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Resonance formation of hydrogenic levels in front of metal surfaces
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The electronic self-energy of hydrogenic ions interacting with a jellium metal surface is studied within the
fixed-ion approximation. A model framework is introduced that allows for the efficient computation of the
complex~non-Hermitian! self-energy matrix in a large space of~bound! hydrogenic states. For the specific case
of protons interacting with an aluminum surface, resonance energies and widths of dressed ionic states are
obtained by diagonalizing the self-energy matrix. The hybridization properties of the dressed ionic states are
analyzed. The self-energy of individual dressed states is found to converge rapidly with increasing dimension
of the space of unperturbed hydrogen states. The resonance energies are compared to~1! energies obtained by
diagonalizing only the direct couplings among the hydrogen states and~2! the real part of the diabatic~diag-
onal! self-energy. This comparison demonstrates the pronounced effect that indirect couplings between hydro-
gen states via conduction band states have on the resonance energies at intermediate and small ion-surface
distances. Our results for incident protons are confronted with the results of other~perturbative and nonper-
turbative! calculations of level shifts and widths in proton-surface interactions. Although we use a simplified
electronic potential, we find good agreement with calculations employing more refined potentials.
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I. INTRODUCTION

In the past, considerable interest has been devoted to
detailed study of electronic processes that take place in i
metal-surface interactions. On the experimental side, the
phasis has been on cases involving highly charged ions
large number of sophisticated investigations have dealt w
the formation of hollow-atom states by resonant elect
capture and the observation of their decay by means of h
resolution Auger electron spectroscopy@1–3#, with the for-
mation of negative ions@4#, with angular and charge stat
distributions of ions scattered from a single-crystal surfa
@5,6#, and with the image charge attraction of ions in front
metal surfaces@7,8#.

On the theoretical side, there is still a lack of managea
~time-dependent! dynamical theories taking into accou
both single-particle~excitation, resonant neutralization, an
ionization! and many-particle effects~Auger deexcitation,
Auger neutralization, plasmon excitation!. Extreme difficul-
ties with the formulation and implementation of such the
ries arise from the inherent complexity of the many-elect
problem. One therefore has to resort to simpler models.
glecting two-electron processes~which are supposed to be o
minor importance at not too small ion-surface distances! and
adopting a jellium description of the metal, a variety of th
oretical studies have been undertaken both within the fix
ion approximation and by approximately solving the tim
dependent Schro¨dinger equation. Perturbative calculatio
have been performed by Gadzuk@9# and Remy@10#, and
more recently by Thumm and Briggs@11,12#, Thumm
@13,14#, Wille @15–21#, and Kürpick and Thumm @22#.
Closed-form expressions for electron-transfer matrix e
ments as well as universal scaling properties of transi
561050-2947/97/56~1!/543~12!/$10.00
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rates were derived and analyzed by Wille@15,20# and by
Kürpick and Thumm@22#. Nonperturbative approaches hav
been pursued by various groups using the self-energy c
cept @23,24#, the time-dependent Newns-Anderson form
ism @25,26#, the coupled-angular-mode method@27–30#, the
complex-scaling method@31,32#, a close-coupling method
based on generalized Wannier functions@33#, the stabiliza-
tion method@34,35~a!#, a multicenter Gaussian basis expa
sion method@36#, a simplified close-coupling method@37#,
and a linear-combination-of-atomic-orbitals method w
local-density many-body contributions@38#.

Most of the nonperturbative ab initio methods applied
far are based on single-center expansions of the one-elec
wave function, i.e., the wave function is expanded in ter
of basis functions centered solely at the ion site. Hence
wave function is only poorly represented in the metal regi
and the convergence of these expansions is very slow
specific cases@32,34,35#, basis sets with dimension excee
ing 1000 have been used. Recently, the possibility to ach
better convergence by using a multicenter Gaussian ex
sion of the wave function has been examined@36#.

In a pioneering paper by Burgdo¨rfer et al. @23# the self-
energy method used in this paper was introduced and app
to the interaction ofH(n52) states with a gold surface a
grazing incidence. The self-energy approach is based o
‘‘two-center’’ expansion of the time-dependent electron
wave function, in which, in addition to a set of~bound! ion-
centered basis functions, a set of functions describing
conduction band states of the metal is included. Neglec
the direct couplings between the conduction band states,
may reduce the full close-coupling problem associated w
the two-center expansion@39,23,24# to a problem defined in
the space of ionic basis functions only. The two-center ch
543 © 1997 The American Physical Society
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544 56P. KÜRPICK, U. THUMM, AND U. WILLE
acter of the basis is retained, to some extent, in the com
~non-Hermitian! effective interaction acting in the ioni
space, which embodies couplings between ionic and con
tion band states. In the fixed-ion approximation, which
will adopt throughout, the~static! self-energy is defined
@23,24# as the Laplace transform of the effective interactio
The self-energy determines the~real! energies and resonanc
widths as well as the resonance wave functions of ‘‘dress
ionic states.

Since the work of Burgdo¨rfer et al. @23#, no systematic
large-scale application of the self-energy method has b
reported. Therefore a comprehensive study of this met
appears timely, particularly in view of significantly improve
computational resources and promising applications
chemisorption, surface diagnostics, and catalysis.

In this paper we evaluate the electronic self-energy
ions interacting with a metal surface within a model fram
work that, while being sufficiently realistic, allows calcul
tions to be performed with reasonable effort. We emplo
hydrogenic description of the ionic states along with the
lium approximation for the conduction band states. The c
sical image interactions are approximately taken into
count. The emphasis in our study will be on the evaluation
the self-energy at different levels of approximation, start
with the first-order distortion of the ionic energy levels a
going up to the full self-energy of the dressed ionic states
doing so, we will be able to identify the effects that a
brought in by the various couplings among the ionic ba
states. We also consider the convergence properties o
self-energy method and compare our results to those
tained by other authors.

We believe that the results of our study are useful in s
eral respects:~i! they demonstrate the feasibility of large
scale self-energy calculations;~ii ! they supplement the re
sults of other nonperturbative calculations;~iii ! they provide
insight into the way in which the individual interactions
the ion-metal system conspire to produce characteristic
tures of the resonance energies and widths;~iv! they form an
appropriate starting point for the full time-dependent tre
ment of the ion-surface interaction within the coupled-st
approach@40#.

The present paper is organized as follows. A brief su
mary of the self-energy method is presented in Sec. II.
Sec. III we specify the model framework within which ou
calculations are performed and present some details of
explicit evaluation of various quantities. In Sec. IV the se
energy method is applied to the specific case of protons
teracting with an aluminum surface, and a detailed anal
and discussion of our results is performed. Finally, Sec
contains a summary of the paper as well as some conclu
remarks. Throughout this paper, we use atomic unitse
5me5\51).

II. SELF-ENERGY METHOD

In this section we summarize the essential ingredients
the self-energy description of ion-surface interactions@23,24#
and outline our general concept for evaluating the s
energy.

We start from the time-dependent Schro¨dinger equation
for the total one-electron wave functionuC(t)&,
ex
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i uĊ~ t !&5H~ t !uC~ t !&, ~1!

in which the HamiltonianH(t) is time dependent due to th
motion of the ion along a prescribed classical trajectory~we
adopt a reference frame in which the metal is at rest!. The
function uC(t)& is expanded as

uC~ t !&5(
j51

N

aj~ t !uc j~ t !&1E
k<kmax

dkWr~kW !bkW~ t !ufkW&,

~2!

where the basis functionsuc j (t)& are bound-state wave func
tions with energye j centered at the ion site~the label j
denotes collectively a set of single-particle quantum nu
bers!, andN is finite. The basis functionsufkW& are jellium
wave functions corresponding to wave vectorkW and energy
ekW , andr(kW ) is the density of jellium states. We restrict th
jellium basis to functions localized in the metal half space,
that the maximum wave number is given bykmax5A2V0,
whereV0 denotes the bulk depth of the jellium potential.

By inserting expansion~2! into the Schro¨dinger equation
~1! and projecting onto the basis functions, we obtain the
of close-coupling equations

i ȧ j~ t !5(
j 8

Hj j 8~ t !aj 8~ t !1E
k8<kmax

dkW8r~kW8!HjkW8~ t !bkW8~ t !

2 i E
k8<kmax

dkW8r~kW8!NjkW8~ t !ḃkW8~ t !, j51,...,N

~3!

i ḃkW~ t !5(
j 8

HkW j 8~ t !aj 8~ t !1E
k8<kmax

dkW8r~kW8!HkWkW8~ t !bkW8~ t !

2 i(
j 8

NkW j 8~ t !ȧ j 8~ t !, k<kmax. ~4!

The matrix elements

Hj j 8~ t !5^c j~ t !uH~ t !uc j 8~ t !&[Hj 8 j
* ~ t !, ~5!

HjkW~ t !5^c j~ t !uH~ t !ufkW&[H
kW j
* ~ t !, ~6!

HkWkW8~ t !5^fkWuH~ t !ufkW8&[H
kW8k

W* ~ t ! ~7!

describe direct couplings in the ionic space, couplings
tween ionic and jellium states, and direct couplings amo
the jellium states, respectively~we have ignored velocity-
dependent dynamic couplings@39# as well as contributions
from translational factors@23,24,13#, which are evidently ir-
relevant for our purpose!. The nonorthogonality of ionic and
jellium basis functions is taken into account through t
overlap matrix elements

NjkW~ t !5^c j~ t !ufkW&[N
kW j
* ~ t !. ~8!

The fixed-ion approximation corresponds to the sta
limit in which the ion is at rest at a distanceD in front of the
surface. Accordingly, the HamiltonianH is independent of
time and depends only parametrically onD ~in the following,
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56 545RESONANCE FORMATION OF HYDROGENIC LEVELS IN . . .
we will indicate theD dependence of the coupling matr
elements and other quantities only when indispensable!. In
this case, the set of close-coupling equations~3! and~4! can
be converted, by means of a Laplace transformation in
variables, into a system of algebraic equations for the tra
formed expansion coefficientsã j (s) and b̃kW(s). If the direct
couplingsHkWkW8 among the jellium states are neglected, t
coefficientsb̃kW(s) can be eliminated from the algebraic sy
tem. The resulting system for the ionic coefficientsã j (s),
corresponding to initial conditions where the Fermi sea
metal electrons is completely filled and the ionic levels
unoccupied, reads

(
j 8

@ isd j j 82Sj j 8~s!#ã j 8~s!5 i E
k<kF

dkWr~kW !
WjkW

is2ekW
,

~9!

wherekF is the Fermi momentum of the metal, andS(s) is
the complex~static! self-energy. The self-energy describ
the effective interaction that governs the dynamics in
ionic space in the presence of couplings to the jellium sta
When expressings in terms of the real energy variablev by
s52 iv1h, the matrix elements ofS(v) are given by

Sj j 8~v!5e jd j j 81F j j 81PE
k<kmax

dkWr~kW !

3
@~ekW2v!NjkW1WjkW#@~ekW2v!N

j 8k
W* 1W

j 8k
W* #

v2ekW

2 ipE
k<kmax

dkWr~kW !WjkWWj 8k
W* d~v2ekW !, ~10!

where P denotes the principal part andh is an infinitesimal
guaranteeing that~Siegert! resonance boundary condition
are fulfilled. The initial-channel transfer matrix elemen
WjkW and the final-channel distortion matrix elementsF j j 8 are
defined as@22#

WjkW5^c j uVi ufkW& ~11!

and

F j j 85^c j uVf uc j 8&. ~12!

The principal-part term in Eq.~10! describes indirect cou
plings between ionic states due to virtual transitions into
conduction band~and back to the ion!, while the term pro-
portional toip ~‘‘width term’’ ! describes real transitions int
the conduction band and gives rise to the resonance br
ening of the dressed ionic levels.

The specific form in which Eqs.~9! and ~10! are written
corresponds to the channel decomposition

H5Hi1Vi ~13!

of the total HamiltonianH in the coupling matrix element
HjkW , and to the channel decomposition

H5Hf1Vf ~14!
e
-

e

f
e

e
s.

e

d-

in the matrix elementsHj j 8 . The HamiltoniansHi andHf ,
respectively, define the unperturbed initial jellium states a
final ionic states, andVi andVf are the associated chann
perturbations~to be specified in Sec. III!.

The complex eigenvaluesṽm of the self-energy matrix
S(v) determine the~real! energiesEm and the resonance
widthsGm of dressed ionic statesuxm& through

Em5Re ṽm , ~15!

Gm522 Im ṽm . ~16!

The associated eigenvectors constitute the resonance
functions of the statesuxm&. The labelm collectively denotes
the conserved quantum numbers that characterize the
energy matrix and an index that counts the eigenvalues
given quantum numbers. Instead of solving the~nonlinear!
eigenvalue problem forS(v), we evaluate the matrix ele
mentsSj j 8(v) at the position@13#

v5
e j1e j 8

2
[v j j 8 ~17!

~this formula generalizes the usual Wigner-Weisskopf
proximation@24# to the case of nondegenerate ionic leve!
and subsequently diagonalize the~fixed! matrix S($v j j 8%).

III. MODEL FRAMEWORK

We now turn to the specific model assumptions that en
our calculations and present some details regarding the
merical evaluation of the coupling matrix elements and
self-energy. We choose electronic coordinatesrW[(x,y,z)
such that the (x,y) plane coincides with the jellium edge o
the metal and thez axis ~with the ion center located on it!
points towards the vacuum. The image reference plan
assumed to coincide with the jellium edge atz50.

The underlying total one-electron HamiltonianH is taken
in the form

H5T1VJ1VC
.1Ve

~ i !1VC
~ i ! , ~18!

whereT is the kinetic energy. For the jellium potentialVJ ,
we assume a simple, step-functional form,

VJ~z!52V0Q~2z!. ~19!

The potentialVC
. is the potential of the ion core, cut off a

the surface in order to allow for the complete screening
the core potential inside the metal. In the hydrogenic
proximation which we adopt here, we have

VC
.~rW;D !5VC~rW;D !Q~z!, ~20!

where

VC~rW;D !5
2Z

urW2Dêzu
~21!

is the full Coulomb potential of the projectile core of effe
tive charge numberZ. The potentials
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Ve
~ i !~z!52

1

4z
Q~z! ~22!

and

VC
~ i !~rW;D !5

Z

urW1Dêzu
Q~z! ~23!

are the classical image potentials induced by the active e
tron and by the ion core, respectively.

The channel HamiltoniansHi andHf defining the unper-
turbed initial and final states@cf. Eqs.~13! and ~14!# are

Hi5T1VJ , ~24!

with analytical eigenfunctionsufkW& @15,22# and energiesekW

5kW2/22V0 , and

Hf5T1VC . ~25!

For the ~hydrogenic! eigenfunctions ofHf , we adopt the
spherical representationucnlm&. From Eqs.~13!, ~14!, and
~18!, the channel perturbationsVi andVf are now identified
as

Vi5VC
.1Ve

~ i !1VC
~ i ! ~26!

and

Vf5VJ2VC
,1Ve

~ i !1VC
~ i ! , ~27!

where

VC
,5VC2VC

. ~28!

is the ‘‘metal part’’ of the core potential@note thatVC
, occurs

in Eq. ~27! with a minus sign in front#.
The coupling matrix elementsWjkW andF j j 8 @cf. Eqs.~11!

and ~12!# are hard to deal with if the channel perturbatio
Vi andVf are kept in full. In order to keep the numeric
effort at a manageable level, we approximate the core im
potentialVC

( i ) by its values on thez axis @13#,

VC
~ i !~rW;D !'

Z

uz1Du
Q~z![VC

~ i !~z;D !. ~29!

Through this approximation, the repulsive character of
core image potential is enhanced and, accordingly, the e
gies of the dressed ionic states will be raised and the r
nance widths lowered. However, the inaccuracies decre
with increasing ion-surface distanceD and are estimated to
be very small forD.^r &n , where^r &n[n2/Z is the~classi-
cal! mean radius of the projectilen manifold ~for a quantita-
tive assessment see Sec. IV A below!.

In order to remove the unphysical singularity of the ele
tron self-image potentialVe

( i ) at z50, we set@13#

Ve
~ i !~z!1VC

~ i !~z;D !50, z,z0 ~30!

wherez0 is determined from the condition

Ve
~ i !~z0!1VC

~ i !~z0 ;D !52V0 , ~31!
c-

ge

e
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i.e.,

z05
1

2 SAD0
21

D

V0
2D0D , ~32!

where

D05D1
Z

V0
2

1

4V0
. ~33!

For our explicit calculations, we now write the fina
channel perturbationVf as

Vf~z!5H 2V02VC
,, z,z0

Ve
~ i !~z!1VC

~ i !~z;D !, z>z0
~34!

where we have shifted the jellium edge toz5z0 , so that the
jellium potential is smoothly joining the total image potenti
~for the p-Al case,z0 varies from 0 to 0.43 a.u. whenD
varies from 0 tò !. The termVC

, has a sizable effect only on
the 1s state at small ion-surface distances. Except for
1s case, we have therefore disregarded in our calculati
the contribution of this term.

In the initial-channel perturbationVi , we keep the Cou-
lomb potential only,

Vi5VC
. , ~35!

i.e., we neglect the image potentials completely. While
evaluation of individual matrix elementsWjkW including the
full perturbationVi is easily accomplished by means of th
technique developed in Refs.@15,22#, it turns out thatkW in-
tegrations encountered in the self-energy matrix~10! render a
calculation with the fullVi prohibitively time-consuming.
The approximation~35! appears to be the most severe a
proximation we have to introduce in our calculations. Qua
tatively, the behavior of the ‘‘transfer matrix element’’WjkW

is dominated by the ‘‘classical-threshold distance’’ corr
sponding to the potentialVi @15,18#. Simple estimates@24#
show that the neglect of the image interaction inVi results in
a decrease of the threshold distance ifZ,2, and in an in-
crease ifZ.2. Correspondingly, the overall magnitude
the approximateWjkW is expected to be smaller than that
the fullWjkW if Z,2, and larger ifZ.2.

Since the ion-surface interaction is axially symmet
about the surface normal, the magnetic quantum numberm is
a conserved quantum number throughout, so that the s
energy matrix can be considered separately in the subsp
corresponding to differentm values.

In the evaluation of the coupling matrix elemen
Fnlm,n8 l 8m with the perturbation~34! and hydrogenic wave
functionsucnlm&, we employ the analytical reduction of th
three-dimensional integration to a one-dimensional integ
tion given in Ref.@22#. The remaining integration is easil
performed numerically. The coupling matrix elemen
Wnlm,kW with the perturbation~35! as well as the overlap ma
trix elementsNnlm,kW are evaluated using the closed-form e
pressions of Ref.@15#. For the actual computation of thes
expressions, we have developed a highly optimized co
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56 547RESONANCE FORMATION OF HYDROGENIC LEVELS IN . . .
puter code, thereby enabling the efficient and accurate ev
ation of the self-energy matrix in a large space of hydroge
states.

The kW integrations in the principal-part term and in th
width term of the self-energy matrix~10! are evaluated with
the density of states taken equal to the free-electron-gas
sity, r(kW )5(2p)23 ~for a given electronic spin direction!.
Due to axial symmetry, the azimuthal integration is trivial.
the numerical evaluation of the remaining two-dimensio
integral for the principal-part term, special precautions
taken to avoid unduly large errors that might arise from
singularity in the integrand. The width term in Eq.~10! ~also
referred to as on-shell contribution! can be reduced to a one
dimensional integral by exploiting the energy-conservingd
function.

IV. SELF-ENERGY CALCULATIONS

We now apply the self-energy method, within the mod
framework outlined above, to the calculation of energies a
resonance widths of dressed ionic states. Specifically,
consider the case of protons (Z51) interacting with an alu-
minum surface (V050.585 a.u.). This example is chosen
order to enable the comparison of our results to those
previous calculations by other authors.

A. Direct couplings between unperturbed projectile states

In order to examine the effect of the different terms in t
self-energy matrix~10!, we first consider direct coupling
within the ionic space given by the energy matrixF with
elements

Fj j 85e jd j j 81F j j 8 . ~36!

The first-order distorted energy corresponding to the
perturbed stateucnlm& is then obtained as

Enlm5Fnlm,nlm[en1Fnlm,nlm . ~37!

In Fig. 1 we show the first-order distorted energies for
n manifolds up ton53 as a function of the ion-surfac
distanceD. For D larger than the ‘‘scaling distance’
2^r &n[2n2 @22#, the energy curves follow the 1/4D depen-
dence anticipated from the leading term in the 1/D expansion

FIG. 1. First-order distorted energies calculated from Eq.~37!
for all states withn<3.
lu-
ic

n-

l
e
e

l
d
e

of

-

e

of the image interactionVe
( i )1VC

( i ) @30,32#. When D falls
below 2n2, the energies are progressively lowered due to
effect of the attractive jellium potential. As the overlap of th
ionic orbitals with the metal is larger for largern, this effect
increases with increasingn and leads to crossings of th
levels emerging from high-n shells with lower-n levels.
While the distorted energies exhibit a sizable dependenc
the orbital angular momentuml ~at fixedn andm!, there is
an even stronger dependence on the magnetic quantum
berm ~at fixedn andl !, with the low-m states being affected
strongest. Them dependence reflects the strong change
shape which the ionic wave function undergoes with cha
ing m, and the associated change in the overlap of the io
wave function with the jellium potential@22#.

In a second step, the energiesEmm are determined as ei
genvalues of the matrixF ~the labelm attached toEmm
counts the eigenvalues for givenm!. In Fig. 2 we display
energies as a function ofD for all (m50) states that merge
asymptotically into unperturbed states withn<4. In the di-
agonalization ofF, unperturbed states withn<6 were taken
into account to guarantee convergence of the displayed
ergies ~see Sec. IV D!. The pattern shown by the energ
curves is characterized by a series of levels which, wh
followed to smaller distances, tend to become lowered
some cases below the bottom of the conduction band.
strong level shift arises from large off-diagonal couplings
Fj j 8 in Eq. ~36!.

In order to investigate the approximation we made
using Eq.~29! for the nuclear image potential and by em
ploying the step-function potential for the jellium surface, w
calculated final-channel matrix elements~12! using both the
more refined Jennings potential@41# for the surface~which
includes the electronic self-image! and the full two-
dimensional nuclear image potential according to Eq.~23!.
As an example Fig. 3 shows the diagonal final-channel m
trix elements for the projectile 2s,2p1 , 3s,3d2 , and 4s,4f 3
states for both~i! the step-function potential and the simp
fied nuclear image potential~29! used in all our calculations
and ~ii ! the more refined Jennings potential and nuclear
age potential~23!. As expected, the full nuclear image po
tential is less repulsive than our approximate nuclear im

FIG. 2. Converged energies of all (m50) states emerging from
the unperturbed manifolds up ton54, obtained as eigenvalues o
the direct-coupling matrixF @Eq. ~36!#. States up ton56 have
been included in the ionic basis space.
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548 56P. KÜRPICK, U. THUMM, AND U. WILLE
potential which leads to a weaker energetic upward shif
the states. As can be seen the (m5 l ) states (2p1,3d2,4f 3)
show the largest discrepancies between the two potent
This can be easily understood as these states have a c
density which is aligned almost parallel to the surface a
therefore strongly experiences the difference in the t
nuclear image potentials used. The overall maximum en
getic deviation for all cases shown is of the order of 0.01 a
(2p1) and tends to become smaller for highern-quantum
numbers.

B. Diagonal elements of the self-energy matrix

Turning now to the full self-energy, we consider energ
Enlm and resonance widthsGnlm calculated from the diagona
elements of the self-energy matrix. The widthsGnlm ~or,
equivalently, the transition rates for resonant electron tra
fer! have been studied previously@13,16,17# within the
model framework that is used in the present work.

In Fig. 4 energiesEnlm are shown as a function ofD for
then manifolds up ton53. The energy curves start to dev
ate from the curves of Fig. 1 whenD drops below the
classical-threshold distance 2n2, below which the magnitude

FIG. 3. Diagonal matrix elements for the first-order distort
energies for the one-dimensional potential@see Eq.~34!# ~full line!
and the potential built up by the Jennings potential@41# and the full
nuclear image potential according to Eq.~23! ~dotted line! for the
2s, 2p1 , 3s, 3d2 , and 4s, 4f 3 states.

FIG. 4. Diagonal elements of the self-energy for all states w
n<3. We shifted the (n51) energy by 0.34 a.u.
f
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of the matrix elementsWjkW and NjkW , and hence of the
principal-part term in the self-energy, begins to rise stee
@15#. In marked contrast to the behavior of the perturbat
energies of Fig. 1, all curves in Fig. 4, except the 1s curve,
continue to increase monotonically down to very smallD
values. This behavior can be qualitatively understood
considering the diagonal elements of the principal-part te
in Eq. ~10!. The numerator in the integrand is positiv
throughout, while the denominator is negative ifekW.e j , and
positive if ekW,e j . Hence, whenekW varies in the range
2V0<ekW<0, the integrand is essentially negative for ion
states withe j'2V0 , and essentially positive for states wit
ue j u!V0 , For our specific example, we therefore expect
1s energy at small distances to be lowered by the princip
part term, and all other energies to be increased.

The effect of the principal-part term on the diagonal e
ments of the self-energy forn.1 can be viewed as bein
equivalent to that of an effective potential which is strong
repulsive at small ion-surface distances. The surprising re
is that this effective potential is strong enough to ov
compensate completely the lowering of the levels caused
the attractive jellium potential.

We note that the strongm dependence of the principa
part contribution to the diagonal elements of the self-ene
tends to reverse, in comparison with the first-order distor
energies, the order of the differentm levels emerging from a
hydrogenicn manifold. The 2p1 level, for example, is well
below the 2s and 2p0 levels in Fig. 4, while the opposite
holds for the corresponding levels in Fig. 1. It is also wo
mentioning that the splitting of the diabatic self-energies
large distances is much smaller than that of the correspo
ing first-order distorted energies of Fig. 1. This feature a
pears to be an immediate consequence of the potential ba
that is effectively built up by the principal-part term.

C. Eigenvalues of the full self-energy matrix

In this subsection we present and analyze energiesEmm

and resonance widthsGmm determined from the eigenvalue
of the full self-energy matrix according to Eqs.~15! and~16!,
and perform a detailed comparison to the results obtained
other authors. Since these energies and widths are obta
by diagonalizing a non-Hermitian matrix the Wigner–vo
Neumann noncrossing rule does not apply and levels of
same symmetry may cross. To extract the physically relev
levels, i.e., the energetic path an electron would follow
finite velocity, we diabatize the levels so as to preserve
character of the associated wave function as a function of
ion-surface distance. This can be easily achieved by ca
lating the overlap matrix between all states of adjacent i
surface distances and by connecting energies and width
states with maximum overlap. The procedure gives smo
curves for energies and widths.

In Fig. 5, we display energy curves for the (m50) states
emerging from the unperturbed (n51,...,4) manifolds, by
includingn manifolds up ton56 in the basis set. There is
striking qualitative difference between the curves of Fig
and those of Fig. 2 for the energies including the direct c
plings only. Except for the asymptotic (n51) state, all
curves in Fig. 5 continue to rise monotonically whenD falls
h
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below the threshold distance 2n2, and there are no remnan
of the strongly lowered levels appearing in Fig. 2. Th
shows that the indirect couplings via the conduction ba
states, which we have found to have pronounced influe
on the diagonal elements of the self-energy, prevail also
the full self-energy.

Comparing the results of Fig. 5 to the diagonal eleme
of the self-energy shown in Fig. 4, we observe different sp
ting patterns for levels emerging from one and the samn
manifold at distances below the threshold distance 2n2. The
levels emerging from the asymptotic (n52) manifold in Fig.
5, for example, are much stronger split than their ‘‘pare
levels’’ 2s and 2p0 in Fig. 4. This difference reflects th
hybridization of hydrogenic orbitals with opposite parity th
is caused mainly by the image potentials@31,30,32# ~a more
detailed discussion of hybridization properties of dres
ionic states will be presented in Sec. IV E!.

In order to gain more insight into the interplay of th
different couplings acting in the ion-metal system, we sh
in Fig. 6 energy curves calculated by keeping the princip
part term as the only term in the self-energy matrix as wel
by keeping the principal-part together with the width ter
As the image potentials contained in the final-channel p
turbationVf are now neglected, the asymptotic 1/4D behav-
ior seen in Fig. 5 is absent in the curves of Fig. 6, and
curves, except the (n51) state, display a flat behavior be
yond the threshold distance 2n2. There is, however, a stron
splitting of the levels emerging from a singlen manifold.
This shows explicitly that the corresponding splitting seen
Fig. 5 is, to a large extent, driven by the indirect couplin
via the conduction band. The effect of the width term in t
self-energy matrix on the energies is seen from Fig. 6 to
very small.

The energy of the state asymptotically merging into
1s state is contrasted in Fig. 7 with the results of other n
perturbative calculations. At large and intermediate d
tances, our results agree well with the coupled-angular-m
results of Borisovet al. @27# and the stabilization-metho
results by Deutscheret al. @35#, while a systematic deviation
remains with the complex-scaling results of Nordlander a

FIG. 5. Converged eigenvalues of the full self-energy matrix
all (m50) states emerging from the unperturbed manifolds up
n54. States up ton56 have been included in the ionic basis spa
The vertical dashed bars indicate the position of the threshold
tances 2̂r &n52n2 ~see text!.
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Tully @31#. Similar to our calculation the results of Deutsch
et al. @35# using the stabilization method give a local max
mum in the (n51) energy curve atD'3.5 a.u. Our energy
curve shows a maximum atD52.5 a.u. We note that the
qualitative behavior of our (n51) energy at small distance
is decisively influenced by theVf term ~34! in the total self-
energy~10!. To illustrate this effect we have drawn in Fig.
the contribution from the 1s diagonal matrix element of the
final channel potential according to Eq.~12! ~labeled asVf
only!. At distancesD larger than 4 a.u. it coincides with th
result of the full self-energy calculation. However, fo
smaller ion-surface distances the principal-part term in
full self-energy tends to enhance the binding energy of
(n51) resonance state.

The resonance width of the asymptotic (n51) state is
compared in Fig. 8 to other nonperturbative calculations
Nordlander and Tully@31#, Borisovet al. @27#, where results
are shown for both a classical image potential and a sme
surface charge, Deutscheret al. @35#, and perturbative results
by Wille @17#. The fairly large discrepancies between t
different theoretical approaches apparently reflect the dif

f
o
.
s-

FIG. 6. Same as Fig. 5, but with the direct-coupling term
F j j 8 in the self-energy matrix~10! neglected~dashed curves!. The
full curves correspond to a calculation in which, moreover,
imaginary width term has been disregarded, i.e., in which only
principal-part term has been kept.

FIG. 7. Comparison of the energy of the asymptotic (n51)
state, calculated from the full self-energy matrix~10!, with the non-
perturbative results of Nordlander and Tully@31#, Deutscheret al.
@35#, and Borisovet al. @27#.
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550 56P. KÜRPICK, U. THUMM, AND U. WILLE
ent choices of the surface potential and the strong sensit
of the width to details of the potential, in particular fo
strongly bound states.

In Figs. 9 and 10, the energies emerging from the~n
52; m50! and ~n53; m50,1! manifolds are shown in
comparison with results of Nordlander and Tully@31# and of
Borisovet al. @27# as well as with the multicenter calculatio
of Martı́n and Politis@36# and very recent results by Deu
scheret al. @35~b!#. There is good agreement of our resu
with the other calculations, in particular with those of Nor
lander and Tully. Hence details of the electronic poten
appear to have small influence on the energies.

In Figs. 11 and 12, the resonance widths correspondin
the energies of Figs. 9 and 10@note that we have used th
same symbols~a,b,...! to designate energies and widths
Figs. 9–12# are compared to the nonperturbative results
Nordlander and Tully@31#, Borisov et al. @27#, Deutscher
et al. @35~b!#, as well as to the first-order calculation of Will
@17# in which the parabolic~Stark! representation of the hy

FIG. 9. Comparison of the resonance energies for (m50) states
emerging from the unperturbed (n52) manifold, calculated from
the full self-energy matrix~10!, to the nonperturbative results o
Nordlander and Tully@31# Borisov et al. @27#, Martı́n and Politis
@36#, and Deutscheret al. @35~b!#. The lettersa andb refer to the
corresponding widths in Fig. 11.

FIG. 8. Comparison of the width of the asymptotic (n51) state,
calculated from the full self-energy matrix~10!, to the nonperturba-
tive results of Nordlander and Tully@31#, Borisov et al. @27#, and
Deutscheret al. @35#.
ity

l

to

f

drogenic wave functions has been used to simulate orb
hybridization.

Our n52 results in Fig. 11, while being in close overa
agreement with the other calculations tend to be consiste
smaller than the other nonperturbative results by a facto
1.5 to 2. Qualitatively, we ascribe these discrepancies to~i!
our approximation~29! for the core image potential and~ii !
our use of a jellium potential with a sharp step instead of
smoothed potential used in Refs.@31,27,35#. The n53 re-
sults in Fig. 12 exhibit the same trend as then52 results,
with widths now being generally smaller than the nonpert
bative widths of Nordlander and Tully@31#. However, this
rule does not hold for the state with the smallest width wh
tends to be bigger than the results by Nordlander for la
ion-surface distances and smaller for distances belowD
512 a.u.

D. Convergence properties

In the full self-energy calculations presented above,
have used basis spaces of fixed dimensionNbasis, and we

FIG. 11. Comparison of the resonance widths for all sta
emerging from the unperturbed (n52) manifold, calculated from
the full self-energy matrix~10!, to the nonperturbative results o
Nordlander and Tully@31#, Borisov et al. @27#, Deutscheret al.
@35#, and to the first-order calculation with hydrogenic states
parabolic representation of Wille@17#.

FIG. 10. Comparison of the resonance energies for all (m50)
and (m51) states emerging from the unperturbed (n53) mani-
fold, calculated from the full self-energy matrix~10!, to the nonper-
turbative results of Nordlander and Tully@31#. The lettersa–e refer
to the corresponding widths in Fig. 12.
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56 551RESONANCE FORMATION OF HYDROGENIC LEVELS IN . . .
have not dwelt upon the question to what extent the res
are converged, i.e., to what extent the energies and wi
are changing whenNbasis is changed. We now turn to a dis
cussion of this issue. As a representative case, we con
the (m50) states where we have so far used the 21 low
hydrogen states~n51,...,6; l50,..., n21! as basis states.

Taking as example a particular (m50) resonance stat
which asymptotically merges into the (n54) manifold, Figs.
13~a! and 13~b! show the convergence of the energy a
width for an increasing numberNbasis of bound hydrogen
basis (m50) orbitals. The inset in Fig. 13~a! shows the cho-
sen (n54) state as dotted line among all other resona
states of the~n52,...,6;m50! manifolds. As can be seen
major changes in the energy and width occur betw
Nbasis510 andNbasis515 while almost no change is observe
betweenNbasis515 andNbasis521. A similar rapid conver-
gence is observed for all (n<5) manifolds. The asymptotic
(n56) manifold would require the inclusion of higher bas
orbitals ~with n<7! to become converged.

Summarizing the evidence obtained from these examp
we conclude that the (m50) results of the self-energy ca

FIG. 12. Comparison of the resonance widths for all sta
emerging from the unperturbed (n53) manifold, calculated from
the full self-energy matrix~10!, to the nonperturbative results o
Nordlander and Tully@31#, and to the first-order calculation with
hydrogenic states in parabolic representation of Wille@17#.
lts
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er
st

e
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culations presented above are well converged forn<5 in the
chosen ionic basis. Similar convergence is reached for hig
m-quantum numbers. The remaining inaccuracies cause
truncating the ionic basis space are considerably smaller
those introduced by uncertainties in the electronic potenti
This also supports our intuitive expectation that, with resp
to the target-centered part of the basis, the technically d
cult inclusion of positive energy continuum states is of lit
or no relevance. Since these target-centered continuum f
tions ~here: jellium functions of positive energy! overlap
with projectile-centered hydrogenic orbitals, our conve
gence study has to some extent probed the influence of
part of Hilbert space that is represented by the target c
tinuum. As a general rule we found, even for small io
surface distances, that a givenn manifold is converged if the
adjacent (n21) and (n11) manifolds are included in the
close-coupling expansion.

Further evidence for sufficient completeness of our ba
is provided by the good agreement between our calcula
and the results of Nordlander and Tully@31#, Borisovet al.
@27#, and Deutscheret al. @35A# ~see Sec. IV C!. The com-
plex rotation technique in Ref.@31# includes part of the con-
tinuum basis through complex rotated and thus square i
grable continuum states.

In conjunction with the discussion of the convergen
properties of our self-energy calculations, a comment is
order on the computational work that is required in the va
ous steps of the calculations. Within our model framewo
the basic distortion and transfer matrix elements are es
tially reduced to closed-form expressions@15,22# which al-
low a fast and accurate evaluation of individual matrix e
ments even for ionic states with very high quantum numb
~n520 and larger!. The most time-consuming step in ou
calculations is the evaluation of thekW integrals in the
principal-part term of the self-energy matrix. Given the se
energy matrix, the effort spent in its diagonalization is ne
ligibly small in comparison with the effort spent in othe
methods~complex-scaling method, stabilization method! to
diagonalize the full Hamiltonian matrix within a very larg
basis@35#. This advantage which results from the fact th
we effectively use a two-center basis to describe the e
tronic wave function, is partially deteriorated by the cons

s

f
so-
FIG. 13. Resonance energy~a! and width~b!
of an (m50) state asymptotically merging into
the (n54) manifold obtained for various sizes o
the basis set. The inset shows the chosen re
nance state among all other (m50) states of the
(n52) to (n56) manifolds as a dotted line.
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552 56P. KÜRPICK, U. THUMM, AND U. WILLE
erably larger computational work spent to evaluate the ef
tive interaction~self-energy!.

Besides the convergence with respect to the bound io
states, we studied the influence of the upper integration l
kmax @see Eq.~2!# in the jellium basis by investigating th
structure of the integrand in the principal part of the se
energy matrix~10!. Both diagonal and off-diagonal matri
elements show a very pronounced maximum in the integr

FIG. 14. Numerator of the integrand of the principal part in t
full self-energy matrix elementS5s,5s @Eq. ~10!# at D510 a.u.
c-

ic
it

-

d

near the bottom of the conduction band~the integrand is 0 at
k50!. This maximum results from the very long waveleng
of the corresponding metal part of the jellium states wh
avoids cancellation effects in the overlap and Coulo
initial-channel transfer matrix elements. Figure 14 show
typical numerator of the integrand for the principal part
theS5s,5s matrix element atD510 a.u. From the figure it is
obvious that increasing the upper integration limit~beyond
the ionization threshold! would not significantly alter the in-
fluence of the principal part on the total self-energy matr

E. ORBITAL HYBRIDIZATION

Having studied so far the energies and widths of dres
ionic states, we now briefly discuss the wave functions as
ciated with these states. The dressed wave functions des
hybridized orbitals that are formed in front of the metal su
face. Previous studies@29,30–32,34,35# have shown that a
large ion-surface distances orbital hybridization gives rise
a pattern for the energies and wave functions that is in cl
resemblance with the pattern characteristic of Stark st
~i.e., of hydrogenic states described by wave functions
parabolic representation!. Here, we examine hybridized or
bitals at small distances where strong mixing of differe
hydrogenicn shells occurs.

Figures 15~a!–15~f! show contour plots of the charge de
FIG. 15. Density associated with the~normalized! resonance wave functions of the asymptotic (n51) to (n53) manifolds atD
55 a.u. Only (m50) states are shown.
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56 553RESONANCE FORMATION OF HYDROGENIC LEVELS IN . . .
sity for (m50) states that asymptotically merge into then
51, 2, and 3 manifolds for an ion-surface distance ofD
55 a.u. Both axes refer to the projectile frame and the do
line marks the jellium edge. As can be seen, the asympt
(n51) state is not altered by the surface and exhibit
rather small width. The (n52) manifold shows the typica
Stark mixing: one state points towards the vacuum and h
small width while the second state points towards the m
surface, its width being about two orders of magnitude lar
due to the larger overlap with the surface~similar to upfield
and downfield Stark states!. The (n53) manifold splits into
three states of small, medium, and large width. At sm
ion-surface distances states of the (n53) manifold that have
a large width~due to their overlap with the surface! tend to
be promoted near the ionization threshold and mix w
highern manifolds, whereas states with a small width tend
keep their asymptotic Stark-like character.

V. SUMMARY AND CONCLUSIONS

Within the fixed-ion approximation, we have studied t
electronic self-energy of hydrogenic ions interacting with
jellium metal surface. We have employed a model fram
work in which the jellium potential is assumed to be of ste
functional form and in which the classical image potenti
are approximately taken into account. This framework
lows an efficient and accurate evaluation of the complex s
energy matrix in a large space of ionic basis states. Adiab
energies and resonance widths of dressed ionic states w
were determined from the eigenvalues of the full self-ene
matrix were found to be in good overall agreement w
results obtained previously from other nonperturbative me
ods. This shows that the electronic potential we use, w
being of a somewhat simple form, is sufficiently realistic
describe the essential features of the ion-surface interac

In order to gain detailed insight into the effect of th
various couplings acting among the ionic states, we h
compared the energies gained from diagonalizing the
self-energy matrix to~1! energies obtained by taking int
account the direct couplings only and to~2! the diagonal
elements of the self-energy matrix. This comparison reve
the pronounced influence of the indirect couplings via
jellium states on the energies at intermediate and small
surface distances. The direct couplings are responsible,
to the dominating effect of the attractive jellium potentia
for a strong lowering of the energies. This downward sh
however, is overcompensated by the indirect couplin
through conduction band states, thereby leading to an ov
or
m
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increase of the resonance energies. Accordingly, excep
states located near or below the lower band edge, the ind
couplings as represented by the principal-part term in
self-energy matrix effectively act as a strongly repulsive p
tential on the ionic states. By successively enlarging
space of ionic basis states, we have studied the converg
properties of the self-energy method.

A number of further issues remain to be investigated
future work. Foremost among them is a precise estimate
the uncertainties introduced by adopting the Wign
Weisskopf approximation in the evaluation of the se
energy. Possible improvements over this approximation
particular the self-consistent solution of the nonlinear eig
value problem for the self-energy, are being studied@40#. In
order to make the comparison to other nonperturbative
culations even more stringent, more refined forms of
electron-surface potential need to be taken into accoun
our calculations.

The resonance energies and dressed wave functions
culated in the fixed-ion approximation form an appropria
starting point for the dynamical treatment of slow io
surface interactions within the rate-equation approach
the time-dependent close-coupling method. In the la
method, the self-energy acts as a~time-local! complex opti-
cal potential, and the dressed states are coupled by dyn
cal couplings induced by the motion of the ion relative to t
surface. The optical-model close-coupling treatment of io
surface interactions bears close resemblance to the dyn
cal treatment of slow ion-atom collisions, in which ‘‘quas
molecular’’ states calculated at fixed ion-atom distance
employed in the expansion of the time-dependent scatte
wave function. We are currently undertaking explorato
studies in which the applicability of the close-couplin
method to ion-surface interactions is examined@40,42#.
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