MuliakgT
and in a homogeneous gas. After each atom experienced 100 2(27kgT)3 Um UrUy
collisions in average, the total energy was found to fluctuate

by no more than one part in a hundred. This shows that the 1 -
error caused by random walks is of acceptable magnitude = —=Nn(r)ov, 9)
[11]. V2

where the mean density is defined as
B. Collision rate

The collision rate, whose increase results in run-away fnge*2U<”’kBTd3r fnz(r)dg’r
evaporation, is an important parameter in evaporative cool- m: — (10)
ing. It is especially important to calculate the collision rate N 3
correctly since in our calculations time is expressed in units f n(rdr

of initial collision times and, therefore, one needs to know

what this is in order to compare it with reality. In thermal andv = y8kgT/7M. The mean collision rate for each atom
equilibrium the phase-space distributibgr,p) of a classical is then

ideal gas in a potential field(r) is described by

=\2n(rov, (11)

f(r,p)=ng(27M kBT)—slze[—(U(r)+p2/2M)/kBT]' (5) N
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where the factor 2 indicates each collision involving twothe formation of the Bose-Einstein condensate. During the
atoms. It is important to note that E(L.1) can be applied to first stage, Bose particles are pushed by scattering into the
homogeneous and inhomogeneous gases. The initial collisicgnergy regimes which are less than the interaction energy
time 7, which is used as time unit in the following sections, among particles. At this stage the random-phase approxima-

is defined as the inverse of the initial mean collision rate: tion is valid but it breaks down when local-range order ap-

=1/, (12)

For a thermal equilibrium gas in a harmonic potential, the

central density is

Mo \32
No= wawywz( m) (13
The mean density is
M 3/2
n(r) = wawywz W . (14)
Hence,
nO/n(r)z\/§. (15

pears[31-35. Under this approximation our model cannot
study the appearance of coherence among Bose patrticles, but
allows us to study the population dynamics of a condensate.

In terms of Bose statistics, the probability of two bosons
with wave vectorsk,,k, scattering intdks,k, is [31,32,

S(Ky,ka;k3,kg) = T2 8(Ky+ko—ka—Kg) 8(Eq + E;— E3—Ey)
Xf(k)f(k)[1+F(ka)l[1+f(ky)], (20)

where T,, is the matrix element of the interaction, and
Trznf(kl)f(kz) shows the classical rate where the effects of
quantum statistics can be ignored. The most important fac-
tors in Eq.(20) are[ 1+ f(kg)] and[ 1+ f(k,)], which means
that in a collision for Bosons, the scattering probability into a
state which already containd(k;) Bose particles is
1+f(k;) times stronger than it would be if there were no

The mean collision rate of the cloud can be obtained in afP0se particles present. This stimulated scattering process can

alternative way, starting from the local collision rate

v(r)=n(r)ov,, (16)

be put into the simulation straightforwardly by using the ac-
ceptance and rejection method in Monte Carlo simulation
[14,28. That is to say that at each collision we make the
probability distribution of the final velocities depend on the

where v, =v,—v;. The mean collision rate is obtained by velocity distribution already existinin that particular re-
summing over all velocity classes and therefore over all valgion of velocity spacé a way which takes into account the

ues ofv,, i.e.,

v=n(r)ov,.

7

Because the hard-sphere model is ugeds a constanti.e.,
independent ofy,). The separationn(r)v,=n(r); only
holds when the limits of the position and velocityjomen-
tum) integrals are infinity. The average valugr) is ob-
tained from the definition

— f=.n?(r)dxdydz
n(r)= f”.n(rydxdydz’

(18

This is the form used in the computations and is obviousl)}
equivalent to Eq(10) wheren(r) is Gaussian. The average

value of 7, is obtained from the following expression:

wim [ [ vdvtadvde, (19

which, for Maxwellian velocity distributionf(v;) and
f(v,), gives the well-known kinetic theory
0;=/205. Hence, this method gives E(L1).

C. Scattering of two Bose particles

result

bosonic enhancement factdrs+ f(k;)]. It took around two
hours to run a calculation of 20 initial collision times with
~10P atoms on a DEC alpha Server 2100 Open Vms AXP
6.1 machine.

Ill. SIMULATION RESULTS

A. A homogeneous gas

In order to make a comparison with inhomogeneous gas
and also with a previous wor81], we first study a homo-
geneous gas consisting 6f10° sodium atoms. In fact, for
inhomogeneous gases in an external potential, when the po-
ential is balanced by the interaction energy among atoms,
the properties of the gas should be similar to that of the
homogeneous case. The initial density isX1®'* cm 3,
and the initial temperaturg, is 2uK. For sodium atoms the
chosen initial density corresponds to the critical one required
for Bose-Einstein condensation at the temperatirig
[6,38,12.

In Fig. 1(a) the full curve shows the particle energy dis-
tribution n(E) after 80 scattering events. We note that even
after experiencing more than 80 scattering events for each
bosons(not shown, there is still a particle energy flux to-
wards the low-energy regime, which indicates the equilib-
rium state has not yet been reached. This overall behavior is

The dynamical formation of the Bose-Einstein condensatsimilar to that observed by Snoke and WdIgd]. It can be
can be classified into three stages: kinetic evolution, the fornoted in Fig. 1a) that the energy distribution is well fit by
mation of short-range order and the off-diagonal long-rangéhe Bose-Einstein distribution functiof{E, «,T), which is
order[32—-34. The time scale for the first stage is character-indicated by the dotted line,

ized by interatomic collision time and is much longer than
the second stage and can be comparable to the third stage. So F(E, u,T)= 1
the kinetic evolution basically determines the time scale for gk

QEmKeT_ 1 glera_1° (21
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FIG. 2. The dynamical evolution of velocity distribution along
x (or y,z) direction after different scattering events for the same

) 20 40 60 80 100 conditions as in Fig. 1. The narrow peak at the central part indicates
Collisions the accumulation of bosons at low-energy states and the short
2.0 Gaussian background accommodates the usual thermal particles.
~ 1.5 1 whereV is the volume of the ga$ is the Planck’s constant,
&£ and N, is the population at zero kinetic energfor spin-
L 1.0 ] larized i he d f i
5 polarized atomic gases the degeneracy factor is rfigr a
,g 0.5- c system with constant energy, the mean en&qer particle,
3 initially equal to XgTy/2, is thus
= 00 . . : . -
0 20 40 60 80 100 E=U/N=(kgT)G(a). 23)
Collisions

For a classical gas where the normalized chemical potential

FIG. 1. In (a) particle energy distribution for a homogeneous @ 1S much larger than 1, the functioB(«) has the well-
sodium gas after 80 scattering events per particle; the dotted line §nown value of 3/2 and decreases to zeroya.‘heqreases.
best fit by Bose-Einstein distribution of E@1); in (b) temperature Our results for the homogeneous gas are in reasonable

T from the best fits of the Bose-Einstein distribution vs scatteringgreement with a previous worl81], however, since we
events;(c) the normalized chemical potential from the best fits vsconsider the momentum and position of each boson instead
scattering events. Initial value$,=2 wK and ny,=1.5x10"*  of their energy, we can observe the evolution of velocity
cm 3, distribution which has been taken as one aspect for diagnos-
. . . . . ing the presence of the Bose-Einstein condensate experimen-
whereE is the single-particle energy, is the chemical po- 4y [5 6], In Fig. 2 the dynamical evolution of the velocity
tential, T is the temperatures=E/kgT, and @=—u/ksT.  isiribution is shown. It is found that after about 20 scatter-
The use of this distribution function requires the validity of ing events, the velocity distribution deviates from the Gauss-
sufficient ergodicity, i.e., that the phase-space distribution ol‘an obviou’sly, but the gas is still quite far from the equilib-
particles is only a function of the single-particle eney  jym state. It is interesting to note that the velocity
Note that this hypothesis of ergodicity is not being intro- yigyiption after several more scatterings in Fig. 2 can be
duced into our numerical simulation, and that the fit of thedecomposed into two components: the central narrow peak
particle energy distribution by Ed21) allows us to verify ¢, the |ow-energy Bose particles and the Gaussian for the
the validity of ergodicity assumption during the time evolu- packaround thermal particles. The observation of the non-
tion of evaporation. o _ Gaussian velocity distribution indicates the accumulation of
When fitting the particle energy distribution, we multiply g,qe particles at low-energy states, but it is not necessarily

Eq. (21) by the density of states which is proportional {0 yhe gignature of the appearance of a macroscopic Bose-
E'2 for constant potential energy and proportionaEfofor  £instein condensate.

a harmonic potential. By using E21) to fit the particle
energy distribution, we can get the chemical potential and
the temperature of the Bose gas, as shown in Fi@®.ahd

2(c). For a homogeneous Bose gas, the total number

bosonsN and the total energy are given by(31,37 We now consider an ensemble of sodium atoms magneti-
cally trapped in a harmonic potential. In the simulation the

oscillation frequencies of the harmonic oscillator
(wy,0y,0;) along three spatial directions are
(300,400,800x 27 rad s 1. The initial temperaturd, of
the gas is 2K, the initial elastic collision rate 1008, and
the elastic collision cross sectionkdl0™ 12 cn?. The central

ol?' Inhomogeneous gas in a harmonic potential at a fixed value

3/2
hz) (kBT)?’/2 f(e,a)ellzde-l—No,

N-v|

T 3/2
U:v(v) (kgT)%2 | f(e )€ e, (22
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FIG. 3. The particle energy distribution for an inhomogeneous > 0.90-
sodium gas at a fixed harmonic potential truncated for natural ~
evaporation at B T. The big dotted line shows the best fit by Eq. -
(21). Initial temperature iF,=2 uK with 1.54x 10° Bosons and 0.851
with a peak density of 10 cm™2. The natural evaporation is
performed in three-dimensional position space. In this and follow- 0,80
ing figure captions, dimensionless tirhet/7; is used. 012345678910

t

densityng is two times the critical density, for the Bose
condensation at temperatur&,, where n.=1.5x10" FIG. 4. In(a) normalized chemical potential and (i) tempera-
cm 3. The parameters above and the harmonic potentialire, as derived from the best fits using E2), vs time, in dimen-
model are close to those used in the sodium experiments #onless units, for an inhomogeneous gas at a fixed harmonic po-
observe Bose-Einstein condensation in REs38]. tential as in Fig. 3. At=8, the fit error of the chemical potential is

We first consider the case when the threshold is fixed at aomparable to its absolute value so no further value is shown.
truncated value of Bz T;—the atoms whose potential energy o
is above this threshold are assumed to be lost during evap@oms are allowed to escape from the trap, as shown in Fig.
ration, and we call this fixed-threshold evaporation to distin-4(0). The production of high-energy Bose particles by elastic
guish it from forced evaporative coolir(the initial distribu- ~ Scattering is further aided by thetif (k;) factor. Due to the
tion is a Maxwell-Boltzmann distribution truncated at decrease of the temperature, the chemical potential ap-
6kgT,). For the system we are considering, the quantunProaches to zero quickly, as shown in Figbp(at t=387;,
energy level Spacing is much less than the thermal energ&he. fit error of the chemical potential is quite Iarge Compared
kgT, so the system can be described by a continuum of statd§ its absolute value, so no further values are shdwl. In
plus the ground state which has the zero-point eng8gy. Fig. 5 the condensa;e fr_act|0n is shown. It can be seen that
The condensate fraction is defined as the population whos@€ condensate fraction is very small and it increases linearly
energy is within the lowest-energy bin, with size of 1/100With time—we did not observe a sudden increase in conden-
timeskgT,. In Fig. 3 we show the evolution of the energy Sate population. Even for times as long as 20@ot shown
distribution in this case. Even though the initial total energyan equilibrium state has not been reached, although the mean
is truncated at Bz T, higher-energy particles are produced
because of interatomic collisions and the natural evaporative 15x10°8
loss of atoms is based on the potential energy of atoms being
above the threshold model. In this case the equipartition
theorem between kinetic energy and potential energy is not

ol

strictly valid. This leads to a difference between the simula- 1.0x10

tion results of the three-dimensional position cut model and

the energy cut model in later sections. One can also note the oxio
5.0x r

particle flux towards the low-energy regime. By using the
Bose-Einstein function of Eq21) to fit the particle energy
distribution, as shown by the dotted line in Fig. 3, we get the
chemical potential and the temperature of the Bose gas. The 0-00 20 40 60 80 100 120
fit is not particularly good—we attribute the difference either ¢

to the fact that the gas is quite far away from equilibrium :
state or to the fact that the hypothesis of ergodicity required

for the application of Eq(21) is not valid. An important FIG. 5. The condensate fraction vs time at a fixed harmonic
difference from the homogeneous gas is that the temperatugtential truncated atkgT, with the same initial conditions as in
of the Bose gas decreases as scattering proceeds, since Rt 3.

Condensate fraction
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7, and, in total, the trap depth is decreased by a factor of 16.
After forced evaporation is stopped we let the gas evolve for
another 26, in order to equilibrate different degrees of free-
dom. It is generally thought that the two-dimensional evapo-
rative cooling model is close to the case in a TQifme-
averaged orbiting potentlamagnetic trag5,12], since in a
TOP trap atoms are mainly removed in terms of their radial
positions. On the other hand, the unfavorable oscillation of
the center of mass of the atomic cloud, which can be caused
by the initial displacement from the bottom of the potential
when one loads an atomic cloud from a magneto-optical trap
into a TOP trap, and the gravity can easily make the forced
evaporation be two- or even one-dimensiofé#,45 in
practice. At present it is not clear which evaporation model
represents the real process in an experiment and the question
needs to be addressed by making a detailed comparison be-
tween theory and experiments.

. i i i Figure 7 shows the simulation results. It can be seen the
C(_)II|S|on rate increases by a factor of 6. In the simulations thigher the dimension of the cut@n energy cut can be
Fig. 4 the mean energy decreases from 182 to 0.76 thought as six-dimensional evaporative coaglinidpe higher

uK [42], and the total number of bosons drops from . . .
1.54x 1P to 1.13x 10°. Once again the velocity distribution the efficiency. In F'g.' ® we did not obsgrve the'cross over.
. . .for two- and three-dimensional evaporation, as in the classi-

becomes non-Gaussian, as in Fig. 2, after about 20 scattenr(\:% . . o
S - | simulation[11], even when evaporation is deeper and
events per particle in averagat t=127;), but the conden-

sate fraction is very small, as shown in Fig. 5. The positionqmc'_(er' Figure ) indicates the mac_roscopic condensate
distribution att=120r; is shown in Fig. 6, where the distri- fractlon at ground state and thg formation of quantum degen_—
bution is anisotropic due to the difference between oscilla®racy in this level—the sharp increase of the condensate is
tion frequencies along and z. The central peak at=0 also visible. Figure ({€) shows tht=T depre_ase of the mean
deviates from Gaussian. This nonclassical spatial distributio§N€rgy by a factor around 8, and Figdyindicates evolution
is similar to that obtained by Plimak and WaJl3]. of the particle energy distribution for three-dimensional
evaporation. Evaporative cooling is based on the removal of
C. Inhomogeneous gas in presence of forced evaporation ~ ©nergetic particles whose production is enhanced by Bose
) o o _ scattering properties. Comparing Figby with Fig. 5 one
_From the results in Sec. IlI B it is clear that it is quite can note that forced evaporation plays an important role in
difficult to put most of the bosons into a quantum degenerat%utting Bosons into the quantum degenerate regime. In Fig. 7
regime only by Bose scattering and natural evaporation. Sgfter evaporation stopped, we let the Bose gas evolve for
in order to speed up kinetic evolution of the Bose gas, forceqyther 20 initial collision times while the energy cut re-
evaporative cooling has to be applied. To initiate forcedmgained at the final value, except for one case denoted by the
evaporative cooling, we take the final phase-space distribysig gotted line. This situation of a fixed final energy cut
tion function after natural evaporationtat 120, as the ini-  corresponds closely to what is actually done during the for-
tial distribution function. The initial mean energy is mation of the Bose-Einstein condensate in the experiments
0.83 uK with 1.15x10° bosons. The cutoff energy and seems to produce a higher condensed fraction. The big
Ec,(t=0) initially 6kgTo, as in natural evaporation, in dotted line in Fig. 7 indicates the case for two-dimensional
forced evaporation is ramped downwards exponentially. Wewaporative cooling when the cut energy returns to the initial
consider four models for evaporative cooling. The first oneygjye of 6kgT, after evaporation stopped. This would ap-
particle energy8-10], i.e., the bosons are assumed to be losteyaporation process being switched off while the system
when the following relation is valid: equilibrates[5,38]. In this case the total number of bosons
1 1 remains unchanged, as shown by _the big dotted line in Fig.
> M+ =Mu2>Eq(t) =Eq0)e™ X215, 7(a), the mean energy has a weak increase, as shown in Fig.
i=xy,z 2 2 7(b). However, the condensed fraction is less, and the abso-
(29 lute condensate population is also reduced. For the cases of
the cut remaining at its final value or returning to its initial
The other three cuts consider the particle’s position ovalue, the condensate population is 2B and
its potential energy. They are three-, two-, and one5.92x10% respectively.
dimensional evaporation, respectively, corresponding to Figure 8 shows the lag between the axial and the radial
three equations for cutting;/x2+(ywy/wx)2+(2wzlwx)2 mean gnergies_ir) two—dimensiona! evaporatipn. Even though
—txIn2/30r, 5 5 X In2/30r. it is quite surprising that even at tinte= 207, , i.e., after 20
= Finitial X © L X Yoyl 0) = hniga© ' initial collision times, one can still notice some difference
and x=riax e "23% - respectively, with riy=50 between the radial and axial energies, it seems to be consis-
um. In all cases the forced evaporation is performed in 6Gent with the experimental observati$pa6]. We have also

8000

Population

FIG. 6. The spatial distribution at timte= 120 with a fixed har-
monic potential truncated akgT, with the same initial conditions
as in Fig. 3.




56 DYNAMICS OF EVAPORATIVE COOLING FOR BOSE. .. 567
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0 10 20 30 4to 50 60 70 80 0.000 10 20 30 40 50 60 70 80
0.6 t
5 0.5 FIG. 8. The lag between the mean axial enefigyand radial
S04 energy T,=(T,+T,)/2 for two-dimensional forced evaporative
= cooling. After forced evaporation stops &t 60, the cut energy
£03 returns to &gT,. h
0
§ 0.21 observed the lag between the axial and the radial mean en-
é 0.1 ergies for the case of one-dimensional evaporation.
0015 20 30 40 50 60 70 80 D. Comparison with classical trajectory method
t There have been four papers on evaporative cooling pub-
0.9 lished in the last yedi8—11], all of which use quite different
P methods of calculation. Our simulation uses Bird’s method
N 08K as described in previous sections. All other ones consider
fg 0.7 energy evolution. All four methods considejg>R,, where
o 06f Ngg=[27#%(mksT)]"? is the thermal de Broglie wave-
€ 05} length andR, is the range of the interatomic potential. For
<. 0.4 this case, the quantum-mechanical scattering is solely
% 0.31 s-wave scattering. In this section we make a comparison
5 0.2} with other methods, in particular, with the classical trajectory
S o1l method[10]. In order to make this comparison, we did not
S oo o consider the quantum statistics effect, or theflk;) factor
0 10 20 30 40 50 60 70 80 in the scattering matrix of Eq20), and we had to work with
1 an energy cutoff rather than a position dependent cutting.
The first method, developed by Davis, Mewes, and Ket-
d =0 terle [8], assumes that the atomic energy distribution can
B always be described by a truncated Maxwell-Boltzmann dis-
@ tribution and calculates the final state after the gas has recov-
5 ered thermal equilibriunp1,2,8. This simple method quali-
g =30 tatively tells one how the forced evaporative cooling works.
A One important result of this work is that the threshold den-
w sity for accelerated evaporation is higher in a parabolic trap
< =60 than in a spherical quadrupolghree-dimensional linear
trap, and the increase in the collision rate in a harmonic

potential is small, and only occurs for appropriate cuts in the
potential well. In our simulation where a three-dimensional
harmonic potential is used, the small increase in the collision
rate is observed when a three-dimensional cut is performed
FIG. 7. In (a) the number of particles; irib) the condensate [11], which is consistent with their conclusions.
fraction; in (c) the mean energy vs time for forced evaporative Luiten, Reynolds, and Walrave®] considered the non-
cooling. The trap depth decreases exponentially by a factor of 16 iequilibrium process of evaporation by solving the Boltzmann
a time of 60. Forced evaporation stops gt 60, the gas is al- equation, however, because it is extremely difficult to solve
lowed to evolve for another 20 initial collision times. Except the big this nonlinear six-dimensional equation directly, they intro-
dotted line[2D in (c)], where the cut returns to initial trap depth of duced the assumption of sufficient ergodidi®y31,33. One
6kgTo, in other cases the cut remains fixed at the value where it wagmportant result of that work is that the phase-space distri-
stopped. In(d) particle distribution for three-dimensional forced pution of atoms in a trap can often be described by a trun-
evaporative cooling. cated Maxwell-Boltzmann distribution.

0 2 4 6 8
Particle energy (units of kgT,)
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2 IV. CONCLUSION
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By using molecular gas dynamics we have simulated

) €16 forced evaporative cooling incorporating quantum statistics,
?27 8., while all the simulations published before were purely clas-
5, g 12 sical[8—11]. Our powerful approach does not need the com-
g 2 mon assumption of sufficient ergodicity or quasiequilibrium
o " during forced evaporation as other methods. Therefore, it
18 8 allows us to study rapid forced evaporative cooling far from

19 the equilibrium state in one-, two-, and three-dimensional
position cuts. In the simulations of one- and two-dimensional
cuts, it was found that when the cut was stopped there was a
difference in energy between axial and radial directions. We
e have also studied the dynamical formation of the Bose-
17 Einstein condensate in homogeneous and inhomogeneous
gases considering quantum statistics under the random-phase
400 16 approximation. It was found that it takes quite a long time to
o 2 4 & 8 10 6 2 4 6 8 10 reach an equilibrium state for both homogeneous and inho-
Time (5) Time (9 mogeneous gases. The dynamical evolution from a noncon-
densed system to a Bose condensate is purely a nonequilib-
FIG. 9. Comparison of our calculations using Bird’s method rium process. For a homogeneous Bose gas the temperature
(solid line) and the results of classical trajectory method of Hollandincreases as the formation of guantum degeneracy due to
et al. [10] (dashed ling (a) Cut energy divided by & used in  energy conservation, while it decreases for an inhomoge-
these two methodsb) the calculated mean energy of the distribu- negys gas in a finite potential due to evaporation. The obser-
tion divided by g ; (c) number of atoms remaining in the tra)  ation of the non-Gaussian velocity distribution indicates the
chI|S|on rate of. aj[oms. The qm‘erence between the two methOdsclccumulation of low-energy Bose particles but does not nec-
arises from statistical fluctuations. essarily indicate the formation of a macroscopic population
at ground state. For an inhomogeneous gas in a potential, the
Even though the ergodic assumption simplifies the BoltzBose scattering process, which puts bosons into the ground
mann equation significantly, numerically there are still somestate, is further aided by forced evaporation and a macro-
difficulties because of its nonlinearity. Therefore, a classicaBcopic population accumulation at ground level can be
trajectory methodalluding to its similarity with the quantum réached, which is consistent with experimental results. In our
trajectory method was developed by Hollanet al. [10]. ~ Simulations we have assumed an initial density large enough
This approach also assumes sufficient ergodicity, with 40 Produce a runaway evaporative cooling. The present ap-
computation time linearly proportional to the number of Proach could be also applied to investigate the evolution of
points used to sample the distribution function. We haveF'ouds of cold atoms with an initial atomic density lower
made a detailed comparison with this classical trajector)}har' the value required for runaway evaporation, with the
method to verify our calculations. The physical parameter§prlng constant of the harmonic potential ramped up to in-

, . . crease the atomic density.
used in Ref. [10] are collision cross section In the future it will be very interesting to make a compari-
o=10"% m?, massM=2.26x10 2° kg, angular oscilla- y g P

tion frequencies , .w, w,)—(9,16,18) radst (i.e., num- son between our present results and that obtained using the

, XYz i e quantum kinetic master equatid®6]. This equation pre-
bers include factor 2), Tl”,‘}{a'zz.s pK. The cut energy  goryeg the ful guantum-mechanical description of the con-
decreases aBq,~Eq,(0)e *, which is illustrated in Fig. - yonsate and considers the modification of the noncondensate
9@, Whe[? EC“‘(Q)./:.BKB:% #K and cut rate constant spectrum by the condensate by separating coherent processes
x=0.06 s*, the initial mean energy of the atomic cloud

. - H from scattering processes. Moreover, hopefully, our calcula-
being 18.6uK for the truncated Maxwell-Boltzmann distri- ap penty

. h f ithin the initial tions will be compared to experimental measurements to test
bution[42]. The number of atoms within the initial truncated \,hether the cutting is effective only in the radial direction

distribution isNy=1000. Use of small trap oscillation fre- (two dimensional in a TOP trap, and whether the gravity

quencies makes calculation quicker since larger time SteRStect can effectively make the evaporation two- or even
can be used. The evolution was simulated for 10 s. one-dimensional

In Fig. 9 we show the simulation results for these two
methods, where the solid line is for Bird’s method and the
dashed line is for the trajectory method taken frohg]. It
can be seen that these two methods are consistent. The dif-
ference in the collision rates in Fig.(d® arises from the
statistical noise in the simulatiorfthe total increase of col- We are indebted to K. Burnett, E. Cornell, J. Dalibard, S.
lision rates is only around 5%, and the fluctuation is aroundsiorgini, and M. Holland for very helpful discussions. H.W.
1%, it may take large number of simulations to get rid of thisacknowledges support within the European Community Net-
statistical noisg In both approaches, a tiny increase of thework on Atom Optics. We thank Professor F. Bassani and
collision rate is observed. This means that, in the case of ththe Computer Center of the Scuola Normale Superiore for
energy cut, it is possible to reach runaway evaporation.  allowing us to have access to computer facilities.
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