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Nonlocal momentum transfer inwelcher Wegmeasurements
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A ‘‘which-path’’ ~welcher Weg! measurement necessarily destroys the fringes in a double-slit interference
experiment. We show that in all instances one may attribute this destruction to a disturbance of the particle’s
momentum by an amount equal to at leastp\/2d, whered is the slit separation, in accordance with the
uncertainty principle. However, this momentum transfer need not be local; that is, it need not act at either of
the slits through which the particle passes. For well-knownwelcher Wegmeasurements such as Einstein’s
recoiling slit and Feynman’s light microscope, the disturbance can be understood in terms of random classical
momentum kicks that act locally. In some recent proposals, including that by Scully, Englert, and Walther
@Nature~London! 351, 111~1991!#, the momentum transfer is of a peculiarly quantum, nonlocal nature. In this
paper we introduce a formalism based on the Wigner function, as this describes both the local and nonlocal
momentum transfer caused by anywelcher Wegmeasurement. We show that for some examples, such as that
of Scully, Englert, and Walther, there is no momentum disturbance at the slits even though the nonlocal
momentum disturbance is sufficient to destroy the interference pattern. Finally, we discuss the experimental
signatures of nonlocal versus local momentum transfer and demonstrate a strong similarity to the nonlocality
of the Aharonov-Bohm effect.@S1050-2947~97!04006-7#

PACS number~s!: 03.65.Bz, 03.75.Dg, 42.50.Vk, 32.80.Lg
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I. INTRODUCTION

Making a position measurement to determine which w
a particle goes through a double-slit apparatus necess
destroys the interference pattern. This is the canonical
ample of Bohr’s complementarity principle@1#. In well-
known welcher Weg‘‘which-path’’ experiments, such as
Einstein’s recoiling slit@1# and Feynman’s light microscop
@2#, the destruction of interference can be explained in te
of uncontrolled classical momentum kicks to the partic
Bohr used this simple picture in his debates with Einstein
show how the uncertainty principle enforced complemen
ity @1#. In recent years, interest in this topic has been
kindled by awelcher Wegmeasurement scheme proposed
Scully and co-workers@3–5#. They claim that their schem
destroys the interference without transferring any transve
momentum to the particle. Storey and co-workers@4–6# have
argued to the contrary that whenever interference is
stroyed, transverse momentum is transferred in line with
uncertainty principle.

In considering whether or not momentum is transferre
is essential to define exactly what constitutes a momen
transfer. Unless explicitly stated otherwise, all the mom
tum transfers discussed in this paper are in the transv
direction. As Wiseman and Harrison noted recently@7#, there
are~at least! two different but reasonable ways of defining
random momentum transfer. The first definition correspo
to the classical notion of a convolution of the particle’s m
mentum probability distribution with a momentum transf
probability distribution. The ensemble of random classic
momentum kicks would result in the smearing of the m
mentum distribution of the particle. The second definiti
corresponds to the more quantum-mechanical idea of a
volution of the particle’s momentum wave function with
561050-2947/97/56~1!/55~21!/$10.00
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set of momentum transferamplitudedistributions. In general,
a set of quantum momentum transfer amplitude distributi
cannot be recast as a classical probability distribution
momentum kicks. Unlike classical momentum kicks, the
fect of a quantum momentum transfer on a particle’s m
mentum distribution will in general depend on its initi
wave function.

As noted above, in traditional double-slitwelcher Weg
measurements the loss of fringe visibility may be ascribed
classical momentum kicks. Because of their classical nat
these momentum kicks would have an identical effect on
momentum distribution of a particle passing through a sin
slit. That is to say, the single-slit diffraction pattern would
smeared in the same way as the double-slit interference
tern. Scullyet al.showed that in their proposed scheme the
would be no broadening of the single-slit diffraction patte
This is the basis for their claim that there is no moment
transfer in their scheme, a claim that is valid if one has
mind the first~classical! concept of momentum kicks.

Although the scheme of Scullyet al. shows that Bohr’s
naive classical realist argument is not of general applica
ity, it does not necessarily mean that the loss of interfere
cannot be accounted for by random momentum transfer.
rey et al. have shown, by means of a general theorem, t
loss of interference requires that there be some amplitude
a quantum momentum transfer in accordance with the un
tainty principle. This result is not in conflict with the conclu
sion of Scullyet al. because quantum momentum transfe
do not imply classical momentum kicks. In particular, in
quantum or nonclassicalwelcher Wegscheme there need no
be any disturbance of the diffraction pattern of a single
even though the interference pattern of a double slit is
stroyed by a quantum momentum transfer.

For both classical and quantumwelcher Wegschemes the
55 © 1997 The American Physical Society
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56 56H. M. WISEMAN et al.
origin of the momentum transfer is in the interaction betwe
the particle and thewelcher Wegmeasuring apparatus. In th
scheme of Scullyet al., this is an interaction between a
atom and a microwave cavity field. As we shall show, t
momentum transfer in this case is of a peculiarly quantu
nonlocal nature. In their analysis Storeyet al. described this
momentum transfer as ‘‘the repeated emission and reabs
tion of microwave photons by the atom’’@4#. We have
avoided using this simple physical picture in the present
per because it may give the false impression that one
understand the momentum transfer in terms of localized c
sical momentum kicks.

In this paper we investigate further the distinction b
tween quantum and classical momentum kicks. In order to
able to treat them on the same footing, we adopt the Wig
function formalism. This enables us to define a moment
transfer Wigner functionWT(x,p). Formally this plays the
role of the probability distribution for a particle at positio
x to receive a momentum transfer ofp, althoughWT(x,p)
need not be everywhere positive. We find that the smea
of the diffraction pattern and the destruction of the interf
ence fringes are determined by different momentum tra
fers. That is, the distributions for these momentum trans
are given by different parts of the momentum trans
Wigner function. The smearing is determined byWT(x,p)
for x at the positions of the slits. We call this thelocal
momentum transfer distributionPlocal(p). The destruction of
interference is determined byWT(x,p) for x midway be-
tween the slits, where the particle is never found. We c
this the nonlocal momentum transfer distribution
Pnonlocal(p). It is this nonlocal momentum transfer that ca
not be less than that required by the uncertainty principle

For classical momentum kicks,WT(x,p) is independent
of x and positive semidefinite, which means that the part
receives a classical random momentum kick independen
its initial state. In this case WT(x,p)5Plocal(p)
5Pnonlocal(p) and the destruction of interference is accomp
nied by local momentum kicks, which necessarily smear
diffraction pattern. For nonclassicalwelcher Wegschemes,
WT(x,p) varies with x and the destruction of interferenc
cannot be attributed to local momentum kicks. The sche
of Scullyet al. is a case in point. AlthoughPlocal(p) transfers
no momentum locally,Pnonlocal(p) does transfer momentum
in accordance with the uncertainty principle, thereby eff
ing the interference fringes. Thus, by using the Wigner fu
tion formalism we are able to see both the absence of lo
momentum kicks~as shown by Scullyet al.! and the pres-
ence of a nonlocal momentum transfer~which satisfies the
theorem of Storeyet al.!.

We begin the body of the paper with a review of t
distinction between classical and quantum~nonclassical! mo-
mentum transfers. In Sec. III we introduce the Wigner fun
tion description of momentum transfers in general and in
double-slit experiment in particular. We also derive a stro
ger lower bound on the momentum disturbance neede
destroy the double-slit interference pattern. In Sec. IV we
the Wigner function to analyze three examples ofwelcher
Weg schemes explicable by classical momentum kicks.
Sec. V we do the same for four nonclassical scheme
which the destruction of interference has no local expla
tion. In one of these examplesWT(x,p) is non-negative and
n
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yet the local momentum transfer is unequivocally zero.
Sec. VI we discuss experimental signatures of local and n
local momentum transfers and show that there exists a st
analogy between nonclassicalwelcher Wegschemes and
Aharonov-Bohm experiments.

II. CLASSICAL AND QUANTUM MOMENTUM
TRANSFERS

We shall be considering a number of experiments
which double-slit interference patterns are destroyed by m
ing a position measurement on the particle so as to determ
which slit it passed through. The slits are taken to be para
and separated in thex direction. In order to provide a unified
treatment of all cases, we follow Ref.@6# in defining the
effect of a generalized position measurement on a partic
wave function to be

cj~x!5Nj
21/2Oj~x!c i~x!. ~2.1!

Here c i is the initial wave function,cj is the final wave
function given the resultj, wherej parametrizes a set o
functionsOj(x), which is complete in the sense

(
j

uOj~x!u251 ;x, ~2.2!

andNj is the normalization factor

Nj5E dxuOj~x!c i~x!u2, ~2.3!

where we are using the convention that the range of all in
grals is the real line unless otherwise indicated. The fac
~2.3! is just the probability that the resultj is obtained. An
arbitrary wave functionc(x) can be transformed to the mo
mentum representation as

c̃~p!5
1

A2p\
E dx c~x!eipx/\. ~2.4!

In this representation Eq.~2.1! becomes

c̃j~p!5~2p\Nj!
21/2E dp8c̃ i~p2p8!Õj~p8!. ~2.5!

That is to say, the initial momentum wave functionc̃ i(p) is
convolved with Õj(p) to give the final momentum wave
function c̃j(p). For this reason we callÕj(p) the momen-
tum transfer amplitude distribution for the resultj.

This definition of position measurements encompasses
nondemolition@8# measurements ofx that preserve purity
@9#. A measurement preserves purity if, for an initial pu
state, the final state conditioned upon any particular meas
ment result is also a pure state. This describes, in essenc
of the position measurements made inwelcher Wegschemes,
be they projective or not. Even if not projective, the me
surements we are describing here do not represent any
nificant extension of the traditional quantum theory of me
surement based on projective measurements. This is bec
these nonprojective measurements of the system can alw
be cast as projective measurements of the apparatus, wit
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56 57NONLOCAL MOMENTUM TRANSFER INwelcher Weg. . .
latter treated as a quantum-mechanical system@9#. In many
experiments in quantum optics it is necessary to do this
the apparatus is sufficiently well isolated from external d
turbance that the experimenter may choose the basi
which to observe the apparatus. Different choices of app
tus observable will result in different basis setsOj ,Oh8 , re-
lated to each other byOj5(hUhjOh8 , where the coefficients
Uhj satisfy

(
h

UhjUhz* 5djz . ~2.6!

For any choice of apparatus basis, if a measuremen
made and the result ignored, then the final state of the
ticle is

r f~x,x8!5(
j
Njcj~x!cj* ~x8!

5(
j
Oj~x!c i~x!c i* ~x8!Oj* ~x8!. ~2.7!

This is a mixed state, with a nonunique decomposition i
pure state components. Using the relation~2.6! it is easy to
verify that it is independent of the apparatus basisOj chosen
to make the measurement. That is to say, we can also w

r f~x,x8!5(
h

Oh8 ~x!c i~x!c i* ~x8!O8h* ~x8!. ~2.8!

A basis-independent description of the measurement is
important advantage of the Wigner function formalism intr
duced in Sec. III.

In Ref. @7# two of us noted that the convolution of th
momentum transfer amplitude distribution Eq.~2.5!, which
we called a quantum momentum transfer, is not in gen
equivalent to a classical momentum transfer. For a gi
result j, the latter would give rise to a convolution of th
momentum probability distribution of the form

Pj~p!5Nj
21E dp8Pi~p2p8!Vj~p8!, ~2.9!

whereVj(p) is a positive distribution whose integral ove
all p is equal toNj , the probability of obtaining the resu
j. The initial momentum distribution isPi(p)5uc̃ i(p)u2.
Averaging over all results would give

Pf~p!5E dp8uc̃ i~p2p8!u2V~p8!, ~2.10!

whereV(p)5(jVj(p). By contrast, the final momentum
distribution in the quantum case is

Pf~p!5(
j

U E dp8c̃ i~p2p8!Õj~p8!U2Y2p\,

~2.11!

which is independent of the basisOj . Expression~2.11! can-
not be written in the form of Eq.~2.10! unless there is som
basis in which each of theÕj(p) is nonzero only at a single
s
-
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r-

o

te

an
-

al
n

point, saypj @7#. In that case, the measurement resultj tells
the observer that the amount of momentum transferred to
particle is exactlypj and

Vj~p!5uÕj~p!u2/2p\5Njd~p2pj!. ~2.12!

We thus have two reasonable but inequivalent definitio
of what constitutes a momentum transfer. Statements m
about one type will not in general be true about the other
the scheme proposed by Scullyet al., in contrast to previous
well-known examples@1,2#, the momentum transfer is quan
tum, not classical. That is to say, the final momentum dis
bution cannot be obtained by convolving the initial mome
tum distribution as in Eq.~2.10!. This is what allows the true
difference of their scheme, namely, that that there would
negligible disturbance of the momentum of a particle pass
through one slit only, as confirmed by their calculations.
the other hand, if the interference fringes were destroyed
classical momentum kicks as in Eq.~2.10!, then the single-
slit diffraction pattern would necessarily be broadened.

In the double-slit case, the particle’s final momentum d
tribution must be disturbed in some way by the measurem
because the interference fringes are destroyed. The mom
tum separation between node and antinode in the final in
ference pattern isp\/d, whered is the slit separation. Thes
fringes cannot disappear without there being some kind
momentum disturbance of order\/d, in accord with the un-
certainty principle. Storeyet al. @4–6# have shown that this
momentum transfer can be quantified by the moment
transfer amplitudes of Eq.~2.11!. Specifically, they have
shown that forany which-path measurement, at least o
Õj(p) must be nonzero for somep with upu>\/d. In this
paper we will recast and strengthen this result using
Wigner function formalism. In this formalism it become
apparent how awelcher Wegmeasurement scheme, such
that of Scully et al., can transfer momentum of the orde
\/d in the two-slit case, while having no effect on the m
mentum distribution in the single-slit case.

III. THE WIGNER FUNCTION

In this section we introduce the Wigner function forma
ism for describing momentum transfer inwelcher Wegmea-
surements. This will allow us to place the calculations
Scully et al. @3–5# and those of Storeyet al. @4–6# within a
single framework.

A. General formalism

The Wigner function for a wave functionc(x) is @10#

Wc~x,p!5
1

p\E dy Bc~x,y!e2ipy/\, ~3.1!

where

Bc~x,y!5c* ~x1y!c~x2y!. ~3.2!

We are interested in the Wigner function of the particle af
the measurement. It is
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58 56H. M. WISEMAN et al.
Wcj
~x,p!5

1

p\E dy Bcj
~x,y!e2ipy/\

5Nj
21 1

p\E dy Bc i
~x,y!BOj

~x,y!e2ipy/\

5Nj
21 1

p\E dy Bc i
~x,y!e2ipy/\

3E dy8BOj
~x,y8!d~y82y!. ~3.3!

We now introduce the Fourier transform representation
the Diracd function to get

Wcj
~x,p!5Nj

21 1

p\E dy Bc i
~x,y!e2ipy/\

3E dy8BOj
~x,y8!

1

p\E dp8e2ip8~y2y8!/\

5Nj
21E dp8

1

p\E dy Bc i
~x,y!e2i ~p2p8!y/\

3
1

p\E dy8BOj
~x,y8!e2ip8y8/\

5Nj
21E dp8Wc i

~x,p2p8!WOj
~x,p8!. ~3.4!

That is, the Wigner function transforms exactly as a class
joint probability function ifNj

21WOj
(x,p8) is interpreted as

the probability for a particle at positionx to receive a mo-
mentum transfer ofp8, given the resultj. SinceNj is the
probability of obtaining the resultj, the Wigner function for
the final density matrix, ignoring the measurement resultj, is

Wf~x,p!5E dp8Wi~x,p2p8!WT~x,p8!, ~3.5!

whereWi(x,p)5Wc i
(x,p) and

WT~x,p!5(
j
WOj

~x,p!. ~3.6!

Like r f(x,x8) in Eq. ~2.7!, the total momentum transfe
functionWT(x,p) is independent of the basisOj , which is
one of the advantages of the formalism.~Another advantage
is that the formalism can be generalized to allow measu
ments that do not preserve purity, although we will not co
sider such measurements in this paper.!

For the case of classical momentum kicks~2.12!, the mo-
mentum transfer function can be worked out as follows. F
we note that

Oj~x!5ANjexp~ ipjx/\!, ~3.7!

so that

BOj
~x,y!5Njexp~22ipjy/\!, ~3.8!

which gives
f

al

e-
-

t

WT~x,p!5(
j
Njd~p2pj!5V~p!. ~3.9!

This is a weighted sum of the classical momentum kic
pj associated with the measurement outcomesj and is inde-
pendent ofx. Note that(jNj51, which follows from Eq.
~2.2!. The Wigner function~3.9! is non-negative everywhere
It has an obvious interpretation as a classical momen
kick probability distribution function. However, in genera
the momentum transfer Wigner function~3.6! need not be
positive semidefinite.

Although it is not necessarily positive semidefinite, t
transfer Wigner functionWT(x,p) is always normalized in
p, in the sense that

E dp WT~x,p!51 ~3.10!

for all x. This is a consequence of the completeness co
tion ~2.2!. In fact, it is also possible to prove a more gene
result, namely, that the characteristic function

FT~qux!5E dp WT~x,p!exp~ ipq/\! ~3.11!

satisfies

zF~qux!z<1, ~3.12!

just as it would ifWT(x,p) were a true probability distribu-
tion in p. This can be proved as

F~qux!5E dp eipq/\
1

2\(
j
E dy BOj

~x,y!ei2py/\

5(
j
E dy d~y1q/2!Oj* ~x1y!Oj~x2y!

5(
j
Oj* ~x2q/2!Oj~x1q/2!. ~3.13!

Finally, it follows that

zF~qux!z<(
j

uOj* ~x2q/2!uuOj~x1q/2!u

< 1
2(

j
uOj~x2q/2!u21uOj~x1q/2!u2,

~3.14!

where the last line is obtained by using the fact th
(uAu2uBu)2>0. From the completeness condition~2.2!, we
thus obtain the desired result~3.12!.

B. Wigner functions in double-slit experiments

1. Wi„x,p…

In a double-slit experimentWi(x,p) has peaks at
x56d/2 ~the slit positions! and also a part atx50 that is
oscillatory inp. For zero slit width
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Wi~x,p!}
1

2
@d~x2d/2!1d~x1d/2!#1d~x!cos

pd

\
.

~3.15!

This will be a valid idealization provided that the slit widt
a is much less than the scale of variation ofWT(x,p) in x
aroundx56d/2 andx50. This requirement is satisfied fo
most of the cases we examine as long asa!d. In Fig. 1 we
show this initial Wigner function for rectangular slits wit
width a50.2d. The oscillations in Eq.~3.15! at x50 aver-
age to zero when integrated overp so that the probability
distribution for the particle position is

Pi~x!5E dp Wi~x,p!5 1
2 @d~x2d/2!1d~x1d/2!#.

~3.16!

When we integrate overx to find the momentum distribution
it is the oscillations that produce the interference patte
highlighting the nonlocal nature of the initial superpositio

Pi~p!5E dx Wi~x,p! } 11cos
pd

\
. ~3.17!

In the far field~a long way past the slits!, this interference in
momentum becomes the observed interference pattern in
sition.

2. Pnonlocal„p…

The interference fringes in momentum are destroyed
welcher Wegmeasurements. As noted above, these frin
are present due to the coherence between the parts o
wave function atx56d/2 and appear as oscillations in th
Wigner function atx50. This means that to destroy inte
ference the oscillations in the initial Wigner function in th
region ofx50 must be effaced. In awelcher Wegmeasure-
ment, this happens through convolution with the trans
function in that region. Provided thatWT(x,p) varies little as
a function ofx over a region of widtha aroundx50, we can
take the destruction to be due toWT(x,p) at x50. That is, in

FIG. 1. Plot of the initial Wigner functionWi(x,p) for a double-
slit experiment, withd52 and a50.2d50.4. The slits produce
wave packets centered atx561 with a full width of 0.4. Momen-
tum is scaled by setting\51.
,

o-

n
s
the

r

the Wigner function formalism, the pseudoprobability dist
bution for the momentum transfers that destroy the inter
ence is

Pnonlocal~p!5WT~0,p!. ~3.18!

We label thisPnonlocal(p) because it is the distribution func
tion for momentum transfers at the point midway betwe
the slits, where the probability for finding the particle is ze
Although Pnonlocal(p) is normalized, it is not necessaril
positive definite.

Because it is the momentum transfers described
Pnonlocal(p) that are responsible for destroying the interfe
ence fringes, the visibility can be found fromPnonlocal(p)
alone. After passing through thewelcher Wegdetectors, the
Wigner function atx50 is given by

Wf~0,p!5E dp8WT~0,p8!cos
~p2p8!d

\

5Re@eipd/\V* #, ~3.19!

where we have defined a complex visibility

V5E dp Pnonlocal~p!eipd/\. ~3.20!

We call this the complex visibility because its modulus giv
the fringe visibility and its phase gives the phase of t
fringes. This can be seen in the final momentum distributi
which, from Eq.~3.19!, is

Pf~p!5E dx Wf~x,p!}11VcosS pd\ 2argVD ,
~3.21!

where we are usingV5uVu for the ~usual! visibility. In the
absence of anywelcher Wegmeasurement the fringe visibil
ity is unity. Any measurement that gives some informati
about which path the particle took will reduce the visibili
to less than unity. A perfectwelcher Wegmeasurement, one
that determines with certainty which way the particle we
will reduce the visibility to zero.

3. Plocal„p…

The fact thatPnonlocal(p) determines the visibility runs
counter to classical intuition. Classically, one would exp
the particle to be affected only by the momentum transfer
the positions of the slits~which are the only places where th
probability to find the particle is nonzero!. SinceWT(x,p)
plays the role of the probability distribution for a particle
positionx to receive a momentum transferp, classically one
would expect the distribution of momentum kicks given
the particle to beWT(x,p) averaged over the possible pos
tions of the particle distributed according toPi(x). That is to
say, classically one would expect the relevant kick distrib
tion to be

Plocal~p!5E dx WT~x,p!Pi~x!. ~3.22!
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60 56H. M. WISEMAN et al.
For the case in question where the particle is localized at
two slits, the pseudoprobability distribution function fo
these local momentum transfers is

Plocal~p!5
1

2
@WT~d/2,p!1WT~2d/2,p!#. ~3.23!

AlthoughPlocal(p) plays no role in the destruction of in
terference between the two paths, it does determine the
fraction pattern of a particle that is in a classical mixture
being at the two slits. Provided that the momentum trans
Wigner function is the same at both slits~which we will
assume below!, this is the same as the diffraction patte
from a single slit. The final momentum distribution for a
arbitrary initial state in awelcher Wegscheme is

Pf~p!5E dx Wf~x,p!dx

5E dxE dp8Wi~x,p2p8!WT~x,p8!. ~3.24!

If the particle is in a mixture then there are no oscillations
Wi(x,p) at x50 and indeedWi(x,p) is nonzero only for
x'6d/2. Thus we can replace WT(x,p) by
WT(6d/2,p)5Plocal(p), giving

Pf~p!5E dxE dp8Wi~x,p2p8!Plocal~p8! ~3.25!

5E dp8Pi~p2p8!Plocal~p8!. ~3.26!

It follows from the properties of convolutions that the m
ments ofPf(p) in this case are determined byPlocal(p). For
example, p̄f5 p̄i1 p̄local, where p̄f5*dpPf(p)p, etc., and
also

Var
f

~p!5Var
i

~p!1Var
local

~p!, ~3.27!

where Varf(p)5*dp Pf(p)(p2 p̄f)
2, etc.

In addition to determining the diffraction pattern of
single slit~or a mixture!, Plocal(p) also determines the broad
ening of the diffraction envelope under which the interfe
ence fringes lie in the double-slit case. This can be see
follows. Provided the slit widtha is much smaller than the
slit separationd, the moments of the final momentum distr
bution in the double-slit case are determined solely by
non-oscillatory parts of the Wigner function aroun
x56d/2. The contribution to the total momentum distrib
tion from the oscillatory part of the initial Wigner functio
nearx50 for slits of widtha centered atx56d/2 can be
shown to be

a

p\ S sinap/2\

ap/2\ D 2S cos2 pd2\
2
1

2D . ~3.28!

All of the moments of this function are zero in a distrib
tional sense@11#. This is necessarily so because the mome
of this part of the Wigner function are weighted by the no
of this part. This norm@the integral ofWi(x,p) over all p
andx near 0# is strictly zero because it is equal to the pro
e
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ability of finding the particle there. After awelcher Weg
measurement this norm is still strictly zero, so the mome
of the final momentum distributionPf(p) are determined by
the parts of the Wigner function nearx56d/2. As shown
above, these parts are broadened by the action ofPlocal(p).
Therefore, the relationship~3.27! showing that the incremen
in the momentum variance is equal to the variance
Plocal(p) applies to the double-slit as well as to the single-s
case.

C. Minimum disturbance to destroy interference

1. Arbitrary momentum transfers

Storeyet al. @6# have shown that in an arbitrarywelcher
Wegmeasurement that reduces the fringe visibility toV, at
least one momentum transfer amplitude distributionÕj(p)
must be nonzero for somep>(12V)\/d. In terms of the
Wigner function, this is equivalent to the statement th
WT(x,p) must be nonzero for somex and some
p>(12V)\/d. We have shown above that the fringe visib
ity is determined solely byPnonlocal(p) as in Eq.~3.20!. This
will allow us to derive a stronger theorem concerning m
mentum transfer, in the sense that we need consider
WT(x,p) at x50, not for any possiblex.

In order to quantify the nonlocal momentum transfer w
introduce the function

A~x!5E dp Pnonlocal~p!eipx/\, ~3.29!

so that by Eq.~3.20!, V5A(d). We have, by normalization
~3.10!,

A~0!5E dp Pnonlocal~p!51 ~3.30!

and also that for allx, uA(x)u<1, which follows from Eq.
~3.12! sinceA(x)5F(xu0). In Appendix A we show, using
a theorem due to Boas@12#, that any well-behaved function
A(x) satisfying the three conditions

A~0!51, A~d!5V, uA~x!u<1 ;x ~3.31!

has a Fourier transform

Ã~k!5
1

A2p
E dx e2 ikxA~x!, ~3.32!

which cannot have support only on a closed inter
@2K,K# for anyK,arccos(uVu)/d. That is to say,

Ã~k!Þ0 for some k, uku>arccos~V!/d, ~3.33!

whereV5uVu as above. Given the relation~3.29! between
A(x) andPnonlocal(p), we can thus say that

Pnonlocal~p!Þ0 for some p, upu>pm , ~3.34!

where we have defined

pm5arccos~V!\/d. ~3.35!
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This expression forpm is an improvement over the prev
ous lower bound of (12V)\/d derived by Storeyet al. @6#
using an earlier theorem due to Bernstein@13#. Our result
gives a much larger lower bound on the momentum tran
necessary to reduce the visibility slightly below unity. This
not surprising given the durability of interference fringes
the face of imperfectwelcher Weginformation, pointed out
by Wooters and Zurek@14#. In the other limit, if the visibility
is reduced to zero, we have

pm5
p\

2d
~3.36!

compared with\/d derived by Storeyet al.Moreover, our
lower bound is the greatest lower bound for the caseV5V.
This is the case where the measurement decreases the
ibility of the fringes but does not alter their positions~which
would be a deterministic effect rather than a random mom
tum disturbance!. The function

A~x!5cos@arccos~V!x/d# ~3.37!

satisfies the three requirements~3.31! for V5V, and has a
Fourier transform that is zero fork.arccos(V)/d. We shall
show in Sec. IV C that there is a physically realizable perf
(V50) welcher Wegexperiment that has a momentum tran
fer of exactlyp\/2d in magnitude.

2. Classical momentum kicks

In the case of classical momentum kicks, we can ext
the result we have just derived as follows. Not only mu
there be some transfer of momentum at least equal topm ,
but the root-mean-squared nonlocal momentum transfer m
be at least equal to this amount. This is because any
probability distributionP(p) that obeys

E dp P~p!eipd/\5V ~3.38!

has a standard deviation satisfying

s~p!>arccos~V!\/d. ~3.39!

The proof of this theorem is in Appendix B. As shown the
any scheme that attains this minimum standard deviation
also have a momentum disturbance precisely equal topm
@15#.

For the case where the visibility is zero, we can recast
inequality~3.39! in a form resembling the Heisenberg unce
tainty relation:

s~p!s~x!>
p\

4
, ~3.40!

wheres(x)5d/2 is the standard deviation in the particle
position. However, the interpretations of the terms on
left-hand side of this equation are quite different from tho
in the uncertainty relations derived from the noncommu
tion of operators@16#. Specifically,s(p) is the standard de
viation of the distribution of momentum kicks given to th
particle rather than the standard deviation of the distribut
of the particle’s momentum~either before or after the mea
er

vis-
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surement!. Hence the fact that the there is a numerical fac
of p/4 rather than 1/2 on the right-hand side is no cause
surprise. As noted above, the relation~3.40! applies only for
classical momentum kicks for whichPnonlocal(p)5WT(x,p)
is a true probability distribution for momentum kicks. Fo
quantumwelcher Wegschemes,Pnonlocal(p) cannot be inter-
preted this way and is not necessarily positive semidefin
In those cases the standard deviation may even be zer
we will see. Whereas the local momentum disturbance
usefully characterized by the variance ofPlocal(p), the vari-
ance ofPnonlocal(p) is not a relevant quantity. In general w
can say only thatPnonlocal(p) must be nonzero for somep
satisfyingpd>p\/2.

In their papers@3–5#, Scully et al. quantified momentum
transfer by considering the effect of theirwelcher Weg
scheme on the momentum distribution of a particle localiz
at a single slit. As shown in Sec. III B 3, this probes t
moments ofPlocal(p). Scullyet al.demonstrated that the dis
turbance to such a particle can be negligibly small, ev
though the same device can destroy the interference frin
in the double-slit case. This is possible because in the cas
a quantum momentum transfer~such as in the scheme o
Scullyet al.!, there can be a nonlocal momentum disturban
throughPnonlocal(p) despite there being no broadening of t
diffraction envelope byPlocal(p). This is in contrast to clas-
sical momentum kicks for whichWT(x,p) is everywhere
positive and independent ofx. Then the final momentum
distribution is a convolution of the initial momentum distr
bution with a positive distribution of momentum kicks@see
Eq. ~2.10!# that is equal toWT(x,p). As shown above@Eq.
~3.40!#, the standard deviation of such a classical distribut
is necessarily greater than or equal top\/2d if the interfer-
ence fringes are to be effaced. That is to say, for class
welcher Wegschemes, the destruction of interference is
ways accompanied by broadening of the diffraction envelo
in line with the uncertainty principle.

IV. EXAMPLES OF CLASSICAL MOMENTUM KICKS

A. Einstein’s recoiling slit

The oldest example of awelcher Wegmeasurement is
Einstein’s recoiling slit. The slit in question is positione
such that the particles must pass through it prior to pass
through the double slits, as shown in Fig. 2. The recoiling
is so named because the screen in which it is situated is
to move on rollers. In this manner, the momentum kick giv
to the slit as the particle heads for either the upper or low
slit in the second screen should enable one to determ
which of these slits it goes through. Measuring the recoil

FIG. 2. Diagram of the Einstein recoiling slitwelcher Weg
gedankenexperiment. The recoiling slit is the path detector and h
positionX, while the particle has positionx.
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slit momentum will only distinguish the path of the partic
if s, the uncertainty in the position of the single~recoiling!
slit, is very much less thand, the separation of the doubl
slits. This was shown quantitatively by Tan and Walls@17#.
Einstein thought that this scheme would work as awelcher
Wegmeasurement without destroying the interference p
tern ~and hence that quantum mechanics was incomple!,
but Bohr proved him wrong by arguing that for consisten
the recoiling screen must also be treated as a quan
mechanical object@1# so that the uncertaintys in the posi-
tion of the recoiling slit is inversely related to the uncertain
in its momentum. Let the wave function of the recoilin
screen be

f~X!5~2ps2!21/4exp@2~X/s!2/4#, ~4.1!

whereX is the position of the recoiling slit. The recoilin
screen will be assumed to have infinite mass so that
transfer of momentum to it does not alter its position pro
ability distribution

PE~X!5~2ps2!21/2exp@2~X/s!2/2#. ~4.2!

Let the horizontal distance between the first and the s
ond screen beL@s,d, so that we may use the paraxial a
proximation. Then the joint wave function for the position
the recoiling slitX and the displacement of the particle at t
second slit is

C~x,X!}f~X!exp@ ik~x2X!2/2L#, ~4.3!

where k is the longitudinal wave number for the partic
~assumed constant!. Alternatively, we can write

C~x,X!}exp@ ikx2/2L#exp@ ikX2/2L#OX~x!. ~4.4!

The first factor is the phase front of a circular wave in t
paraxial approximation, which is present regardless of
position of the recoiling slit. The second factor involves on
the slit position and is of unit magnitude, so it is irrelevant
the particle. The final factor is the important one:

OX~x!5APE~X!exp@2 ikXx/L#. ~4.5!

This is the operator that acts on the particle’s wave funct
given that a particular positionX of the recoiling slit has
been measured.

This result shows that if we measure theposition Xof the
recoiling slit after the particle has passed through, we g
the particle a classical momentum kick of amplitu
p52\kX/L rather than finding out which way it went~as
we would from a measurement of the slit’smomentum!. As
pointed out by Wooters and Zurek@14#, the subensemble o
atoms conditioned on a particular resultX will have perfect
fringe visibility even though the visibility of the fringes o
the total ensemble is arbitrarily small. This effect~in another
system! was subsequently called thequantum eraserby
Scully and Dru¨hl @18#. The applicability of the quantum
eraser concept to allwelcher Wegschemes was discussed b
Bhandari@19# and by Tan and Walls@17#.

Given the probability density for measuring the recoili
slit position ~4.2!, the probability density for delivering a
t-

m-

e
-

c-

e

n

e

momentum kick to the particle isPE(Lp/\k)L/\k. That is
to say, the momentum transfer Wigner function is

WT~x,p!5
L

\ksA2p
expF2

1

2 S pL

\ks D 2G ~4.6!

and Pnonlocal(p)5Plocal(p)5WT(x,p). The standard devia
tion of the momentum transfer in this case
s(p)5\ks/L. As shown in Ref.@17#, the effect of these
momentum kicks is to reduce the visibility of the interfe
ence fringes by a factor

V5exp@2 1
2 ~ksd/L !2#. ~4.7!

Thus the initial Gaussian shape of the wave packet for
recoiling slit means that the fringe visibility can never b
reduced to zero. However, the visibility is reduced to ab
1% for kds/L53, that is, fors(p)53\/d. This is well
above the lower bound on the momentum transferpm re-
quired for destruction of interference~3.36!. In Fig. 3 we plot
the momentum transfer Wigner function for this case.

B. Feynman’s light microscope

Another familiarwelcher Wegscheme, also considered b
Tan and Walls@17#, is Feynman’s light microscope. Here w
follow their presentation and take the particle pass
through the double slits to be an atom. Immediately after t
passage the atom is illuminated by a photon of momen
K traveling in thex direction, as shown in Fig. 4. This pho
ton is assumed to be scattered by the atom in a rand
direction, giving a momentum kick to the atom. As shown
@17#, the probability distribution for thex component of the
momentum of the scattered photon~be it circularly or lin-
early polarized! is

FIG. 3. Plot of the momentum transfer Wigner functio
WT(x,p) for the Einstein recoiling slit. The parameters chosen g
a fringe visibility of 1%. As usual, we haved52 and\51.

FIG. 4. Diagram of the Feynman light microscopewelcher Weg
scheme. The atom scatters a photon in a random direction.
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PF~kx!5
1

K
B~kx /K !, ~4.8!

where

B~u!5 3
8 ~11u2!H~12u2! ~4.9!

andH is the Heaviside function, which is one for a positiv
argument and zero for a negative argument. In this case
total momentum kick is offset from zero due to the mome
tum absorbed from the incoming photon:

WT~x,p!5
1

\K
BS p

\K
21D . ~4.10!

Tan and Walls show that the effect of the momentu
kicks is to reduce the complex visibility to

V5
3

2
eiKdS cosKd~Kd!2

1
sinKd

Kd
2
sinKd

~Kd!3D . ~4.11!

This is an oscillatory function ofKd and tends to zero a
Kd→`. Its zeros cannot be found analytically, but nume
cally the first zero is found atKd'2.74. ChoosingK to have
this value will give the minimum momentum disturban
compatible with complete destruction of the interference p
tern. In this case, a perfectly accuratewelcher Wegmeasure-
ment can in principle be made by detecting the outgo
photon to be in one of two possible modes, correspondin
the scattering center being at the upper or lower slit@17#. In
Fig. 5 we have plotted the transfer Wigner function f
K52.74/d. The standard deviation for the momentum tran
fer in this case is

s~p!'
2.74A2 \

A5 d
'1.73

\

d
, ~4.12!

which is greater thanpm'1.57\/d.
Recently, preliminary experiments have been made w

the ultimate goal of creating a Feynman light microsco
@20#. Pfauet al. @20# and Clauser and Li@21# have shown the

FIG. 5. Plot of the momentum kick probability distributions fo
the three classicalwelcher Wegschemes considered. They are t
Einstein recoiling slit from Sec. II A~dashed line!, the Feynman
light microscope from Sec. IV B~dash-dotted line!, and the mini-
mally disturbing atom optics scheme from Sec. IV C~solid line!.
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effect of a single spontaneous emission on atomic diffract
and interference patterns, respectively. Very recently, Ch
man et al. @22# have done likewise using a Mach-Zehnd
atomic interferometer in which the fringes were observed
a function of the relative positions of the gratings. A phot
of momentum\K was scattered off the atom at a longitud
nal position where the distance between the centers of
two beams wasd. The fringe visibility depends onKd in the
same way as in Eq.~4.11!, and this was verified in the ex
periment by varyingd. In addition, the lost visibility was
partially regained, in a manner resembling a quantum era
by conditioning the atoms on their coarse-grained position
the third grating. However, for this technique to work, th
beam width has to be much larger thand, so that detection of
the emitted photon could not distinguish between the t
paths taken by the atom even in principle@23#.

C. A minimally disturbing atom optics scheme

As the final example of a classicalwelcher Wegmeasure-
ment we here propose a scheme that has the interesting
ture of attaining the lower bound on the momentum trans
derived in Sec. III C. The two slits are immediately followe
by a classical standing-wave light field with waveleng
2p/K@d. The particle is again taken to be a two-level ato
that is resonant with the light field. In the absence of sp
taneous emission@24#, the Hamiltonian for the interaction is

H5\Vs1sin@K~x2x0!#. ~4.13!

Here V is the Rabi frequency ands15ug&^eu1ue&^gu,
where ue& and ug& are the excited and ground states of t
atom, respectively. In this case it is the internal states of
atom that act as the measuring apparatus.

We now choosex052d/2 so that the lower slit is at a
node of the field, as shown in Fig. 6. SinceKd@1 we can
locally approximate the Hamiltonian as

H5\VKs1~x1d/2!. ~4.14!

Let the atom be prepared in the ground state and let
interaction time bet5p/2VKd, so that at the upper slit the
atom experiences ap pulse. Then the final state of the ato
is

uC&5E dx expF2 i S px

2d
1

p

4 Ds1Gc~x!ux&ug&.

~4.15!

FIG. 6. Diagram of the minimally disturbingwelcher Weg
scheme. The particle is an atom with two internal states that ac
thewelcher Wegdetector. It is initially in the ground state~down
arrow!, but becomes excited~up arrow! if it passes through the
upper slit.



th
m
-

a
a
.

s

n

f
er

r
m

on
er

ur

m

ll

tim
go
er
th
o
e
m

ity
of

toms
late
en
e
o
ass
der
pro-
r of

of

b-
ite
ex-
ute
ial
ree
dent
rn.
mic
um
nfi-

r-
re-
ith

th
to

e

64 56H. M. WISEMAN et al.
A measurement of the internal state of the atom in
s35ue&^eu2ug&^gu basis determines which way the ato
went. The resultj(s3)521 indicates that the atom’s inter
nal state has not changed from the initialug&, so its path must
have been via the lower slit and through the node
x52d/2. The resultj(s3)51 indicates that its path was vi
the upper slit atx5d/2, where the atom becomes excited

For this system the complementary observable~which
erases thewelcher Weginformation! is s1. In thes1 basis
the two resultsj(s1)561 yield the measurement function

O6~x!5
1

A2
expS 7 i

px

2d D , ~4.16!

where a global~i.e., independent ofx) phase factor has bee
ignored, in the same manner as in Eq.~4.5!. The functions
O6(x) give a momentum kick to the atom o
p657\p/2d, respectively. The momentum transfer Wign
function is

WT~x,p!5
1

2 FdS p2
\p

2d D1dS p1
\p

2d D G , ~4.17!

which is positive semidefinite. Its destruction of the interfe
ence pattern can easily be understood because each mo
tum kick shifts the entire fringe pattern by6\p/2d, which
is precisely the amount required to move the nodes of
shifted pattern onto the antinodes of the other shifted patt
This scheme provides a physical mechanism for awelcher
Wegmeasurement in which there is no momentum dist
bance greater than the requisite minimum ofpm5p\/2d. It
also achieves the minimum classical root-mean-squared
mentum transfer, given by Eq.~3.39!.

V. EXAMPLES OF QUANTUM MOMENTUM TRANSFERS

A. The Scully-Englert-Walther scheme

We now consider the experiment proposed by Scu
et al. @3#, shown in Fig. 7. This involves two initially empty
microwave cavities with flat mode functions in thex direc-
tion. The atom starts in an excited Rydberg state and the
of passage through the cavities is chosen so that it under
exactly one-half Rabi cycle, deexciting to another Rydb
state and emitting a microwave photon. The presence of
photon in either the upper or lower cavity reveals the path
the atom. As Scullyet al. have shown, the flatness of th
mode functions means that this emission causes no local
mentum kick to the atom.

FIG. 7. Diagram of the Scully-Englert-Waltherwelcher Weg
scheme. The microwave cavities are initially empty and act as
welcher Wegdetectors as the atom deexcites, depositing a pho
e
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As shown in Fig. 7, atoms are allowed to enter the cav
only through holes in the cavity walls in the region
x56d/2. In the experiment considered by Scullyet al., all
atoms would pass through these holes because the a
have already been collimated. However, in order to calcu
WT(x,p) we must have some model for what would happ
to atoms for all possiblex. For this reason, we divide spac
in the x direction into five regions, as shown in Fig. 8. Tw
of these correspond to the regions in which atoms p
through the cavities and are thereby distinguished. Un
ideal conditions, this measurement can be treated as a
jective measurement on those two regions, with an erro
order 10225 as shown by Scullyet al. in Ref. @4#. That is, the
measurement functions will be the characteristic functions
the regions

O1~x!5X~a,b!~x!, ~5.1!

O2~x!5X~2b,2a!~x!, ~5.2!

where

X~a,b!~x!5H 1 for a,x,b

0 for x,a or b,x.
~5.3!

Atoms impinging upon the other regions would be a
sorbed. This could be modeled by transferring an infin
momentum kick to those atoms so that they would be
pelled from the paraxial region and therefore not contrib
to the final pattern. However, in this experiment the init
state is such that no atoms will impinge upon these th
other regions, so we can model them as three indepen
transmitting regions without affecting the calculated patte
Since an absorber would localize the particle on an ato
scale, it would disturb the particle’s transverse moment
much more than a transmitter would. Thus we can be co
dent that in replacing absorbing regions~upon which atoms
never fall! by transmitting regions, we are if anything unde
estimating any possible nonlocal momentum transfer. The
fore, we complete the description of the measurement w
the three measurement functions

O1`~x!5X~b,`!~x!, ~5.4!

O0~x!5X~2a,a!~x!, ~5.5!

O2`~x!5X~2`,2b!~x!. ~5.6!

The Wigner function forO1(x) is

e
n.

FIG. 8. Diagram of the five regions involved in our model of th
Scully-Englert-Waltherwelcher Wegscheme.
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WO1
~x,p!5

1

p\E dy X~a,b!~x1y!X~a,b!~x2y!e2ipy/\

5
1

p\
X~a,a/21b/2!E

a2x

x2a

dy e2ipy/\

1
1

p\
X~a/21b/2,b!E

x2b

b2x

dy e2ipy/\

5
1

pp
X~a,a/21b/2!sin

2p~x2a!

\

1
1

pp
X~a/21b/2,b!sin

2p~b2x!

\
. ~5.7!

The other Wigner functions may be evaluated similarly a
are all nonzero only within their respective regions in thex
direction, going to zero at the boundaries between the
gions. The total transfer Wigner function is plotted in Fig.
We have chosena5(1/5)d and b5(4/5)d, which are the
values suggested by Scullyet al. in Ref. @4#. As shown in
Sec. III A, the Wigner function for the final density matr
Wf(x,p) is obtained by convolving the transfer Wigner fun
tionWT(x,p) with the initial Wigner functionWi(x,p) @Eq.
~3.5!#. For the initial state shown in Fig. 1, the final Wign
function after the measurement of Scullyet al. is plotted in
Fig. 10. As expected, given that awelcher Wegmeasuremen
destroys the interference pattern, the measurement c
pletely effaces the oscillations between the slits in the ini
Wigner function.

From Fig. 9 it can be seen thatWT(x,p) is not positive
semidefinite, demonstrating the quantum nature of this m
surement, as compared to the classical cases above. The
local momentum transfer distribution is

Pnonlocal~p!5
1

pp
sin
2pa

\
. ~5.8!

This extends over allp and thus satisfies our theorem on t
momentum transfer required to destroy interference frin
~3.34!. Furthermore, it has a characteristic width of ord
\/2a ~although its standard deviation is zero in a distrib
tional sense@11#!. In order to distinguish between atoms
the two positionsx56d/2, a must be less thand/2. Hence

FIG. 9. Plot ofWT(x,p) for the Scully-Englert-Waltherwelcher
Wegscheme fora5d/550.4 andb54d/551.6.
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the characteristic width ofPnonlocal(p) must be at least of
order \/d, as expected from the uncertainty principle. T
fringe visibility can be calculated to be

V5E dp Pnonlocal~p!eipd/\5H~a2d/2!, ~5.9!

whereH(a2d/2) is the Heaviside function, which is zer
for a,d/2.

The local momentum transfer is described by

Plocal~p!5
1

pp
sin
3pd

5\
, ~5.10!

where~as in Fig. 9! we are using the parametersa5(1/5)d
and b5(4/5)d suggested by Scullyet al. This also has a
characteristic width of order\/d, which seems to sugges
that a particle passing through one slit would receive so
sort of momentum disturbance in accordance with Heis
berg’s uncertainty principle. However, this appearance is
lusory, as can be verified from the final Wigner functio
plotted in Fig. 10. As shown in Sec. III B 3, the releva
quantities that characterize the amount of momentum tra
ferred byPlocal(p) are its moments, not its width. In this cas
the width of the distribution is irrelevant to its moments b
cause it is not positive semidefinite. In fact, all of the m
ments of the local momentum transfer function~5.10! are
zero, in a distributional sense@11#. Thus a particle confined
to a single slit will suffer no transverse momentum distu
bance, in agreement with the calculations of Scullyet al.
This is in contrast towelcher Wegexperiments with classica
momentum kicks, in which the single-slit momentum dist
bution variance must be increased by at least (\p/2d)2 if the
double-slit interference pattern is to be destroyed, as sh
in Sec. III C 2.

B. Two-valued projective scheme

In this section we consider an idealized projective m
surement without a particular physical model for the appa
tus. It can be considered as a limiting case of our mode
the scheme of Scullyet al. in which a→0 andb→`. That

FIG. 10. Plot of Wf(x,p) for the Scully-Englert-Walther
welcher Wegscheme, withWT(x,p) as in Fig. 9 and the initial
Wigner function as plotted in Fig. 1. As usual, we haved52 and
\51.
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is, the which-path measurement regions cover the entirx
line. In this case there are just two possible measurem
resultsj56, described by the measurement functions

O6~x!5H~6x!, ~5.11!

whereH(x) is the Heaviside function as above. The Wign
function forO1(x) is

WO1
~x,p!5

1

p\E dy H~x1y!H~x2y!e2iyp/\

5
1

p\
H~x!E

2x

x

dy e2iyp/\

5
1

p\
H~x!

sin~2px/\!

p/\
. ~5.12!

The total transfer Wigner function is thus

WT~x,p!5
1

pp
sin
2uxup

\
. ~5.13!

This Wigner function is plotted in Fig. 11 and is identical
that of Sec. V A in the limita→0 andb→`.

The nonlocal momentum transfer function is

Pnonlocal~p!5 lim
uxu→0

1

pp
sin
2uxup

\
5 lim

uxu→0

2uxu
\p

50.

~5.14!

This result appears to contradict our theorem stating
Pnonlocal(p)Þ0 for somep>p\/2d. It also fails to satisfy
the normalization condition~3.10!. These violations are arti
facts of the infinitely sharp boundary between the two m
surement regions. The way to interpret the res
Pnonlocal(p)50 is to considerPnonlocal(p) as an infinitely
broad and hence infinitely low distribution. This can be u
derstood from Eq.~5.8! for Pnonlocal(p) in the scheme of
Scully et al. In the limit asa→0, thisPnonlocal(p) becomes
infinitely broad and infinitely low, but remains a normalize
distribution. This distribution can transfer arbitrarily larg
momenta, as is necessary since the two-valued projec
scheme will destroy the interference fringes no matter h
small the slit separationd becomes.

In deriving our theorem regardingPnonlocal(p), we as-
sumed in Sec. III B 2 thatWT(x,p) was approximately con

FIG. 11. Plot ofWT(x,p) for a two-valued projectivewelcher
Wegmeasurement.
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stant as a function ofx in a region of widtha aroundx50
~wherea!d is the slit width!. For the transfer Wigner func
tion for the two-valued projective measurement case~5.13!,
this is not the case since the characteristicp width of
WT(x,p) diverges like\/uxu as x→0, which cannot be re-
garded as slowly varying no matter how smalla is.
Hence the destruction of interference is not
Pnonlocal(p)5WT(0,p) alone, but byWT(x,p) for 2a/2
,x,a/2. Providinga!d, the theorem~3.34! can be gener-
alized to say that complete destruction of interference
quires thatWT(x,p) must not be identically zero fo
2a/2,x,a/2 andp.p\/2d. It is clear from Eq.~5.13! and
Fig. 11 that this is the case and that asx→0 the transfer
functionWT(x,p) becomes wider and flatter. From this co
text it can again be seen thatPnonlocal(p) should be inter-
preted as an infinitely wide, infinitely flat distribution func
tion.

In this two-valued projective measurement, the local m
mentum transfer distribution is

Plocal~p!5
1

pp
sin

pd

\
. ~5.15!

As in the scheme of Scullyet al., this has a characteristi
width of order\/d, but its moments are all zero. In this cas
it can be verified directly that a particle initially confined
the positivex axis is unaffected by the measurement. T
initial wave functionc i(x) of such a particle is 0 for all
x<0. Hence the initial Wigner function is

Wi~x,p!5
1

p\E2x

x

dy c i* ~x1y!c i~x2y!e2ipy/\.

~5.16!

From Eq.~5.13!, the final Wigner function is

Wf~x,p!5
1

p\E2x

x

dy c i* ~x1y!c i~x2y!e2ipy/\

3E dp8
1

pp8
sin
2uxup8

\
e22ip8y/\. ~5.17!

The second integral evaluates to 1 if and only ifuyu,uxu. As
is apparent from the first integral, this is true for the initi
state under consideration. Therefore,

Wf~x,p!5Wi~x,p!, ~5.18!

so that the particle state is unchanged. Thus there is no
mentum disturbance to a particle passing through one sli
expected given that a projective measurement would hav
effect if one already knew that the particle was on one side
the x50 plane. A similar calculation could also be carrie
out for the scheme of Sec. V A.

C. The Storey-Collett-Walls scheme

We now consider a recent atom opticswelcher Wegpro-
posal, due to Storey, Collett, and Walls@25#, whose analysis
we shall draw upon here. An atom is prepared in the grou
state, passes through two slits atx56d/2, and then passe
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through a standing-wave light field of wave numb
K5p/2d positioned so that the upper slit is in front of
node and the lower an antinode, as shown in Fig. 12. W
the standing-wave frequency is detuned, by a large pos
D, from the atomic transition frequency, the atom remains
the ground state throughout, but imparts a positio
dependent phase shift to the field. As explained in@25#, in a
frame rotating at the field frequency, the effective interact
Hamiltonian in the regime of large detuning is

H5\
ugu2

D
s3a

†acos2K~x2x0!1\Ds3 , ~5.19!

where g is the one-photon Rabi frequency an
Kx052Kd/252p/4. After an interaction timet, the first
term in this Hamiltonian will have changed the phase of
standing wave by an amount (ugu2t/D)cos2K(x2x0).

If the atom passes through a node, there is no phase s
whereas if the atom passes through an antinode the pha
the field alters by an amountugu2t/D. By choosing the inter-
action time so that the difference between the optical ph
change induced by the two atomic paths isp5ugu2t/D, a
phase-sensitive measurement of the field can act as awelcher
Wegmeasurement for the atom. In order for this to work, t
initial state must have a well-defined phase, and in Ref.@25#
it is chosen to be a coherent stateua&. In this case the fringe
visibility is given by the inner product of the final state
entangled with the atomic position,

V5 z^au2a& z5exp@22uau2#, ~5.20!

which, as for the Einstein recoiling slit of Sec. IV A, ca
never be strictly zero.

Fora real, awelcher Wegmeasurement can be performe
by measuring the real quadrature of the field, while meas
ing the imaginary quadrature effects a quantum eraser@25#.
Counting the number of photons in the field also constitu
a quantum eraser measurement since all phase informati
destroyed in the process. Unlike quadrature measurem
this measurement has a discrete basis, so we choose
order to calculate the transfer Wigner functions. We find

FIG. 12. Diagram of the Storey-Collett-Wallswelcher Weg
scheme. The atom remains in the ground state and producesp
phase shift on the field if it passes through the antinode and
phase shift if it passes through the node.
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WOn
~x,p!5

1

p\

uau2ne2uau2

n! E dy expF2ipy\ G
3exp@2 inp cos2K~x1y2x0!#

3exp@ inp cos2K~x2y2x0!#

5
uau2ne2uau2

p\n! E dy expF2ipy\ G
3exp@ inp sin2K~x2x0!sin2Ky#.

~5.21!

This integral evaluates to zero unlessp/\K is an integer,
in which case the integrand is periodic
2p/2K,y,p/2K. Using

E
2p/2K

p/2K

dy cos@np sin2K~x2x0!sin2Ky2m2Ky#

5pK21Jm„np sin2K~x2x0!…, ~5.22!

whereJm is a Bessel function of integer order, we have

WOn
~x,p!5

uau2ne2uau2

\Kn! (
m

dS 2pd\p
1mD JmS np cos

px

d D .
~5.23!

We have substitutedKx052p/4 andKd5p/2 and are us-
ing the convention that the sum is over all integers unl
otherwise indicated.

The total momentum transfer Wigner function is the su
over all photon numbersn:

WT~x,p!5e2uau2 (
n>0,m

uau2n

n!
dS p1

mp\

2d D JmS np cos
px

d D .
~5.24!

At the slits, wherex56d/2, the argument of the Besse
functions is identically zero for alln, so

Plocal~p!5(
m

d~p1m\K !Jm~0!5d~p!, ~5.25!

and there is absolutely no local momentum disturbance. T
example is a clear demonstration that nonlocal momen
transfer is sufficient to destroy interference patterns. Fig
13 showsWT(x,p) for a53/2, chosen to give an uncond
tioned fringe visibility of about 1%@Eq. ~5.20!#. As this plot
shows,WT(x,p) is not positive semidefinite, and this is tru
for all a. The asymmetry inp for this transfer Wigner func-
tion favors negative momentum transfers in the region
tween the slits. This can be understood in that an atom p
ing through the antinode at the lower slit experiences
positive potential that retards~i.e., makes more negative! its
temporal phase relative to one passing through the nod
the upper slit. This phase differential would tend to ‘‘kick
an atom passing between these two points towards neg
x, but it is certainly not a classical kick. As is apparent fro

o
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68 56H. M. WISEMAN et al.
Fig. 13, the nonlocal momentum transfer is certainly w
enough to satisfy the theorem~3.34!.

D. Scheme with non-negative but nonclassicalWT„x,p…

We now consider an alternative method ofwelcher Weg
detection of an atom initially in the ground state. In this ca
the slits are immediately in front of two adjacent antinod
of a resonant standing-wave classical light field of wa
numberK5p/d, as shown in Fig. 14. Ignoring spontaneo
emission@24#, the Hamiltonian describing the atom-field in
teraction isH5\Vs1sinKx, so evolution of the state of th
atom while in the field is described by the unitary time ev
lution operator

U~ t !5exp@2 iVts1sinKx#. ~5.26!

To make a perfectwelcher Wegmeasurement the interactio
time is taken to beVt5p/4. This produces orthogonal in
ternal states of the atom at the upper and lower slits.
final state of the atom is

uC&5E dx expF2 i
p

4
s1sinKxGc~x!ux&ug&. ~5.27!

To determine which way the atom went, the internal stat
measured in thes25 i ug&^eu2 i ue&^gu basis. The result
s2521 corresponds to the atom being in the st
1/A2(ug&2 i ue&) and having taken the upper path a

FIG. 13. Plot ofWT(x,p) for the Storey-Collett-Wallswelcher
Wegscheme. As usual, the slits are located atx561. The heights
have been scaled such that ad function has height 1. We have no
plotted those points whereWT(x,p)50 in order to display the func-
tion more clearly.

FIG. 14. Diagram of thewelcher Wegscheme of Sec. V D. The
atom begins in the ground state and its internal states act as
welcher Wegdetectors. A left arrow denotes a state withs2511
and a right arrow one withs2521.
,
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e

s2511 corresponds to it being in the sta
1/A2(ug&1 i ue&) and having taken the lower path.

As in earlier sections, it is easier to calculate the Wign
functions in the basis that erases thewelcher Weginforma-
tion, in this case thes1 basis. The two possible outcome
from measurings1 are described by

O6~x!56
1

A2
expF7 i

p

4
sinKxG . ~5.28!

The Wigner function forO1(x) is

WO1
~x,p!5

1

2p\E dy expF i p

2
cosKx sinKy1

2ipy

\ G .
~5.29!

Using the same technique as in Sec. V C we find

WO1
~x,p!5

1

2(m dS p1
1

2
m\K D JmS p

2
cosKxD .

~5.30!

The Wigner function for the other measurement outcome

WO2
~x,p!5(

m
dS p1

1

2
m\K D JmS 2

p

2
cosKxD .

~5.31!

For even m, Jm(y)5Jm(2y), whereas for oddm,
Jm(y)52Jm(2y), so in addingWO1

(x,p) andWO2
(x,p)

to obtainWT(x,p), the odd terms vanish. The total mome
tum transfer Wigner function is

WT~x,p!5(
m

d~p1m\p/d! J2mS p

2
cos

px

d D ,
~5.32!

where the substitutionKd5p has been made. This is plotte
in Fig. 14. Since the modulus of the argument of the Bes
functions is bounded byp/2, each term in the sum of Eq
~5.32! is non-negative. Therefore, thisWT(x,p) is non-
negative everywhere, a feature different from the preced
quantum schemes. Nevertheless, thisWT(x,p) cannot be in-
terpreted in a classical way as a probability distribution
position-dependent local momentum kicks. This is beca
the momentum transfer at the slits is zero@with
Plocal(p)5d(p) as in Sec. V C#, so that the destruction o
interference can only be understood in terms of the nonlo
momentum transfer in the region between the slits. Hence
conclude that the positivity of the transfer Wigner function
not sufficient for it to have an interpretation in terms of cla
sical momentum kicks; this example reaffirms the definiti
for classical momentum kicks established in Sec. II.

The nonlocal momentum transfer function atx50 is

Pnonlocal~p!5(
m

d~p1mp\/d!J2m~p/2!. ~5.33!

As is apparent from Fig. 15, this is well approximated by

the
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Pnonlocal~p!'
1

4
d~p1p\/d!1

1

2
d~p!1

1

4
d~p2p\/d!.

~5.34!

This destroys the interference pattern by adding two
height patterns in antiphase with the original pattern to
1/2 height replica of the original pattern. This can be co
pared with the explanation for the destruction of interferen
in Sec. IV C, but it must be remembered that in contras
that classical case, the quantum scheme presented her
stroys the interference pattern without broadening the
fraction envelope.

We have conclusively shown that a nonlocal moment
disturbance is all that is required to destroy the interfere
pattern. In Appendix C we use this example to show that
converse is true as well: the interference pattern may be c
pletely preserved even if there are local momentum transf

VI. EXPERIMENTAL SIGNATURES
OF NONLOCAL MOMENTUM TRANSFER

While the transfer Wigner functionWT(x,p) is unparal-
leled in its ability to represent anywelcher Wegmeasure-
ment experiment in terms of momentum disturbance, it is
directly discernible from the results of experiments. In th
section we look more closely at the experimental signatu
of the variouswelcher Wegschemes we have investigated

A. Momentum transfer to a momentum eigenstate

The reason the transfer Wigner functionWT(x,p) is not
experimentally observable is that it is only a pseudoproba
ity distribution function. This is highlighted by the fact that
is not always positive semidefinite~see Secs. V A–V C!, so
cannot strictly be interpreted as the probability for a parti
at positionx to receive a momentum kick of magnitudep. It
would be a cause for considerable alarm if one could pu
particle at positionx and observe that it has a negative pro
ability for receiving certain momentum kicks. Physically, t
reason that one cannot do this is that if one were to loca
a particle to a point then its momentum uncertainty wo
become infinite. Hence there would be no possible way
which any momentum disturbance could be detected. A

FIG. 15. Plot ofWT(x,p) for thewelcher Wegscheme of Sec.
V D. As in Fig. 13, a height of unity represents ad function, and the
slits are located atx561.
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state with a well-defined initial momentum will necessar
have a sufficiently wide position distribution that the neg
tive parts ofWT(x,p) are smeared out so that the final m
mentum distribution is non-negative.

Since exact momentum transfers can only be observe
the initial state has no momentum spread, one could ar
that the best way to define the momentum transfer distri
tion function of anywelcher Wegscheme is to calculate th
final momentum distribution of a state initially in the eige
statep50. This means the initial wave function is flat i
position and the initial Wigner function isWi(x,p)}d(p).
Thus the final Wigner function is

Wf~x,p!}WT~x,p! ~6.1!

and the final momentum distribution is the marginalp dis-
tribution forWT(x,p),

PT~p!}E dx WT~x,p!. ~6.2!

It is simple to show further that

E dx WT~x,p!5(
j

uÕj~p!u2, ~6.3!

so thatPT(p) can be defined independently of the mome
tum transfer Wigner function. The theorem of Storeyet al.
that at least oneÕj(p) must be nonzero for somep.\/d
@6#, together with Eq.~6.3!, implies thatPT(p) must obey
the same constraint, provided the integrals exist. By us
the theorem of Boas rather than Bernstein, as we have d
in Sec. III C 1, this lower bound can be increased from\/d
to p\/2d.

For the case of classical momentum kic
PT(p)5Plocal(p)5Pnonlocal(p), so we already knowPT(p)
for these cases. The quantum cases are more interestin
the case of the two-valued projective measurement of S
V B,

PT~p!5NE dx
1

pp
sin
2uxup

\
, ~6.4!

where the constant of proportionalityN is required for nor-
malization. Since the integral is divergent, a distribution
approach is required. We introduce an apodization funct
such ase22guxu, in the integrand, carry out the normalizatio
and finally letg→0 after calculating physical quantities o
interest. Thus we write

PT~pug!5NE dx
1

pp
sin
2uxup

\
e22guxu, ~6.5!

which after normalization yields

PT~pug!5
1

p

\g

p21\2g2 . ~6.6!

For every nonzero value ofg, this function is not supported
only in the interval@2p\/2d,p\/2d#, as required by the
theorem. Furthermore, all even moments ofPT(pug) are in-
finite, indicating that an infinite amount of momentum unce
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70 56H. M. WISEMAN et al.
tainty is introduced. These results do not depend on the e
form of the apodization function used.

In the limit g→0, althoughPT(pug) formally tends to the
distributional limit d(p), this must be interpreted carefully
since the support and variance of ad ‘‘function’’ depend on
the sequence of functions that are used to approximate t
and are not well-defined concepts in general. These probl
are not present in thed functions that appear inWT(x,p) for
the schemes analyzed in Secs. IV C, V C and V D beca
the measurement wave functionsOj(x) in those cases ar
smooth functions ofx, unlike theO6(x)5H(6x) for the
two-valued projective case. The physical significance of
infinite variance of the result obtained above by apodizat
@Eq. ~6.6!# is that for any initial state that is close to a m
mentum eigenstate~and, in particular, that could have a
arbitrarily small momentum variance!, the output state will
have an infinite momentum variance. This can be verified
direct calculation from the measurement wave functio
O6(x) for the two-valued projective measurement~5.11!.

The scheme of Scullyet al. in Sec. V A also leads to a
divergent integral forPT(p) similar to Eq.~6.4! because of
the assumed infinite extent of the apparatus. Regulariz
that integral in a similar way leads to the same results that
all nonzero values ofg, PT(pug) is not supported only in the
interval @2p\/2d,p\/2d# and all even moments o
PT(pug) are infinite. Again, this indicates that the roo
mean-square momentum transferred by the apparatu
Scully et al. to a momentum eigenstate is infinite.

The other two quantum schemes we considered are
pathological because their apparatuses are smooth and
odic in x. For the scheme of Sec. V C, based on an opt
phase measurement, the momentum transfer forp5m\K
with m odd will average to zero, as can be verified from E
~5.24!. This makes the distributionPT(p) nonzero only for
momentum transfers equal to even multiples of the pho
momentum, as expected for diffraction from a far-detun
standing wave@26#. For the scheme of Sec. V D,WT(x,p) is
nowhere negative so that there will be no cancellation
momentum transfers. In this case the marginal distributio

PT~p!}(
m

d~p2m\p/d! E dx J2mS p

2
cos

px

d D .
~6.7!

This clearly does give momentum transfer in excess
pm5\p/2d. The integrals can be evaluated numerically a
the standard deviation of the total momentum disturbanc

sT~p!'1.74\/d. ~6.8!

The fact thatPT(p) is nonzero for somep>p\/2d for all
cases suggests that the momentum transferred to a mo
tum eigenstate is insensitive to the distinction between qu
tum and classical momentum transfers. However, this is
necessarily the case. For thewelcher Wegschemes with clas
sical momentum transfer,PT(p)5Pnonlocal(p). This means
that not only must there be some momentum transfer t
momentum eigenstate greater thanpm5p\/2d, but the prob-
ability distributionPT(p) for that momentum transfer mus
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obey the same integral condition~3.20! asPnonlocal(p). That
is, if there is to be complete destruction of interference in
two-slit case, then

E eipd/\PT~p!dp50. ~6.9!

In the quantum cases, this need not hold. In fact, in
two-valued projective measurement and the Scully-Engl
Walther scheme, the integral evaluates toe2gd, which goes
to unity as the apodization parameterg goes to 0. The other
quantum cases are less extreme, but both give a non
result for the integral in Eq.~6.9!. This shows thatPT(p) can
distinguish between quantum and classical momentum tr
fers, at least for the examples considered in this paper.

B. Form of the momentum distribution

Although the momentum transferred to a momentu
eigenstate, with the distributionPT(p), may be able to dis-
tinguish quantum and classical momentum transfers, this
rather indirect signature. As we have discussed above, h
ever, there is a direct signature in the interference pat
itself, in that classical momentum kicks will necessar
broaden the diffraction envelope whereas quantum mom
tum transfers need not. This is most apparent if one allo
the ratio of the slit widtha to the slit separationd to be finite
rather than tending to zero as we have assumed in all pr
ous analyses. The simplest cases to look at are the minim
disturbing atom optics scheme of Sec. IV C and the tw
valued projective measurement of Sec. V B. The other qu
tum and classical cases are very similar.

The initial state of a particle emerging from double slits
width a is

c i~x!5
1

A2a
@X~2d/22a/2,2d/21a/2!~x!

1X~d/22a/2,d/21a/2!~x!#, ~6.10!

whereX(x) denotes a characteristic function as in Sec. V
In momentum space this superposition becomes

c̃ i~p!5A a

p\

sin@ap/2\#

ap/2\
cos

pd

2\
, ~6.11!

so the initial momentum probability distribution is

Pi~` !}sinc2~z` !cos2~p`/4!. ~6.12!

Here we have scaledp as`5p/pm anda as z5a/4d and
introduced sincx5(px)21sinpx. We have plotted this distri-
bution for a50.4d in Fig. 16. It describes a double-slit in
terference pattern within a single-slit diffraction envelope

For the classical case of Sec. IV C the particle recei
with equal probability momentum kicks of6\p/2d. This
transforms the wave function~6.11! into

c̃6~` !}sinc@z~`71!#cos@p~`71!/4#. ~6.13!

The final momentum distribution is
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Pf~` !}
1

2
$sinc2@z~`21!#2sinc2@z~`11!#%sin

p`

2

1
1

2
$sinc2@z~`21!#1sinc2@z~`11!#%. ~6.14!

In the limit of zero slit width,z→0 and the second term her
becomes equal to unity while the first vanishes. For nonz
z the first term does not vanish and so there are resid
interference fringes. This is because the momentum k
destroy interference between points in the wave functio
distance exactlyd apart, but the initial particle wave functio
has coherences at all distances betweend2a andd1a. The
distribution ~6.14! is also plotted in Fig. 16. Note that th
first zero of the single-slit diffraction pattern has been fill
in by the momentum kicks. This smearing of the diffracti
envelope is the signature of the local momentum kicks.

The quantum cases give a quite different result. The p
jective measurement of Sec. V B determines whether or
the particle goes above or below the center pointx50. The
wave function after the measurement is thus

c6~x!5
1

Aa
X~6d/22a/2,6d/21a/2!~x!, ~6.15!

where the result6 denotes the sign ofx in the appropriate
half line. Both of these wave functions have the moment
distribution characteristic of single-slit diffraction, so the fa
field pattern is

Pf~` !}sinc2~z` !, ~6.16!

which is shown in Fig. 16. This shows that a quantu
welcher Wegscheme can destroy the interference patt
without altering the diffraction pattern at all. This is an u
ambiguous experimental signature of the nonlocal nature
the momentum transfer in suchwelcher Wegschemes.

FIG. 16. Plot of final momentum distributions for the case of
measurement~identical to the initial momentum distribution!
~dashed line!, a nonlocal quantum scheme~the projective measure
ment of Sec. V B! ~dash-dotted line!, and a local classical schem
~the minimally disturbing measurement of Sec. IV C! ~solid line!.
The momentum is scaled as̀52pd/\p so that the minimum dis-
turbance is to changè by 61. The slits have widtha50.4d.
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C. The Aharonov-Bohm effect

There is an interesting analogy between the analysis
this section and the nonlocality of the Aharonov-Bohm effe
@27,28#. Aharonov and Bohm presented two versions of th
effect: a magnetic one and an electric one@27#. In the former
~which is better known! a magnetic solenoid is placed be
tween the two slits, with its axis perpendicular to the line
the slits and the longitudinal motion of the particle. Ev
though the magnetic field is zero in the region of the slits
nevertheless influences the interference fringes if the par
is charged. Rather than destroying the fringes, the magn
field inside the solenoid merely induces a phase shift
f5(e/\c)AB, whereA is the cross-sectional area of th
solenoid andB the magnetic field strength.

As pointed out by Boyer@29# and Fearn@30#, the diagram
showing this fringe shift in the Feynman lectures@31# is
wrong. The error is that the entire interference pattern
shown as being shifted, whereas what actually happen
that the interference fringes movewithin the diffraction en-
velope, which stays constant. We bring this up in order
make the connection with our current work. A classical m
mentum transfer due to a deterministic force from a lo
electromagnetic field would result in a shift of the enti
pattern, in the same way as a classical or localwelcher Weg
measurement smears the entire pattern. By contrast,
Aharonov-Bohm effect, like a quantum or nonlocalwelcher
Weg measurement, affects only the interference fring
themselves.

For comparison with thewelcher Wegschemes, the
Aharonov-Bohm effect can also be described using
Wigner function formalism, at least phenomenological
Treating the longitudinal motion of the electron classically
usual, the effect of the solenoid atx50 can be modeled a
giving a relative phase shift off between all particles with
x,0 and all particles withx.0. This is effected by multi-
plying the particle wave function by

Of~x!5H~x!eif1H~2x!, ~6.17!

the momentum transfer Wigner function of which can
evaluated using the theory of distributions to be

WT
f~x,p!5d~p!cosf1

sin~2puxu/\!

pp
~12cosf!

1
cos~2px/\!

pp
sinf, ~6.18!

where have usedWT
f(x,p) for WOf

(x,p). It can be verified

that this is normalized as usual for allxÞ0. The nonlocal
momentum transfer function is found by settingx50 to get

Pnonlocal
f ~p!5d~p!cosf1~pp!21sinf. ~6.19!

This is not normalizable~an artifact of the infinitely sharp
boundary, as in Sec. V B!, but does give the correct comple
visibility

V5E dp eipd/\@d~p!cosf1~pp!21sinf#5eif.

~6.20!
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For the casesf56p/2, Eq. ~6.18! gives the momentum
transfer Wigner functions

WT
6p/2~x,p!5

A2
pp

sinS 2puxu
\

6
p

4 D . ~6.21!

These are plotted in Fig. 17. There are obvious similaritie
the transfer function for the two-valued projective measu
ment of Sec. V B. Indeed, for allf,

1

2
@WT

f~x,p!1WT
f1p~x,p!#5

1

pp
sin
2uxup

\
, ~6.22!

which is equal toWT(x,p) for the projective case~5.13!.
This is because adding one fringe pattern to its antiph
pattern effaces the fringes. This is directly relevant to
Scully-Englert-Walther scheme of Sec. V A. In order to fi
out which path the atom took, one would measure wh
microwave cavity contained the photon. In terms of the p
ton number states of the cavities this would have the m
surement basis$u01&u12&,u11&u02&%. On the other hand, a
pointed out by Scullyet al. @3#, measurement in a comple
mentary basis such as$u01&u12&6 i u12&u02&% constitutes a
quantum eraser. In this case one sees perfect fringes, sh
by p/2 or 2p/2. In the limit where the scheme of Scull
et al.approaches the two-valued projective measurement
transfer Wigner functions for these two results are precis
those plotted here for the Aharonov-Bohm effect. In fact,
Scully-Englert-Walther scheme has been analyzed by Bh
dari in terms of a random geometric phase@19#.

The phenomenological treatment of the Aharonov-Bo
effect through Eq.~6.17! describes more closely the electri

FIG. 17. Plot ofWT(x,p) for the Aharonov-Bohm effect, in
which the phase differencef between the upper and lower ha
planes is~a! p/2 and ~b! 2p/2. The function diverges asp→0
from above and below.
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rather than the magnetic, Aharonov-Bohm effect@27#. In this
version the two paths the electron may take pass thro
hollow conducting cylinders as shown in Fig. 18. While t
electron wave packet is wholly enclosed within the cylinde
a voltage source is switched on, creating a potential diff
enceV between the two cylinders. This remains on for tim
t, giving a phase difference off5eVt/\ between the two
paths. The voltage must be turned off before the wave pa
ets exit the cylinders. This ensures that the electron ne
passes through a spatially varying potential and hence n
experiences an electric field. Thus, as in the magnetic
sion, the phase difference is a nonlocal, topological effect
due to any local electromagnetic forces.

To justify a strict analogy with the Aharonov-Bohm e
fect, the nonlocalwelcher Wegmeasurements analyzed he
would have to be implemented in such a way that the part
never experiences any potential gradients. Otherwise,
could see the effect of a measurement on a particle trave
through a single slit: even though the particle leaves the
gion of the potential with the same velocity with which
entered, the position of its wave packet would be retarded
advanced in addition to its phase being retarded or advan
This can be avoided in the same way as in the elec
Aharonov-Bohm effect. The coupling to the apparatus wo
be turned on only when the particle is in the region whe
that coupling is constant as a function of longitudinal po
tion and turned off before it leaves that region. For our p
posal of Sec. V D it is easy to see how this can be done;
classical standing wave that couples the position of the a
to the apparatus~its internal states! can be created and re
moved simply by controlling the direction of a laser bea
This technique has already been used experimentally to
trol interaction times of slow-moving atoms in laser fiel
@32#. For the other nonclassical schemes of Sec. V it is l
obvious how this switching might be achieved, but it is pr
sumably possible.

VII. CONCLUSION

The destruction of interference fringes in awelcher Weg
measurement must be accompanied by some momen
transfer at least equallingpm5p\/2d. In the older, well-
knownwelcher Wegschemes this momentum transfer can
interpreted as random classical momentum kicks, with
particle’s momentum probability distribution being co
volved with a momentum transfer probability distribution.
these casespm is also the minimum for the standard devi
tion of the momentum transfer distribution. In some mo
recent schemes this picture fails and the momentum dis
bance requires a quantum-mechanical description, in te
of amplitudes rather than probabilities.

FIG. 18. Diagram of the electric Aharonov-Bohm effect.
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The Wigner function formalism allows both quantum a
classical momentum transfer to be treated on the same
ing. The momentum transfer Wigner functionWT(x,p), al-
though it may be negative in places, formally plays the r
of the probability distribution for a particle at positionx to
receive a momentum transferp. In this formalism the inter-
ference fringes are destroyed by convolution with the m
mentum transfer function midway between the slits rat
than at the slits. It is this nonlocal transfer function that
have shown must be nonzero for somep>pm .

Forwelcher Wegschemes involving classical momentu
transfer,WT(x,p) is non-negative and independent ofx, so
that the momentum disturbance that destroys the interfere
also acts locally, at the slits. Thus one can treat the dest
tion of the fringes as if it were a local effect. However, f
quantum cases the momentum disturbance at the slits ca
precisely zero. We conclude that the momentum transfe
these cases is inherently nonlocal. It is interesting to note
the positivity of the transfer Wigner function is not an ind
cation of its classicality; we propose a scheme in wh
WT(x,p) is nowhere negative but equalsd(p) at the slit
positions.

One experimental signature of the distinction between
cal and nonlocal momentum transfer can be seen for the
width a finite relative to the slit separationd. When classical
momentum kicks destroy the interference fringes, the en
pattern is smeared, including the diffraction pattern due
the finitea. For quantumwelcher Wegschemes the interfer
ence fringes can be destroyed without altering the diffract
envelope at all. There is a close analogy to the Aharon
Bohm effect, in which the interference fringes move with
the diffraction envelope, in the absence of any electrom
netic forces. That the Aharonov-Bohm effect is almost u
versally recognized as a nonlocal quantum phenomenon
dicates that the loss of visibility without local momentu
kicks in somewelcher Wegschemes should also be regard
in this way.
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APPENDIX A

Let the Fourier transform ofA(x) be denoted

Ã~k!5
1

2pE dx e2 ikxA~x!.

We defineB(K) to be the class of all functionsA(x) such
that Ã(k) is no more singular than ad function and is sup-
ported only on the closed interval@2K,K#.

Lemma. Let f (x)PB(K) be a real function ofx satisfying
u f (x)u<1 ;x. Then

@ f 8~x!#21K2@ f ~x!#2<K2 ;x.

Proof. See@12#.
Theorem. No complex functionA(x) satisfying the con-

ditions
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A~0!51, A~d!5V, uA~x!u<1 ;x ~A1!

is contained in B(K) for any K,arccos(V)/d, where
V5uVu,1.

Proof. Let A(x)PB(K) satisfy the three conditions~A1!.
Now let f (x)5ReA(x). Then f (x)PB(K) and from the
lemma

f 8~x!

A12@ f ~x!#2
<K ;x.

Consider the smallest positivex1 for which f (x1)5V. Define
a new function

F~x!5arccosf ~x!.

ThenF(0)50 andF(x1)5arccosV. For xP(0,x1),

F8~x!5
f 8~x!

A12@ f ~x!#2
<K.

In this region F(x)<Kx so that x1>arccos(V)/K. Since
A(d)5V, f (d)<V and sod>x1. Thus K>arccos(V)/d,
completing the proof.

For the physical situations we consider,Ã(k) is no more
singular than ad function. Therefore, we can conclude th
Ã(k) is not supported only on @2K,K# for
K,arccos(V)/d. For the caseV5V>0 the function
A(x)5cos@arccos(V)x/d# satisfies the three conditions~A1!
and is of classB(K) for K5arccos(V)/d. In particular, the
lower boundp/2d for V50 is in fact the minimum.

APPENDIX B

Theorem. Any non-negative functionP(k) satisfying the
conditions

E dk P~k!51, E dk P~k!eikd5V

has a variance satisfying

s2[E dk P~k!~k2 k̄!2>@arccos~V!/d#2,

where k̄5*dk P(k)k and V5uVu<1. Furthermore, the
equality can be achieved for anyV.

Proof. If V5V, then a symmetric distribution@satisfying
P(k)5P(2k)# will minimize the variance. In this case
k̄50 and

s25EP@k2#, V5EP@cos~kd!#, ~B1!

where EP@h# denotes the expectation value of a rando
variable h(k) with respect to the probability distribution
P(k). It is easy to verify that~i! h2>@arccos(cosh)#2 for all
real h and ~ii ! the function f (h)5(arccosh)2 is convex on
the domain21<h<1. It follows that for any random vari-
ableh, f (E@h#)<E@ f (h)#. Usingh(k)5cos(kd)P(21,1)
we thus have
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„arccos$EP@cos~kd!#%…2<EP„$arccos@cos~kd!#%2…

<EP~k2d2!,

where we have used property~i!. Substituting the definitions
~B1! into this inequality yields the desired result.

If VÞV, define Q(k)5P„k1arg(V)/d… so that
*dk Q(k)eikd5V. Then for a minimum variance we requir
that Q(k)5Q(2k) so that k̄52arg(V)/d and
s25*dk Q(k)k2. The argument then follows as above wi
P(k) replaced byQ(k). This completes the proof.

The equality holds if the probability density of cos(kd) is
a d function, which is the case if the probability density
k consists of twod functions symmetrically placed abou
k̄.

APPENDIX C

To show that an interference pattern may be comple
preserved even if there is a local momentum disturbance
consider the experiment described in Fig. 14, but with
slits placed atx50 andx5d ~that is at the nodes rather tha
the antinodes!. This configuration cannot be used to make
welcher Wegmeasurement, but the transfer Wigner functi
t

in
,

.

re

t

s

ly
e
e

is the same as in the configuration of Sec. V D. From the p
of this function in Fig. 15 it can be seen that in this case th
are local momentum transfers at the slits, but no disturba
midway between the slits~at x5d/2). Thus the interference
pattern remains intact, even though the single-slit diffract
pattern will be smeared by the local momentum transfers

This can be understood intuitively as follows. The atom
are initially in the ground state, which is a superposition
the eigenstatesu6& of s1. These eigenstates experience t
HamiltonianH56\V sinKx. At the lower slit (x50), the
u1& eigenstate is deflected downward and theu2& eigenstate
is deflected upward. The upper slit is a mirror image,
flected in the planex5d/2. Thus theu1& component of the
atomic wave function will still form a symmetric interfer
ence pattern, as will theu2& component. Theu1& compo-
nent does not interfere with theu2& component, so the ne
result is that the interference fringes are still perfect and sy
metric. This is despite the fact that the local momentu
transfer distribution@which for this configuration is equal to
the nonlocal distribution for thewelcher Wegconfiguration,
given in Eq. ~5.33!# has a standard deviation o
s local(p)'2.47\/d.
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