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Semiclassical wave functions and energy levels of Bose-condensed gases
in spherically symmetric traps
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The WKB approximation for the Bogoliubov equations of the quasiparticle excitations in Bose gases with a
condensate is worked out in the case of spherically symmetric trap potentials on the basis of the resulting
quantization rule. The excitation spectrum is calculated numerically and also analytically in certain limiting
cases.@S1050-2947~97!08011-6#
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The experimental realization and study of Bose-Einst
condensates in alkali atom gases confined by magnetic t
@1–5# has induced vivid activity in the theoretical investig
tion of such systems. From a theoretical point of view,
existence of the external potential requires alternative m
ods for calculating the physical properties of the quant
gases with Bose condensation. Our aim is to solve the
goliubov equations in WKB approximation and to determi
the excitation spectrum on the basis of the resulting qua
zation rule. Our work goes beyond the previous semiclass
calculations, which used the local-density approximation a
considered only the classically allowed region@6#.

In the Bogoliubov theory the field operator can be e
pressed as a linear combination of quasiparticle creation
annihilation operators. The corresponding~nonuniform! ex-
pansion coefficientsuj (r) andv j (r) obey the coupled linea
Bogoliubov eigenvalue equations@7#

S ĤHF 2K~r!

2K* ~r! ĤHF
D S uj~r!

v j~r! D 5Ej S uj~r!

2v j~r! D , ~1!

where j denotes one of the quasiparticle states andEj is the
corresponding quasiparticle energy. The Hartree-Fock op
tor ĤHF takes the form

ĤHF52
\2

2m
D1U~r!12uK~r!u2m, ~2!

whereU(r) is the trap potential,m is the chemical potential
and

K~r!5
4p\2a

m
c0~r!2 ~3!

denotes the potential-like contribution of the condensa
whose wave function c0(r) is normalized as
*d3r uc0(r)u25N0. N0 is the number of particles in the con
densate anda is thes-wave scattering length. In the follow
ing we shall assume thata.0. The quasiparticle amplitude
uj (r) andv j (r) are normalized according to@7#
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E d3r @uj* ~r!uk~r!2v j* ~r!vk~r!#5d jk . ~4!

For the sake of simplicity, we choose the external poten
as spherically symmetric. Moreover, we shall takec0(r) and
hence alsoK(r) as real and shall also make frequent use
the Thomas-Fermi approximation@8#, which leads to

uc0~r!u25H m

4p\2a
@mTF2U~r !# if r ,r TF

0 otherwise.

~5!

HereU(r TF)5mTF andmTF is fixed by normalization. One
can introduce spherical coordinatesr , u, f, and separate
variables in the usual way:

S uj~r!

v j~r! D 5
1

r S unl~r !

vnl~r !
DYlm~u,f!, ~6!

wherej denotes the usual quantum numbers (n,l ,m) for iso-
tropic problems and theYlm are the spherical harmonics.

To solve the coupled, radial equations obtained from
~1! it is advantageous to use the linear combinations@9#

Gnl
6~r !5unl~r !6vnl~r !, ~7!

which satisfy the uncoupled equations

$ĤHF
2 2K~r !22E27@ĤHF ,K~r !#%G6~r !50 . ~8!

Here@ ,# denotes the commutator.~For brevity we have omit-
ted the indicesn and l .! Furthermore, it follows from the
original equations that

G65
1

E
@ĤHF6K~r !#G7, ~9!

which is compatible with Eq.~8!.
Now the operatorĤHF has the form

ĤHF52
\2

2m

d2

dr2 1Ue f f~r !, ~10!
5179 © 1997 The American Physical Society
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where

Ue f f~r !5
\2l ~ l 11!

2mr2 1U~r !12K~r !2m. ~11!

In our WKB treatment we use Langer’s rule by replaci
l ( l 11) by (l 11/2)2. In the followingUe f f(r ) is considered
as a classical potential.

We shall consider two types of solutions

G1~r !5expF i

\S S01
\

i
S11••• D G , ~12!

G1~r !5expF2
1

\
~ S̃01\ S̃11••• !G , ~13!

with real functionsS0(r ),S1(r ), . . . andS̃0(r ), S̃1(r ), . . . ,
respectively. Gathering terms having different powers of\,
one gets first-order ordinary differental eqations for the
known quantities occurring in Eqs.~12! and ~13!.

First we consider solutions of the form~12!. The O(\0)
equation is the classical Hamilton-Jacobi equation for
radial actionS0(r ), from which one can express the classic
radial momenta as

upr u[UdS0

dr
U5A2m~6AE21K22Ue f f!. ~14!

We shall assume thatUe f f.0, in which case only the plus
sign is allowed to havepr real. This is the case, for instanc
in the Thomas-Fermi approximation~5!. We introduce the
radial velocity in the usual wayv r5]H/]pr by regardingE
in ~14! as the classical HamiltonianH(pr ,r ). The obtained
expression@10#

v r5AE21K2~r !

E

pr

m
~15!

reflects the peculiarity of the classical quasiparticle dynam
in traps. The effective quasiparticle mass, which can be r
off from Eq. ~14!, is energy and space dependent. It a
proaches the particle mass at the boundary of the conden
but can become much smaller yet remains nonzero eve
the center of very large condensates in traps. This is a
damental difference to the untrapped case, where the l
E→0 can be taken, in which the quasiparticle mass vanis

By solving Eq. ~8! with the ansatz~12! up to S1, then
using Eq.~9! for G2(r ), and finally transforming back from
G6(r ) to unl(r ) andvnl(r ), particular solutions of the radia
Bogoliubov equations are obtained in the form

S unl~r !

vnl~r ! D.const3S uB~r !

vB~r ! D 1

Auv r u
expS 6

i

\E
r

pr~r !dr D ,

~16!

where uB
25$A11@K(r )/E#211%/2 and uB

22vB
251 are the

generalizations of the usual Bogoliubov coefficients for
case without trapping potential. Note that the classical pr
ability distribution is inversely proportional touv r u, as ex-
pected physically.
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Solutions~16! are valid in the classically allowed region
i.e., between the classical turning pointsr t1 andr t2.r t1 de-
fined by the conditionpr(r ti)50, i 51,2. We shall assume
that there are two turning points only. There may be th
cases: caseA, if r t1,r TF,r t2, in other words, the classica
particle enters the condensate, then leaves it, and ret
again, etc.; caseB, if r TF,r t1,r t2, i.e., we have only a
simple classical motion in the trapping potential; caseC, if
r t1,r t2,r TF , in which case the classical motion is confine
to the condensate.

Next we construct solutions of the form~13! proceeding
similarly to before. Using the ansatz~13! in Eq. ~8!, there can
exist two different solutions forS̃0,

uqr
~ i !u[Ud S̃0

~ i !

dr
U5A2m@Ue f f1~21! iAE21K2#,

i 51,2. ~17!

Both signs are allowed, for example, in the Thomas-Fe
approximation~5!. The solution fori 51 is defined only out-
side the classically accessible region, while the other
( i 52) is permissible for allr values, if Ue f f.0 ~as we
suppose!, and represents a solution that can only occur in
present two-component quasiparticle dynamics. Let us de
furthermore quantitieswr

( i ) similar to those in Eq.~15! by the
relation

wr
~ i !5AE21K2~r !

E

qr
~ i !

m
. ~18!

Let us now consider the allowed solutions in caseA. Re-
quiring normalizibily and performing turning point matchin
at r t j , one obtains

S unl

vnl
D.

C1 j

Auwr
~2!u

S vB

2uB
DexpF ~21! j

\ E
r

r TF
qr

~2!~r !drG
1

C2 j

AuZr u
S uB

vB
DF~r !, ~19!

where j 51 and j 52 correspond tor ,r TF and r .r TF , re-
spectively.C1 j andC2 j are arbitrary constants and

F~r !5expF ~21! j

\ E
r

r t j
qr

~1!~r !drG ,

Zr5wr
~1! for H 0,r ,r t1 ~ j 51!

r t2,r ~ j 52!,
~20!

and
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F~r !52sinF ~21! j

\ E
r

r t j
pr~r !dr1

p

4 G ,
Zr5v r for H r t1,r ,r TF ~ j 51!

r TF,r ,r t2 ~ j 52!.
~21!

Requiring thatu(r ), v(r ) and their first derivatives are
continuous atr TF , one gets four homogeneous linear equ
tions for the four unknown constants. In order to get no
trival solutions the determinant of the coefficient mat
should vanish. This leads to the semiclassical quantiza
rule

052
pA

\
cosS I A1I B

\ D1sinS I A

\
1

p

4 D
3sinS I B

\
1

p

4 D FmL

pA
2 2S L

2ED 2 \pB
2

2pB
31\mLG , ~22!

where we have introduced the notationspA[pr(r TF),
pB[qr

(2)(r TF), L5(]K/]r ) r TF102(]K/]r ) r TF20, I A

5* r t1

r TFprdr, andI B5* r TF

r t2 prdr.

Keeping only the first term on the right-hand side of E
~22! leads to the usual Bohr-Sommerfeld quantization ru

S n1
1

2
D 5

1

p\
E

r t1

r t2
drA2m@AE21K2~r !2Ue f f~r !#,

~23!

with the integer radial quantum numbern>0 and including
the Maslov indices due to the two turning points in the rad
motion. CaseB can be treated in an analogous way, lead
to the quantization rule~23! with K(r )50 within the range
of integration.

We discuss first the energy levels on the basis of Eq.~23!
and will return to the consequences of the general expres
~22! afterward. To evaluate Eq.~23! we choose a harmoni
potentialU(r )5mv0

2r 2/2 often used in theoretical conside
ation @8,9,11#. To distinguish between casesA andB let us
use the dimensionless variablesJ̃5\v0( l 11/2)/2m,
Ẽ5E/m. For energies and angular momenta in the reg
1,2 J̃21,Ẽ, J̃2 caseB occurs and the energy spectru
is simply that of a harmonic oscillator shifted bym

En,l
~osc!5\v0S 2n1 l 1

3

2D2m. ~24!

The self-consistency condition for case B is th
l 11/2.2m/\v01A4m(2n11)/\v0 . One can check tha
caseC, i.e., the classical motion is entirely inside the co
densate, is not possible.

Considering the nontrivial caseA in region 0, J̃2,Ẽ,
the action integral in Eq.~23! can still be performed analyti
cally, but the result is rather cumbersome and the ener
Enl cannot be expressed explicitly. However, due to Eq.~23!
the semiclassical energies fulfill the scaling relati
En,l5\v0Gn,l(m/\v0). We discuss here some limitin
cases. One interesting limit is when one considers the h
lying levels, i.e., whenEn,l@m is fulfilled. Then the main
-
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l
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contribution to the action integral in Eq.~23! comes from the
region outside of the condensate, leading to a spectrum
is almost that of a harmonic oscillator. Expanding the act
integral to the next to leading correction inm/En,l one gets

En,l5En,l
~osc!1\v0dn,l

dn,l.
1

3p

F 4m

\v0
S 2n1 l 1

3

2
2

m

\v0
D2S l 1

1

2D 2G3/2

F2n1 l 1
3

2
2

m

\v0
G2 .

~25!

This result and that of the perturbation theoretical calculat
@12# agree for large (2n1 l ) values.

The other interesting limit is the region of excitation e
ergies small compared to the chemical potential. To reac
formally, the angular momentum and the radial quant
numbersl andn are kept fixed, butm/\v0 tends to infinity.
The main contribution to the radial action integral~23!
comes from thoser values that are within the condensate. T
leading order

En,l.\v0@2n212nl13n1 l 11#1/2. ~26!

Our result~26! almost coincides with that of Stringari’s hy
drodynamic calculation@11#, except for the last constant
within @ #1/2 in Eq. ~26!, which has an appreciable effect on
on the lowest levels. It is, of course, not unexpected tha
WKB approach may fail there. For somewhat higher en
gies at fixed but large chemical potential there is a consid
able region where the two spectra calculated in WKB and
hydrodynamical approximations, respectively, overlap. F
even higher energies the applicability of the hydrodynami
approach loses its validity. The task of solving Eq.~23! for E
can be carried out numerically in a straightforward man
for given scattering lengtha, trapping potential~i.e., v0),
and numberN0 of atoms in the condensate, fixing the sing
parameter 2m/\v05(15N0a/A\/mv0)2/5 on which the
spectrum depends. An example of the results obtained is
picted in Fig. 1.

Let us turn now to the discussion of Eq.~22!. By solving
Eq. ~22! numerically for the energies we have found that t
correctionsDEn,l to the levels defined by Eq.~23! are small,
except when the classical inner turning pointr t1 gets close to
the surface of the condensate@the border between regionsA
and B in the (n,l ) plane#, in which case the radial wave
numberpA goes to zero.DEn,l then becomes large, but de
creases rapidly when going away from this situation. N
that in this case the classical orbits are just glancing at
surface of the condensate. The solution of the Bogoliub
equations then contains an anomalous contribution, nam
the first term on the right-hand side of Eq.~19!, which is
exponentially localized at the surface. The effect rema
even for high energies whenvB becomes negligible. At such
energies it is generally assumed that the Bogoliubov eq
tions go over to the Hartree-Fock equations. Our results s
gest that there might be exceptional states at the borde
regionsA andB. Physically, the effect is caused by the na
row boundary layer of the condensate, which looks eff
tively sharp for orbits glancing on the surface. Its qualitati
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aspects can therefore be expected to be independent from
WKB and Thomas-Fermi approximations in a preasympto
region in energy, when the WKB solution is valid only ou
side the boundary layer. If in this energy region one use

FIG. 1. Energy levelsE(n,l )5Enl /\v0 obtained numerically
from Eq. ~23! for an isotropic harmonic-oscillator trap potentia
U(r )5mv0

2r 2/2 as a function of the radial quantum numbern and
of the angular-momentum quantum numberl . The chemical poten-
tial was chosen to be 8\v0.
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condensate potential~3!, which is smooth~i.e., exceeds the
Thomas-Fermi approximation!, one has to solve the Bogo
liubov equations within the boundary layer appropriately a
matching the result with the WKB solutions outside. Such
procedure goes beyond the scope of the present paper a
left as a future work. Finally, we note that experimenta
such anomalous states could be observed by their excita
via modulations of the trapping potentials as in@4,5# or by
light scattering.

In this paper we have restricted ourselves, for the sak
simplicity, to the case of the spherically symmetric trap p
tential. Calculations along these lines for anisotrop
harmonic-oscillator trap potentials as they are used in
experiments@4,5# will be discussed elsewhere. Here we on
mention that the corresponding classical Hamiltonian sho
chaotic behavior@13#, especially for energies comparable
the chemical potential.
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