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Nonlocal momentum transfer in welcher Wegmeasurements
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A “which-path” (welcher Wepy measurement necessarily destroys the fringes in a double-slit interference
experiment. We show that in all instances one may attribute this destruction to a disturbance of the particle’s
momentum by an amount equal to at least/2d, whered is the slit separation, in accordance with the
uncertainty principle. However, this momentum transfer need not be local; that is, it need not act at either of
the slits through which the particle passes. For well-knawaicher Wegmeasurements such as Einstein’s
recoiling slit and Feynman'’s light microscope, the disturbance can be understood in terms of random classical
momentum kicks that act locally. In some recent proposals, including that by Scully, Englert, and Walther
[Nature(London 351, 111(1991)], the momentum transfer is of a peculiarly quantum, nonlocal nature. In this
paper we introduce a formalism based on the Wigner function, as this describes both the local and nonlocal
momentum transfer caused by anglcher Wegneasurement. We show that for some examples, such as that
of Scully, Englert, and Walther, there is no momentum disturbance at the slits even though the nonlocal
momentum disturbance is sufficient to destroy the interference pattern. Finally, we discuss the experimental
signatures of nonlocal versus local momentum transfer and demonstrate a strong similarity to the nonlocality
of the Aharonov-Bohm effec{.S1050-294{®7)04006-7

PACS numbsgs): 03.65.Bz, 03.75.Dg, 42.50.Vk, 32.80.Lg

[. INTRODUCTION set of momentum transfamplitudedistributions. In general,
a set of quantum momentum transfer amplitude distributions
Making a position measurement to determine which waycannot be recast as a classical probability distribution for
a particle goes through a double-slit apparatus necessarimomentum kicks. Unlike classical momentum kicks, the ef-
destroys the interference pattern. This is the canonical eXect of a quantum momentum transfer on a particle’s mo-
ample of Bohr's complementarity principlgl]. In well-  mentum distribution will in general depend on its initial
known welcher Weg“which-path” experiments, such as wave function.
Einstein’s recoiling slif1] and Feynman'’s light microscope  As noted above, in traditional double-slitelcher Weg
[2], the destruction of interference can be explained in termsneasurements the loss of fringe visibility may be ascribed to
of uncontrolled classical momentum kicks to the particle.classical momentum kicks. Because of their classical nature,
Bohr used this simple picture in his debates with Einstein tahese momentum kicks would have an identical effect on the
show how the uncertainty principle enforced complementarmomentum distribution of a particle passing through a single
ity [1]. In recent years, interest in this topic has been reslit. That is to say, the single-slit diffraction pattern would be
kindled by awelcher Wegneasurement scheme proposed bysmeared in the same way as the double-slit interference pat-
Scully and co-worker$3-5]. They claim that their scheme tern. Scullyet al. showed that in their proposed scheme there
destroys the interference without transferring any transverseould be no broadening of the single-slit diffraction pattern.
momentum to the particle. Storey and co-workdrs6] have  This is the basis for their claim that there is no momentum
argued to the contrary that whenever interference is detransfer in their scheme, a claim that is valid if one has in
stroyed, transverse momentum is transferred in line with thenind the first(classical concept of momentum kicks.
uncertainty principle. Although the scheme of Scullgt al. shows that Bohr’s
In considering whether or not momentum is transferred ithaive classical realist argument is not of general applicabil-
is essential to define exactly what constitutes a momenturity, it does not necessarily mean that the loss of interference
transfer. Unless explicitly stated otherwise, all the momen<cannot be accounted for by random momentum transfer. Sto-
tum transfers discussed in this paper are in the transversey et al. have shown, by means of a general theorem, that
direction. As Wiseman and Harrison noted recefifly there  loss of interference requires that there be some amplitude for
are (at leasy two different but reasonable ways of defining a a quantum momentum transfer in accordance with the uncer-
random momentum transfer. The first definition correspondsainty principle. This result is not in conflict with the conclu-
to the classical notion of a convolution of the particle’s mo-sion of Scullyet al. because quantum momentum transfers
mentum probability distribution with a momentum transfer do not imply classical momentum kicks. In particular, in a
probability distribution. The ensemble of random classicalquantum or nonclassicalelcher Wegcheme there need not
momentum kicks would result in the smearing of the mo-be any disturbance of the diffraction pattern of a single slit
mentum distribution of the particle. The second definitioneven though the interference pattern of a double slit is de-
corresponds to the more quantum-mechanical idea of a costroyed by a quantum momentum transfer.
volution of the particle’s momentum wave function with a  For both classical and quantunelcher Wegschemes the
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origin of the momentum transfer is in the interaction betweeryet the local momentum transfer is unequivocally zero. In
the particle and thevelcher Wegneasuring apparatus. In the Sec. VI we discuss experimental signatures of local and non-
scheme of Scullyet al,, this is an interaction between an local momentum transfers and show that there exists a strong
atom and a microwave cavity field. As we shall show, theanalogy between nonclassicalelcher Wegschemes and
momentum transfer in this case is of a peculiarly quantumAharonov-Bohm experiments.

nonlocal nature. In their analysis Storetyal. described this

momentum transfer as “the repeated emission and reabsorp-  Il. CLASSICAL AND QUANTUM MOMENTUM

tion of microwave photons by the atom[4]. We have TRANSFERS

avoided using_ this sim_ple physical p_icture in_ the present pa- We shall be considering a number of experiments in
per because it may give the false impression that one c&hich double-slit interference patterns are destroyed by mak-

understand the momentum transfer in terms of localized clasl;1 o position measurement on the particle so as to determine
sical momentum kicks. gap p

In this paper we investigate further the distinction be_wh|<:h slit it passed through. The slits are taken to be parallel

tween quantum and classical momentum kicks. In order to bgnd separated in thedirection. In order to provide a unified

able to treat them on the same footing, we adopt the Wigne fefatmefnt of all c?sej, we .fOHOW Refft] in defining th? e

function formalism. This enables us to define a momentun{ ect of a generalized position measurement on a particle's

transfer Wigner functionN+(x,p). Formally this plays the wave function to be

role of thg probability distribution for a particle at position wg(x)=N§_1’ZO§(x)¢i(x). 2.1)

X to receive a momentum transfer pf althoughW+(x,p)

need not be everywhere positive. We find that the smearingiere ¥, is the initial wave function,lpg is the final wave

of the diffraction pattern and the destruction of the interfer-function given the result, where ¢ parametrizes a set of

ence fringes are determined by different momentum tranSfunctionsog(x), which is complete in the sense

fers. That is, the distributions for these momentum transfers

are given by different parts of the momentum transfer

Wigner function. The smearing is determined W (x,p)

for x at the positions of the slits. We call this thecal

momentum transfer distributioRy,c,(p). The destruction of andNy, is the normalization factor

interference is determined by (x,p) for x midway be-

tween the slits, where the particle is never found. We call N =j dx|0.(x) i (x)|? 2.3

this the nonlocal momentum transfer distribution ¢ ¢ : ' '

Pronioca(P) - It is this nonlocal momentum transfer that can-

not be less than that required by the uncertainty principle.
For classical momentum kick&/+(x,p) is independent

of X and positive semidefinite, which means that the particl

receives a classical random momentum kick independent

its initial state. In this case Wt(X,p)=PjocalP)

=P, oniocal P) @nd the destruction of interference is accompa-

; 0x)[2=1  Vx, 2.2

where we are using the convention that the range of all inte-
grals is the real line unless otherwise indicated. The factor
d2.3) is just the probability that the resuftis obtained. An
&rbitrary wave functiony(x) can be transformed to the mo-
mentum representation as

nied by local momentum kicks, which necessarily smear the W(p)= L f dx (x)ePh. (2.4)
diffraction pattern. For nonclassicalelcher Wegschemes, N2mh

W+(x,p) varies withx and the destruction of interference
cannot be attributed to local momentum kicks. The schemén this representation E¢2.1) becomes
of Scully et al.is a case in point. AlthougR,,.,(p) transfers
no momentum Io_callyPnomoca(p)_ does _tra_nsfer momentum Eg(p)=(2wﬁN§)_1/2J dp’%(p—p’)ag(p’). 2.5
in accordance with the uncertainty principle, thereby effac-
ing the interference fringes. Thus, by using the Wigner func- ] o ~ )
tion formalism we are able to see both the absence of localhat is to say, the initial momentum wave functigt(p) is
momentum kicks(as shown by Scullyet al) and the pres- convolved withO,(p) to give the final momentum wave
ence of a nonlocal momentum transfevhich satisfies the function ¢,(p). For this reason we calD,(p) the momen-
theorem of Storegt al.). tum transfer amplitude distribution for the resglt

We begin the body of the paper with a review of the This definition of position measurements encompasses all
distinction between classical and quant(monclassicalmo-  nondemolition[8] measurements af that preserve purity
mentum transfers. In Sec. Il we introduce the Wigner func-{9]. A measurement preserves purity if, for an initial pure
tion description of momentum transfers in general and in thestate, the final state conditioned upon any particular measure-
double-slit experiment in particular. We also derive a stroniment result is also a pure state. This describes, in essence, all
ger lower bound on the momentum disturbance needed tof the position measurements madevelcher Wegchemes,
destroy the double-slit interference pattern. In Sec. IV we usbe they projective or not. Even if not projective, the mea-
the Wigner function to analyze three exampleswaficher  surements we are describing here do not represent any sig-
Weg schemes explicable by classical momentum kicks. Imificant extension of the traditional quantum theory of mea-
Sec. V we do the same for four nonclassical schemes isurement based on projective measurements. This is because
which the destruction of interference has no local explanathese nonprojective measurements of the system can always
tion. In one of these exampl&¥;(x,p) is non-negative and be cast as projective measurements of the apparatus, with the
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latter treated as a quantum-mechanical sys@mnin many  point, sayp, [7]. In that case, the measurement reguti¢lls
experiments in quantum optics it is necessary to do this athe observer that the amount of momentum transferred to the
the apparatus is sufficiently well isolated from external dis-particle is exactlyp, and

turbance that the experimenter may choose the basis in

which to observe_the appa_lratL_Js. leferent_ choices /of appara- Qup)= |O§(p)|2/27rh= N¢S(p—pe).- (2.12

tus observable will result in different basis s@g,0 , re-

lated to each other b9, ==,U.,,[O;,, where the coefficients g 15 have two reasonable but inequivalent definitions
U, satisfy of what constitutes a momentum transfer. Statements made
about one type will not in general be true about the other. In
2 U ﬂgujl(: e (2.6) the scheme proposed by Scudlyal, in contrast to previous
n well-known example$l,2], the momentum transfer is quan-
) o tum, not classical. That is to say, the final momentum distri-
For any choice of apparatus basis, if @ measurement i§tion cannot be obtained by convolving the initial momen-
made and the result ignored, then the final state of the pakym gistribution as in Eq2.10. This is what allows the true
ticle is difference of their scheme, namely, that that there would be
negligible disturbance of the momentum of a particle passing
pf(xlxr)zz N§¢§(x)¢’g(x’) through one slit _only, as confirmed l_ay their calculations. On
é the other hand, if the interference fringes were destroyed by
classical momentum kicks as in E@.10), then the single-
=> O¢(X) i (X) ,r/,f(xr)og(xr)_ 2.7 slit diffraction pattern would necegsarily_be broadened. '
£ In the double-slit case, the particle’s final momentum dis-
o ) ) ) .. tribution must be disturbed in some way by the measurement
This is a mixed state, with a nonunique decomposition intgyecause the interference fringes are destroyed. The momen-
pure state components. Using the relati@rd) it is easy to  ym separation between node and antinode in the final inter-
verify that it is independent of the apparatus b&jschosen  ference pattern is%/d, whered is the slit separation. These
to make the measurement. That is to say, we can also Wmﬁinges cannot disappear without there being some kind of
momentum disturbance of ordgéfd, in accord with the un-
pr(X, X )=, O, (X (X PF (x')O'%(x). (2.8 certainty principle. Storegt al. [4—6].have shown that this
n momentum transfer can be quantified by the momentum
transfer amplitudes of Eq(2.11). Specifically, they have

A basis-independent description of the measurement is aghown that forany which-path measurement, at least one

idrggg(rjtaiur’:tsats:'anlt?ge of the Wigner function formalism intro—ag(p) must be nonzero for some with |p|=#/d. In this

. aper we will recast and strengthen this result using the
In Ref. [7] two of us noted that the convolution of the bap d 9

um ‘ litude distributi hich Wigner function formalism. In this formalism it becomes
momentum transter amplitude distribution E(Q'S)' whic pparent how avelcher Wegneasurement scheme, such as
we called a quantum momentum transfer, is not in gener

) . ) at of Scully et al, can transfer momentum of the order
equivalent to a classical momentum transfer. For a given ;4 iy the two-slit case. while having no effect on the mo-
result &, the latter would give rise to a convolution of the f

Lo I mentum distribution in the single-slit case.
momentum probability distribution of the form g

-1 , lll. THE WIGNER FUNCTION
P(p)=N; fdp Pi(p—p")Q:p’), 2.9
In this section we introduce the Wigner function formal-
ism for describing momentum transferwelcher Wegnea-
surements. This will allow us to place the calculations of
Scully et al.[3-5] and those of Storegt al. [4—6] within a
single framework.

where(),(p) is a positive distribution whose integral over
all p is equal toN,, the probability of obtaining the result
&. The initial momentum distribution i9;(p)=|;(p)|?.
Averaging over all results would give

=) (p)_f dp’ﬂ'(p—p’)lzﬂ(p’) (2.10 A. General formalism
' ' ' ' The Wigner function for a wave functiog(x) is [10]

where Q(p) =20 (p). By contrast, the final momentum 1 siovih
distribution in the quantum case is W, (x,p)= %J dy By(x,y)e”PV", (3.9
2
Pf(p)=2f U dp’#i(p—p")O«p") /2wﬁ, where

(2.11

which is independent of the basis. Expression(2.11) can-
not be written in the form of Eq2.10 unless there is some We are interested in the Wigner function of the particle after
basis in which each of th®,(p) is nonzero only at a single the measurement. It is

By(X,y) =" (X+Yy)h(Xx—y). (3.2
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1 :
Wy, (x,p)= ﬁf dy By, (x,y)e?PV" WT(x,|0)=2g N¢S(p—pe) =Q(p). (3.9
:N—l_f dy B, (x,y)B y)e2ipylh This is a welgh.ted sum of the classical momentu_m kicks
¢ ) Y 5 (%Y) oX ye p; associated with the measurement outcogeasd is inde-

1 pendent ofx. Note that=N,=1, which follows from Eq.
_ Ng—l_j dy Bw_(xiy)eZipy/h (2.2). The Wigner function(3.9) is non-negative everywhere.
wh : It has an obvious interpretation as a classical momentum
kick probability distribution function. However, in general
D% f dy'Bo (X,y")8(y' —y). (3.3  the momentum transfer Wigner functidB8.6) need not be
¢ positive semidefinite.
Although it is not necessarily positive semidefinite, the
ransfer Wigner functionV;(x,p) is always normalized in
p, in the sense that

We now introduce the Fourier transform representation o{
the Diracé function to get

w (x,p)=N’1if dy B, (x,y)e?PY’
Ve ¢ wh Vi Jdp Wr(x,p)=1 (3.10

1 it !
Xf dy’Bog(x,y’)ﬁJ' dp’e?P y=y)in for all x. This is a consequence of the completeness condi-
tion (2.2). In fact, it is also possible to prove a more general
result, namely, that the characteristic function

1 .
_n 1L ’ —p)yl
N[ dp [ ay By oxypeto e

1 <I>T(OIIX)=J dp Wi(x,p)explipg/f) (3.1
N ’ " a2ip’y’ It

Xﬁﬁf dy’Bo,(x,y")e o
satisfies

=Ng1f dp' Wy, (x,p=p")Wo (X.p"). (3.9 | (alx)|<1, (312

That is, the Wigner function transforms exactly as a classicalust as it would ifW(x,p) were a true probability distribu-
joint probability function inglwog(x,p’) is interpreted as tion in p. This can be proved as

the probability for a particle at positiox to receive a mo- 1

mentum transfer op’, given the resul. SinceN; is the ® X):f dp drait _—__ fd x,y)ei2py/h
probability of obtaining the resuf, the Wigner function for (al P 27125 Y Bof( Y

the final density matrix, ignoring the measurement reSuk

=2§ fdy 8(y+0/2)O0% (x+Yy)Ox—y)
Wf(x,p)=Jdp’Wi(x,p—p’)WT(X.p’), (3.5

whereW, (x,p) =Wy, (x.p) and = Eg OF (x—0/2)O(x+q/2). (3.13

Finally, it follows that
Wr(x,p) =2, Wo,(x.P). (3.6

* —
Like p¢(x,x') in Eq. (2.7), the total momentum transfer |<I>(q|x)|$2§ |0¢ (x=a/2)[[ O x+a/2)]

function W+(x,p) is independent of the basf3,, which is
one of the advantages of the formalisfAnother advantage 1 _ 2 2
is that the formalism can be generalized to allow measure- = 2§§: |0cx=a/2)[*+[O(x+ai2)[%,
ments that do not preserve purity, although we will not con- (3.14
sider such measurements in this paper. '

For the case of classical momentum ki¢Rsl12, the mo-
mentum transfer function can be worked out as follows. Firs
we note that

where the last line is obtained by using the fact that
t(|A|—|B|)2>O. From the completeness conditi¢a2), we
thus obtain the desired resu.12.

Og(x)z\/ﬁéexp(ipgx/ﬁ), 3.7 _ _ _ _ _
B. Wigner functions in double-slit experiments
so that 1. W,(x,p)
Bog(x,y)z Neexp(—2ipgy/h), (3.9 In a double-slit experimentW;(x,p) has peaks at

x=*d/2 (the slit positions and also a part at=0 that is
which gives oscillatory inp. For zero slit width
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04 the Wigner function formalism, the pseudoprobability distri-
bution for the momentum transfers that destroy the interfer-
ence is

Phonlocal P) =W+(0,p). (3.18

initial Wigner function

We label thisP on0caf P) because it is the distribution func-
tion for momentum transfers at the point midway between
the slits, where the probability for finding the particle is zero.
Although Pponioca(P) is normalized, it is not necessarily
positive definite.

Because it is the momentum transfers described by

p 0o x Proniocal P) that are responsible for destroying the interfer-

ence fringes, the visibility can be found froRy,,poca(P)
alone. After passing through theelcher Wegletectors, the
Wigner function atx=0 is given by

FIG. 1. Plot of the initial Wigner functiohV;(x,p) for a double-
slit experiment, withd=2 anda=0.2d=0.4. The slits produce
wave packets centeredat =1 with a full width of 0.4. Momen-

tum is scaled by setting=1. W,(0p) = f dp"Ws(0p’)co (p—p')d
1) 1 S ﬁ
1 d :
Wi (X, )= 5[ 8(x—di2)+ 5(x+d/2)]+6(x)cos%. =RgeP¥*], (3.19

(319 where we have defined a complex visibility

This will be a valid idealization provided that the slit width
a is much less than the scale of variationWf(x,p) in x V=f dp Proniocal P)EPY. (3.20
aroundx= *d/2 andx=0. This requirement is satisfied for
most of the cases we examine as longaasd. In Fig. 1 we
show this initial Wigner function for rectangular slits with
width a=0.2d. The oscillations in Eq(3.15 at x=0 aver-
age to zero when integrated ovprso that the probability
distribution for the particle position is

We call this the complex visibility because its modulus gives
the fringe visibility and its phase gives the phase of the
fringes. This can be seen in the final momentum distribution,
which, from Eq.(3.19, is

_ pd
Pi(x)=J dp W(x,p)= L[8(x—d/2)+ 8(x+d/2)]. Pf(p)‘f dx Wf(x'p)ul’LVCOS(?_argV
(316 (3.21)

where we are usiny=|V] for the (usua) visibility. In the
absence of anywelcher Wegneasurement the fringe visibil-
ity is unity. Any measurement that gives some information
about which path the particle took will reduce the visibility
to less than unity. A perfeatvelcher Wegneasurement, one
Pi(p):f dx W(x,p) o 1+ cos@. (3.17) that determines with certainty which way the particle went,

When we integrate overto find the momentum distribution,
it is the oscillations that produce the interference pattern
highlighting the nonlocal nature of the initial superposition:

fi will reduce the visibility to zero.
In the far field(a long way past the slitsthis interference in 3. Piocal(P)
momentum becomes the observed interference pattern in po- The fact thatP,,y0ca(P) determines the visibility runs
sition. counter to classical intuition. Classically, one would expect
the particle to be affected only by the momentum transfers at
2. Pronlocal(P) the positions of the slitéwvhich are the only places where the

The interference fringes in momentum are destroyed irProbability to find the particle is nonzeroSince Wr(x,p)
welcher Wegmeasurements. As noted above, these fringeglays the role of the probability distribution for a particle at
are present due to the coherence between the parts of tR@sitionx to receive a momentum transfey classically one
wave function aix=+d/2 and appear as oscillations in the Would expect the distribution of momentum kicks given to
Wigner function atx=0. This means that to destroy inter- the particle to beN(x,p) averaged over the possible posi-
ference the oscillations in the initial Wigner function in the tions of the particle distributed accordingfg(x). That is to
region ofx=0 must be effaced. In welcher Wegmeasure- Say, classically one would expect the relevant kick distribu-
ment, this happens through convolution with the transfefion to be
function in that region. Provided th¥¥{(x,p) varies little as
a function ofx over a region of widtta aroundx=0, we can _
take the destruction to be dueMé (x,p) atx=0. That s, in P'Oca'(p)_f dx Wr(X,p)Pi(X). (3.2
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For the case in question where the particle is localized at thability of finding the particle there. After avelcher Weg
two slits, the pseudoprobability distribution function for measurement this norm is still strictly zero, so the moments
these local momentum transfers is of the final momentum distributioR;(p) are determined by
1 the parts of the Wigner function near =d/2. As shown
_ = _ above, these parts are broadened by the actio®,gf(p).
Pocal P) = 2 [Wr(d/2,p)+Wr(=df2,p)].  (3.23 Therefore, the relationshi{3.27 showing that the increment
in the momentum variance is equal to the variance of

Although Poca(p) plays no role in the destruction of in- p,_(p) applies to the double-slit as well as to the single-slit
terference between the two paths, it does determine the difage.

fraction pattern of a particle that is in a classical mixture of
being at the two slits. Provided that the momentum transfer
Wigner function is the same at both slitashich we will
assume beloyy this is the same as the diffraction pattern 1. Arbitrary momentum transfers
from a single slit. The final momentum distribution for an
arbitrary initial state in avelcher Wegscheme is

C. Minimum disturbance to destroy interference

Storeyet al. [6] have shown that in an arbitramyelcher
Wegmeasurement that reduces the fringe visibilityvtpat
least one momentum transfer amplitude distribut@g(p)
Pf(P)If dx Wi(x,p)dx must be nonzero for somg=(1-V)#%/d. In terms of the
Wigner function, this is equivalent to the statement that
, , , W5(x,p) must be nonzero for somex and some
:f dxf dp’'Wi(x,p=p" )Wr(x,p"). (324  h=(1-V)%/d. We have shown above that the fringe visibil-
ity is determined solely b¥ ,oniocalP) @s in Eq.(3.20. This
If the particle is in a mixture then there are no oscillations inwill allow us to derive a stronger theorem concerning mo-
W;(x,p) at x=0 and indeedW,(x,p) is nonzero only for mentum transfer, in the sense that we need consider only
x~=*d/2. Thus we can replace Wr(x,p) by  Wq(x,p) atx=0, not for any possible.
Wr(£d/2,p) = PiocalP), giving In order to quantify the nonlocal momentum transfer we
introduce the function

Pf(p)=fd><f dp"Wi(x,p=P")Pioca(P")  (3.29 ‘
A(X):f dp Pnonloca(p)elpxmu (3.29
:f dp’Pi(P=P")Piocal P*): 320 o that by Eq(3.20, V=A(d). We have, by normalization
(3.10,

It follows from the properties of convolutions that the mo-

ments ofP;(p) in this case are determined By,.,(p). For
example, ps=p;+ Proca» Where ps=fdpP;(p)p, etc, and A(0)=J dp Pronlocal P) =1 (3.30
also
_ and also that for alk, |[A(x)|<1, which follows from Eq.
Vflr(p)_vfir(p)+l\éif(p)’ (327 (3.12 sinceA(x)=®(x|0). In Appendix A we show, using
a theorem due to Bod42], that any well-behaved function
where Vag(p)=fdp Py(p)(p—py)?, etc. A(x) satisfying the three conditions
In addition to determining the diffraction pattern of a
single slit(or a mixturd, Pj,c,(p) also determines the broad- A(0)=1, A=V, [AX)|<1 Vx (33D

ening of the diffraction envelope under which the interfer- )

ence fringes lie in the double-slit case. This can be seen 4¥S @ Fourier transform

follows. Provided the slit widtha is much smaller than the 1

slit separatiord, the moments of the final momentum distri- Al — —ikx

bution in the double-slit case are determined solely by the Alk)= \/ﬂf dx & A, (3.32
non-oscillatory parts of the Wigner function around

X=*d/2. The contribution to the total momentum distribu- which cannot have support only on a closed interval
tion from the oscillatory part of the initial Wigner function [—K,K] for any K<arccos(}|)/d. That is to say,

nearx=0 for slits of widtha centered ak= *+d/2 can be

shown to be Ak)#0 for somek, |k|=arccogV)/d, (3.33
a sinap/Zﬁ)z(Coszp_d_ }) (3.28 whereV=|)| as above. Given the relatioi3.29 between
wh\ apl2h 2 2)° ' A(X) and P oniocal P), We can thus say that

All of the moments of this function are zero in a distribu- Proniocal P)#0  for some p, |p|=p,, (3.39
tional sens¢l1]. This is necessarily so because the moments

of this part of the Wigner function are weighted by the normwhere we have defined

of this part. This norn{the integral ofW;(x,p) over all p

andx near ( is strictly zero because it is equal to the prob- pm=arccosV)#/d. (3.3
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This expression fop,, is an improvement over the previ- rollers L L
ous lower bound of (3 V)#/d derived by Storeyet al. [6] x S |
using an earlier theorem due to Bernstgli8]. Our result W
gives a much larger lower bound on the momentum transfer P S | ---------- >
necessary to reduce the visibility slightly below unity. This is -dr 0
not surprising given the durability of interference fringes in
the face of imperfectvelcher Wegnformation, pointed out dou

L ey e path detector
by Wooters and ZurekL4]. In the other limit, if the visibility

is reduced to zero, we have FIG. 2. Diagram of the Einstein recoiling slivelcher Weg
gedankenexperimenthe recoiling slit is the path detector and has
:W_ﬁ (3.36 position X, while the particle has positiox.
Pmn=2d '

O e—

le slit

surement Hence the fact that the there is a numerical factor
compared withz/d derived by Storeyet al. Moreover, our  of /4 rather than 1/2 on the right-hand side is no cause for
lower bound is the greatest lower bound for the cHseV. surprise. As noted above, the relati40 applies only for
This is the case where the measurement decreases the Vigassical momentum kicks for which,,on0cal P) = W(X, p)
ibility of the fringes but does not alter their positiofwhich s a true probability distribution for momentum kicks. For
would be a deterministic effect rather than a random momenquantumwelcher WegschemesP oniocal P) Cannot be inter-
tum disturbance The function preted this way and is not necessarily positive semidefinite.
In those cases the standard deviation may even be zero, as
A(x) =cog arccogV)x/d] (3.37 we will see. Whereas the local momentum disturbance is
usefully characterized by the variance Bf..(p), the vari-
ance ofPoni0caf P) IS NOt a relevant quantity. In general we
gan say only thaP,on0ca(P) must be nonzero for some
satisfyingpd= 7 /2.
In their paperg3-5], Scully et al. quantified momentum
transfer by considering the effect of thewelcher Weg
2 Classical momentum kicks scheme on the momentum distribution of a particle localized

. ] at a single slit. As shown in Sec. Il B 3, this probes the
In the case of classical momentum kicks, we can exten¢homents oPca(P). Scullyet al. demonstrated that the dis-

the result we have just derived as follows. Not only musty,rpance to such a particle can be negligibly small, even
there be some transfer of momentum at least equ@fo  though the same device can destroy the interference fringes
but the root-mean-squared nonlocal momentum transfer Mu§{ the double-slit case. This is possible because in the case of
be at least equal to this amount. This is because any trug guantum momentum transfésuch as in the scheme of

satisfies the three requiremeri&31) for Y=V, and has a
Fourier transform that is zero fde>arccosl/)/d. We shall
show in Sec. IV C that there is a physically realizable perfec
(V=0) welcher Wegxperiment that has a momentum trans-
fer of exactly##/2d in magnitude.

probability distributionP(p) that obeys Scully et al), there can be a nonlocal momentum disturbance
throughP oni0ca( P) despite there being no broadening of the
J dp P(p)eP¥i=y (3.39 diffraction envelope byP,.a(p). This is in contrast to clas-

sical momentum kicks for whiclWy(x,p) is everywhere
positive and independent of. Then the final momentum
distribution is a convolution of the initial momentum distri-
o(p)=arcco$V)#/d. (3.39  bution with a positive distribution of momentum kicksee
Eqg. (2.10] that is equal toN(x,p). As shown abovéEq.

The proof of this theorem is in Appendix B. As shown there, (3.40], the standard deviation of such a classical distribution
any scheme that attains this minimum standard deviation wills necessarily greater than or equalt/2d if the interfer-
also have a momentum disturbance precisely equalfo ence fringes are to be effaced. That is to say, for classical
[15]. welcher Wegschemes, the destruction of interference is al-

For the case where the visibility is zero, we can recast thavays accompanied by broadening of the diffraction envelope
inequality(3.39 in a form resembling the Heisenberg uncer- in line with the uncertainty principle.
tainty relation:

has a standard deviation satisfying

IV. EXAMPLES OF CLASSICAL MOMENTUM KICKS
Th
o(p)o(x)= i (3.40 A. Einstein’s recoiling slit

The oldest example of avelcher Wegmeasurement is
where o(x) =d/2 is the standard deviation in the particle’s Einstein’s recoiling slit. The slit in question is positioned
position. However, the interpretations of the terms on thesuch that the particles must pass through it prior to passing
left-hand side of this equation are quite different from thosethrough the double slits, as shown in Fig. 2. The recoiling slit
in the uncertainty relations derived from the noncommutadis so named because the screen in which it is situated is free
tion of operatorg 16]. Specifically,a(p) is the standard de- to move on rollers. In this manner, the momentum kick given
viation of the distribution of momentum kicks given to the to the slit as the particle heads for either the upper or lower
particle rather than the standard deviation of the distributiorslit in the second screen should enable one to determine
of the particle’s momentunteither before or after the mea- which of these slits it goes through. Measuring the recoiling
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slit momentum will only distinguish the path of the particle
if o, the uncertainty in the position of the sindlecoiling

slit, is very much less thad, the separation of the double
slits. This was shown quantitatively by Tan and W4ll3].
Einstein thought that this scheme would work awelcher
Weg measurement without destroying the interference pat-
tern (and hence that quantum mechanics was incomplete
but Bohr proved him wrong by arguing that for consistency
the recoiling screen must also be treated as a quantum-
mechanical objecfl] so that the uncertainty in the posi-
tion of the recoiling slit is inversely related to the uncertainty
in its momentum. Let the wave function of the recoiling
screen be

o
)

4
o

transfer Wigner function

FIG. 3. Plot of the momentum transfer Wigner function
_ o\ _1/4 B 2 W+ (x,p) for the Einstein recoiling slit. The parameters chosen give
$(X)=(2mo®) " exf — (X/a)/4], 4. a fringe visibility of 1%. As usual, we have=2 andAa=1.

where X is the position of the recoiling slit. The recoiling momentum kick to the particle iB(Lp/Ak)L/7k. That is
screen will be assumed to have infinite mass so that thFo sav. the momentum transfer W? ner function'is
transfer of momentum to it does not alter its position prob- Y 9
ability distribution L 1/ pL\2
W (x,p>=—exp[——(—
Pe(X)=(2ma?)~ Yexd — (X/0)2/2]. (4.2 T ko2 2\ fiko

(4.6

Let the horizontal distance between the first and the sec@d Pronioca(P) = Piocal(P) =Wr(x,p). The standard devia-
ond screen b&>o,d, so that we may use the paraxial ap- ion of the momentum transfer in this case s
proximation. Then the joint wave function for the position of o(p) =fika/L. As shown in Ref[17], the effect of these

the recoiling slitX and the displacement of the particle at the momentum kicks is to reduce the visibility of the interfer-
second slit is ence fringes by a factor

W (x,X) o p(X)expik(x—X)2/2L ], 4.3 V=exd — 3(kod/L)?]. 4.7

wherek is the longitudinal wave number for the particle Thus the initial Gaussian shape of the wave packet for the

(assumed constantAlternatively, we can write recoiling slit means that the fringe visibility can never be
reduced to zero. However, the visibility is reduced to about

W (x,X)cexqgikx?/2L]exd ikX2/2L]1Ox(x). (4.4 1% for kdo/L=3, that is, foro(p)=3#/d. This is well

above the lower bound on the momentum trangfgrre-

The first factor is the phase front of a circular wave in thequired for destruction of interferenc¢8.36). In Fig. 3 we plot

paraxial approximation, which is present regardless of théhe momentum transfer Wigner function for this case.

position of the recoiling slit. The second factor involves only

the slit position and is of unit magnitude, so it is irrelevant to B. Feynman'’s light microscope

the particle. The final factor is the important one: Another familiarwelcher Wegcheme, also considered by

o . Tan and Wall§17], is Feynman'’s light microscope. Here we
Ox(0) = VPe(X)ex —ikXx/L]. 49 follow their presentation and take the particle passing
r{hrough the double slits to be an atom. Immediately after this
passage the atom is illuminated by a photon of momentum
K traveling in thex direction, as shown in Fig. 4. This pho-
ton is assumed to be scattered by the atom in a random

irection, giving a momentum kick to the atom. As shown in
17], the probability distribution for the&t component of the
momentum of the scattered photfoe it circularly or lin-
early polarized is

This is the operator that acts on the particle’s wave functio
given that a particular positioX of the recoiling slit has
been measured.

This result shows that if we measure fasition Xof the
recoiling slit after the particle has passed through, we giv
the particle a classical momentum kick of amplitude
p=—AkX/L rather than finding out which way it weftas
we would from a measurement of the slitttomentumn As
pointed out by Wooters and Zuré¢k4], the subensemble of

atoms conditioned on a particular reskltwill have perfect X4 atom

fringe visibility even though the visibility of the fringes of an I ®

the total ensemble is arbitrarily small. This efféict another ot--@-- i /Kf .............. >
system was subsequently called thguantum eraserby -d/2 RO) z
Scully and Drinl [18]. The applicability of the guantum | TK;

eraser concept to allelcher Wegchemes was discussed by photon

Bhandari[19] and by Tan and Wallg17].
Given the probability density for measuring the recoiling  FIG. 4. Diagram of the Feynman light microscopelcher Weg
slit position (4.2), the probability density for delivering a scheme. The atom scatters a photon in a random direction.
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FIG. 5. Plot of the momentum kick probability distributions for
the three classicahelcher Wegschemes considered. They are the
Einstein recoiling slit from Sec. Il Adashed ling the Feynman
light microscope from Sec. IV Bdash-dotted ling and the mini-
mally disturbing atom optics scheme from Sec. IM<lid line).

Pe(ka = %B(kx/K). (4.8

where

B(u)= 3(1+u?)H(1-u?) (4.9
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resonant classical
standing wave A= F >>d

FIG. 6. Diagram of the minimally disturbingvelcher Weg
scheme. The particle is an atom with two internal states that act as
the welcher Wegdetector. It is initially in the ground stat@own
arrow), but becomes excite(up arrow if it passes through the
upper slit.

effect of a single spontaneous emission on atomic diffraction
and interference patterns, respectively. Very recently, Chap-
man et al. [22] have done likewise using a Mach-Zehnder
atomic interferometer in which the fringes were observed as
a function of the relative positions of the gratings. A photon
of momentumi K was scattered off the atom at a longitudi-
nal position where the distance between the centers of the
two beams wasl. The fringe visibility depends oKd in the
same way as in Eq4.11), and this was verified in the ex-
periment by varyingd. In addition, the lost visibility was
partially regained, in a manner resembling a quantum eraser,
by conditioning the atoms on their coarse-grained position at
the third grating. However, for this technique to work, the

andH is the Heaviside function, which is one for a positive bam width has to be much larger thirso that detection of
argument and zero for a negative argument. In this case, tHge emitted photon could not distinguish between the two

total momentum kick is offset from zero due to the momen-

tum absorbed from the incoming photon:

J

Tan and Walls show that the effect of the momentum
kicks is to reduce the complex visibility to

|

This is an oscillatory function oKd and tends to zero as
Kd—w. Its zeros cannot be found analytically, but numeri-
cally the first zero is found &€d~2.74. ChoosinK to have

p

1
WT(X'p):WB(W_ (41@

3.
— _ aiKd
V 2e

coKd sinKd sian) 41
Kz Ka (ka?) A1

paths taken by the atom even in principgs].

C. A minimally disturbing atom optics scheme

As the final example of a classicaklcher Wegneasure-
ment we here propose a scheme that has the interesting fea-
ture of attaining the lower bound on the momentum transfer
derived in Sec. Il C. The two slits are immediately followed
by a classical standing-wave light field with wavelength
27/K>d. The particle is again taken to be a two-level atom
that is resonant with the light field. In the absence of spon-
taneous emissiofR24], the Hamiltonian for the interaction is

(4.13
Here Q) is the Rabi frequency andr,=|g)(e|+|e){g|,

H=%Qao,siMK(x—xXo)].

this val_ue Wi_II give the minimum_ momentum disturbancewhere|e> and|g) are the excited and ground states of the
compatible with complete destruction of the interference patyiom, respectively. In this case it is the internal states of the

tern. In this case, a perfectly accuratelcher Wegneasure-

atom that act as the measuring apparatus.

ment can in principle be made by detecting the outgoing \ye now choosex,= —d/2 so that the lower slit is at a
photon to be in one of two possible modes, corresponding tQy4e of the field. as shown in Fig. 6. Sinkel>1 we can

the scattering center being at the upper or lower[&lf. In
Fig. 5 we have plotted the transfer Wigner function for
K=2.74/d. The standard deviation for the momentum trans-
fer in this case is

2,742 £

V5 d

f
1.73-,

5 (4.12

o(p)

locally approximate the Hamiltonian as

H=%0QKaoy(x+d/2). (4.14

Let the atom be prepared in the ground state and let the
interaction time bda = 77/2(0Kd, so that at the upper slit the

atom experiences a pulse. Then the final state of the atom

IS

which is greater thap,,~1.57/d.

Recently, preliminary experiments have been made with

the ultimate goal of creating a Feynman light microscope
[20]. Pfauet al.[20] and Clauser and L[21] have shown the

X

'
2d "4

P(x)|x)[9).
(4.15

01

|\1r>=f dx exp[—i(
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a2

-d2 |

quantized microwave
cavities

FIG. 8. Diagram of the five regions involved in our model of the
Scully-Englert-Walthewelcher Wegscheme.

FIG. 7. Diagram of the Scully-Englert-Walthevelcher Weg
scheme. The microwave cavities are initially empty and act as the AS shown in Fig. 7, atoms are allowed to enter the cavity
welcher Wegletectors as the atom deexcites, depositing a photononly through holes in the cavity walls in the region of
x=*d/2. In the experiment considered by Scudyal, all

A measurement of the internal state of the atom in theatoms would pass through these holes because the atoms
o3=|e)(e|—|g)(g| basis determines which way the atom have already been collimated. However, in order to calculate
went. The resulé(o3) = —1 indicates that the atom’s inter- Wr(X,p) we must have some model for what would happen
nal state has not changed from the init@), so its path must to atoms for all possible. For this reason, we divide space
have been via the lower slit and through the node ain thex direction into five regions, as shown in Fig. 8. Two
x=—d/2. The resul(o3) =1 indicates that its path was via of these correspond to the regions in which atoms pass

the upper slit ak=d/2, where the atom becomes excited.
For this system the complementary observabidich
erases thevelcher Wegnformation is o;. In the o; basis

through the cavities and are thereby distinguished. Under
ideal conditions, this measurement can be treated as a pro-
jective measurement on those two regions, with an error of

the two resultsi (o) = + 1 yield the measurement functions order 10 2° as shown by Scullgt al.in Ref.[4]. That is, the
measurement functions will be the characteristic functions of

1 X the regions
O.(X)=—=exp Fiz7]|, (4.19
V2 2d 0.4 (X)=X{a 5)(X), (5.9
where a globali.e., independent of) phase factor has been _
ignored, in the same manner as in E4.5. The functions O-(X)=X(—p,- (%), 52
O.(x) give a momentum kick to the atom of
p. = F#w/2d, respectively. The momentum transfer Wigner Where
function is
1 for a<x<b
X = 5.3
WT(x,p)=%[5< —Z—g +6 p—i—z—g . (417 @™o for x<a or b<x. 2

which is positive semidefinite. Its destruction of the interfer- Atoms Impinging upon the other regions WOUId b_e _a_b-
ence pattern can easily be understood because each momé&Rroed. This could be modeled by transferring an infinite
tum kick shifts the entire fringe pattern by# m/2d, which ~ momentum kick to those atoms so that they would be ex-
is precisely the amount required to move the nodes of ongelled from the paraxial region andi therefore not cont'rlp'ute
shifted pattern onto the antinodes of the other shifted patterd® the final pattern. However, in this experiment the initial
This scheme provides a physical mechanism faveacher state is s_uch that no atoms will impinge upon t_hese three
Weg measurement in which there is no momentum disturother regions, so we can model 'Fhem as three independent
bance greater than the requisite minimumpgi= 7/2d. It transmitting regions without affecting the calculated pattern.

also achieves the minimum classical root-mean-squared mémcl:e "?‘tn abslgrtét_ertwgu:g localt'.Z? Fhet particle on an atotmlc
mentum transfer, given by E¢3.39. scale, it would disturb the particle’s transverse momentum

much more than a transmitter would. Thus we can be confi-
dent that in replacing absorbing regiofugpon which atoms
never fal) by transmitting regions, we are if anything under-
estimating any possible nonlocal momentum transfer. There-

) ) fore, we complete the description of the measurement with
We now consider the experiment proposed by Scullyihe three measurement functions

et al.[3], shown in Fig. 7. This involves two initially empty
microwave cavities with flat mode functions in tkedirec-

V. EXAMPLES OF QUANTUM MOMENTUM TRANSFERS
A. The Scully-Englert-Walther scheme

tion. The atom starts in an excited Rydberg state and the time O 1o(X) = (g )(X), (5.4
of passage through the cavities is chosen so that it undergoes

exactly one-half Rabi cycle, deexciting to another Rydberg Op(X) =X — g.a)(X), (5.5
state and emitting a microwave photon. The presence of this '

photon in either the upper or lower cavity reveals the path of _

the atom. As Scullyet al. have shown, the flatness of the O—we(X¥) = X, g (X). (5.6

mode functions means that this emission causes no local mo-

mentum kick to the atom. The Wigner function forO . (x) is
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FIG. 9. Plot ofWz(x,p) for the Scully-Englert-Walthewelcher FIG. 10. Plot of Wi(x,p) for the Scully-Englert-Walther
Wegscheme fora=d/5=0.4 andg=4d/5=1.6. welcher Wegscheme, withwy(x,p) as in Fig. 9 and the initial
Wigner function as plotted in Fig. 1. As usual, we halre2 and
h=1.

l .
WO+(X:p): _Wﬁf dy vaﬁ)(x-l—y).}t'(a’ﬁ)(x_y)eZ|py/h
the characteristic width oP,gn0ca( P) Must be at least of

:i/’\f f"‘“d 2ipylh orderfi/d, as expected from the uncertainty principle. The
ah aalzepi) | QY fringe visibility can be calculated to be
1 px ipy/h ipd/

+ %‘X‘(a/ZJrB/Z,B) - dy &Py V:f dp Proniocal P)€P" =H(a—d/2), (5.9
1 C2p(Xx—a) whereH(a—d/2) is the Heaviside function, which is zero
= rp earze prSIM— for a<d/2.

The local momentum transfer is described by
1 _2p(B—X)
+ —X a2+ pr2,pSI—"75—. (5.7) 1 3pd
P L Procal(P) = —Sin (5.10
local P) = mp 54 ' .

The other Wigner functions may be evaluated similarly and

are all nonzero only within their respective regions in ¥he where(as in Fig. 9 we are using the parametets= (1/5)d
direction, going to zero at the boundaries between the reyng B=(4/5)d suggested by Scullgt al. This also has a
gions. The total transfer Wigner function is plqtted in Fig. 9. characteristic width of ordef/d, which seems to suggest
We have chosem=(1/5)d and 8=(4/5)d, which are the that a particle passing through one slit would receive some
values suggested by Scult al. in Ref. [4]. As shown in  sort of momentum disturbance in accordance with Heisen-
Sec. Il A, the Wigner function for the final density matrix berg’s uncertainty principle. However, this appearance is il-
W;(x,p) is obtained by convolving the transfer Wigner func- |ysory, as can be verified from the final Wigner function
tion Wr(x,p) with the initial Wigner functionW;(x,p) [EQ.  plotted in Fig. 10. As shown in Sec. Il B 3, the relevant
(3.5)]. For the initial state shown in Fig. 1, the final Wigner guantities that characterize the amount of momentum trans-
function after the measurement of Scuéiyal. is plotted in  ferred byP.,(p) are its moments, not its width. In this case
Fig. 10. As expected, given thateelcher Wegneasurement  the width of the distribution is irrelevant to its moments be-
destroys the interference pattern, the measurement corgayse it is not positive semidefinite. In fact, all of the mo-
pletely effaces the oscillations between the slits in the initialnents of the local momentum transfer functich 10 are
Wigner function. zero, in a distributional sengé&1]. Thus a particle confined
From Fig. 9 it can be seen thil¥r(x,p) is not positive g a single slit will suffer no transverse momentum distur-
semidefinite, demonstrating the quantum nature of this meaance, in agreement with the calculations of Scehyal.
surement, as compared to the classical cases above. The nathis is in contrast tavelcher Wegxperiments with classical

local momentum transfer distribution is momentum kicks, in which the single-slit momentum distri-
1 2pa bution variance must be increased by at least/@d)? if the
Proniocal P) = _SinT' (5.8  double-slit interference pattern is to be destroyed, as shown
in Sec. Il C 2.

This extends over alp and thus satisfies our theorem on the
momentum transfer required to destroy interference fringes
(3.34). Furthermore, it has a characteristic width of order In this section we consider an idealized projective mea-
#/2a (although its standard deviation is zero in a distribu-surement without a particular physical model for the appara-
tional sensg11]). In order to distinguish between atoms at tus. It can be considered as a limiting case of our model of
the two positionsx=*=d/2, o must be less thad/2. Hence the scheme of Scullgt al. in which «—0 andS—o. That

B. Two-valued projective scheme
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stant as a function aof in a region of widtha aroundx=0
(wherea<d is the slit width. For the transfer Wigner func-
tion for the two-valued projective measurement césé3),
this is not the case since the characterigticwidth of
W+(x,p) diverges likefi/|x| asx— 0, which cannot be re-
garded as slowly varying no matter how small is.
Hence the destruction of interference is not by
Proniocal P) = W+(0,p) alone, but byWs(x,p) for —a/2
<x<al2. Providinga<d, the theorem3.34) can be gener-
alized to say that complete destruction of interference re-
P 2 x quires that Wy(x,p) must not be identically zero for
—al2<x<al2 andp>wh/2d. It is clear from Eq(5.13 and
FIG. 11. Plot ofWx(x,p) for a two-valued projectivavelcher  Fig. 11 that this is the case and thatas:0 the transfer
Wegmeasurement. function W+(x,p) becomes wider and flatter. From this con-
text it can again be seen th&,,.ca(P) Should be inter-

is, the which-path measurement regions cover the emtire preted as an infinitely wide, infinitely flat distribution func-
line. In this case there are just two possible measuremenign.

transfer Wigner function
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results¢= =, described by the measurement functions In this two-valued projective measurement, the local mo-
0. (X)=H(£X), (5.19) mentum transfer distribution is

whereH(x) is the Heaviside function as above. The Wigner Proca(P) = isinﬁ_ 5.15

function forO (x) is .

1 Siypl As in the scheme of Scullgt al, this has a characteristic
Wo, (X,p)= %f dy Hix+y)H(x—y)e width of order#i/d, but its moments are all zero. In this case,
it can be verified directly that a particle initially confined to
1 x 2ivpli the positivex axis is unaffected by the measurement. The
_ﬁH(X) fody initial wave function ¢;,(x) of such a particle is 0 for all
x=<0. Hence the initial Wigner function is
1 sin(2px/t)

=—H(X (5.12) 1 X i
h b/ Wi(x,p)= %f dy ¢ (x+y) gi(x—y)e*P'",
The total transfer Wigner function is thus ” (5.16
Wi (x,p)= WipSi 2|;|p. (5.13 From Eq.(5.13), the final Wigner function is
1 (x .
This Wigner function is plotted in Fig. 11 and is identical to Wi (x,p)= %f dy ¥ (x+y) gi(x—y)e? V"
—X

that of Sec. V A in the limita—0 and8— 0.

The nonlocal momentum transfer function is 1 2|x|p’ -,
xf dp’ —sin——e 2PV (517
1 2xp_ 2l T A
Proniocal P) = lim ——=sin——= lim =0.
x| —0 iy The second integral evaluates to 1 if and onljyif<|x|. As

(5.19 is apparent from the first integral, this is true for the initial

. . . state under consideration. Therefore,
This result appears to contradict our theorem stating that

Pronioca(P) # 0 for somep=##/2d. It also fails to satisfy W
the normalization conditio3.10. These violations are arti- Wi(x,p)=Wi(x.p), .13
facts of the infinitely sharp boundary between the two mea
surement regions. The way to interpret the resul
Pronioca(P) =0 is to considerP,gn0cal P) as an infinitely
broad and hence infinitely low distribution. This can be un-
derstood from Eq(5.8) for Pponioca(P) in the scheme of
Scully et al. In the limit asa— 0, this P on0cal P) becomes
infinitely broad and infinitely low, but remains a normalized
distribution. This distribution can transfer arbitrarily large
momenta, as is necessary since the two-valued projective
scheme will destroy the interference fringes no matter how We now consider a recent atom optieglcher Wegpro-
small the slit separatiod becomes. posal, due to Storey, Collett, and W4&JR5], whose analysis

In deriving our theorem regardin®,oniocal P), We as-  we shall draw upon here. An atom is prepared in the ground
sumed in Sec. lll B 2 tha¥V{(x,p) was approximately con- state, passes through two slitsxat = d/2, and then passes

So that the particle state is unchanged. Thus there is no mo-
tmentum disturbance to a particle passing through one slit, as
expected given that a projective measurement would have no
effect if one already knew that the particle was on one side of
the x=0 plane. A similar calculation could also be carried
out for the scheme of Sec. V A.

C. The Storey-Collett-Walls scheme
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FIG. 12. Diagram of the Storey-Collett-Wallwelcher Weg
scheme. The atom remains in the ground state and produees a
phase shift on the field if it passes through the antinode and no (5.21
phase shift if it passes through the node.

Xexginm sin2K(x—Xq)sin2Ky].

This integral evaluates to zero unlggiK is an integer,
in which case the integrand is periodic in

through a standing-wave light field of wave number ~ 7/2K<y<m/2K. Using

K=/2d positioned so that the upper slit is in front of a oK
node and the lower an antinode, as shown in Fig. 12. When J”
the standing-wave frequency is detuned, by a large positive —m/2K
A, from the atomic transition frequency, the atom remains in
the ground state throughout, but imparts a position-
dependent phase shift to the field. As explaine@Hl], in a
frame rotating at the field frequency, the effective interactio
Hamiltonian in the regime of large detuning is

dy cogn7 sin2K(X—Xq)sin2Ky —m2Ky/]
=K1 (n7 sin2K(x—Xp)), (5.22

pwhereJy, is a Bessel function of integer order, we have

2 Wo (X,p) e o 5(2pd+ J ks
0,(X,p)= m|J,l N7 cos—|.
H=ﬁ|i—|o3aTaco§K(x—xo)+hA03, (5.19 AKnl m S\ Aw ?5 2

We have substitutedxo=— w/4 andKd= /2 and are us-
where g is the one-photon Rabi frequency anding the convention that the sum is over all integers unless
Kxo=—Kd/2= —7/4. After an interaction time, the first  otherwise indicated.
term in this Hamiltonian will have changed the phase of the The total momentum transfer Wigner function is the sum

standing wave by an amounig{?t/A) coSK(x—xg). over all photon numbers:

If the atom passes through a node, there is no phase shift,
whereas if the atom passes through an antinode the phase % _ —la? 2 || " 5 m_,n-ﬁ 5 X
the field alters by an amoutg|?t/A. By choosing the inter- Tx.p)=e nSom N 2d |~m\ N7 oS
action time so that the difference between the optical phase (5.24

change induced by the two atomic pathszs:|g|?t/A, a

phase-sensitive measurement of the field can aciasdaher At the slits, wherex=+d/2, the argument of the Bessel
Wegmeasurement for the atom. In order for this to work, thefunctions is identically zero for alh, so

initial state must have a well-defined phase, and in &S]

it is chosen to be a coherent stéte . In this case the fringe

visibility is given by the inner product of the final states Plocal(p)zé o(p+mhK)JIn(0)=46(p), (5.29
entangled with the atomic position,

and there is absolutely no local momentum disturbance. This
example is a clear demonstration that nonlocal momentum
transfer is sufficient to destroy interference patterns. Figure
13 showsW+(x,p) for «=3/2, chosen to give an uncondi-
. ) ) . ) tioned fringe visibility of about 1%Eq. (5.20]. As this plot
which, as fqr the Einstein recoiling slit of Sec. IV A, can shows,Wy(x,p) is not positive semidefinite, and this is true
never be strictly zero. for all «. The asymmetry ip for this transfer Wigner func-
For « real, awelcher Wegneasurement can be performed tion favors negative momentum transfers in the region be-
by measuring the real quadrature of the field, while measurtween the slits. This can be understood in that an atom pass-
ing the imaginary quadrature effects a quantum erB38  ing through the antinode at the lower slit experiences a
Counting the number of photons in the field also constitutepositive potential that retardse., makes more negativés
a quantum eraser measurement since all phase informationtesmporal phase relative to one passing through the node at
destroyed in the process. Unlike quadrature measurementkie upper slit. This phase differential would tend to “kick”
this measurement has a discrete basis, so we choose it &#m atom passing between these two points towards negative
order to calculate the transfer Wigner functions. We find  x, but it is certainly not a classical kick. As is apparent from

V=N al- a)|=exq —2|al?], (5.20
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o,=+1 corresponds to it being in the state
1/J2(|g)+i|e)) and having taken the lower path.

g As in earlier sections, it is easier to calculate the Wigner
< functions in the basis that erases thelcher Wegnforma-
§’ tion, in this case ther; basis. The two possible outcomes
5 from measuringr; are described by
§ 1 T
Oi(x)=tﬁex Ilzsme . (5.28
b 4 X The Wigner function foiO, (x) is
FIG. 13. Plot ofWy(x,p) for the Storey-Collett-Wallsvelcher 1 T i 2ipy
- Lo T\X,p) 1o 4 : Wo (X,p)==— | dy expi—=coKx sinKy+ ——|.
Wegscheme. As usual, the slits are locatecat=1. The heights + 27 h 2 h
have been scaled such thasdunction has height 1. We have not (5.29
plotted those points whei+(x,p) =0 in order to display the func-
tion more clearly. Using the same technique as in Sec. V C we find
Fig. 13, the nonlocal momentum transfer is certainly wide 1 1 m
enough to satisfy the theore(8.34). W0+(X’p)_§§ S| pH+5MAK | Jy| COKX].
(5.30

D. Scheme with non-negative but nonclassicalV+(x,p)

We now consider an alternative methodvaglcher Weg The Wigner function for the other measurement outcome is

detection of an atom initially in the ground state. In this case, 1 -

the slits are immediately in front of two adjacent antinodes Wo (X,p)=2, 5( p+ —mhK)Jm - —cost).

of a resonant standing-wave classical light field of wave - m 2 2

numberK = 7/d, as shown in Fig. 14. Ignoring spontaneous (5.30

emission[24], the Hamiltonian describing the atom-field in-

teraction isH=7%{;sinKx, so evolution of the state of the  For evenm, Ju(y)=Jn(—y), whereas for oddm,

atom while in the field is described by the unitary time evo-Jm(Y)=—Jm(—Y), so in addingWo_(x,p) andWo_(X,p)

lution operator to obtainW+(x,p), the odd terms vanish. The total momen-
tum transfer Wigner function is

U(t)=exd —iQto,sinKx]. (5.26
o X
To make a perfeawvelcher Wegneasurement the interaction WT(x,p):2 S(p+ma/d) J2m<§co d )
time is taken to belt=7r/4. This produces orthogonal in- m 53
ternal states of the atom at the upper and lower slits. The (5.32

final state of the atom is where the substitutioK d= 7r has been made. This is plotted

in Fig. 14. Since the modulus of the argument of the Bessel
H(x)|x)|g). (5.27) functions is bounded byr/2, each term in the sum of Eq.
(5.32 is non-negative. Therefore, thig/;(x,p) is non-
) ) ) _negative everywhere, a feature different from the preceding
To determine which way the atom went, the internal state iuantum schemes. Nevertheless, tMg(x,p) cannot be in-
measured in theo,=i[g)(e|—ile)(g| basis. The result terpreted in a classical way as a probability distribution for
o,=—1 corresponds to the atom being in the stateygsition-dependent local momentum kicks. This is because
12(lg)—ile)) and having taken the upper path andthe momentum transfer at the slits is zefavith
Pioca(P) = 48(p) as in Sec. V { so that the destruction of
X interference can only be understood in terms of the nonlocal
| « momentum transfer in the region between the slits. Hence we

v
|‘If>:j dx ex;{ =i ZolsinKx

a2 conclude that the positivity of the transfer Wigner function is

dn A e @ z not sufficient for it to have an interpretation in terms of clas-
I sical momentum kicks; this example reaffirms the definition

resonant classical for classical momentum kicks established in Sec. Il.

standing wave K=2 The nonlocal momentum transfer functionxat O is
FIG. 14. Diagram of thevelcher Wegscheme of Sec. V D. The Proniocal P) = > S(p+matild)Jon(w/2).  (5.33
atom begins in the ground state and its internal states act as the m

welcher Wegdetectors. A left arrow denotes a state with= + 1
and a right arrow one witlkr,= —1. As is apparent from Fig. 15, this is well approximated by
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state with a well-defined initial momentum will necessarily
have a sufficiently wide position distribution that the nega-
“ tive parts ofW(x,p) are smeared out so that the final mo-
il mentum distribution is non-negative.
i Since exact momentum transfers can only be observed if
' the initial state has no momentum spread, one could argue
i that the best way to define the momentum transfer distribu-
] H ) tion function of anywelcher Wegscheme is to calculate the
WW\\i\\ﬂ\mww»' final momentum distribution of a state initially in the eigen-
=2 statep=0. This means the initial wave function is flat in
position and the initial Wigner function i8V;(x,p) < d(p).
Thus the final Wigner function is

o o o
B @

transfer Wigner function

o
)

=]
v

.umllﬂ\mmmm!‘ i .

-4 2

Wf(xlp)OCWT(X!p) (61)

FIG. 15. Plot ofW(x,p) for the welcher Wegscheme of Sec.
V D. As in Fig. 13, a height of unity representgdunction, and the
slits are located at=*+1.

and the final momentum distribution is the margipatlis-
tribution for Wr(x,p),

1 1 1 PT(p)Mf dx Wr(x,p). (6.2
Pnonlocaf P) =~ 2 o(p+mhld)+ 55(p)+ Zé(p_ mhl/d).

(5.34 Itis simple to show further that

This destroys the interference pattern by adding two 1/4 J dx Wi(x,p)= > |5§(p)|2, 6.3
height patterns in antiphase with the original pattern to a &
1/2 height replica of the original pattern. This can be com- ) )
pared with the explanation for the destruction of interference© thatP+(p) can be defined independently of the momen-
in Sec. IV C, but it must be remembered that in contrast tgum transfer Wigner function. The theorem of Storetyal.
that classical case, the quantum scheme presented here deat at least on@®,(p) must be nonzero for some>7/d
stroys the interference pattern without broadening the dif{6], together with Eq(6.3), implies thatP+(p) must obey
fraction envelope. the same constraint, provided the integrals exist. By using

We have conclusively shown that a nonlocal momentunihe theorem of Boas rather than Bernstein, as we have done
disturbance is all that is required to destroy the interferencé Sec. Ill C 1, this lower bound can be increased frbf
pattern. In Appendix C we use this example to show that théo 77/2d.
converse is true as well: the interference pattern may be com- For the case of classical momentum kicks
pletely preserved even if there are local momentum transfer®1(P) = Piocal(P) = Pnoniocal P), SO We already knowP(p)

for these cases. The quantum cases are more interesting. In

VI. EXPERIMENTAL SIGNATURES the case of the two-valued projective measurement of Sec.

OF NONLOCAL MOMENTUM TRANSFER VB,
While the transfer Wigner functiokV{(x,p) is unparal- _ f i _2|x|p
leled in its ability to represent anyelcher Wegmeasure- Pr(p)=N dxprI h’ 6.4

ment experiment in terms of momentum disturbance, it is not
directly discernible from the results of experiments. In thiswhere the constant of proportionality is required for nor-
section we look more closely at the experimental signatureg1alization. Since the integral is divergent, a distributional
of the variouswelcher Wegschemes we have investigated. approach is required. We introduce an apodization function,
such az 2" in the integrand, carry out the normalization,
A. Momentum transfer to a momentum eigenstate gnd finally lety—0 e_lfter calculating physical quantities of
interest. Thus we write

The reason the transfer Wigner functit(x,p) is not i
experimentally observable is that it is only a pseudoprobabil- 1 2xjp _
ity distribution function. This is highlighted by the fact that it Pr(ply)=N f dxsin—=—¢e 2K 89
is not always positive semidefinitsee Secs. VA-V § so
cannot strictly be interpreted as the probability for a particlewhich after normalization yields
at positionx to receive a momentum kick of magnitugelt
would be a cause for considerable alarm if one could put a P 1 Ay
particle at positiorx and observe that it has a negative prob- T(ply)= 7 PP+ hZy2
ability for receiving certain momentum kicks. Physically, the
reason that one cannot do this is that if one were to localiz&or every nonzero value of, this function is not supported
a particle to a point then its momentum uncertainty wouldonly in the interval[ — wA/2d,7#/2d], as required by the
become infinite. Hence there would be no possible way irtheorem. Furthermore, all even momentsPg{p|y) are in-
which any momentum disturbance could be detected. Anyinite, indicating that an infinite amount of momentum uncer-

(6.6
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tainty is introduced. These results do not depend on the exagbey the same integral conditid8.20 as P onoca(P). That

form of the apodization function used. is, if there is to be complete destruction of interference in the
In the limit y—0, althoughP+(p|y) formally tends to the two-slit case, then

distributional limit 5(p), this must be interpreted carefully,
since the support and variance obafunction” depend on ipd
the sequence of functions that are used to approximate to it, j e Pr(p)dp=0. (6.9
and are not well-defined concepts in general. These problems
are not present in thé functions that appear iwW+-(x,p) for In the quantum cases, this need not hold. In fact, in the
the schemes analyzed in Secs. IVC, V C and V D becausgvo-valued projective measurement and the Scully-Englert-
the measurement wave functio@(x) in those cases are Walther scheme, the integral evaluatestd®, which goes
smooth functions ok, unlike theO. (x)=H(%Xx) for the  to unity as the apodization parametegoes to 0. The other
two-valued projective case. The physical significance of thejuantum cases are less extreme, but both give a nonzero
infinite variance of the result obtained above by apodizatiorresult for the integral in Eq6.9). This shows thaP(p) can
[Eq. (6.6)] is that for any initial state that is close to a mo- distinguish between quantum and classical momentum trans-
mentum eigenstatéand, in particular, that could have an fers, at least for the examples considered in this paper.
arbitrarily small momentum variangethe output state will
have an infinite momentum variance. This can be verified by
direct calculation from the measurement wave functions
0. (x) for the two-valued projective measuremébtll). Although the momentum transferred to a momentum
The scheme of Scullgt al. in Sec. V A also leads to a €igenstate, with the distributioR+(p), may be able to dis-
divergent integra| forPT(p) similar to Eq(64) because of tingUiSh quantum and classical momentum transfers, this is a
the assumed infinite extent of the apparatus. Regularizinggther indirect signature. As we have discussed above, how-
that integral in a similar way leads to the same results that fopVer, there is a direct signature in the interference pattern
all nonzero values O’f/, PT(p|7) is not Supported On|y in the itself, in that .ClaSS!Cal momentum kicks will necessarlly
interval [—#/2d,w%#/2d] and all even moments of broaden the diffraction envelope whereas quantum momen-
P+(p|y) are infinite. Again, this indicates that the root- tum transfers need not. This is most apparent if one allows
mean-square momentum transferred by the apparatus H’fe ratio of the slit widtha to the slit Separatlod to be finite
Scully et al. to a momentum eigenstate is infinite. rather than tending to zero as we have assumed in all previ-
The other two quantum schemes we considered are n&us analyses. The Simplest cases to look at are the m|n|ma”y
pathological because their apparatuses are smooth and pefisturbing atom optics scheme of Sec. IV.C and the two-
odic in x. For the scheme of Sec. V C, based on an optica¥@luéd projective measurement of Sec. V B. The other quan-
phase measurement, the momentum transferpfermzik  tUm and classical cases are very similar. _
with m odd will average to zero, as can be verified from Eq. _ The initial state of a particle emerging from double slits of
(5.24. This makes the distributioR+(p) nonzero only for ~Width a is
momentum transfers equal to even multiples of the photon
momentum, as expected for diffraction from a far-detuned
standing wavé26]. For the scheme of Sec. V DY;(x,p) is
nowhere negative so that there will be no cancellation of

B. Form of the momentum distribution

1
i(X) = E [ X —dr2—ar2,— dr2+ar2)(X)

momentum transfers. In this case the marginal distribution is + Xdiz— a2, diz+ a2 (X) 1, (6.10
whereX(x) denotes a characteristic function as in Sec. V A.
P(p)=S 8(p—mhmld) J' dx JZm(ECO . ) In momentum space this superposition becomes
m

(6.7) ~ [a sifap/2k] pd
i(p)= %WCO%, (6.12)

This clearly does give momentum transfer in excess of
pm="7%m/2d. The integrals can be evaluated numerically andso the initial momentum probability distribution is

the standard deviation of the total momentum disturbance is
Pi(p)xsin({p)cog(mpld). (6.12
or(p)~1.74/d. 6.8 Here we have scaled asg =p/p,, anda as {=a/4d and
introduced sink= (rx) ~ 1sinmx. We have plotted this distri-
The fact thatP+(p) is nonzero for some= =#/2d for all bution fora=0.4d in Fig. 16. It describes a double-slit in-
cases suggests that the momentum transferred to a momegsference pattern within a single-slit diffraction envelope.
tum eigenstate is insensitive to the distinction between quan- For the classical case of Sec. IV C the particle receives
tum and classical momentum transfers. However, this is nowvith equal probability momentum kicks aof /i 7/2d. This
necessarily the case. For thvelcher Wegchemes with clas- transforms the wave functiof6.11) into
sical momentum transfeR+(p) = Poniocal P). This means _
that not only must there be some momentum transfer to a Yyo(p)esindl(p+1)]co§m(p+1)/4]. (6.13
momentum eigenstate greater thmp= 774/2d, but the prob-
ability distribution P(p) for that momentum transfer must The final momentum distribution is
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C. The Aharonov-Bohm effect

There is an interesting analogy between the analysis of
this section and the nonlocality of the Aharonov-Bohm effect
[27,28. Aharonov and Bohm presented two versions of their
effect: a magnetic one and an electric $8&|. In the former
(which is better knowna magnetic solenoid is placed be-
tween the two slits, with its axis perpendicular to the line of
the slits and the longitudinal motion of the particle. Even
though the magnetic field is zero in the region of the slits, it
nevertheless influences the interference fringes if the particle
is charged. Rather than destroying the fringes, the magnetic
field inside the solenoid merely induces a phase shift of
¢=(elhc)AB, where A is the cross-sectional area of the
solenoid and the magnetic field strength.

As pointed out by Boyef29] and Fearrj30], the diagram

0.9F
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final momentum distributions
o o © © o ©
N (<] B (< [=2] ~
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FIG. 16. Plot of final momentum distributions for the case of no howi his fri hitt in th | .
measurement(identical to the initial momentum distributipn showing this fringe shift in the Feynman lecturg&l] is

(dashed ling a nonlocal quantum schenfiaie projective measure- WONg- The error is_ that the entire interference pattern is_
ment of Sec. V B (dash-dotted ling and a local classical scheme ShOwn as being shifted, whereas what actually happens is
(the minimally disturbing measurement of Sec. IY Golid line). that the interference fringes mowéthin the diffraction en-

The momentum is scaled @s=2pd/# so that the minimum dis- V€lOpe, which stays constant. We bring this up in order to
turbance is to change by +1. The slits have widtta=0.4d. make the connection with our current work. A classical mo-
mentum transfer due to a deterministic force from a local
1 p electromagnetic field would result in a shift of the entire
Pi(p)x E{sinc?[g(g)— 1)]-sin¢[{(p+ 1)]}sin7 pattern, in the same way as a classical or lagalcher Weg
measurement smears the entire pattern. By contrast, the
1 Aharonov-Bohm effect, like a quantum or nonlogadicher
+ E{sinc?[g(p—1)]+sincz[§(g;+1)]}. (6.14  Weg measurement, affects only the interference fringes
themselves.
o o For comparison with thewelcher Wegschemes, the
In the limit of zero slit width,{ —0 and the second term here anaronov-Bohm effect can also be described using the
becomgs equal to unity while t_he first vanishes. For nonzerQyigner function formalism, at least phenomenologically.
{ the first term does not vanish and so there are residugteating the longitudinal motion of the electron classically as
interference fringes. This is because the momentum k'CkﬁsuaI, the effect of the solenoid a0 can be modeled as
destroy interference between points in the wave function Fiving a relative phase shift ap between all particles with
distance exactlyl apart, but the initial particle wave function y 4 304 all particles with«>0. This is effected by multi-
has coherences at all distances betwegtera andd+a. The plying the particle wave function by

distribution (6.14) is also plotted in Fig. 16. Note that the

first zero of the single-slit diffraction pattern has been filled O4(X)=H(x)€'*+H(—x), (6.19

in by the momentum kicks. This smearing of the diffraction

envelope is the signature of the local momentum kicks.  the momentum transfer Wigner function of which can be
The quantum cases give a quite different result. The proevaluated using the theory of distributions to be

jective measurement of Sec. V B determines whether or not

the particle goes above or below the center paint0. The s B sin(2p|x|/%)
wave function after the measurement is thus Wr(x,p)=o(p)cosp+ P (1-cosp)
cog2px/h)
1 + ————sing, 6.1
P (X)= ﬁx(td/Z—alz,td/2+a/2)(x)- (6.15 4 619

_ _ _ where have useW{‘-’(x,p) for W%(x,p). It can be verified
where the resultt denotes the sign of in the appropriate  that this is normalized as usual for ali-0. The nonlocal
half line. Both of these wave functions have the momentuny,omentum transfer function is found by setting O to get
distribution characteristic of single-slit diffraction, so the far-

field pattern is Pioniocal P) = 8(p)cosp+ (wp) “'sing.  (6.19

Pi(p)ecsiné(Lp), (6.16  This is not normalizabléan artifact of the infinitely sharp
boundary, as in Sec. V)Bbut does give the correct complex
which is shown in Fig. 16. This shows that a quantumvisibility
welcher Wegscheme can destroy the interference pattern
without altering the diffraction pattern at all. This is an un- . iod/h PR
ambiguous experimental signature of the nonlocal nature of V‘f dp P [ §(p)cosp+(mp) sing]=e'?.
the momentum transfer in suetelcher Wegschemes. (6.20
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FIG. 17. Plot of Wy(x,p) for the Aharonov-Bohm effect, in
which the phase differenceé between the upper and lower half
planes is(a) #/2 and(b) —#/2. The function diverges ag—0
from above and below.

For the casegh= * 7/2, Eq.(6.18 gives the momentum
transfer Wigner functions

Wz ™(x,p) =

v2 (ZF;JX| iz). 6.21)

ﬂ_—psm 2
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FIG. 18. Diagram of the electric Aharonov-Bohm effect.

rather than the magnetic, Aharonov-Bohm effigd#]. In this
version the two paths the electron may take pass through
hollow conducting cylinders as shown in Fig. 18. While the
electron wave packet is wholly enclosed within the cylinders,
a voltage source is switched on, creating a potential differ-
enceV between the two cylinders. This remains on for time
t, giving a phase difference ap=eVt# between the two
paths. The voltage must be turned off before the wave pack-
ets exit the cylinders. This ensures that the electron never
passes through a spatially varying potential and hence never
experiences an electric field. Thus, as in the magnetic ver-
sion, the phase difference is a nonlocal, topological effect not
due to any local electromagnetic forces.

To justify a strict analogy with the Aharonov-Bohm ef-
fect, the nonlocalvelcher Wegneasurements analyzed here
would have to be implemented in such a way that the particle
never experiences any potential gradients. Otherwise, one
could see the effect of a measurement on a particle traveling
through a single slit: even though the particle leaves the re-
gion of the potential with the same velocity with which it
entered, the position of its wave packet would be retarded or
advanced in addition to its phase being retarded or advanced.
This can be avoided in the same way as in the electric
Aharonov-Bohm effect. The coupling to the apparatus would
be turned on only when the patrticle is in the region where

These are plotted in Fig. 17. There are obvious similarities tdhat coupling is constant as a function of longitudinal posi-
the transfer function for the two-valued projective measuretion and turned off before it leaves that region. For our pro-

ment of Sec. V B. Indeed, for alp,

1 2|x|p

1
S IWROGP) + W T p) 1= osin—, (622

which is equal toW+(x,p) for the projective casé5.13.

posal of Sec. VD it is easy to see how this can be done; the
classical standing wave that couples the position of the atom
to the apparatusits internal statéscan be created and re-
moved simply by controlling the direction of a laser beam.
This technique has already been used experimentally to con-
trol interaction times of slow-moving atoms in laser fields

This is because adding one fringe pattern to its antiphasgg2]. For the other nonclassical schemes of Sec. V it is less
pattern effaces the fringes. This is directly relevant to thepbvious how this switching might be achieved, but it is pre-

Scully-Englert-Walther scheme of Sec. V A. In order to find sumably possible.
out which path the atom took, one would measure which
microwave cavity contained the photon. In terms of the pho-
ton number states of the cavities this would have the mea-
surement basi$|04)|1,),/1,)|0,)}. On the other hand, as  The destruction of interference fringes innelcher Weg
pointed out by Scullyet al. [3], measurement in a comple- measurement must be accompanied by some momentum
mentary basis such ag0,)|1,)*+i|1,)|0,)} constitutes a transfer at least equalling,,= w#/2d. In the older, well-
guantum eraser. In this case one sees perfect fringes, shiftidownwelcher Wegchemes this momentum transfer can be
by 7/2 or —=/2. In the limit where the scheme of Scully interpreted as random classical momentum kicks, with the
et al. approaches the two-valued projective measurement, thgarticle’s momentum probability distribution being con-
transfer Wigner functions for these two results are preciselyolved with a momentum transfer probability distribution. In
those plotted here for the Aharonov-Bohm effect. In fact, thethese casep,, is also the minimum for the standard devia-
Scully-Englert-Walther scheme has been analyzed by Bhartion of the momentum transfer distribution. In some more
dari in terms of a random geometric phd4é)]. recent schemes this picture fails and the momentum distur-
The phenomenological treatment of the Aharonov-Bohnmbance requires a quantum-mechanical description, in terms
effect through Eq(6.17) describes more closely the electric, of amplitudes rather than probabilities.

VIl. CONCLUSION
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The Wigner function formalism allows both quantum and A(0)=1, A(d)=V, JAX)|<1 Vx (A1)
classical momentum transfer to be treated on the same foot-
ing. The momentum transfer Wigner functidi(x,p), al- is contained inB(K) for any K<arccosy)/d, where
though it may be negative in places, formally plays the rolev=|V|<1.
of the probability distribution for a particle at positionto Proof. Let A(x) e B(K) satisfy the three condition@\1).
receive a momentum transfpr In this formalism the inter- Now let f(x)=ReA(x). Then f(x) e B(K) and from the
ference fringes are destroyed by convolution with the mo{emma
mentum transfer function midway between the slits rather

than at the slits. It is this nonlocal transfer function that we f/(x)
have shown must be nonzero for sop® p,,. miK VX.

For welcher Wegschemes involving classical momentum

transfer,Wr(x,p) is nqn-negaﬂve and mdependeanfso Consider the smallest positiwg for which f(x;) =V. Define

that the momentum disturbance that destroys the interferencé :
. a new function

also acts locally, at the slits. Thus one can treat the destruc-

tion of the fringes as if it were a local effect. However, for

guantum cases the momentum disturbance at the slits can be

precisely zero. We conclude that the momentum transfer ifhen F(0)=0 andF(x,) =arccod. For x e (0x;)

these cases is inherently nonlocal. It is interesting to note that

F(x)=arccos$(x).

the positivity of the transfer Wigner function is not an indi- £/ (x)
cation of its classicality; we propose a scheme in which F'(X)= ——==<
W(x,p) is nowhere negative but equal¥p) at the slit VI-[f(x)]°
positions.

One experimental signature of the distinction between lodn this region F(x)<Kx so thatx,;=>arccosy)/K. Since
cal and nonlocal momentum transfer can be seen for the sift(d)=V, f(d)<V and sod=x;. Thus K=arccosV)/d,
width a finite relative to the slit separatiah When classical completing the proof. -
momentum kicks destroy the interference fringes, the entire For the physical situations we considéi(k) is no more
pattern is smeared, including the diffraction pattern due tgingular than a function. Therefore, we can conclude that
the finitea. For quantumwelcher Wegchemes the interfer- A(k) is not supported only on [—K,K] for
ence fringes can be destroyed without altering the diffractiorK <arccosy{/)/d. For the caseV=V=0 the function
envelope at all. There is a close analogy to the AharonovA(x)=cogarccosy)x/d] satisfies the three conditiorid1)
Bohm effect, in which the interference fringes move within and is of classB(K) for K=arccos¥)/d. In particular, the
the diffraction envelope, in the absence of any electromaglower boundw/2d for V=0 is in fact the minimum.
netic forces. That the Aharonov-Bohm effect is almost uni-
v_ersally recognized as a r_lo_nl_o_cal quantum phenomenon in- APPENDIX B
dicates that the loss of visibility without local momentum
kicks in somewelcher Wegchemes should also be regarded Theorem Any non-negative functiorP(k) satisfying the
in this way. conditions
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Let the Fourier transform oA(x) be denoted where k_:fdk P(k)k and V=|V|<1. Furthermore, the
- 1 . equality can be achieved for any
A(k)= ﬂf dx e M*A(x). Proof. If V=V, then a symmetric distributiofsatisfying
P(k)=P(—Kk)] will minimize the variance. In this case
We define3(K) to be the class of all function&(x) such k=0 and
that A(k) is no more singular than & function and is sup-

ported only on the closed intervak K, K]. o?=Ep[k?], V=Ep[cogkd)], (B1)
lf()lz)e|r2n11a‘vL’§F tl-(r)]?; B(K) be a real function ok satisfying where Ep[ 7] denotes the expectation value of a random
variable (k) with respect to the probability distribution
[f'(x)]P+KAF(X)]°<K? Vx. P(Kk). It is easy to verify thati) 7?=[arccos(cosg)]? for all
real » and (ii) the functionf(7)=(arccos)? is convex on
Proof. See[12]. the domain— 1< »=<1. It follows that for any random vari-

Theorem No complex functionA(x) satisfying the con- able », f(E[7])<E[f(%)]. Using n(k)=coskd) e(—1,1)
ditions we thus have
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is the same as in the configuration of Sec. V D. From the plot
of this function in Fig. 15 it can be seen that in this case there
are local momentum transfers at the slits, but no disturbance
midway between the slitéat x=d/2). Thus the interference
pattern remains intact, even though the single-slit diffraction
pattern will be smeared by the local momentum transfers.
This can be understood intuitively as follows. The atoms
are initially in the ground state, which is a superposition of
h the eigenstatekt) of o,. These eigenstates experience the

P(k) replaced byQ(k). This completes the proof. HamilltonianH fthﬂ sinkKx. At the lower slit (xf 0), the
The equality holds if the probability density of che is !+) eigenstate is deflected downwa_rd_ and |the) eigenstate
a & function, which is the case if the probability density of iS deflected upward. The upper slit is a mirror image, re-

Kk consists of twod functions symmetrically placed about flected in the plane=d/2. Thus the|+) component of the
K. atomic wave function will still form a symmetric interfer-

ence pattern, as will the—) component. Thé+) compo-
nent does not interfere with tHe-) component, so the net

. result is that the interference frin re still perfect an m-
To show that an interference pattern may be completel esutis € interference fringes are still perfect and sy

. . . etric. This is despite the fact that the local momentum
preserved even if there is a local momentum disturbance, Wt?ansfer distributiorjwhich for this configuration is equal to
consider the experiment described in Fig. 14, but with the 9 q

slits placed ak=0 andx=d (that is at the nodes rather than the nonlocal distribution for thevelcher Wegconfiguration,

the antinodes This configuration cannot be used to make adVen in EQ. (5.33] has a standard deviation of
welcher Wegneasurement, but the transfer Wigner functionlocalP) = 2.47/d.

(arcco$Ep[ cogkd)})?><Ep({arccogcog kd)]}?)
<Ep(K2d?),

where we have used propeffy. Substituting the definitions
(B1) into this inequality yields the desired result.

If V#V, define Q(k)=P(k+arg()V)/d) so that
Jdk Q(k)e'k?=V. Then for a minimum variance we require
that Q(k)=Q(—k) so that k=-arg())/d and
o?=[dk Q(k)k2. The argument then follows as above wit
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