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Selective creation of quasiparticles in trapped Bose condensates
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We investigate theoretically the use of time-varying magnetic fields to selectively create and manipulate
quasiparticles in magnetically trapped Bose condensates. To maximize the transition matrix element connect-
ing two desired quasiparticle states, the spatial symmetry of the applied magnetic field must be tailored to
exploit the different spatial distributions of magnetization in the two quasiparticle states. This ‘‘spatial mag-
netic resonance’’ effect is analogous to the Franck-Condon factor in electric dipole transitions in diatomic
molecules. Experimentally, the spatial magnetic resonance technique may allow the creation of coherences
between quasiparticle states, the inversion of quasiparticle state populations, the measurement of quasiparticle
lifetimes ~T1! and decoherence times~T2!, the creation of quasiparticle echoes, etc., in analogy with conven-
tional spin magnetic resonance.@S1050-2947~97!04306-0#

PACS number~s!: 03.75.Fi, 67.90.1z
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The experimental realization of Bose-Einstein conden
tion ~BEC! in cold trapped alkali-metal atoms@1–3# has gen-
erated great interest in the properties of these weakly in
acting quantum gases. Among the important properties to
investigated are excitations of the trapped condensates,
comparison to the behavior of superfluid4He. The mean-
field Bogoliubov-Hartree~BH! theory suggests that below
the critical temperature for BEC, the coherent mean field
an interacting Bose condensate mixes the collective and
siparticle excitations@4,5#. Calculations show that the exc
tation spectrum of a trapped, interacting condensate inclu
a very large number of quasiparticle modes that are e
unique superpositions of ‘‘bare states’’ of the external tra
ping potential@6#. Recently, several quasiparticle modes,
cluding three center-of-mass ‘‘sloshing’’ modes, have be
created and studied in the trapped rubidium and sodium c
densates~by Jinet al. @7# and Meweset al. @8#, respectively!
~‘‘sloshing’’ denotes the oscillatory center-of-mass moti
of an extended fluidlike object!. To create these condensa
excitations, both groups used parametric drive~or modula-
tion! of the electric currents that produce the magnetic tr
ping field for their condensates@7,8#. Results based on th
mean-field BH theory@6# agree well with these experiment
observations. Nevertheless, it should be possible to cr
many more quasiparticle modes in trapped condensates@6#.

In this paper, we investigate theoretically a technique
the selective creation and manipulation of all quasipartic
in trapped condensates. In this excitation scheme, the sp
symmetry of resonant variations in the longitudinal magne
field is crafted to exploit the different spatial distributions
magnetization in different quasiparticle states and thus
maximize the transition matrix element between these sta
We refer to this condensate excitation technique as sp
magnetic resonance~SMR!. Experimental application o
SMR will facilitate measurement of the condensate exc
tion spectrum to provide a comparison with the low-ene
excitation spectrum in superfluid4He. Furthermore, SMR
should allow the selective creation of coherent coupl
among different quasiparticle states, thus effectively m
ping transitions between trapped quasiparticle states
transitions in a multilevel atom. This condensate-atom co
561050-2947/97/56~1!/555~5!/$10.00
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spondence will allow techniques developed in quantum
tics and magnetic resonance for creating and manipula
coherence within multilevel atoms to be extended to cond
sate excitations.

The physics of SMR is straightforward, and may
thought of as an optimized variation of the trap potenti
optimized to excite the condensate into higher quasipart
states with the desired spatial symmetry, and with a m
mum of variation in the trap potential and, hence, a mi
mum of perturbation of the condensed system. In contr
simple resonant variations of the trap potential will
largely spatially symmetric in the radial and azimuthal dire
tions, and, hence, will not be generally efficient at coupli
the ground and excited states; in addition, such nonopti
trap potential variations will significantly perturb the co
densed system during application@9#.

Figure 1 illustrates the effectiveness of SMR for two qu
siparticle states in a one-dimensional trap@10#. The two trap
state wave functionsc i(rW) and c f(rW) describe the spatia

FIG. 1. SMR utilizes a spatially dependent resonant magn
field to selectively couple two quasiparticle states in a trap~denoted
by solid horizontal lines!. For example, to excite a spatially sym
metric ground statec i(x) to spatially symmetric or antisymmetri
excited states, denoted byc f(x), the applied magnetic field
BSMR(x) could be chosen to be spatially uniform or to have a line
position dependence, respectively. The figure showsBSMR(x) for
this latter case.
555 © 1997 The American Physical Society
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556 56R. WALSWORTH AND L. YOU
extent of the respective quasiparticles, while the internal s
state u in& of the magnetic dipole moment of the atoms r
mains the same for both trapped states@10#. We introduce a
time- and space-dependent longitudinal magnetic fi
BW SMR(rW,t)5êB(rW)BSMR(rW)F(t), where F(t)5F(t)(e2 ivBt

1eivBt), F(t) is a slowly varying envelope function, an
vB is close to resonance with the transition of the two sta
v f2v i . The unit vectorêB(rW) denotes the direction of th
magnetic field~assumed here to be everywhere parallel to
z axis!. Then the magnetic dipole transition matrix eleme
between two quasiparticle states is

2 iŠc i~rW !zi^ inumW m•BW SMR~rW,t !u in& f zc f~rW !‹f

'2mm^c i~rW !uBSMR~rW !uc f~rW !&F~ t !, ~1!

where the magnetic dipole moment of the atom
mW m5mmêm(rW), and we have assumed that the strong tr
ping field completely spin polarizes the atoms and is point
along thez axis @10#. We see that the transition matrix ele
ment is a product of two parts: an internal part~a constant!,
which comes frommW m , and a spatial part, which is the ma
netic dipole transition analog of the Franck-Condon facto
electric dipole transitions in diatomic molecules@11#. Now if
BSMR(rW) is spatially symmetric, as in a uniform trap potent
variation, then the transition matrix element is zero when
initial and final quasiparticle states have opposite spatial
ity. As long asBSMR(rW) has some spatial asymmetry, how
ever, the matrix element is nonzero. For optimal SMR in t
example withc i(rW) andc f(rW), BSMR(rW) should be antisym-
metric.

In the following we develop the idea of spatial magne
resonance using the mean-field Bogoliubov theory@12,13#.
The second quantized Hamiltonian for a system ofN bosonic
atoms in a trapping potentialVt(rW) @10# is H5H01HSMR,
with

H05E drW Ĉ†~rW !F2
\2

2M
¹21Vt~rW !2mGĈ~rW !

1
1

2
\u0E drW Ĉ†~rW !Ĉ†~rW !Ĉ~rW !Ĉ~rW !,

HSMR52E drW Ĉ†~rW !mW m•BW SMR~rW,t !Ĉ~rW !, ~2!

whereHSMR describes the SMR interaction,Ĉ(rW) @Ĉ†(rW)# is
the atomic~bosonic! annihilation ~creation! field, andM is
the atomic mass. The two-body interaction takes the fam
contact~pseudopotential! form, with \u054p\2asc/M and
asc being the scattering length.m inside the square bracke
in H0 denotes the chemical potential of the trapped ato
With the Bogoliubov approximation@12,13#, the interacting
gas can be described by a set of noninteracting quasip
cles:

H0→
1

2
\ap0

21 (
nÞ0

\ṽng̃n
†g̃n . ~3!
in
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Here, g̃n
† ( g̃n) are the bosonic quasiparticle creation~annihi-

lation! operators.~Here, we only discuss the zero temper
ture limit; however, our result can easily be generalized
finite temperatures.! The indexn50,1,2, . . . labels quasi
particles in ascending order ofṽn . As discussed in detail in
@13#, the a-dependent term describes the dephasing of
condensate.

The quasiparticles are defined as@6,12,13#

g̃n5E drW@Un~rW !Ĉ~rW !1Vn~rW !Ĉ†~rW !#, ~4!

with the inverse transformations@12,13#

Ĉ~rW !5 (
n50

`

@Un* ~rW ! g̃n2Vn~rW ! g̃n
†# ~5!

~and their Hermitian conjugates!. BothUn(rW) andVn(rW) are
wave functions for quasiparticles@6#. The interactionHSMR
can be rewritten as

HSMR5F~ t !\ (
k,k850

`

@~ukk81vk8k! g̃k
†g̃k82gk8k

* g̃kg̃k8

2gkk8 g̃k
†g̃k8

†
#, ~6!

where we have neglected a constant term and introduced
following SMR coupling matrix elements:

\ukk852mmE drW Uk~rW !Uk8
* ~rW !BSMR~rW !,

\vkk852mmE drW Vk* ~rW !Vk8~r
W !BSMR~rW !,

\gkk852mmE drW Uk~rW !Vk8~r
W !BSMR~rW !. ~7!

By arranging theBSMR(rW) to have certain spatial symmetrie
the magnitudes of these SMR coupling matrix elements
be manipulated. For a spherically symmetric trap,
~ground! condensate state is described by spherically sy
metric functionsU0(r ) and V0(r ), and the excited state
wave functions factor into radial parts@UnLLz

(r ) and

VnLLz
(r )] and angular parts@the spherical harmonics

YLLz
(u,f)#. (L is the angular momentum andLz is its pro-

jection on thez axis;n is the quantum number for the radia
direction.! Following Eq. ~7!, if BSMR(rW) is chosen to be
proportional toYL8Lz8

(u,f), then only quasiparticle state
with the same angular symmetry will be created.@A similar
argument applies for the radial dependence ofBSMR(rW).#

The system described by Eq.~3! and ~6! can be solved
using a general Bogoliubov transformation, since only ter
quadratic in creation or annihilation operators are involv
However, the analysis of the resulting time-dependent qu
particles is quite complicated. To better express the esse
physics of SMR, we consider a simpler model based on
rotating wave approximation. We assume that the app
magnetic field is near resonance between two quasipar
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56 557SELECTIVE CREATION OF QUASIPARTICLES IN . . .
states (vB;v f2v i , taking v f5ṽn andv i5ṽ050). Ne-
glecting all other quasiparticle states, we then obtain

H05
1

2
\ā~ g̃01 g̃0

†!21\dng̃n
†g̃n ,

HSMR5\V~ g̃0
†g̃n1 g̃n

†g̃0!2\g* g̃0g̃n2\g g̃0
†g̃n

† , ~8!

where we have used the rotating wave approximation.
have also absorbedunn1vnn into a renormalizedṽn

and simplified the notation: a52ā , dn5ṽn2vB ,
V5F(t)(un01v0n), andg5F(t)(g0n1gn0). Without loss
of generality we also takeV to be real.

From the Hamiltonian~8!, we determine the Heisenber
operator equations of motion to be

ġ̃052 i @ ā~ g̃01 g̃0
†!1V g̃n2g g̃n

†#,

ġ̃n52 i @dng̃n1V g̃02g g̃0
†#. ~9!

For a resonant drive~i.e.,dn50), the solutions to Eq.~9! are
@14#

g̃0~ t !5 g̃0~0!cos@A~ t !#2 ien~0!sin@A~ t !#

2 i ā @ g̃0~0!1 g̃0
†~0!# f cc2 ā @en~0!2en

†~0!# f sc ,

en~ t !5en~0!cos@A~ t !#2 i g̃ 0~0!sin@A~ t !#

2 ā @ g̃0~0!1 g̃0
†~0!# f cs1 i ā @en~0!2en

†~0!# f ss,

~10!

where we have defined

en5~V g̃n2g g̃n
†!/L,

f §§8~ t !5E
0

t

dt8§@A~ t8!#§8@A~ t !2A~ t8!#, ~11!

with § and §8 denoting the cos~c! and sin ~s! functions.
A(t)5*0

t dt8L(t8), with L5AV22g* g, is analogous to the
area of the the pulse or Rabi angle in conventional magn
resonance.

Equation ~10! describes the dynamics of two arbitra
quasiparticle states~0 andn), coupled by a resonant SMR
field. If neither of the two coupled quasiparticle states is
condensate, one simply putsā50. Then, Eq.~10! represents
a coherent Rabi oscillation. When one of the two quasipa
cle states coupled by SMR is the condensate state, then
ā terms in Eq.~10! must be retained, creating a dephasing
the induced coherence between the two coupled quasipa
states. In this case, complete~i.e., 180°) SMR-induced Rab
oscillations between the ground state and an excited qu
particle state cannot occur because the constancy of the
siparticle energy level structure (ṽn , etc.! requires that mos
atoms stay in the condensate ground state@6#. As ground
state atoms are pumped by SMR into an excited state,
ṽn’s begin to shift andUn(rW) andVn(rW) begin to change,
thereby altering the coupling constantsV andg and destroy-
e
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i-
the
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ing the SMR resonance condition: i.e., by the time a sign
cant fraction of condensed atoms are excited, the tar
excited quasiparticle state will not be in resonance with
SMR driving field. As a consequence, the SMR matrix e
ment coupling the ground and excited quasiparticle sta
goes to zero with increasing excited state occupation,
any induced coherence between the ground and excited
siparticle states is destroyed due to the constant ground
dephasing. Therefore, when one of the quasiparticle st
coupled by SMR is the condensate ground state, the ph
cally relevant limit of the solution for the quasiparticle d
namics@Eq. ~10!# is the early time limit when only a negli
gible fraction of atoms are excited.~Note that novel
techniques such as chirped SMR may allow the conden
to be completely driven into an excited quasiparticle sta
This interesting possibility will be explored elsewhere.!

We now calculate the time-dependent occupation of
excited quasiparticle staten, coupled by SMR from a lower-
lying statei , assuming staten to be unoccupied initially~a
vacuum state!. If the initial state i is not the condensate
ground state, then we obtain

^ g̃n
†~ t ! g̃n~ t !&F5@V2N01gg* ~N011!#sin2@A~ t !#/L2,

^ g̃n
†~ t ! g̃n~ t !&C5@~V22Vg2Vg* !N0

1gg* ~N011!#sin2@A~ t !#/L2 ~12!

for an initial Fock (F) or coherent (C) state i , with the
average number of atomŝg̃ i

†(0) g̃ i(0)&5N0. Expressions
for the case where the lower energy state of the two coup
quasiparticle states is the condensate ground state can al
obtained, but are too complicated to be presented here@14#.
Typical results for these SMR Rabi oscillations are shown
Fig. 2 for constant SMR coupling matrix elements wi
F(t)5u(t). Note that, because the chemical potentials

FIG. 2. The normalized population of the excited quasiparti

stateNn(t)5^ g̃n
†(t) g̃n(t)&/N0(0), assuming the lower quasiparticl

state is initially a coherent state~dashed line! or a Fock state~solid
line! as a function of the SMR pulse areaA(t). We have used

V54.0, g5(0.25,0.25), andN0(0)5^ g̃ i
†(0) g̃ i(0)&51000. The

two lower curves are for the case when the initial state is not
condensate, while the two upper curves~going off scale! are for the
case when the initial state is the condensate. Note: for the la
case, the plotted results are only valid for smallA(t).
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558 56R. WALSWORTH AND L. YOU
the quasiparticles are zero, their total populations are n
conserved, i.e.,̂ g̃n

†g̃n&1^ g̃ i
†g̃ i&Þconst. This explains why

the peak of the Rabi oscillation of the excited state popu
tion can be more than one in Fig. 2. Also note that the ea
period for excitation out of the condensate shows grow
behavior similar to that of the case where the lower qua
particle state is not the condensate. Clearly, in each case
difference between an initial coherent or Fock state is qu
noticeable.

To illustrate the potential efficacy of the SMR technique
we next present sample calculations of the SMR coupli
matrix elements for the JILA TOP~time-averaged, orbiting
potential! trap @1,7#. To simplify the presentation, we con-
sider here only the case of a spatially uniform SMR fiel
The coupling matrix elements are therefore simply related
the overlap integrals of the quasiparticle wave functio
~with F51). We plot in Fig. 3 the dependence of the modu
lus of various SMR coupling constants on the number
condensed atomsN. The solid lines denote the normal cou
pling V, while the dashed lines are for the anomalous co
pling g. Because of the cylindrical symmetry of the JILA

FIG. 3. Various SMR coupling constants calculated for the JIL
TOP trap for 87Rb atoms, withasc55.2 nm, trap frequencies
(vx:vy:vz)5(1:1:81/2)3 10 Hz. A spatially uniform SMR mag-
netic field was assumed. The dots denote the numerically compu
points.
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TOP trap, the quasiparticle states are labeled asnLz @i.e.,
according to their angular momentum projectionLz along the
symmetric z axis, as well as an integer quantum numb
(n51,2,3,. . . ) for enumerating in ascending order states
the sameLz#. Therefore,V10,40 andg10,40 are the SMR cou-
pling constants from the ground condensate state~lowest
Lz50 state! to the fourth-lowestLz50 state; andV12,22and
g12,22 are the SMR coupling constants from the lowe
Lz52 state ~already observed in@7#! to the next higher
Lz52 state.~Note thatg12,22 is practically zero, and falls on
the x axis of the plot.! The interesting dependence of th
SMR coupling constants on the number of atoms~and thus
the density of the condensate! may be helpful in probing the
condensate properties.

In summary, we have investigated theoretically a mec
nism for selectively creating and manipulating quasipartic
in trapped Bose condensates. We refer to this conden
excitation technique as spatial magnetic resonance, sin
involves a magnetic dipole moment matrix element~cou-
pling quasiparticle states! that depends on changes of th
spatial part of the quasiparticle wave function, not the int
nal ~spin! part. Condensate SMR is an analog of the Fran
Condon factor in electric dipole transitions in diatomic mo
ecules@11#. Engineering of the applied resonant magne
field to have a particular spatial symmetry, so as to exp
the different spatial distributions of magnetization in diffe
ent quasiparticle states, should allow the selective creatio
quasiparticles and coherent superpositions of quasipart
with minimal trap potential perturbation.

If the proposed scheme can be realized experiment
with sufficient control, then, adopting magnetic resonan
terminology, one could apply 90° pulses, 180° pulses, e
using a resonant magnetic field, to create coherences
tween quasiparticle states, to invert the population of s
states, to measure quasiparticle lifetimes (T1) and decoher-
ence times (T2), to create quasiparticle echoes, etc.
course, these ideas require further investigation.

We thank Professor W. Ketterle for insightful commun
cations that clarified the ideas presented here. We also th
Professor E. Heller and Dr. J. Babb for helpful discussio
L.Y. thanks Professor E. Wieman and Professor T.
Kennedy for discussions on details related to SMR. T
work of L.Y. is supported by the U.S. Office of Naval Re
search Grant No. 14-97-1-0633.
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