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Dirac states of relativistic electrons channeled in a crystal and high-energy channeling
electron-positron pair production by photons

Haakon A. Olsen and Yuri Kunashenko*
Institute of Physics, University of Trondheim, N-7055 Dragvoll, Norway
~Received 19 January 1996; revised manuscript received 7 March 1997!

Dirac wave functions for high-energy electrons channeled in crystals are obtained for crystal string poten-
tials. Specifically, we study partial cylindrical wave expansions for ‘‘cylindrical constant and 1/r potentials.
The periodicity along the crystal axis is taken into account as a perturbation to the cylindrical wave functions.
We also find a Sommerfeld-Maue-like solution for the 1/r potential. The cross section for channeling electron-
positron pair production in continuum states is obtained for the crystal string potential. For two-dimensional
Sommerfeld-Maue-like electron and positron wave functions, matrix elements and cross section are obtained
for unpolarized photons. The fact that channeling continuum pair production can only occur when the photon
is hitting the crystal string at a small, finite angle is taken into account.@S1050-2947~97!01007-X#

PACS number~s!: 61.85.1p, 03.65.Pm, 12.20.Ds
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I. INTRODUCTION

The phenomenon of channeling states of charged part
in a crystal was introduced by Lindhard in his classical pa
@1# in 1965. The existence of bound states of channeled e
trons was pointed out@2# by Vorobiev and co-workers a
early as in 1973. In fact, energies and angular distributi
were calculated and compared for bound states of channe
electrons of energies of a few MeV. In fact, they were t
first to use a string potentialV(r);1/r, showing that this
potential is very similar to the Lindhard potential@1#. More
recent work involves crystal-enhanced bremsstrahlung
pair production, also for much higher energies, which is
viewed in recent books and articles@3#.

In the present paper we derive Dirac channeling wa
functions including relativistic effects and spin effects, f
use in calculations of channeling problems in crystals
very high electron or positron energies. The solutions
given as cylindrical waves for a transverse potentialV(r),
with (r,f,z) cylindrical coordinates. To obtain specific s
lutions we consider the 1/r-dependent potential where Dira
solution including the orderA«/E is obtained, with« the
transverse energy andE the total energy of the relativistic
electron or positron. Both continuous and bound states
considered. We also include the effect of the lattice peri
icity, the dependence of the potential onz. Since the main
effect of the crystal in this high-energy region comes fro
the transverse degree of freedom, in particular for bou
electron states, the effects of the longitudinal potential va
tion is included as a perturbation. We also give the Di
wave functions for a~stepwise! constant transverse potenti
that can be of use for channeling conditions where str
screening effect are important. Perhaps the most conven
wave functions for high-energy applications a
Sommerfeld-Maue-like wave functions. These are obtai
in Sec. VI for a 1/r potential.

*Permanent address: Nuclear Physics Institute, 634050 To
P.O. Box 25, Russia.
561050-2947/97/56~1!/527~11!/$10.00
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The production of electron-positron pairs by photons in
crystal is a process that has been studied experimentally
theoretically for many years@4#. The theoretical studies hav
been confined to semiclassical calculations, which seem
give useful results for experimental applications. The use
ness of approximate semiclassical methods must be con
ered in the light of the fact that exact calculations are di
cult and in general complicated.

The present paper presents a quantum-mechanical c
lation of pair production in a crystal for a crystal potenti
proportional to 1/r, with r5(x21y2)1/2, the distance to the
crystal string. With this potential the Dirac equation h
high-energy two-dimensional Sommerfeld-Maue-like so
tions, which can be used for exact calculations of the ma
elements. The calculation is similar to the calculation by B
the and Maximon@5# of pair production on single atoms
although the present two-dimensional calculation proves
be more complicated. It is of course gratifying for the a
thors to note that matrix element calculations can be p
formed in two dimensions with methods similar to tho
used by Sommerfeld@6# and that the integrations give hype
geometric functions as in the three-dimensional case, wh
is not obvious prior to the calculation. These questions
discussed explicitly in Appendix B.

II. DIRAC EQUATION
IN CYLINDRICAL COORDINATES

The Dirac equation

$ igW •¹W 1g0@E2V~r!#2m%c~rW !50 ~2.1!

for a static, cylindrically symmetric potentialV(r) is, in the
standard representation,

gW 5S 0
2sW

sW
0 D , g05S I0 0

2I D ,
c~rW !5NS w~r,f!

x~r,f! Deipzz, ~2.2!
k,
527 © 1997 The American Physical Society
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given by

~ isW'•¹W '2szpz!x1@E2V~r!2m#w50,

~ isW'•¹W '2szpz!w1@E2V~r!1m#x50, ~2.3!

where

sW'•¹W '5sr

]

]r
1sf

1

r

]

]f
, ~2.4!

with sr5(eif
0

0
e2 if

) andsf5( ieif
0

0
2 ie2 if

) satisfying the
usual SU~2! characteristic equation

@s i ,s j #52i« i jksk ,

with indices (r,f,z)5(1,2,3).
From Eq.~2.3! follows

x5~E2V1m!21~szpz2 isW'•¹W '!w,

and the Dirac wave function is given by

c~rW !5NS 1

~E2V1m!21~szpz2 isW'•¹W '!
Dw~r,f!eipzz,

~2.5!

where the two-component spinorw~r,f! satisfies the second
order equation

F ]2

]r2
1
1

r

]

]r
1

1

r2
]2

]f2 1~E2V!22Ez
2

1 isr

1

~E2V1m!

dV

dr
~szpz2 isW'•¹W '!Gw~r,f!50,

~2.6!

where we have introduced the ‘‘longitudinal energy’’Ez by

Ez
25pz

21m2. ~2.7!

The presence ofsrsW'•¹W ' in the last term of Eq.~2.6! shows
that w~r,f! is not an eigenstate of thez component of the
angular momentum

Lz52 i
]

]f
.

The spinorw~r,f! is a superposition of states ofLz5m and
m11, as is easily seen sincesrsz5 isf essentially inter-
changes ther-dependent wave functionsu(r) and v(r) in
w~r,f!:

w~r,f!5S u~r!eimf

v~r!ei ~m11!f D ,
isfw~r,f!5S v~r!eimf

2u~r!ei ~m11!f D . ~2.8!

In fact, w~r,f! is an eigenstate of thez component of the
total angular momentum

Jz5Lz1sz5m1 1
2 .
The two differential equations of second order are, from E
~2.6!,

S ]2

]r2
1
1

r

]

]r
2

m2

r2
1~E2V!22Ez

2Du~r!

1
i

~E2V1m!

dV

dr F i S ]

]r
2

m

r Du~r!2pzv~r!G50,
~2.9!

S ]2

]r2
1
1

r

]

]r
2

~m11!2

r2
1~E2V!22Ez

2D v~r!

1
i

~E2V1m!

dV

dr F i S ]

]r
1

m11

r D v~r!1pzu~r!G50.

Equations~2.5!, ~2.8!, and ~2.9! are the basis of our fur-
ther discussion. These equations are exact. Related to c
neling we shall discuss the case of very high longitudi
energies as compared to transverse and potential ener
We shall, however, first discuss the case of a free elec
V50, described in cylindrical coordinates in order to rela
our solution to the plane-wave solution of a free electron.
the same time we include the case of a constant potenti

V~r!5 HV0 for r,r0
0 for r.r0 ,

~2.10!

which we shall use as a strong screening potential for ch
neling process. It is to be noted that in this case the solu
of the Dirac equation is exact, valid for all energies. This i
useful check on solutions to the channeling processes
which exact solution may not be obtained.

III. CASE OF A CONSTANT POTENTIAL,
INCLUDING v50, A FREE PARTICLE

Equation~2.9! for a constant potentialV5V0 shows that
u(r) andv(r) are Bessel functions

u~r!5u0Jm~pr!,

v~r!5 iv0Jm11~pr!, ~3.1!

with p a quantity of dimension momentum

p5@~E2V!22Ez
2#1/2, ~3.2!

with u0 andv0 constants. For a free particle,p5p' is the
transverse momentum. For a bound state, forVÞ0, p is
imaginary and the Bessel functions in Eq.~3.1! are replaced
by McDonald Bessel fucntions @7# Km(pr) and
Km11(pr).

With w~r,f! given by

w~r,f!5S u0Jm~pr!eimf

iv0Jm11~pr!ei ~m11!f D ~3.3!

and with the summation of Bessel functions@7#

( imJm~pr!eimf5eipr cosf,
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56 529DIRAC STATES OF RELATIVISTIC ELECTRONS . . .
one obtains the plane-wave solution forr.r0 , i.e., for p
5p' ,

( cm~r,f,z!5N( imS 1
2 isW ¹

~E2V1m!
D

3S u0Jm~pr!eimf

iv0Jm11~pr!ei ~m11!f Deipzz
5AE1m

2m S 1
sxp'1szpz
~E2V1m!

D
3S u0v0Deip'r cosf1 ipzz, ~3.4!

giving also the normalization constant. This is the par
cylindrical wave expansion for a free particle with the m
mentumpW in thex-z plane. By a rotationfp or by a different
choice of constantsu0 and v0 , u0exp(2imfp) and
v0exp@2i(m11)fp# in Eq. ~3.1!,

w~r,f!5S u0Jm~pr!eim~f2fp!

iv0Jm11~pr!ei ~m11!~f2fp!D , ~3.5!

the asymptotic plane wave in an arbitrary direction with
spect to the rotational symmetryz axis is obtained, propor
tional to expi@p'r cos(f2fp)1pzz#.

IV. CHANNELING STATES

From exact considerations so far, we now discuss ch
neling approximations. For relativistic particles moving
directions close to a crystal axis, the energyEz , defined in
Eq. ~2.7!, is much larger than transverse and potential en
gies for the most important parts of space. In order to s
tract out the longitudinal energyEz we define« by

«5E2Ez , ~4.1!

which will be used for continuum as well as for transvers
bound states. With the approximations

«!Ez , uV~r!u!Ez ,

Eq. ~2.9! may be rewritten in the compact form

$¹1¹212Ez@«2V~r!#%u~r!2 i
pz
E

dV

dr
v~r!50,

~4.2!

$¹2¹112Ez@«2V~r!#%v~r!1 i
pz
E

dV

dr
u~r!50,

where we have introduced
l

-

n-

r-
-

¹15
]

]r
1

m11

r
, ¹25

]

]r
2

m

r
,

¹1¹25
1

r

]

]r S r
]

]r D2
m2

r2
, ~4.3!

¹2¹15
1

r

]

]r S r
]

]r D2
~m11!2

r2
.

Equations~4.2! are dominated by the term 2Ez(«2V). As-
suming thatV(r) is of the order« for the most important
values of r, we read from the equations that the term
¹1¹2 and¹2¹1 are of orderr22, which must be of order
Ez«5(Ez /«)«

2. Thus the terms that we have neglected«2,
«V, andV2 are all of order«2 and therefore negligible. Fur
thermore, the term (pz /E)(dV/dr) is of order «/r
5AEz /««2. This term may therefore be taken into accou
perturbatively. We shall show that the correction from th
term to the wave function indeed is of relative ord
A«/Ez.

To highest order inEz /«, the wave functions, which we
denoteUm andUm11 , satisfy

$¹1¹212Ez@«2V~r!#%Um~r!50, ~4.4a!

$¹2¹112Ez@«2V~r!#%Um11~r!50, ~4.4b!

where we have used the fact that in Eq.~4.4!, vm(r)
5Um11(r).

In Eq. ~4.2! we introduce

u~r!5Um~r!1Du~r!, v~r!5Um11~r!1Dv~r!,

where Du(r) and Dv(r) are small corrections. Keepin
highest-order terms inEz /«, we obtain, from Eq.~4.2!,

$¹1¹212Ez@«2V~r!#%Du~r!5 i
dV

dr
Um11~r!,

~4.5!

$¹2¹112Ez@«2V~r!#%Dv~r!52 i
dV

dr
Um~r!,

where we have setpz /E51, which is in accordance with ou
approximation.

When we operate on Eq.~4.4a! by ¹2 and on Eq.~4.4b!
by ¹1 we find the nice result

$¹2¹112Ez@«2V~r!#%¹2Um~r!52Ez

dV

dr
Um~r!,

~4.6!

$¹1¹212Ez@«2V~r!#%¹1Um11~r!52Ez

dV

dr
Um11~r!.

Comparing with Eqs.~4.5!, we see thatDu(r) and Dv(r)
satisfy the same equations as (i /2Ez)¹

1Um11(r) and
(2 i /2Ez)¹

2Um(r), respectively. Therefore,

Du~r!5
i

2Ez
¹1Um11~r!1constUm~r!,

~4.7!
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Dv~r!52
i

2Ez
¹2Um~r!1constUm11~r!,

where the last terms are contributions from the homogene
equations~4.4!. The constants are determined by the requ
ments thatDu(r) andDv(r) must vanish forV(r)50. This
gives

Du~r!5
i

2Ez
@¹1Um11~r!2A2Ez«Um~r!#,

~4.8!

Dv~r!52
i

2Ez
@¹2Um~r!1A2Ez«Um11~r!#.

The spinorw~r,f! then becomes

w~r,f!5S 12 iA «

2Ez
1 i

szsW'•¹W '

2Ez
Dwm~r,f!, ~4.9!

with

wm~r,f!5S Um~r!eimf

Um11~r!ei ~m11!f D , ~4.10!

and where we have used

S ¹1Um11~r!eimf

¹2Um~r!ei ~m11!f D5sW'•¹W 'wm~r,f!

in Eq. ~4.9!. The Dirac channeling wave function is then

cm,pz
~rW !5NS 12 iA «

2Ez
1 ig0

szsW'•¹W '

2Ez
D

3S 1

~E2V1m!21~szpz2 isW'•¹W '!
D

3wm~r,f!eipzz. ~4.11!

We have used here thatszsW'•¹W ' anticommutes with
(szpz2 isW'•¹W ') and thatdV(r)/dr gives a negligible term
in our approximation. As seen from Eq.~4.11!, the correction
terms are indeed of relative orderA«/Ez, as stated above.

V. 1/r POTENTIAL

The wave equations~4.4! can be written in the compac
form

F d2dr2
1
1

r

d

dr
2

k2

r2
12Ez@«2V~r!#GUk~r!50, ~5.1!

with k5m andm11 for the upper and lower spinor compo
nents, respectively, in Eq.~4.10!. We shall discuss in this
section the solutions for the approximate crystal potentia

V~r!52
Za

r

a

b
c52V0a/r, ~5.2!

with b the interatomic distance in the crystal row,a the
screening~e.g., Thomas-Fermi! length, andc an empirical
constant. The potential has been used in several calcula
us
-

ns

@2~b!,8#. The potential may be considered reliable forr, dis-
tances of the order of the interatomic distance along the c
tal row.

With the substitution

Uk~r!5Ar f k~r!, ~5.3!

the wave equation~5.1! is of the same form as the equatio
in a spherical symmetric potential, namely,

F d2
dr2

1
2

r

d

dr
2

k22 1
4

r2
12Ez@«2V~r!#G f k~r!50, ~5.4!

compared to the Schro¨dinger equation for a spheric sym
metrical potentialV(r ),

F d2dr2 1
2

r

d

dr
2
l ~ l11!

r 2
12m@«2V~r !#GRl~r !50. ~5.5!

At the same time the normalization for bound states are id
tical

E Uk,n
2 ~r!r dr5E f k,n

2 ~r!r2dr5E Rl ,n
2 ~r !r 2dr51.

~5.6!

This shows that the cylindrical wave functions and ene
levels may be obtained directly from the correspond
sperical wave functions, if these are known. The subst
tions are

l→k2 1
2 , m→Ez , E→«, V~r !→V~r!, ~5.7!

for potentials of identical functional dependences.
For the potential~5.2! the substitution in the potential is

Za/r→V0a/r, V05cZa/b. ~5.8!

The continuum states are then obtained from the hydrog
like states@9# as

Uk
6~r!5expS 7 is uku1

p

2

V0aEz
p'

DA2

p
r

uG~2h1k1 1
2 !u

G~2k11!

3exp~2 ip'r!~2p'!~2p'r!k2~1/2!

3F~2h1k1 1
2 ;2k11;2ip'r!, ~5.9!

where s uku5argG(2h1uku11
2), h52 iV0aEz /p' , p'

5AE22Ez
2'A2Ez«, andF(a;c,z) is the confluent hyper-

geometric function, the Kummer function.Uk
1(r) and

Uk
2(r) are solutions with an asymptotic form plane wa

plus outgoing and ingoing cylindrical waves, respectively,
seen from the asymptotic form

Uk
6~r!5exp~7 is uku!A 2

pr
cosS p'r1

V0aEz
p'

ln~2p'r!

2
p

2
~k1 1

2 !2s uku D . ~5.10!
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As usual with a Coulomb potential, in order to obtain pu
outgoing or ingoing solutions, one has to assume a for
screening atr→` that removes the logarithmic function a
large distances.

For bound states one obtains from hydrogenlike atoms@9#

Un,k~r!5Ar
1

G~2k11! S G~h1k1 1
2 !

G~h2k1 1
2 !2h

D1/2
3~2A22«nEz!

3/2 exp~2A22Ez«nr!

3~2A22«nEzf!k2~1/2!F~2h1k1 1
2 ;2k

11;2A22Ez«nr!, ~5.11!

with the energy eigenvalues, for2h1k1 1
252n,

«n52
~Za!2Ez

2~n1k1 1
2 !2

S c abD
2

, ~5.12!

which gives a 2n11 degeneracy2n,k,n.
As shown in Appendix A, continuum and bound stat

~5.9! and~5.11! are valid for positive and negative values
k, i.e., m andm11. There are no singularities for negativ
values ofk.

VI. TWO-DIMENSIONAL SOMMERFELD-MAUE-LIKE
WAVE FUNCTIONS

Operating withg0$2 igW •VW 1g0@E2V(r)#1m%g0 on Eq.
~2.1!, one obtains the second-order Dirac equation

@¹21p222EV~r!#c~rW !5@2 ig0gW •¹W V~r!2V2~r!#c~rW !,
~6.1!

with the usual Sommerfeld-Maue-type@10# approximate so-
lution

c~rW !5eipW •rWS 12
i

2E
g0gW •¹W De2 ipW •rWc0~rW !, ~6.2!

wherec0(rW) is the solution of the equation

@¹21p222EV~r!#c0~rW !50. ~6.3!

The usual Sommerfeld-Maue solution is for the Coulom
potential. For a string 1/r potential the situation is different
still a solution similar to the Coulomb case is obtained.

With the substitutionc0(rW)5exp(ipzz)w(r,f) and the co-
ordinates

j5r~11cosf!, h5r~12cosf!,

we find

S 2j
]2

]j2
1

]

]j
12h

]2

]h2 1
]

]h
1
p'
2

2
~j1h!

12EV0aDw~j,h!50, ~6.4!

with the Sommerfeld-Maue-like solution
al

s

w~j,h!5Nei ~p'/2!~j2h!FS iV0a
E

p'

;
1

2
; ip'h D , ~6.5!

where F(h) is the Kummer function. The wave functio
c(rW) is then

c~rW !5NeipW •rWS 12
i

2E
g0gW •¹W 'D

3FS iV0a
E

p'

;
1

2
; i ~p'r2pW'rW ! Du. ~6.6!

The Dirac spinor effect has been taken into account by m
tiplication with the free-particle. Dirac spinoru. The
asymptotic wave function is of the form

c0~rW !5NAp
e2pd/2

G~ 1
22 id !

eipzzFeipW'rW 2 id ln~p'r2pW'rW !

1
G~ 1

22 id !

G~ id !
e2 ip/4

eip'r1 id ln~p'r2pW'rW !

Ap'r2pW'rW
D u, ~6.7!

with d5V0aE/p' . This shows thatc(rW) @Eq. ~6.6!# de-
scribes a plane wave plus a cylindrical outgoing wave. T
ingoing cylindrical wave solution is obtained by replacin
ip'r in Eq. ~6.6! by 2 ip'r. Equation~6.6! also shows that
the normalizations constantN is given by

N5
1

Ap
GS 122 id Depd/25

1

Ap
UGS 122 id D Uepd/21 il

5~coshpd!21/2epd/21 il, ~6.8!

with

l5argG~ 1
22 id !,

which gives the plane-wave part ofc(rW) @Eq. ~6.7!#,
exp(ipW •rW)u with the normalized free-particle spinoru. It
should also be noted that the asymptotic cylindrical wa
@Eq. ~6.7!# has ther dependence 1/Ar, as it should.

VII. PERIODICITY ALONG THE CRYSTAL AXIS

We take into account the periodic variation of the pote
tial along the crystal axisV(r,z) by an expansion in Fourie
series

V~r,z!5V~r!1 (
k51

`

Vk~r!cos~gkz!. ~7.1!

Here V(r) is the potential used in the previous section
which can be written as

V~r!5E
z0

z01az
V~r,z!

dz

az
, ~7.2!

while thez dependence is taken into account by the coe
cientsVk(r),
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Vk~r!52E
z0

z01az
V~r,z!cos~gkz!

dz

az
, ~7.3!

wheregk52pk/az are reciprocal lattice vectors, withk an
integer, andaz is the atomic distance along the crystal ax
andz0 is arbitrary.

The Dirac equation~2.1! now becomes

$ igW •¹W 1g0@E2V~r!2Z~r,z!#2m%cZ~rW !50, ~7.4!

where the indexZ indicates thez-dependent potential

Z~r,z!5 (
k52`

`

Vk~r!eigkz, kÞ0,

andcZ508 (rW) is given by Eq.~2.5! for Z(r,z)50 with the
z dependence exp(ipzz).

We shall solve the Dirac equation~7.4! assuming a solu-
tion

cZ~rW !5@11Ẑ~rW !#c~rW !, ~7.5!

with Ẑ(rW) a small perturbation. IntroducingcZ(rW) into Eq.
~7.4!, we find

$ igW •¹W 1g0@E2V~r!2Z~r,z!#2m%Ẑ~rW !c~rW !

5g0Z~rW !c~rW !. ~7.6!

When we neglect the small termsVẐ(rW), ZẐ(rW), and
isW'¹'Ẑ(rW)c(rW) we find

S igz

]

]Z
1g0E2mD Ẑ~rW !c~rW !5g0Z~rW !c~rW !.

ExpandingẐ(rW),

Ẑ~rW !5 (
k52`

`

Zk~r!eiqkz, ~7.7!

we find

Zk~r!5@g0E2gz~pz1gk!2m#21g0Vk~r!, ~7.8!

and the wave function including the periodicity along t
lattice string is given by Eq.~7.5!, with

Ẑ~rW !5 (
k52`

`
1

2Ez~«2gk!

3@g0E2gz~pz1gk!1m#g0Vk~r!eigkz, kÞ0,

~7.9!

in our approximationsEz@« andgk . The wave function for
the potentialV(r,z) @Eq. ~7.1!# is therefore given by Eq
~7.5!,

cZ~rW !5@11Ẑ~rW !#c~rW !, ~7.10!

with Ẑ(rW) given by Eq.~7.9! andc(rW) by Eqs.~4.10! and
~4.11!,
c~rW !5cm,pz
~rW !, ~7.11!

whereUm(r) andUm11(r) are obtained from Eqs.~5.9! and
~5.11! for continuum and bound states, withk5m or m
11.

VIII. MATRIX ELEMENTS

With a potentialV(r) that does not take into account th
crystal structure along the crystal string, no momentum
be transferred in the string direction, which we take as
z axis,

qz5kz2pz
12pz

250, ~8.1!

where qW is the momentum transfer andkW ,pW 1,pW 2, are the
momenta of the photon, positron, and electron, respectiv
Now if the photon momentum is parallel to the crystal strin
kz5v, the momentum and energy balance cannot be m
tained. In order to obtain pair production then,kW must have a
transverse componentkW' , giving qW'5kW'2pW'

12pW'
2 . Only

photons hitting the crystal string at a small angled5k' /v
larger than

dmin5
k' min

v
.

m

AE1E2

~8.2!

can produce pairs. The minimum valuek' min is obtained
from the useful high-energy, small-angle relation

v

E1
~p'

1!21
v

E2
~p'

2!25k'
22

v2

E1E2
m2. ~8.3!

These considerations do not seem to have been consider
be of importance and taken into account in the publish
papers on semiclassical calculations.

The cross section for pair production is given by

d4s5
1

~2p!4
a

v
uM u2d4~k2p12p22q!d3p1d

3p2d
3q,

~8.4!

with a the fine-structure constant andv the photon energy.
M is the matrix element

M5E d3x c̄2~rW !gW •eWeik
W
•rWc1~rW !, ~8.5!

with c6(rW) the positron and electron wave functions,eW the
photon polarization, andgW the Dirac vector matrix.

It is convenient to factor out thez-dependent part of the
matrix element, which is

uMzu25U E
0

L

ei ~kz2pz
1pz

2
!zdzU252pLd~qz! ~8.6!

for large coherence lengthsL. Integrating out the redundan
coordinates in Eq.~2.4!, we find the physical cross sectio
per unit length of the crystal
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d4s/L5
1

~2p!3
a

v
uM'u2

E1E2

upz
1E22pz

2E1u

3p'
1dp'

1dw1p'
2dp'

2dw2, ~8.7!

with the transverse part of the matrix element

M'5ū2E d2r F̄2~rW !gW •eWEiqW •rWF1~rW !u1 , ~8.8!

whereF6(rW ) is obtained from Eq.~6.6!,

F6~rW !5N6S 16
i

2E6
g0gW 0•¹W 'D

3F~2 id6 ; 12 ;6 i ~p'
6r1pW'

6rW !!, ~8.9!

u6 are the free-particle positron and electron spinors,d6

5d(E6 /p6), and d5Za(a/b)c, with the parameters de
fined in Sec. VI. The electron and positron wave functio
describing produced particles are accordingly asymptotic
given by plane waves plus cylindrical ingoing waves.

When the sum over electron and positron polarizatio
and the average over photon polarizations are performed
find

1

2 (
pol

uM'u2

5
~N1N2!2

E1E2
„@E1E21m22~pW 1•kŴ !~pW 2•kŴ !#uI 1u2

1@E1E22m21~pW 1•kŴ !~pW 2•kŴ !#~ uI2u21u IW1u2!

12 Re$E2I 1* @~ IW1•pW 1!2~pW 1•k!~ IW2•kŴ !#

1E1I * @~ IW2•pW 2!2~pW 2•kŴ !~ IW1•kŴ !#%…, ~8.10!

where the integralsI 1 , I1 , andI2 are given by

I 15E d2r F2~rW 2!eiqW'•rWF1~rW !,

I15
i

2E1
E d2r F2~rW !eiqW'•rW¹'F1~rW !,

IW25
i

2E2
E d2r@¹'F2~rW !#eiqW'•rWF1~rW !, ~8.11!

where

F6~rW !5F„7 id6 ; 12 ; i ~p'
6r1rW 6r!…. ~8.12!

As first used by Sommerfeld@6# and later by Nordsieck@11#,
an integral

I 05E d2r r21F2~rW !eiqW'•rW 2«rF1~rW ! ~8.13!
s
ly

s
e

is defined that makes it possible to derive all integrals fr
I 0 by the use of the relation

¹'~p'r1pW'•rW !5~p' /r!¹p'
~p'r1pW'•rW !,

which gives

I 152
]

]«
I 0~pW'

6 ,«!«50 ,
~8.14!

IW65~ ip'
6/2E6!¹p

'
6I 0~pW'

6 ,«!«50 .

The calculation of the integralI 0 , following Sommerfeld’s
@6# method of integration, also used by Nordsieck@11#, is
performed in Appendix B.

Performing the derivations in Eq.~2.14!, we find the final
results for the integrals

I 15CH S p'
2d2

D2
2
p'

1d1

D1
DF~x!

1 i Fm2S p'
2

D2
1

p'
1

D1
D 2p'

12p'
2GG~x!J

IW65C
p'

6

2E6
H 7d6

qW'

D6
F~x!

1 i F S m2

D6
21DqW'2S pW'

72
p'

7

p'
6 pW'

6D GG~x!J .
~8.15!

Here

C5
4p

q'
S q'

2

D6
D 2 id1S q'

2

D2
D id2

, D65q'
212~qW'p'

6!,

m25kW'
22~p'

11p'
2!2

and

F~x!52F1~2 id1 ,id2 ; 12 ;x!,
~8.16!

G~x!52q'
2 d1d2

D1D2
2F1~12 id1,11 id2 ; 32 ;x!,

with 2F1 the hypergeometric function and

x5~2/D1D2!$q'
2 ~p'

1p'
22pW'

1
•pW'

2!12~qW'•pW'
1!~qW'•pW'

2!%.
~8.17!

IX. CROSS SECTION

In the further calculation it is convenient to introduce t
vectorsV1

' andV2
' ,

VW 65pW'
62E6~kW' /v! ~9.1!

and note that
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qW'5kW'2pW'
12pW'

252~VW 11VW 2!. ~9.2!

In addition,

D65q'
212~qW'pW 6

1!5
v

E7
~m21V7

2 !, ~9.3!

which shows the convenience of introducing, in analogy
Ref. @5#,

j5~m21V1
2 !21, h5~m21V2

2 !21. ~9.4!

With these notations, equations in Sec. VIII simplify cons
erably.

Equation ~2.10! becomes, for high energies and sm
angles,

1

2 (
pol

uM'u25
uN1N2u2

E1E2
H 1

2E1E2
~E1

2 V2
2 1E2

2 V1
2

1v2m2!uI 1u212E1E2~ u IW1u21u IW2u2!

12 Re$I 1* @E1~ IW2•VW 1!1E2~ IW1•VW 2!#%J .
~9.5!

Likewise, the integrals~8.15! simplify

I 15CH d E1E2

v
~j2h!F~x!1 i Fm2

v
~p'

2E1j1p'
1j2z!2p

2p'
2GG~x!J ,

IW15C
p'

1

2E1
H 2d

qW'

p'
1

E1E2

v
hF~x!

1 i F S m2E2

v
h21DqW'2S pW'

22
p'

2

p'
1 pW'

1D GG~x!J ,
o

-

l

IW25C
p'

2

2E2
H 2d

q'

p'
2

E1E2

v
jF~x!

1 i F S m2E1

v
j21DqW'2S pW'

12
p'

1

p'
2 pW'

2D GG~x!J ,
~9.6!

whered5d6r'
6/E6 , while x can be written as

x54p'
1p'

2
E1E2

v2 jh~VW 11VW 2!2cos2S f11f2

2 D , ~9.7!

wheref1 andf2 are the angles in ther
'
plane given by

q̂'p̂'
65cosf6 .

Alternatively,x may be expressed as

x54p'
1p'

2
E1E2

v2 jhFk' cosS w11w2

2 D2~p'
1

1p'
2!cosS w12w2

2 D G2, ~9.8!

where the anglesw1 andw2 refer to the fixed vectorkW' ,

k̂'p̂'
65cosw6 .

In order to obtain the cross section, we want t
polarization-independent matrix element squared written
terms ofF(x) andG(x). We define the coefficientsf , g, and
h, rewriting Eq.~9.5! in the form

1

2 (
pol

uM'u25
uN1N2u2

E1E2
uCu2$ f uF~x!u21guG~x!u2

1h Im@F* ~x!G~x!#%. ~9.9!

After some algebra we find
f5d2
E1E2

v2 H 12 v2~V1
2 1V2

2 !jh1~E1
2 1E2

2 !VW 1•VW 2jh2E1E2~V1
2 j21V2

2 h2!J , ~9.10a!

g5
m4

v2 H m2v2

2E1E2
~p'

1E2h1p'
2E1j!22p'

1p'
2~E1

2 1E2
2 !VW 1•VW 2jh1

E1
2 1E2

2

2E1E2
~p'1

2 E2
2 V2

2 h21p'2
2 E1

2 V1
2 j2!J

2
m2

v H ~p'
1E2h1p'

2E1j!~p'
11p'

2!
m2v2

E1E2
2

1

vE1E2
~p'

1E22p'
2E1!~E1

2 VW 2•kW'2E2
2 VW 1•kW'!J

1
1

2
~p'

11p'
2!2

m2v2

E1E2
1
E1
2 1E2

2

2E1E2
~p'

1E22p'
2E1!2

k'
2

v2 , ~9.10b!
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h5
d

2 Fm2HE1
2 1E2

2

v2 ~p'
2E1V1

2 j22p'
1E2V2

2 h2!1m2~p'
2E1j22p'

1E2h2!1
E1E2

v2 jhVW 1•VW 2SE1
2

E2
p'

22
E2
2

E1
p'

1D
1
E1E2

v2 jhS m2v2

E1E2
1VW 1•VW 2D ~p'

1E22p'
2E1!J 2~p'

11p'
2!m2v~j2h!

2
E1
2 1E2

2

v2 ~p'
1E22p'

2E1!~VW 1•kW'j1VW 2•kW'h!G . ~9.10c!

Note thatf andg are symmetric in1↔2, while h is antisymmetric.
The cross section~8.7!, averaged over photon polarizations and summed over electron and positron polarization

becomes

d4s/L5
1

pq'
2

2a

upz
1E22pz

2E1u
uN1N2u2

v
$ f uF~x!u21guG~x!u21h Im@F* ~x!G~x!#%3p'

1dp'
1dw1p'

2dp'
2dw2,

~9.11!
o
1

f
In

e-

mer
with f , g, andh given in Eqs.~9.10a!, ~9.10b!, and~9.10c!,
respectively, andF(x) andG(x) in Eqs.~8.16!. The normal-
ization factors are, according to Eq.~6.8!,

N65~coshpd6!1/2e7pd6/21 il,

wherel is a phase. This gives

uN1N2u25
e2pd1

coshpd1

e1pd2

coshpd2
. ~9.12!

The cross section is then given by

d4s/L5
1

pq'
2

2a

vupz
1E22pz

2E1u
e2pd1

coshpd1

epd2

coshpd2

3$ f uF~x!u21guG~x!u21h Im@F* ~x!G~x!#%

3p'
1dp'

1p'
2dp'

2dw1dw2 . ~9.13!

This is the exact high energy cross section for production
electron-positron pairs in continuum states in a chanelingr
potential given by Eq.~5.2!.

APPENDIX A

The easily proved theorem@7#

1

G~c!
F~a;c;z!5

zmG~a1m11!

G~a!
F~a1m11;m

12;z!, c52m, ~A1!

for the Kummer function

F~a;c;z!5 (
n50

`
G~a1n!G~c!zn

G~a!G~c1n!n!

shows that the particular combination@G(c)# (21)F(a;c;z) is
finite for c52m. One then easily finds
f
/

z2k2~1/2!
G~2h2k1 1

2 !

G~22k11!
F~2h2k1 1

2 ;22k11;z!

5zk2~1/2!
G~2h1k1 1

2 !

G~2k11!
F~2h1k1 1

2 ;2k11;z!,

~A2!

with no singularities, and positive and negative values ok
~m or m11! are equivalent and may be summed over.
fact, k may be replaced byuku.

APPENDIX B

In order to calculate the integralI 0 @Eq. ~2.13!# we follow
the method of Sommerfeld@10#, who calculated the corr
sponding integral in three dimensions. The functionI 0

I 05E dr dw F„id2 ; 12 ; i ~p'
2r1pW 2

•rW !…eiqW'rW 2«rF

3„2 id1 ; 12 ; i ~p'
1r1pW 1

•rW !… ~B1!

becomes, when the integral representation of the Kum
function

F~a;c;x!5BE
0

1

extta21~12t !c2a21dt,

B5
G~c!

G~a!G~c2a!
~B2!

is introduced,

I 05B1B2E
0

1

dt t2 id121~12t !2~1/2!1 id1E
0

1

du uid121~1

2u!2~1/2!2 id2E dr dw exp@ iqW'•rW 2«r1 i ~p'
1r

1pW 1rW !t1 i ~p'
2r1pW 2rW !u#,
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where

B65
G~ 1

2 !

G~7 id6!G~ 1
26 id6!

. ~B3!

The r andw integrations give

I 052pB1B2E
0

1

dt t2 id121~12t !2~1/2!1 id1

3E
0

1

du uid221~12u!2~1/2!2 id2~A21B2!21/2,

~B4!

where

A5«2 i ~ tp'
11up'

2!, BW 5qW'1tpW'
11upW 2.

It is important that the quadratic terms inA21B2 cancel,
giving a linear function int andu,

~A21B2!21/25~a2bu!21/25
1

Aa
S 12

b

a
uD 21/2

, ~B5!

with

a5q'
212~qW'•pW'

12 i«p'
1!t,

b52~p'
1p'

22pW'
1
•pW'

2!t12~ i«p'
22qW'•pW'

2!,

where we have neglected«2 terms since they do not contrib
ute to I 1 . The introduction of Eq.~B5! in Eq. ~B4! gives a
hypergeometric function

E
0

1

du uid221~12u!2~1/2!2 id2S 12
b

a
uD 21/2

5B2
21

2F1S 12 , id2 ;
1

2
;
b

aD5B2
21S 12

b

aD
2 id2

,

and this is a crucial point in the integration; the index 1/2
the Kummer function matches the power 1/2 from the spa
integration, reducing the hypergeometric function to a sim
function, which makes it possible to obtain a hypergeome
function as a result of the finalt integration. In the three-
dimensional case of Sommerfeld the crucial index is 1.

The integral is now

I 052pB1E
0

1

dt t2 id121~12t !2~1/2!1 id1a2~1/2!1 id2

3~a2b!2 id2.

Considered as a loop integrand, the integral has the
branch points

t150, t251, t352q'
2 /2~qW'•pW'

12 i«p'
1! ~a50!,

and

t45
q'
212~qW'•pW

22 i«p'
2!

2@p'
1p'

22pW 1
•pW 22qW'•pW'

11«p'
1#

~a2b50!,

while the integrand vanishes ast22 at infinity.
The change of variable, conserving the limits~0,1!,

t5
t3v

v211t3
,

changes the integral into

I 05B1CE
0

1

dv v2 id121~12v !2~1/2!1 id1~12xv !2 id2,

~B6!

with
x52
q2~p'

1p'
22pW'

1
•pW'

2!12~qW'•pW'
1!~qW'•pW'

2!22i«@p'
1qW'•pW'

21p'
2~qW'pW !#

~D122i«p'
1!~D222i«p'

2!

and

C5
4p

q'
S q'

2

D122i«p'
1D 2 id1S q'

2

D222i«p'
2D id2

, ~B7!

where we always neglect«2 terms. The integrand in terms of the new variable has the branch pointsn150, n251, n3
51/x, andn45`, and the integralI 0 is a hypergeometric function

I 052pK 2F1~2 id1 ,id2 ; 12 ;x!.

Following the prescriptions in Eq.~8.14! and remembering that

d

dx 2F1~2 id1 ,id2 ; 12 ;x!52d1d2 2F1~12 id1,11 id2 ; 32 ;x!,

one finds the integralsI 1 and I6 given in Eq.~8.15!.
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