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Dirac states of relativistic electrons channeled in a crystal and high-energy channeling
electron-positron pair production by photons

Haakon A. Olsen and Yuri Kunashertko
Institute of Physics, University of Trondheim, N-7055 Dragvoll, Norway
(Received 19 January 1996; revised manuscript received 7 March 1997

Dirac wave functions for high-energy electrons channeled in crystals are obtained for crystal string poten-
tials. Specifically, we study partial cylindrical wave expansions for “cylindrical constant gngdtentials.
The periodicity along the crystal axis is taken into account as a perturbation to the cylindrical wave functions.
We also find a Sommerfeld-Maue-like solution for the pbtential. The cross section for channeling electron-
positron pair production in continuum states is obtained for the crystal string potential. For two-dimensional
Sommerfeld-Maue-like electron and positron wave functions, matrix elements and cross section are obtained
for unpolarized photons. The fact that channeling continuum pair production can only occur when the photon
is hitting the crystal string at a small, finite angle is taken into accd®1050-29477)01007-X]

PACS numbds): 61.85+p, 03.65.Pm, 12.20.Ds

[. INTRODUCTION The production of electron-positron pairs by photons in a
crystal is a process that has been studied experimentally and
The phenomenon of channeling states of charged particlggeoretically for many yearst]. The theoretical studies have
in a crystal was introduced by Lindhard in his classical papebeen confined to semiclassical calculations, which seem to
[1] in 1965. The existence of bound states of channeled ele@ive useful results for experimental applications. The useful-
trons was pointed ouf2] by Vorobiev and co-workers as Nness of approximate semiclassical methods must be consid-
early as in 1973. In fact, energies and angular distribution€red in the light of the fact that exact calculations are diffi-

were calculated and compared for bound states of channelirfg!lt and in general complicated. _
electrons of energies of a few MeV. In fact, they were the _1N€ Present paper presents a quantum-mechanical calcu-

first to use a string potential(p)~ 1/p, showing that this lation of pair production in a crystal for a crystal potential

: : — (2 2\1/2 H
potential is very similar to the Lindhard potent{dl]. More proportional to 1p, with p=(x"+y*)"*, the distance to the

recent work involves crystal-enhanced bremsstrahlung an TySta' string. W'th th|s.potent|a| the Dirac equation has
X i ) . Lo igh-energy two-dimensional Sommerfeld-Maue-like solu-
pair production, also for much higher energies, which is re-

. ) . tions, which can be used for exact calculations of the matrix
viewed in recent books and art|c.IE$]. . . elements. The calculation is similar to the calculation by Be-
In the present paper we derive Dirac channeling wavep . and Maximon(5] of pair production on single atoms,
functions including relativistic effects and spin effects, for although the present two-dimensional calculation proves to
use in calculations of channeling problems in crystals forye more complicated. It is of course gratifying for the au-
very high electron or positron energies. The solutions argnors to note that matrix element calculations can be per-
given as cylindrical waves for a transverse pote@b),  formed in two dimensions with methods similar to those

with (p,¢,2z) cylindrical coordinates. To obtain specific so0- ysed by Sommerfelfs] and that the integrations give hyper-
lutions we consider the afdependent potential where Dirac geometric functions as in the three-dimensional case, which
solution including the orde/s/E is obtained, withe the is not obvious prior to the calculation. These questions are
transverse energy arf the total energy of the relativistic discussed explicitly in Appendix B.

electron or positron. Both continuous and bound states are
considered. We also include the effect of the lattice period-
icity, the dependence of the potential an Since the main
effect of the crystal in this high-energy region comes from
the transverse degree of freedom, in particular for bound The Dirac equation

electron states, the effects of the longitudinal potential varia-

tion is included as a perturbation. We also give the Dirac R vi _ _ -

wave functions for dstepwisg constant transverse potential 1y-VHyl E-V(p)]=mi(r) =0 @
that can be of use fpr channeling conditions where strongo, 5 static, cylindrically symmetric potenti®l(p) is, in the
screening effect are important. Perhaps the most convenief, - yard representation

wave functions for high-energy applications are '

Il. DIRAC EQUATION
IN CYLINDRICAL COORDINATES

Sommerfeld-Maue-like wave functions. These are obtained 0 & | 0
in Sec. VI for a otential. y= =
1'b p Y ( _ 5’ O) ’ 70 (0 _ | ) ’
* . . . -
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528
given by
(i6,-V, —op)x+[E-V(p)—m]e=0,

(iG,-V,—o,p)e+[E-V(p)+m]x=0, (2.3

where

o J 109

O'J_'VJ_Z(TP%'FO'QS;%, (2.9

with O'p=(2i¢ Siid)) and 0'¢=(?ei¢ aieiw)) satisfying the
usual SW2) characteristic equation
[O'i ,O'j]:2i8ijk0'k,
with indices (, #,2)=(1,2,3).
From Eq.(2.3) follows
X=(E=V+m) " Xop,~id,-V.)e,
and the Dirac wave function is given by

1

WM €y o165, |20 5

(2.9

where the two-component spingfp,¢) satisfies the second-

order equation

#? 19 1 &
—+-——+—=—>+
ap® pdp  p*ag

_ 1 dv L -
+|0’p(E_V—+rn)$(UZpZ_IO-L'VL) ¢(p,¢)=0,

(E-V)*~EZ

(2.9

where we have introduced the “longitudinal energk, by

(2.7

E2=pZ+m?.
The presence af .7, - V| in the last term of Eq(2.6) shows
that ¢(p,#) is not an eigenstate of the component of the
angular momentum

d

L,=—1i %
The spinore(p,¢) is a superposition of states bf=u and
n+1, as is easily seen sinag,0,=io, essentially inter-
changes the-dependent wave functions(p) anduv(p) in
?(p,®):

u(p)e'#?
(P(p! ¢) = ( v(p)ﬁéi(pﬂrl)d)) ’

v(p)e'#®

i0¢€D(P-¢):(_u(p)ei(M+1)¢ : (2.9

In fact, ¢(p,¢) is an eigenstate of the component of the
total angular momentum

J,=L,+s,=u+3.
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The two differential equations of second order are, from Eq.
(2.6),

# 19 u?
o g E Ve

_|_I—d_v{(__ﬁ) )_ —0
(E—V+m) dp I ap p u(p sz(P) _(2..9)
? 194 +1)?
((9_p2+;%_(’up2) +(E—V)2—E§)v(p)
i dv |, ut+l
TEVIm dp | )v(p)+pZU(p) =0.

Equations(2.5), (2.8), and(2.9) are the basis of our fur-
ther discussion. These equations are exact. Related to chan-
neling we shall discuss the case of very high longitudinal
energies as compared to transverse and potential energies.
We shall, however, first discuss the case of a free electron
V=0, described in cylindrical coordinates in order to relate
our solution to the plane-wave solution of a free electron. At
the same time we include the case of a constant potential

Vo for p<pg
V(p)= 0 for p>pg, (2.10
which we shall use as a strong screening potential for chan-
neling process. It is to be noted that in this case the solution
of the Dirac equation is exact, valid for all energies. This is a
useful check on solutions to the channeling processes for
which exact solution may not be obtained.

Ill. CASE OF A CONSTANT POTENTIAL,
INCLUDING v=0, A FREE PARTICLE

Equation(2.9) for a constant potential =V, shows that
u(p) andv(p) are Bessel functions

v(p)=ived,t1(mp), (3.9
with 7 a quantity of dimension momentum
m=[(E-V)*~EZ]"? (3.2

with uy anduv constants. For a free particle,=p, is the
transverse momentum. For a bound state, et 0, 7 is
imaginary and the Bessel functions in E§.1) are replaced

by McDonald Bessel fucntions[7] K,(7p) and
K;L+l(77p)'
With ¢(p,¢) given by
_ uOJu(Wp)ei#¢
o(p, )= 00,2 1(mp)ein+ D6 (3.3

and with the summation of Bessel functigig

E £ ,( 7,-p)ei/ub: glmp cosp.
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one obtains the plane-wave solution fer pg, i.e., for o« v+ 9 N wt1 v- J
P RZAR T
! viy =2/ ( &) L 4.3
> dulp.p2)=ND i#|  —ioV pap\Pap)” o2 :
(E—V+m) ,
_ - 19 a\ (u+1)
00d, 1 1(mp)el DY
1 Equations(4.2) are dominated by the termE2(e — V). As-
_ _|E+m oD +o suming thatV(p) is of the ordere for the most important
“N 2om IxPL T TP, values of p, we read from the equations that the terms
(E-V+m) V'V~ andV~ V" are of ordetp 2, which must be of order
Ul _ E,e=(E,/e)e?. Thus the terms that we have neglected
X(UO glPLp coSptipzZ (3.4 &V, andV? are all of orders? and therefore negligible. Fur-
0

thermore, the term [,/E)(dV/dp) is of order &/p
=\E,le&?. This term may therefore be taken into account
giving also the normalization constant. This is the partialperturbatively. We shall show that the correction from this
cylindrical wave expansion for a free particle with the mo-term to the wave function indeed is of relative order
mentump in thex-z plane. By a rotatiorp,, or by a different  \/¢/E,.

choice of constantsu, and vo, Ugexp(-iugp) and To highest order irE, /¢, the wave functions, which we
voexd —i(u+1)¢y] in Eq. (3.1, denoteU, andU . ,, satisfy
Uod () €lH(4~ ) {V'V™+2E,[e—V(p)]}U .(p)=0, (4.49
o(p, )= 00, 4(mp)elwtD(e=dp) | (3.5
w1 TP {VV*+2E[e=V(p)}U,+1(p)=0,  (4.4D

the asymptotic plane wave in an arbitrary direction with re-where we have used the fact that in E@.4), v,(p)
spect to the rotational symmetgyaxis is obtained, propor- =U,;1(p).
tional to exg[p, p cosip— ¢p)+p.z]. In Eq. (4.2) we introduce

u(p)=U,(p)+Au(p), v(p)=U,1(p)+A,(p),
IV. CHANNELING STATES

where A, (p) and A,(p) are small corrections. Keeping

From exact considerations so far, we now discuss char‘Flighest order terms i, /e, we obtain, from Eq(4.2
3 z 1 ] . y

neling approximations. For relativistic particles moving in
directions close to a crystal axis, the eneffyy, defined in dv
Eq. (2.7), is much larger than transverse and potential ener- {VIV +2E e —V(p) 1 Ay(p) =i — U,+1(p),
gies for the most important parts of space. In order to sub- dp (4.5
tract out the longitudinal enerdy, we definee by dv

{V V" +2E e =V(p)[}A,(p)=—i 5= ULlp),

e=E—-E,, 4.1 p
where we have set,/E=1, which is in accordance with our
which will be used for continuum as well as for transverselyapproximation.
bound states. With the approximations When we operate on E@4.4a by V~ and on Eq(4.4b
by V' we find the nice result

e<E;, [V(p)|<E,, dv
V-V +2E[e=V(p) V" U,u(p)=2E, 5~ U,(p),
Eqg. (2.9 may be rewritten in the compact form P (4.6)

dVv
V5V~ +2E, e~ V(p)Thu(p) . p,dVv ()=0 {V+V_+2Ez[8—V(p)]}V+UM+1(p)=2EzEUM+1(p)-
de—V(p)Jtu(p)—i = —v(p)=0,

E dp
(4.2) Comparing with Egqs(4.5), we see thatA,(p) and A,(p)
qv satisfy the same equations aSIZEZ)V*UMH(p) and
[V V" 4+2E,[e—V(p)}v(p) +i %d_ u(p)=0, (—1/2E,)V~U ,(p), respectively. Therefore,
P

i
A =—V*U +const ,
where we have introduced u(p) 2E, pra(P) w(P) 4.7
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[2(b),8]. The potential may be considered reliable fodis-
w+1(p), tances of the order of the interatomic distance along the crys-
tal row.
where the last terms are contributions from the homogeneous With the substitution
equationd4.4). The constants are determined by the require-

ments thatA ,(p) andA,(p) must vanish foN(p)=0. This U, (p)=pf(p), (5.3
gives

the wave equatiof5.1) is of the same form as the equation
in a spherical symmetric potential, namely,

|
Aup)= 35 [V U 10— V2E8U (0]
z (4.8 d2 2 d KZ_%

A(p)=~ 5 [V U(p) + V20 Uuea(p))

compared to the Schdinger equation for a spheric sym-

The spinore(p,¢) then becomes metrical potential/(r),

_ . e Uzal‘vl

2
eup.), (49 |4 2d 10+1) _
© dr2+ Cdr -z ———+2m[e—V(r)]|R/(r)=0. (5.5
with . o .
At the same time the normalization for bound states are iden-
U,(p)e'? tical
@u(p!¢): U +l(p)ei(u+l)</> ’ (41@
and where we have used J Uin(p)p dp:f fi,n(P)PzdP:f RPn(r)rédr=1.
_ (5.9
ViU, a(p)e*? ) | v
VU, (p)elrtDe] =L 12u(p ) This shows that the cylindrical wave functions and energy

_ _ _ o levels may be obtained directly from the corresponding
in Eq. (4.9. The Dirac channeling wave function is then  sperical wave functions, if these are known. The substitu-
tions are

o . e . O'Z&J_'V)J_
Vup (D=N| 171\ 5 +ivo —5— k-3, m—E,, E—e, V(r)—V(p), (.79
% 1 for potentials of identical functional dependences.
(E-=V+m) Yo,p,~id,-V,) For the potential5.2) the substitution in the potential is

X @, (p,p)eP. (4.11 Zalr—Vgalp, Vo=cZalb. (5.9
We have used here that,o -V, anticommutes with The continuum states are then obtained from the hydrogen-
(ozp,—id,-V,) and thatdV(p)/dp gives a negligible term like stateq9] as
in our approximation. As seen from E@.11), the correction
terms are indeed of relative ordge/E,, as stated above. /_ IT(—p+x+3)|

I'(2x+ 1)
_ k—(1/2)
The wave equationé4.4) can be written in the compact xexp(—ip.p)(2p.)(2p.p)
form XF(—n+k+3;2x+1;2ip, p), (5.9
d> 1d &2

. .
= —— — +2E se-V(p)]|U(p)=0, (5. Where g g=ard'(=n+|d+3), n=-iVeaE,/p, . p,
dp® pdp p? ‘ = E2—E%~ V2E,e, andF(a;c,z) is the confluent hyper-

geometric function, the Kummer functionJ; (p) and

U, (p) are solutions with an asymptotic form plane wave
plus outgoing and ingoing cylindrical waves, respectively, as
seen from the asymptotic form

VOaE

. T
U;(p)zexr< +|0'|K‘+
V. 1/p POTENTIAL

with k= andu+1 for the upper and lower spinor compo-
nents, respectively, in Eq4.10. We shall discuss in this
section the solutions for the approximate crystal potential

Za a
V(p)=——BC=—VOa/p, (5.2
p U, (p)=expFio|,) cos(pier

with b the interatomic distance in the crystal rowa,the
screening(e.g., Thomas-Fermilength, andc an empirical . (k+H—o (5.10
constant. The potential has been used in several calculations Il '

“In(2p. p)
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As usual with a Coulomb potential, in order to obtain pure (0.1
outgoing or ingoing solutions, one has to assume a formal o(£,m)=NePREm1E
screening ap— that removes the logarithmic function at

large distances. _ _ where F(7) is the Kummer function. The wave function
For bound states one obtains from hydrogenlike at@hs () is then

v E 1. 6
i an,E,IpN/ , (6.5

1
un,K(p>=pr(2K+1)

I(np+x+3) 12
T(n—«k+3)2n

X (2y—2¢&,E,)%? exp(— = 2E,enp) <F
X(2—28,E ) YIF(— n+k+3;2k
The Dirac spinor effect has been taken into account by mul-

+1;2V=2Ez80p), (5.1 tiplication with the free-particle. Dirac spinou. The
asymptotic wave function is of the form

e i -
w<r)=Ne'p"( 1- 5= m-m)

(6.6)

i E 1 i 5 5)
| a—,; =,I — u
0 D, 2 PLp—PLp

with the energy eigenvalues, for 7+ k+3=—n,

2 2 —md/2
__ 2o | (512 (D)= N\/_ © P2 @iBLf—id (P B §)
2(n+xk+1H2\ b (3—id)
which gives a 2+ 1 degeneracy- n<x<n. . I'(3-id) o glPLptid '”“’i”_ﬁiﬁ)) . 67
As shown in Appendix A, continuum and bound states r'(id) P p—p.p '

(5.9 and(5.11) are valid for positive and negative values of
K, i.e., u and u+ 1. There are no singularities for negative \yith = VoaE/p, . This shows thats(F) [Eq. (6.6)] de-

values ofic. scribes a plane wave plus a cylindrical outgoing wave. The
ingoing cylindrical wave solution is obtained by replacing
VI. TWO-DIMENSIONAL SOMMERFELD-MAUE-LIKE ip,pinEq.(6.6) by —ip, p. Equation(6.6) also shows that
WAVE FUNCTIONS the normalizations constait is given by

Operating Withyo{ —i7-V+ yo[ E—V(p)]+m}y, on Eq. 1 /1 1 1

(2.1), one obtains the second-order Dirac equation N= — F(__id>ewd/2:_ F(——id) emd/2+in
Jr 12 Vo |12

[V2+ pZ—ZEV(P)]‘ﬂ(F):[—I’}’Of’VV(P)_VZ(P)]¢((g)i) :(Cosl‘wd)fl/Zewd/2+i)\ (68)

with the usual Sommerfeld-Maue-typ&0] approximate so- with

lution
r=argl'(3—id),

“PTYo(F), (6.2 which gives the plane-wave part of(f) [Eq. (6.7)],
exp(ip-r)u with the normalized free-particle spinar. It
where yo(F) is the solution of the equation should also be noted that the asymptotic cylindrical wave

[Eq. (6.7)] has thep dependence {p, as it should.

. i
z!f(F)=e'p'r<1— > Yo¥- Ve

[V2+p?—2EV(p)]4ho(7)=0. (6.3
The usual Sommerfeld-Maue solution is for the Coulomb Vil. PERIODICITY ALONG THE CRYSTAL AXIS

potential. For a string p/ potential the situation is different; We take into account the periodic variation of the poten-

still a solution similar to the Coulomb case is obtained. tial along the crystal axi¥/(p,z) by an expansion in Fourier
With the substitutiony,(r) = exp(p,2) ¢(p,#) and the co- series

ordinates

é=p(l+cosp), 7=p(l—cosp), V<p,z>=V<p)+k§1vk<p>cos(gkz>. (7.2)

we find ) ) ) . .
Here V(p) is the potential used in the previous sections,

#? 9 ?2 9 p? which can be written as
2+ —+ o (é+

Zpta, dZ
V(p)= f Vip.2) o, 7.2
@(£,7)=0, (6.4) ‘0 ’

while the z dependence is taken into account by the coeffi-
with the Sommerfeld-Maue-like solution cientsVy(p),

+2EVya
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Zpta, dz
Vk(P):ZJZ V(p,z)coggy2) = (7.3

whereg,=2mwk/a, are reciprocal lattice vectors, witk an
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W)= (1), (7.13

whereU ,(p) andU , ,(p) are obtained from Eq$5.9) and
(5.17) for continuum and bound states, with=u or u

integer, anda, is the atomic distance along the crystal axis + 1.

andz, is arbitrary.
The Dirac equatiorf2.1) now becomes
{i9-V+ v E=V(p)=Z(p,2)]-m}yo()=0, (7.4

where the indeX indicates thez-dependent potential

Z(p,2)= X Vi(p)e'9¥, k=0,
k=—o

and ¢,_,(F) is given by Eq.(2.5 for Z(p,z)=0 with the
z dependence exip2).

We shall solve the Dirac equatidid.4) assuming a solu-
tion

(7.9

with Z(F) a small perturbation. Introducing(f) into Eq.
(7.4), we find

W2 (F)=[1+Z(F)](T),

{i7-V+ ¥ [E=V(p) = Z(p,2)] - m}Z(F)(F)
= Yo Z(F) h(T). (7.6)
When we neglect the small term‘s’i(F), Zi(F), and
ig, V,Z(r) y(r) we find
d R
(iyza—z+VoE—m)Z(F)t//(FFVoZ(F)df(F)-
Expandingi(ﬁ),

2M= 2 Zdp)ee, (7.7

we find

Z(p)=[YoE— vp+ 9K —m] tyoVi(p), (7.8

and the wave function including the periodicity along the

lattice string is given by Eq.7.5), with

oo

~ 1
202 2 g
X[ ¥0E— 72 P2+ gk) + M]yoVi(p) €9,  k+0,
(7.9

in our approximation& ,>¢ andg, . The wave function for
the potentialV(p,z) [Eq. (7.1)] is therefore given by Eq.
(7'5)1

Yo (F)=[1+ Z(F)]4(F), (7.10

with i(F) given by Eq.(7.9 and (f) by Egs.(4.10 and
(410,

VIIl. MATRIX ELEMENTS

With a potentialV(p) that does not take into account the
crystal structure along the crystal string, no momentum can
be transferred in the string direction, which we take as the
Z axis,

=K.~ p;—p;=0, (8.9
where § is the momentum transfer arkig*,p~, are the
momenta of the photon, positron, and electron, respectively.
Now if the photon momentum is parallel to the crystal string,
k,= w, the momentum and energy balance cannot be main-
tained. In order to obtain pair production th&wnust have a
transverse componem, , giving G, =K, —p, —p, . Only
photons hitting the crystal string at a small anglek, /o
larger than

kL min m
S =——> (8.2
min ® ’—E+E,

can produce pairs. The minimum valke ., is obtained
from the useful high-energy, small-angle relation

2
w fp, @ 2 2 w 5
—_— +— =ki — ———m". .
E+ (pi) _ (pL) kl E+E_ m (8 3)
These considerations do not seem to have been considered to
be of importance and taken into account in the published
papers on semiclassical calculations.
The cross section for pair production is given by

l «
do= 5 5 5 IMPP6*(k=p, —p-—a)d®p,dp_d’q,
8.9

with « the fine-structure constant argdthe photon energy.
M is the matrix element

v= [ axy et @9
with ¢ (F) the positron and electron wave functiomsthe
photon polarization, ang the Dirac vector matrix.

It is convenient to factor out the-dependent part of the
matrix element, which is

2

L . _
|MZ|2=U0 ek P, P27 =271 6(q,)  (8.6)

for large coherence lengths Integrating out the redundant
coordinates in Eq(2.4), we find the physical cross section
per unit length of the crystal
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@ E.E_ is defined that makes it possible to derive all integrals from

4 o —— — e — .
d*o/L 2w M | 7E —p.E.] lo by the use of the relation

Vi(pp+P-p)=(p/p)Vp (PLp+PL-p),

Xp/dp/de p dp de, 8.7)
with the transverse part of the matrix element which gives
Mf“——f o F_(5)7-6ETPF, (Hu,, (8.9 1= 55 1oL 8)emo,
(8.19
whereF . (p) is obtained from Eq(6.6), rt=(ipf/2Et)folo(|5f 18)s=0-
o i - The calculation of the integrdl,, following Sommerfeld’s
Fi(p)_Ni<li2Ei Y0¥ V. [6] method of integration, also used by Nordsiddd], is
performed in Appendix B.
XF(—id.;3;*i(p, p+P;p)), (8.9 Performing the derivations in E¢R.14), we find the final

results for the integrals
u. are the free-particle positron and electron spinars,
=d(E. /p*), andd=Za(a/b)c, with the parameters de-
fined in Sec. VI. The electron and positron wave functions p,d_ prd;
describing produced particles are accordingly asymptotically 1=C D_ D,
given by plane waves plus cylindrical ingoing waves.

When the sum over electron and positron polarizations | ol PL P’ R
and the average over photon polarizations are performed we Hip\ gt | PP |G(X)
find
AN P a
= e L — L
2 pol L |+=C2E+[+d+D—+F(X)

(N.N)? S (w2 [ P
=g (EE+m=(p K] +il| 5o-1)a-|pi- =6t G0y
_ N :

+[ELE_—m2+ (B -K)(p_ K1 |2+T4]2)

+2REE (T, -p)— (B KK

2\ —idy [ 42 \id_
L s A LA C:4_7T<q_i> (q_i) D.= 2+2(* )
HELF[(T--po)—(p—- k) (- K) T}, (8.10 q, \D- p_| @ P=Tarreldpn)
_ _ p?=K:=(p; +p;)?
where the integral$;, |, , andl _ are given by
and
L F(X)=,F,(—id,,id_;%:x),
Iffdzp F_(p_)e'% PF (p), Po=2Raid -0 (8.16
2 d.d_ ; ; .3.
i G(X):ZqL D+D_ 2F1(1_|d+!1+|d—5§lx)1

=5 | o F 91V,
- with ,F, the hypergeometric function and

-

l d?p[V.F_(5)1€9 PF (), (8.1)

2E_ x=(2/D.D )Ma?(pp, —B;-Pr)+2(d,-B1)(G. -5}
(8.17
where
Fo(p)=F(Fid-:5i(pip+5*p). (812 X CROSS SECTION
In the further calculation it is convenient to introduce the
As first used by Sommerfeld] and later by Nordsieckl1], vectorsV: andV: ,

an integral
V.=p; —E.(K /o) 9.1)

Io:f d?p p ()€ PTHF () @13 and note that
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6, =K —p —p =—(V,+V_). (9.2) P | a ELE.
I_=Coz—1—d o EF(x)
In addition, [ ({u?E O R«
+i ( - §—1)QL—(PI——£PL G(X) |,
w PL
D.=q?+2(d.P)= o (M4V2), (93 ©0

_ _ _ o whered=d.p7/E., while x can be written as
which shows the convenience of introducing, in analogy to

Ref. [5],
_ _ E.E_ N N +o_
g=(m2+Vv2)~L  p=(m2+Vv2) L 4 x=aplp] =7 £n(V, +V_)%cod ‘¢+2¢ ) 9.7
w
With these notations, equations in Sec. VIl simplify consid-
erably.
Elquation (2.10 becomes, for high energies and Sma"where¢>+ and ¢_ are the angles in thé plane given by
angles,

2 q Ai: + .
s |2=|N+N,| 1 (E2V2 4 E2\2 9. P =cosp-
2% Y ELE. [2ELE- T TS

Alternatively,x may be expressed as

+w2m?)| 14|24+ 2B, E_(|T,[2+]T_[?) N
@ (o
 ood 21 o1

E.E_
- . X=4p/p, ——— &7
T2 REIT[E (T -V )+E (I -V )T} e

_ 2
(9.9 +pL)co% L > @_) 9.9
Likewise, the integral$8.15 simplify where the angles, and_ refer to the fixed vectok, ,
E.E_ Tp? . k. Pl =cosp. .
11=Cld ——— (£~ MF (0 +i| "~ (P EL£+p/ -0~ p
In order to obtain the cross section, we want the
polarization-independent matrix element squared written in
—p. G(X)], terms ofF (x) andG(x). We define the coefficients g, and
h, rewriting Eqg.(9.5) in the form
- 1 IN.N_|?
. P, q, ELE- - 2= ——|cf? 2 ?
,=C L _d_i + 7F(X) 2 % |ML| E.E_ |C| {f|F(X)| +g|G(X)|
2E. 1)
) _ +h Im[F* (x)G(x)]}. (9.9
s n—l)& —(5—&5*) G(x)]
w - topl ’ After some algebra we find
2 E.E_|1 2/\/2 2 2 2\\7 \7 2 42,\y2 2
f=d? =5 15 0A(Vi+ V) En+ (ES+E2)V, V_fn—E.E(VAE+V2 7)), (9.103
4 2 2 2 2
Mm m-w _ _ I EL+EZ
9="— ﬁ(pIE_n+piE+§>2—prpi(Ei+e€>v+-v_§n+ﬁ(pi+E2_v2_n2+pi_EiVi§2>]

2 m2w? 1
—  (PTE_+pIE.&) (Pl +pP)) e —=—— (pTE_—p E,)(E2V_-K, —E2V. K,)
w 1 == 1=+ 1 1 E+E_ wE+E_ 1 == 1=+ + V- 3l — V4 |

m2w2+E2++E2,( R )Zﬁ (9.10
E+E_ 2E+E_ pL - pL + 0)2, .

1
+§(Pf+pl)2
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d E2+E2 2 g2 2.2 + 2 E.E_ YARY, E2 E2 +
h=§ w? #(pLE Vi E-p/E_V2 )+m(pj_ E.&— pLE,n)+7—§77V+-V E_ P, — E+ o
E.E_ m?w? . . _ P
+ 2 Y E.E +V -V_ (P E_—p, Ey)(—(p, P, )M w({—7)
w +E_
E2+E2 - I
- (P E_—pLE (Vs K £+V_ K, 7). (9.100

Note thatf andg are symmetric i+ < —, while h is antisymmetric.
The cross sectioif8.7), averaged over photon polarizations and summed over electron and positron polarizations, then
becomes

d4o/L= 2a NN {fIF(x) |2+ g|G(x)|>+h Im[F*(x)G(x)]} X p,/dp;de*p dp de"
7TqJ2_ |p;—E__pZ—E+| g p,dp,de p,ap, de ,
(9.11
|
with f, g, andh given in Eqs.(9.103, (9.100, and(9.1009, [(—p—k+1)
respectively, andF(x) andG(x) in Egs.(8.16. The normal- g T T 2 e n—Kk+i—2k+1;2)
ization factors are, according to E@.8), I'(=2k+1)
= : L(=n+x+3)
Ni:(cosmdt)l/2e+wdt/2+l)\’ k- TR 2) _ 1. .
z F(2x+1) F(—n+k+3;2k+1;2),
where\ is a phase. This gives (A2)
e~y gtmd_ with no singularities, and positive and negative valuesc of
|N+N‘|2:coshnd costmd_ (912 (u or u+1) are equivalent and may be summed over. In
+ _

fact, x may be replaced bix|.

The cross section is then given by

APPENDIX B
dholl— 2a e "+ emd- In order to calculate the integri} [Eq. (2.13] we follow
o= 79° w|p, E_—p, E.| coshrd, coshrd_ the method of Sommerfelfll0], who calculated the corre-

sponding integral in three dimensions. The functign
X{fF(x)]?+g|G()[>+h ImM[F* (x)G(x)]}

Xp/dp}p;dp de.de_ . (9.13 |o=f dp de F(id_;3;i(p p+p-p))edrerF

This is the exact high energy cross section for production of X (=id, :Li(pTp+p*p))
electron-positron pairs in continuum states in a chanelipg 1/ w2l PpTpo-p
potential given by Eq(5.2).

(B1)

becomes, when the integral representation of the Kummer

function

APPENDIX A

1
The easily proved theoref] F(a;c;x)= BJ et l(1-t)c a 1dt,
0
. F( )= 2 (atm+1) F(a+m+1 I'(c)
a;c;z)=——————— F(a+m+1;m B
T(c) I'(a) B_—F(a)l"(c—a) (B2)
+2;z), c=-—m, (A1)

is introduced,

for the Kummer function
 « T@+rmr(ez
Fla;c;2)= ngo T(a)T(c+nn!

1 1
IO=B+B,f dt t"d+’1(1—t)’(1’2)“d+f du ud+ (1
0 0

—U)’(l’z)’id*f dp do exdiq, -p—ep+i(p)p
shows that the particular combinatipRi(c) ] YF(a;c;z) is .
finite for c= —m. One then easily finds TP p)t+i(pLptp piul,
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where

T
T I(FidOT(E+idy)

(B3)

The p and ¢ integrations give
1

|0:2WB+B_f dt tids (1)~ W2+id,
0

xfldu Ud-—1(1—u)~@W2-id_ (A2} g2)~12
0

(B4)
where
A=g—i(tp/ +up]), B=q,+tp/ +up .

It is important that the quadratic terms Af+B? cancel,
giving a linear function int andu,
b -1/2
1-— u) ,
a

(A2+B?)"Y2=(a—bu) %= (B5)

w1l

with
a=qg’+2(q,-p/ —iep/t,

b=2(p/p, —pl-p)t+2(iep —q,-p,),

where we have neglected terms since they do not contrib-

ute tol,. The introduction of Eq(B5) in Eq. (B4) gives a
hypergeometric function

1 ) ) b —-1/2
f du uld,—l(l_u)—(1/2)—ld, 1——u
0 a

and this is a crucial point in the integration; the index 1/2 in
the Kummer function matches the power 1/2 from the spatial
integration, reducing the hypergeometric function to a simple
function, which makes it possible to obtain a hypergeometric
function as a result of the findl integration. In the three-
dimensional case of Sommerfeld the crucial index is 1.

The integral is now

1
|0:2W8+f dt t—id+—l(1_t)—(1/2)+id+a—(1/2)+id,
0
X (a—b)~19-.

Considered as a loop integrand, the integral has the four
branch points

t2=0, t,=1, t3=—02/2(q,-p; —iep)) (a=0),
and
g2 +2(q-p —ispl)
4_ _ - - _ - -
2[p p —p"p —a.-p tep/]

(a—b=0),

while the integrand vanishes #&s? at infinity.
The change of variable, conserving the limi@sl),

t3U

R

changes the integral into

1 ) . .
I0=B+Cf dv v~ T (1—p) "M (1 xp) I,
0

. (B6)
O R PIRE L) NP PRl B
B R I At TPy ’ with
|
_,@(PIPL —PIP1)+2(du /)G, -P,)~2elp G P Py (G.P)]
(D*—2iep/)(D™—2iep))
and 2 id 2 id
4 +
c=2m|__ % RIS (87)
q, \Dy—2iep] D_—2iep;

where we always negleat? terms. The integrand in terms of the new variable has the branch pejat®, v,=1, v,
=1/x, andv,=, and the integral, is a hypergeometric function

|o:2’7TK 2F1(_id+ ,id_ ,%,X)

Following the prescriptions in Ed8.14) and remembering that
d H H 1. H H . 3.
ax SF(—id, ,id_;3;x)=2d,d_ ,F{(1—-id,1+id_;35;X),

one finds the integralk; andl .. given in Eq.(8.15.
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