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Resonance formation of hydrogenic levels in front of metal surfaces
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The electronic self-energy of hydrogenic ions interacting with a jellium metal surface is studied within the
fixed-ion approximation. A model framework is introduced that allows for the efficient computation of the
complex(non-Hermitian self-energy matrix in a large space(bbund hydrogenic states. For the specific case
of protons interacting with an aluminum surface, resonance energies and widths of dressed ionic states are
obtained by diagonalizing the self-energy matrix. The hybridization properties of the dressed ionic states are
analyzed. The self-energy of individual dressed states is found to converge rapidly with increasing dimension
of the space of unperturbed hydrogen states. The resonance energies are comamukrgies obtained by
diagonalizing only the direct couplings among the hydrogen stateg2aritle real part of the diabati@liag-
onal)) self-energy. This comparison demonstrates the pronounced effect that indirect couplings between hydro-
gen states via conduction band states have on the resonance energies at intermediate and small ion-surface
distances. Our results for incident protons are confronted with the results of (ptvéurbative and nonper-
turbative calculations of level shifts and widths in proton-surface interactions. Although we use a simplified
electronic potential, we find good agreement with calculations employing more refined potentials.
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[. INTRODUCTION rates were derived and analyzed by WilE5,2( and by
Kurpick and Thumn{22]. Nonperturbative approaches have
In the past, considerable interest has been devoted to theeen pursued by various groups using the self-energy con-
detailed study of electronic processes that take place in ioneept[23,24], the time-dependent Newns-Anderson formal-
metal-surface interactions. On the experimental side, the enism [25,26], the coupled-angular-mode methi@7—-30Q, the
phasis has been on cases involving highly charged ions. Aomplex-scaling methodi31,32, a close-coupling method
large number of sophisticated investigations have dealt witlipased on generalized Wannier functid@8], the stabiliza-
the formation of hollow-atom states by resonant electrortion method[34,35a)], a multicenter Gaussian basis expan-
capture and the observation of their decay by means of higrsion method36], a simplified close-coupling methd@®7],
resolution Auger electron spectroscofdy-3], with the for- and a linear-combination-of-atomic-orbitals method with
mation of negative ion$4], with angular and charge state local-density many-body contributiof88].
distributions of ions scattered from a single-crystal surface Most of the nonperturbative ab initio methods applied so
[5,6], and with the image charge attraction of ions in front of far are based on single-center expansions of the one-electron
metal surface$7,8]. wave function, i.e., the wave function is expanded in terms
On the theoretical side, there is still a lack of manageabl@f basis functions centered solely at the ion site. Hence the
(time-dependent dynamical theories taking into account wave function is only poorly represented in the metal region,
both single-particlgexcitation, resonant neutralization, and and the convergence of these expansions is very slow. In
ionization and many-particle effect§Auger deexcitation, specific case$32,34,39, basis sets with dimension exceed-
Auger neutralization, plasmon excitatjorextreme difficul-  ing 1000 have been used. Recently, the possibility to achieve
ties with the formulation and implementation of such theo-better convergence by using a multicenter Gaussian expan-
ries arise from the inherent complexity of the many-electrorsion of the wave function has been examinhaf).
problem. One therefore has to resort to simpler models. Ne- In a pioneering paper by Burgder et al. [23] the self-
glecting two-electron processéshich are supposed to be of energy method used in this paper was introduced and applied
minor importance at not too small ion-surface distapeesl  to the interaction oH(n=2) states with a gold surface at
adopting a jellium description of the metal, a variety of the-grazing incidence. The self-energy approach is based on a
oretical studies have been undertaken both within the fixed-two-center” expansion of the time-dependent electronic
ion approximation and by approximately solving the time-wave function, in which, in addition to a set @found ion-
dependent Schdinger equation. Perturbative calculations centered basis functions, a set of functions describing the
have been performed by Gadz{®] and Remy[10], and conduction band states of the metal is included. Neglecting
more recently by Thumm and Briggel1,12, Thumm the direct couplings between the conduction band states, one
[13,14), Wille [15-21], and Kupick and Thumm[22]. may reduce the full close-coupling problem associated with
Closed-form expressions for electron-transfer matrix elethe two-center expansidi39,23,24 to a problem defined in
ments as well as universal scaling properties of transitiorthe space of ionic basis functions only. The two-center char-
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acter of the basis is retained, to some extent, in the complex i|(p(t)>= H(t)| ¥ (1)), (1)
(non-Hermitian effective interaction acting in the ionic

space, which embodies couplings between ionic and condugn which the HamiltoniarH (t) is time dependent due to the
tion band states. In the fixed-ion approximation, which wemotion of the ion along a prescribed classical trajectovg
will adopt throughout, the(statio self-energy is defined adopt a reference frame in which the metal is at)réEte
[23,24 as the Laplace transform of the effective interaction.function |¥(t)) is expanded as

The self-energy determines tfreal) energies and resonance

widths as well as the resonance wave functions of “dressed” N R
ionic states. |‘1’('E)>=Z1 aj(t)|y; (1) + fk<k dRp(R)bi(t)| #i),
Since the work of Burgdder et al. [23], no systematic = e @

large-scale application of the self-energy method has been

reported. Therefore a comprehensive study of this methogihere the basis functiodsxj(t)) are bound-state wave func-
appears timely, particularly in view of significantly improved tions with energye; centered at the ion sitéhe label]
computational resources and promising applications t@jenotes collectively a set of single-particle quantum num-
chemisorption, surface diagnostics, and catalysis. berg, andN is finite. The basis functionpy) are jellium

In this paper we evaluate the electronic self-energy ofyave functions corresponding to wave veckoand energy
ions interacting with a metal surface within a model frame-¢, andp(K) is the density of jellium states. We restrict the
work that, while being sufficiently realistic, allows calcula- je|lium basis to functions localized in the metal half space, so
tions to be performed with reasonable effort. We employ &nat the maximum wave number is given ky.,=v2Vo,
hydrogenic description of the ionic states along with the jel\yherev, denotes the bulk depth of the jellium potential.
lium approximation for the conduction band states. The clas- gy jnserting expansioii2) into the Schidinger equation

sical image interactions are approximately taken into acy1) and projecting onto the basis functions, we obtain the set
count. The emphasis in our study will be on the evaluation ofs close-coupling equations

the self-energy at different levels of approximation, starting

with the first-order distortion of the ionic energy levels and .

going up to the full self-energy of the dressed ionic states. In'aj(t)ZZ Hjj (Day () + fk,< dK'p(K")Hjir (1) b (1)

doing so, we will be able to identify the effects that are ! oo

brought in by the various couplings among the ionic basis )

states. We also consider the convergence properties of the —I f

self-energy method and compare our results to those ob-

tained by other authors. 3
We believe that the results of our study are useful in sev-

eral respects(i) they demonstrate the feasibility of large- ., . .. __ B,

scale self-energy calculation§j) they supplement the re- 'bk(t)_?‘ Higr(Day (O + J

sults of other nonperturbative calculatiofis;) they provide

insight into the way in which the individual interactions in . . :

the ion-metal system conspire to produce characteristic fea- '? Nig (D3j:(0), - k<Kmay. @

tures of the resonance energies and wid@ivg;they form an

appropriate starting point for the full time-dependent treat-The matrix elements

ment of the ion-surface interaction within the coupled-state

dKk’ p(R")Njo (b (), j=1,...N

’
=
= kmax

AR p(R)HgG (Db (1)

approacH40]. Hij ()= (O[HO) |y (1)) =HT, (1), 5)
The present paper is organized as follows. A brief sum-

mary of the self-energy method is presented in Sec. Il. In H“;(t):<¢j(t)|H(t)|¢g>EHE.(t), (6)

Sec. lll we specify the model framework within which our :

calculations are performed and present some details of the Hi (0 ={ s H(t)|¢|;,>EHE,|;(t) @

explicit evaluation of various quantities. In Sec. IV the self-
energy method is applied to the specific case of protons ingescribe direct couplings in the ionic space, couplings be-
teracting with an aluminum surface, and a detailed analysig, ey jonic and jellium states, and direct couplings among
and ol_lscussmn of our results is performed. Finally, Sec. Mihe jellium states, respectivelgve have ignored velocity-
contains a summary of the paper as well as some Con(?IUd'n@ependent dynamic coupling89] as well as contributions
remarks. Throughout this paper, we use atomic unés (from translational factorg23,24,13, which are evidently ir-

=Me=f=1). relevant for our purposeThe nonorthogonality of ionic and
jellium basis functions is taken into account through the
Il SELF-ENERGY METHOD overlap matrix elements
In this section we summarize the essential ingredients of NjE(t)Z(l,/fj(t)l¢|2)ENEJ-(I)- tS)

the self-energy description of ion-surface interactig; 24

and outline our general concept for evaluating the self- The fixed-ion approximation corresponds to the static

energy. limit in which the ion is at rest at a distan&ein front of the
We start from the time-dependent Sotirmer equation surface. Accordingly, the HamiltoniaH is independent of

for the total one-electron wave functig® (t)), time and depends only parametrically Br(in the following,
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we will indicate theD dependence of the coupling matrix in the matrix elementsi;;, . The HamiltonianH; andHs,
elements and other quantities only when indispengable respectively, define the unperturbed initial jellium states and
this case, the set of close-coupling equati@)sand(4) can  final ionic states, an&/; andV; are the associated channel
be converted, by means of a Laplace transformation in theerturbationgto be specified in Sec.

variables, into a system of algebraic equations for the trans- The complex eigenvalues, of the self-energy matrix
formed expansion coefficien(s) andby(s). If the direct ~S(w) determine the(rea) energiesE, and the resonance
couplingsHg: among the jellium states are neglected, thewidthsT', of dressed ionic statdg,) through

coefficientsbi(s) can be eliminated from the algebraic sys-

tem. The resulting system for the ionic coefficieﬁtjs(s), E,=Rew,, (15
corresponding to initial conditions where the Fermi sea of _
metal electrons is completely filled and the ionic levels are I'y=—2Imwo,. (16)

unoccupied, reads ) ] ]
The associated eigenvectors constitute the resonance wave

_ Wi functions of the stately «)- The labelu collectively denotes
E [isﬁjj,—S“,(s)]aj,(s)=ij dRp(K) ——, the conserved quantum numbers that characterize the self-
i’ k<ke 1S €k energy matrix and an index that counts the eigenvalues for

©) given quantum numbers. Instead of solving thenlineay
eigenvalue problem fo(w), we evaluate the matrix ele-
mentsS;;/(w) at the positior 13]

wherekg is the Fermi momentum of the metal, a&¢s) is
the complex(statig self-energy. The self-energy describes
the effective interaction that governs the dynamics in the

. . . . . . €J' + Ej ’

ionic space in the presence of couplings to the jellium states. 0= =wjjs (17)
When expressing in terms of the real energy variabieby 2

s=—iw+ 7, the matrix elements of(w) are given by

(this formula generalizes the usual Wigner-Weisskopf ap-
proximation[24] to the case of nondegenerate ionic leyels

Sjjr(w)= €6 +Fj; + Pf dRp(K) and subsequently diagonalize tifixed) matrix S({wj;}).
k=<Kmax
[(ec— @)Nji+ Wil (ei— w)NJ#,IZJr W]_*,E] Ill. MODEL FRAMEWORK
x w— € We now turn to the specific model assumptions that enter

our calculations and present some details regarding the nu-
. VY B TP merical evaluation of the coupling matrix elements and the
”TJS dRp(k)WJkWi’ka(w . (10 self-energy. We choose electronic coordinafes(x,y,z)
such that the X,y) plane coincides with the jellium edge of
where P denotes the principal part ands an infinitesimal the metal and the axis (with the ion center located on)it
guaranteeing thatSieger} resonance boundary conditions points towards the vacuum. The image reference plane is
are fulfilled. The initial-channel transfer matrix elementsassumed to coincide with the jellium edgezatO.

max

Wi and the final-channel distortion matrix elemeRs are The underlying total one-electron Hamiltonikhis taken
defined ag22] in the form

W= (5| Vil 6 (11) H=T+Vy+Ve+V{+ve, (18)
and whereT is the kinetic energy. For the jellium potentidl,,

we assume a simple, step-functional form,

Fij = (Vi ). (12)

The principal-part term in Eq(10) describes indirect cou-
plings between ionic states due to virtual transitions into théThe potentialV¢ is the potential of the ion core, cut off at
conduction bandand back to the ion while the term pro- the surface in order to allow for the complete screening of
portional toi 7 (“width term” ) describes real transitions into the core potential inside the metal. In the hydrogenic ap-
the conduction band and gives rise to the resonance broagroximation which we adopt here, we have
ening of the dressed ionic levels.

The specific form in which Eq€9) and (10) are written VZ(F;D)=Vc(F;D)0O(2), (20
corresponds to the channel decomposition

where

YA

of the total HamiltoniarH in the coupling matrix elements |F—Deg,

Hji, and to the channel decomposition
is the full Coulomb potential of the projectile core of effec-
H=H¢+ V¢ (14 tive charge numbeZ. The potentials
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0 1 ie.,
Vi(2)=-4; 02 (22
1 , D
and ZOZE D0+ V_O_ DO y (32)
V“)(F'D)=; 0(2) (23)  where
e [F+De,|
are the classical image potentials induced by the active elec- Do=D+ z_ i (33
tron and by the ion core, respectively. Vo 4Vg
The channel Hamiltoniand; andH; defining the unper-
turbed initial and final statdsf. Egs.(13) and(14)] are For our explicit calculations, we now write the final-
channel perturbatiol; as
Hi=T+V,, (24
<
: . . . . —-Vo— <
with analytical eigenfunctionkey) [15,29 and energiesy Vi(2)= Vo~ Ve, 2<2 (34)
- f Vi(z)+Vd(z;D), z=z
=k2/2—VO, and e C ) ) =£0
Hi=T+Vc. (25  where we have shifted the jellium edgezs z;, so that the

jellium potential is smoothly joining the total image potential
For the (hydrogeni¢ eigenfunctions ofH;, we adopt the (for the p-Al case,z, varies from 0 to 0.43 a.u. wheD
spherical representatiofy, ). From Egs.(13), (14), and  varies from 0 tox). The termV¢ has a sizable effect only on
(18), the channel perturbationg andV; are now identified the 1s state at small ion-surface distances. Except for the
as 1s case, we have therefore disregarded in our calculations
, _ the contribution of this term.
Vi=VE+ Vv (26) In the initial-channel perturbatioX;, we keep the Cou-

lomb potential only,
and

Vi=Vy—VE+ VU + Vi), 27 Vi=Ve, (39
where i.e., we neglect the image potentials completely. While the
evaluation of individual matrix element/; including the
Ve=Vc—V¢ (28) full perturbationV; is easily accomplished by means of the
technique developed in Refgl5,22, it turns out thatk in-
is the “metal part” of the core potentighote thatvgs occurs  tegrations encountered in the self-energy matt® render a
in Eq. (27) with a minus sign in front calculation with the fullV; prohibitively time-consuming.
The coupling matrix elementd/; andF;, [cf. Eqs.(11)  The approximation(35) appears to be the most severe ap-
and(12)] are hard to deal with if the channel perturbationsproximation we have to introduce in our calculations. Quali-
Vi and V; are kept in full. In order to keep the numerical tatively, the behavior of the “transfer matrix elementV;,
effort at a manageable level, we approximate the core imagis dominated by the “classical-threshold distance” corre-
potentialVY) by its values on the axis[13], sponding to the potential; [15,18. Simple estimate§24]
show that the neglect of the image interactiorvjrresults in
a decrease of the threshold distanc& .2, and in an in-
crease ifZ>2. Correspondingly, the overall magnitude of
the approximatewV, is expected to be smaller than that of
Through this approximation, the repulsive character of thethe full Wj, if Z<2, and larger ifZ>2.
core image potential is enhanced and, accordingly, the ener- Since the ion-surface interaction is axially symmetric
gies of the dressed ionic states will be raised and the res@bout the surface normal, the magnetic quantum numiier
nance widths lowered. However, the inaccuracies decrease conserved quantum number throughout, so that the self-
with increasing ion-surface distan€e and are estimated to energy matrix can be considered separately in the subspaces
be very small foD>(r),, where(r),=n?/Z is the(classi-  corresponding to different values.

V(i>(F.D)~i@(Z)Ev(i)(z'D) (29
cib |z+D] cmr

cal) mean radius of the projectile manifold (for a quantita- In the evaluation of the coupling matrix elements
tive assessment see Sec. IV A beJow Fnimn/1'm With the perturbation34) and hydrogenic wave
In order to remove the unphysical singularity of the elec-functions|#,m), we employ the analytical reduction of the
tron self-image potential/(ei) atz=0, we sef13] three-dimensional integration to a one-dimensional integra-
. . tion given in Ref.[22]. The remaining integration is easily
Vg)(z)+v(c')(z;D)=0, z<z, (30 performed numerically. The coupling matrix elements
Whimk With the perturbatior{35) as well as the overlap ma-
wherez, is determined from the condition trix elementsN,,;, x are evaluated using the closed-form ex-

0 0 pressions of Ref[15]. For the actual computation of these
Ve'(20) +Ve'(29;D) =~ Vo, (3D expressions, we have developed a highly optimized com-
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FIG. 1. First-order distorted energies calculated from €q) FIG. 2. Converged energies of athE0) states emerging from
for all states withn<3. the unperturbed manifolds up to=4, obtained as eigenvalues of

the direct-coupling matrixF [Eq. (36)]. States up tn=6 have
puter code, thereby enabling the efficient and accurate evallpeen included in the ionic basis space.
ation of the self-energy matrix in a large space of hydrogenic

states. of the image interaction/{)+Vv{ [30,32. WhenD falls

wio?;getelzrrhnggtﬁg22ﬁ‘-lenné?e prgztcrli?iacl);p;g ;?/ra:?u:tre]gj U\]/itthhe below 2n?, the energies are progressively lowered due to the
9y effect of the attractive jellium potential. As the overlap of the

the densﬂl/ of St?‘fs taken gqual to the fr.ee-e!ectr.on-g.as de|Q)'nic orbitals with the metal is larger for largar this effect
sity, p(K)=(2#) > (for a given electronic spin direction

. i . D increases with increasing and leads to crossings of the
Due to axial symmetry, the azimuthal integration is trivial. In : ; .
levels emerging from high shells with lowern levels.

the numerical evaluation of the remaining two-dlmensmnaRNh”e the distorted energies exhibit a sizable dependence on

integral for the principal-part term, special precautions ar . : :
taken to avoid unduly large errors that might arise from thee[he orbital angular momentuin(at fixedn andm), there is

. L . - . an even stronger dependence on the magnetic quantum num-
singularity in the integrand. The width term in E40) (also : X .
referred to as on-shell contributipnan be reduced to a one- berm (at fixedn andl), with the lowm states being affected

dimensional integral by exploiting the energy-conservihg strongest._ Tham c_Jep_endence refl_ects the strong (_:hange n
function. shape which the ionic wave function undergoes with chang-

ing m, and the associated change in the overlap of the ionic
wave function with the jellium potentidP2].
In a second step, the energiég,, are determined as ei-

We now apply the self-energy method, within the modelgenvalues of the matrix* (the label x attached toE,
framework outlined above, to the calculation of energies angounts the eigenvalues for givem). In Fig. 2 we display
resonance widths of dressed ionic states. Specifically, wenergies as a function @ for all (m=0) states that merge
consider the case of protong1) interacting with an alu- asymptotically into unperturbed states witk=4. In the di-
minum surface Y,=0.585 a.u.). This example is chosen in @gonalization ofF, unperturbed states with<6 were taken
order to enable the comparison of our results to those ofnto account to guarantee convergence of the displayed en-

IV. SELF-ENERGY CALCULATIONS

previous calculations by other authors. ergies(see Sec. IV D The pattern shown by the energy
curves is characterized by a series of levels which, when
A. Direct couplings between unperturbed projectile states followed to smaller distances, tend to become lowered, in

some cases below the bottom of the conduction band. The

In order to examine the effect of the different terms in thestrong level shift arises from large off-diagonal couplings in
self-energy matrix(10), we first consider direct couplings Fir in Eq. (36).

within the ionic space given by the energy matsxwith In order to investigate the approximation we made by
elements using Eq.(29) for the nuclear image potential and by em-
Fii=€8;+F), (36) ploying the step-function potential for the jellium surface, we

calculated final-channel matrix elemeni®) using both the
The first-order distorted energy corresponding to the unMore refined Jennings potentiall] for the surfacewhich

perturbed statéy,, ) is then obtained as includes the electronic self-imageand the full two-
dimensional nuclear image potential according to &9).
Enim=Fnim.nim= €n+ Fnimnim- (377  As an example Fig. 3 shows the diagonal final-channel ma-

trix elements for the projectile 22p,, 3s,3d,, and 4,4f4
In Fig. 1 we show the first-order distorted energies for thestates for bothi) the step-function potential and the simpli-
n manifolds up ton=3 as a function of the ion-surface fied nuclear image potentié29) used in all our calculations
distance D. For D larger than the *scaling distance” and (ii) the more refined Jennings potential and nuclear im-
2(r),=2n? [22], the energy curves follow the IMdepen- age potential23). As expected, the full nuclear image po-
dence anticipated from the leading term in thB ®xpansion tential is less repulsive than our approximate nuclear image
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of the matrix elementsV;, and Ny, and hence of the
principal-part term in the self-energy, begins to rise steeply
[15]. In marked contrast to the behavior of the perturbative
energies of Fig. 1, all curves in Fig. 4, except theclrve,
continue to increase monotonically down to very sniall

fv:, otol values. This behavior can be qualitatively understood by
? otn — considering the diagonal elements of the principal-part term
5 ! in Eqg. (10). The numerator in the integrand is positive

throughout, while the denominator is negativeif>¢;, and
positive if e,<e;. Hence, wheney varies in the range

— V=< ¢=0, the integrand is essentially negative for ionic
states withej~ —V,, and essentially positive for states with
|e,-|<vo, For our specific example, we therefore expect the

1s energy at small distances to be lowered by the principal-
FIG. 3. Diagonal matrix elements for the first-order distorted part term, and all other energies to be increased.
energies for the one-dimensional potenfige Eq(34)] (full line) The effect of the principal-part term on the diagonal ele-
and the potential built up by the Jennings poterfédl] and the full  ments of the self-energy far>1 can be viewed as being
nuclear image potential according to Eg3) (dotted ling for the  gqujvalent to that of an effective potential which is strongly
2s, 2p,, 3s, 3d,, and 4%, 4f; states. repulsive at small ion-surface distances. The surprising result
]13 that this effective potential is strong enough to over-

potential which leads to a weaker energetic upward shift 0compensate completely the lowering of the levels caused by

the states. As can be seen thm=(I) states ($,3d,,4f3) R .
. . . the attractive jellium potential.
show the largest discrepancies between the two potentials. o
We note that the strongh dependence of the principal-

This can be easily understood as these states have a charge N .
density which is aligned almost parallel to the surface an art contribution to the diagonal elements of the self-energy

therefore strongly experiences the difference in the twdends to reverse, in comparison with the first-order distorted
nuclear image potentials used. The overall maximum ene/€€rgies, the order of the differemtlevels emerging from a
getic deviation for all cases shown is of the order of 0.01 a.uhydrogenicn manifold. The 2, level, for example, is well

(2p,) and tends to become smaller for highequantum below the Z and 2p, levels in Fig. 4, while the opposite
numbers. holds for the corresponding levels in Fig. 1. It is also worth

mentioning that the splitting of the diabatic self-energies at
large distances is much smaller than that of the correspond-
ing first-order distorted energies of Fig. 1. This feature ap-

Turning now to the full self-energy, we consider energiesyears to be an immediate consequence of the potential barrier
Enim @nd resonance widths,, calculated from the diagonal 4+ is effectively built up by the principal-part term.
elements of the self-energy matrix. The widthg,,, (or,

equivalently, the transition rates for resonant electron trans-
fer) have been studied previousil3,16,17 within the
model framework that is used in the present work.

In Fig. 4 energiek,,,, are shown as a function & for
the n manifolds up ton=3. The energy curves start to devi-
ate from the curves of Fig. 1 wheb drops below the
classical-threshold distance2, below which the magnitude

B. Diagonal elements of the self-energy matrix

C. Eigenvalues of the full self-energy matrix

In this subsection we present and analyze energigs
and resonance widths,,,, determined from the eigenvalues
of the full self-energy matrix according to Eq45) and(16),
and perform a detailed comparison to the results obtained by
other authors. Since these energies and widths are obtained
by diagonalizing a non-Hermitian matrix the Wigner—von
Neumann noncrossing rule does not apply and levels of the
same symmetry may cross. To extract the physically relevant
levels, i.e., the energetic path an electron would follow at
finite velocity, we diabatize the levels so as to preserve the
character of the associated wave function as a function of the
ion-surface distance. This can be easily achieved by calcu-
lating the overlap matrix between all states of adjacent ion-
surface distances and by connecting energies and widths of
states with maximum overlap. The procedure gives smooth
curves for energies and widths.

In Fig. 5, we display energy curves for then€0) states
emerging from the unperturbed€1,...,4) manifolds, by
including n manifolds up ton==6 in the basis set. There is a
striking qualitative difference between the curves of Fig. 5
and those of Fig. 2 for the energies including the direct cou-

FIG. 4. Diagonal elements of the self-energy for all states withplings only. Except for the asymptoticnE€1) state, all
n<3. We shifted theif=1) energy by 0.34 a.u. curves in Fig. 5 continue to rise monotonically wHerfalls

Energy (a.u.)

lon-surface distance (a.u.)
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FIG. 5. Converged eigenvalues of the full self-energy matrix of _ FIG- 6. Same as Fig. 5, but with the direct-coupling terms
all (m=0) states emerging from the unperturbed manifolds up tof jj’ N the self-energy matrix10) neglecteddashed curvgs The
n=4. States up to=6 have been included in the ionic basis Space_fuII curves correspond to a calculation in which, moreover, the

The vertical dashed bars indicate the position of the threshold digMaginary width term has been disregarded, i.e., in which only the
tances 2r),=2n? (see text principal-part term has been kept.

Tully [31]. Similar to our calculation the results of Deutscher
of the strongly lowered levels appearing in Fig. 2. This €t al. [35] using the stabilization method give a local maxi-

shows that the indirect couplings via the conduction band"ym mr;[he 0=1) energy c;r\iezag)~3.5v\7.u. Oturtre]nterg]y
states, which we have found to have pronounced influencYrVe SNOWS a maximum ab=2.> a.u. We note that the

on the diagonal elements of the self-energy, prevail also ilgualita_lti_ve be_havior of ourr(=1) energy at small distances
the full selfg-energy. 9. p is decisively influenced by th¥; term (34) in the total self-

Comparing the results of Fig. 5 to the diagonal elementénergy(lp)' TO lllustrate this _effect we haye drawn in Fig. 7
of the self-energy shown in Fig. 4, we observe different split-t,he contribution from the idlagonal matrix element of the
ting patterns for levels emerging from one and the same final Cha”r_‘e' potential according to qu) (_Iabeled a_svf
manifold at distances below the threshold distanc Zhe ~ ONY). At distancesD larger than 4 a.u. it coincides with the
levels emerging from the asymptotio=€ 2) manifold in Fig. result OT the full sellf—energy calcu_lat!on. However,. for
5, for example, are much stronger split than their “parentsmaller ion-surface distances the prlnc]pa_l—part term in the
levels” 2s and 2p, in Fig. 4. This difference reflects the full self-energy tends to enhance the binding energy of the
hybridization of hydrogenic orbitals with opposite parity that (n=1) resonance stgte. . :
is caused mainly by the image potentig@<,30,32 (a more The resonance width of the asymptotio=1) state is

detailed discussion of hybridization properties of dressefompared in Fig. 8 to other nonperturbative calculations by
ionic states will be presented in Sec. IV.E Nordlander and Tully31], Borisovet al.[27], where results

In order to gain more insight into the interplay of the are shown for both a classical image potential apd a smeared
different couplings acting in the ion-metal system, we showsurface charge, Deutschetral.[35], and perturbative results
in Fig. 6 energy curves calculated by keeping the principal-b_y Wille [17]. The fairly large discrepancies between .the
part term as the only term in the self-energy matrix as well adifferent theoretical approaches apparently reflect the differ-
by keeping the principal-part together with the width term.
As the image potentials contained in the final-channel per-
turbationV; are now neglected, the asymptotic /4ehav- AN
ior seen in Fig. 5 is absent in the curves of Fig. 6, and all
curves, except then=1) state, display a flat behavior be- R\
yond the threshold distancen2 There is, however, a strong

below the threshold distancen?, and there are no remnants

-0.41 T T T T T T 1 T T

-0.44 |-

Our resulis

splitting of the levels emerging from a singte manifold.
This shows explicitly that the corresponding splitting seen in
Fig. 5 is, to a large extent, driven by the indirect couplings
via the conduction band. The effect of the width term in the
self-energy matrix on the energies is seen from Fig. 6 to be
very small.

The energy of the state asymptotically merging into the
1s state is contrasted in Fig. 7 with the results of other non-
perturbative calculations. At large and intermediate dis-

Energy (a.u.)

045
0.46
047
-0.48

-0.49

VF
Borisov et al.
Nordlander et al.

Deutscher et al.

2 4 6

lon-surface distance (a.u.)

tances, our results agree well with the coupled-angular-mode FiG. 7. Comparison of the energy of the asymptotic=(l)
results of Borisovet al. [27] and the stabilization-method state, calculated from the full self-energy mat(®0), with the non-
results by Deutschest al.[35], while a systematic deviation perturbative results of Nordlander and Tul§1], Deutscheret al.
remains with the complex-scaling results of Nordlander and35], and Borisovet al. [27].
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FIG. 8. Comparison of the width of the asymptotit<(1) state, FIG. 10. Comparison of the resonance energies forrak Q)

calculated from the full self-energy matri%0), to the nonperturba- @nd (m=1) states emerging from the unperturbeu=@3) mani-

tive results of Nordlander and Tulli81], Borisov et al. [27], and fold, calculated from the full self-energy matri%0), to the nonper-
Deutschert al. [35]. turbative results of Nordlander and Tu[l$1]. The lettersa—e refer

to the corresponding widths in Fig. 12.

ent choices of the surface potential and the strong sensitivitgrogenic wave functions has been used to simulate orbital

of the width to details of the potential, in particular for hybridization.

strongly bound states. Our n=2 results in Fig. 11, while being in close overall
In Figs. 9 and 10, the energies emerging from the agreement with the other calculations tend to be consistently

=2: m=0) and (n=3; m=0,1) manifolds are shown in Smaller than the pther nonpertgrbative resylts by a faptor of

comparison with results of Nordlander and TUi84] and of 1.510 2. Qualitatively, we ascribe these discrepancie$)to

Borisovet al.[27] as well as with the multicenter calculation OUr approximation29) for the core image potential ard)

of Martin and Politis[36] and very recent results by Deut- OUr use of a jellium potential with a sharp step instead of the

scheret al. [35(b)]. There is good agreement of our results STI00thed potential used in Refs1,27,33. The n=3 re-

with the other calculations, in particular with those of Nord- SUlts in Fig. 12 exhibit the same trend as tive 2 resullts,
with widths now being generally smaller than the nonpertur-

fnd:;r?thgvuél);mﬂﬁqﬁﬁuiifélzr?iggeesﬁc?gnIC pOtentIalbative widths of Nordlander and Tullj81]. However, this
PP gles. rule does not hold for the state with the smallest width which

In Figs. 11 and 12, the resonance widths corresponding t{) -
. . ends to be bigger than the results by Nordlander for large
the energies of Figs. 9 and .lﬁOIE that we have uged th_e ion-surface distances and smaller for distances belbw
same symbolga,b,...) to designate energies and widths in —12 au

Figs. 9—12 are compared to the nonperturbative results of

Nordlander and Tully{31], Borisov et al. [27], Deutscher

et al.[35(b)], as well as to the first-order calculation of Wille

[17] in which the paraboli¢Stark representation of the hy- In the full self-energy calculations presented above, we
have used basis spaces of fixed dimendg,, and we

D. Convergence properties
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FIG. 9. Comparison of the resonance energies fio=(Q) states FIG. 11. Comparison of the resonance widths for all states

emerging from the unperturbedh€2) manifold, calculated from emerging from the unperturbech€2) manifold, calculated from
the full self-energy matriX10), to the nonperturbative results of the full self-energy matrix10), to the nonperturbative results of
Nordlander and Tully{31] Borisov et al. [27], Martin and Politis ~ Nordlander and Tully{31], Borisov et al. [27], Deutscheret al.
[36], and Deutscheet al. [35(b)]. The lettersa andb refer to the  [35], and to the first-order calculation with hydrogenic states in
corresponding widths in Fig. 11. parabolic representation of Wille7].
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B culations presented above are well convergedifeb in the
chosen ionic basis. Similar convergence is reached for higher
m-quantum numbers. The remaining inaccuracies caused by
truncating the ionic basis space are considerably smaller than
those introduced by uncertainties in the electronic potentials.
This also supports our intuitive expectation that, with respect
to the target-centered part of the basis, the technically diffi-
cult inclusion of positive energy continuum states is of little
or no relevance. Since these target-centered continuum func-
tions (here: jellium functions of positive energyverlap
with projectile-centered hydrogenic orbitals, our conver-
gence study has to some extent probed the influence of the
part of Hilbert space that is represented by the target con-
lon-surface distance (a.u.) tinuum. As a general rule we found, even for small ion-
surface distances, that a givemmanifold is converged if the
FIG. 12. Comparison of the resonance widths for all statesadjacent i—1) and fi+1) manifolds are included in the

emerging from the unperturbedh£ 3) manifold, calculated from close-coupling expansion.
the full self-energy matrix10), to the nonperturbative results of Further evidence for sufficient completeness of our basis
Nordlander and Tully31], and to the first-order calculation with is provided by the good agreement between our calculation
hydrogenic states in parabolic representation of Willg|. and the results of Nordlander and Tu[lg1], Borisovet al.

[27], and Deutscheet al. [35A] (see Sec. IV ¢ The com-
have not dwelt upon the question to what extent the resultgjex rotation technique in Ref31] includes part of the con-

are converged, i.e., to what extent the energies and widthgnyum basis through complex rotated and thus square inte-
are changing wheN,gsis changed. We now turn to a dis- grable continuum states.

cussion of this issue. As a representative case, we consider |n conjunction with the discussion of the convergence

the (m=0) states where we have so far used the 21 lowesgroperties of our self-energy calculations, a comment is in
hydrogen stategn=1,...,6;1=0,...,n—1) as basis states. order on the computational work that is required in the vari-
Taking as example a particulam&0) resonance state ous steps of the calculations. Within our model framework,
which asymptotically merges into the€ 4) manifold, Figs.  the basic distortion and transfer matrix elements are essen-
13(@) and 13b) show the convergence of the energy andtially reduced to closed-form expressiofis,22 which al-
width for an increasing numbeN,,s of bound hydrogen |ow a fast and accurate evaluation of individual matrix ele-
basis (n=0) orbitals. The inset in Fig. 18) shows the cho- ments even for ionic states with very high quantum numbers
sen (1=4) state as dotted line among all other resonancén=20 and largexr The most time-consuming step in our
states of thgn=2,...,6; m=0) manifolds. As can be seen, calculations is the evaluation of thE integrals in the
major changes in the energy and width occur betweemrincipal-part term of the self-energy matrix. Given the self-
Npasis= 10 andNp,5i¢= 15 while almost no change is observed energy matrix, the effort spent in its diagonalization is neg-
betweenNy,qs= 15 andNp,q=21. A similar rapid conver- ligibly small in comparison with the effort spent in other
gence is observed for alhg5) manifolds. The asymptotic methods(complex-scaling method, stabilization methdd
(n=6) manifold would require the inclusion of higher basis diagonalize the full Hamiltonian matrix within a very large
orbitals (with n<7) to become converged. basis[35]. This advantage which results from the fact that
Summarizing the evidence obtained from these examplesye effectively use a two-center basis to describe the elec-
we conclude that thenf=0) results of the self-energy cal- tronic wave function, is partially deteriorated by the consid-

107 ™

u.)

S10°

Width

10°k

10°

0.000 ————— 10° ;
00051 3
| é -
=] @ 3 FIG. 13. Resonance energ® and width(b)
3_0 010 310.4 of an (m=0) state asymptotically merging into
§ . % the (h=4) manifold obtained for various sizes of
e P torsade daane @3 | = the basis set. The inset shows the chosen reso-
w nance state among all othem& Q) states of the
.0.015 |- (n=2) to (h=6) manifolds as a dotted line.
----N
—N .‘\\\
3001 S P P PR EEPENY SR B of b1 e NN

6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20
(a) lon-surface distance (a.u.)  (b) lon-surface distance (a.u.)



552 P. KURPICK, U. THUMM, AND U. WILLE 56

10° ———r . . . I near the bottom of the conduction baftde integrand is 0 at
k=0). This maximum results from the very long wavelength
of the corresponding metal part of the jellium states which
avoids cancellation effects in the overlap and Coulomb
initial-channel transfer matrix elements. Figure 14 shows a
typical numerator of the integrand for the principal part of
the Ssq 55 Matrix element aD =10 a.u. From the figure it is
obvious that increasing the upper integration litieyond
the ionization thresho)dwould not significantly alter the in-
fluence of the principal part on the total self-energy matrix.

Integrand (a.u.)

E. ORBITAL HYBRIDIZATION

-0.3
Energy (a.u.) Having studied so far the energies and widths of dressed
ionic states, we now briefly discuss the wave functions asso-
FIG. 14. Numerator of the integrand of the principal part in the ciated with these states. The dressed wave functions describe
full self-energy matrix elemerts ss [Eq. (10)] at D=10 a.u. hybridized orbitals that are formed in front of the metal sur-
face. Previous studid®9,30—32,34,3bhave shown that at
erably larger computational work spent to evaluate the effeclarge ion-surface distances orbital hybridization gives rise to
tive interaction(self-energy. a pattern for the energies and wave functions that is in close
Besides the convergence with respect to the bound ionicesemblance with the pattern characteristic of Stark states
states, we studied the influence of the upper integration limiti.e., of hydrogenic states described by wave functions in
kmax [S€€ EQ.(2)] in the jellium basis by investigating the parabolic representatibnHere, we examine hybridized or-
structure of the integrand in the principal part of the self-bitals at small distances where strong mixing of different
energy matrix(10). Both diagonal and off-diagonal matrix hydrogenicn shells occurs.
elements show a very pronounced maximum in the integrand Figures 1%a)—15(f) show contour plots of the charge den-
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=5a.u. Only m=0) states are shown.
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sity for (m=0) states that asymptotically merge into the increase of the resonance energies. Accordingly, except for
=1, 2, and 3 manifolds for an ion-surface distanceDof states located near or below the lower band edge, the indirect
=5 a.u. Both axes refer to the projectile frame and the dottedouplings as represented by the principal-part term in the
line marks the jellium edge. As can be seen, the asymptotiself-energy matrix effectively act as a strongly repulsive po-
(n=1) state is not altered by the surface and exhibits dential on the ionic states. By successively enlarging the
rather small width. The(=2) manifold shows the typical space of ionic basis states, we have studied the convergence
Stark mixing: one state points towards the vacuum and has properties of the self-energy method.

small width while the second state points towards the metal A number of further issues remain to be investigated in
surface, its width being about two orders of magnitude largefuture work. Foremost among them is a precise estimate of
due to the larger overlap with the surfa@milar to upfield the uncertainties introduced by adopting the Wigner-
and downfield Stark statesThe (n=3) manifold splits into  Weisskopf approximation in the evaluation of the self-
three states of small, medium, and large width. At smallenergy. Possible improvements over this approximation, in
ion-surface distances states of tlme=(3) manifold that have particular the self-consistent solution of the nonlinear eigen-
a large width(due to their overlap with the surfactend to  value problem for the self-energy, are being studi@. In

be promoted near the ionization threshold and mix withorder to make the comparison to other nonperturbative cal-
highern manifolds, whereas states with a small width tend toculations even more stringent, more refined forms of the

keep their asymptotic Stark-like character. electron-surface potential need to be taken into account in
our calculations.
V. SUMMARY AND CONCLUSIONS The resonance energies and dressed wave functions cal-

culated in the fixed-ion approximation form an appropriate

Within the fixed-ion approximation, we have studied thestarting point for the dynamical treatment of slow ion-
electronic self-energy of hydrogenic ions interacting with asurface interactions within the rate-equation approach and
jellium metal surface. We have employed a model framethe time-dependent close-coupling method. In the latter
work in which the jellium potential is assumed to be of step-method, the self-energy acts astiane-loca) complex opti-
functional form and in which the classical image potentialscal potential, and the dressed states are coupled by dynami-
are approximately taken into account. This framework al-cal couplings induced by the motion of the ion relative to the
lows an efficient and accurate evaluation of the complex selfsurface. The optical-model close-coupling treatment of ion-
energy matrix in a large space of ionic basis states. Adiabatigurface interactions bears close resemblance to the dynami-
energies and resonance widths of dressed ionic states whigl treatment of slow ion-atom collisions, in which “quasi-
were determined from the eigenvalues of the full self-energynolecular” states calculated at fixed ion-atom distance are
matrix were found to be in good overall agreement withemployed in the expansion of the time-dependent scattering
results obtained previously from other nonperturbative methwave function. We are currently undertaking exploratory
ods. This shows that the electronic potential we use, whilgtudies in which the applicability of the close-coupling
being of a somewhat simple form, is sufficiently realistic to method to ion-surface interactions is examifdfl,42.
describe the essential features of the ion-surface interaction.
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