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The WKB approximation for the Bogoliubov equations of the quasiparticle excitations in Bose gases with a
condensate is worked out in the case of spherically symmetric trap potentials on the basis of the resulting
quantization rule. The excitation spectrum is calculated numerically and also analytically in certain limiting
cases[S1050-294{@7)08011-9
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The experimental realization and study of Bose-Einstein
condensates in alkali atom gases confined by magnetic traps f d3r{uf (Nu(N = (NvK(N]=Sjk - (4)
[1-5] has induced vivid activity in the theoretical investiga-
tion of such systems. From a theoretical point of view, theFor the sake of simplicity, we choose the external potential
existence of the external potential requires alternative methas spherically symmetric. Moreover, we shall takgr) and
ods for calculating the physical properties of the quantumhence alsd(r) as real and shall also make frequent use of
gases with Bose condensation. Our aim is to solve the Bahe Thomas-Fermi approximatig8], which leads to
goliubov equations in WKB approximation and to determine
the excitation spectrum on the basis of the resulting quanti- m [ —U(r)] ifr<r
zation rule. Our work goes beyond the previous semiclassical | o(r)|2= ArhZathTF TF (5)
calculations, which used the local-density approximation and
considered only the classically allowed regid.

In the Bogoliubov theory the field operator can be €X-Here U(rr¢) = ure and urr is fixed by normalization. One

pressed as a linear combination of quasiparticle creation angy, introduce spherical coordinates 6, ¢, and separate
annihilation operators. The correspondifrnuniform ex-  \5riables in the usual way:

pansion coefficients;(r) andv;(r) obey the coupled linear

0 otherwise.

Bogoliubov eigenvalue equatiopg] up(r)\  1{up(r)
( - ;( )Y.m( 0.9), ®)
N —K(r) Uj(r) vni(r)
Hur (u,»(r))_ (ujm) e ) | .
K1) Fge 0,(1) =E; —o,(n)’ (1)  wherej denotes the usual quantum numberd (m) for iso-

tropic problems and th¥,,, are the spherical harmonics.

To solve the coupled, radial equations obtained from Eq.
wherej denotes one of the quasiparticle states Bpds the (1) it is advantageous to use the linear combinati®is
corresponding quasiparticle energy. The Hartree-Fock opera-

tor A takes the form Gi(N)=Up(r) Zvg(r), (7
i 52 which satisfy the uncoupled equations
Hup=—5—-A+UN)+2[K(N|-u, ) . . )

2m {HAr—K(r)?—E2F[Hpe K(NIGT(r)=0. (8

whereU(r) is the trap potentialy is the chemical potential, Here[,] denotes the commutatdor brevity we have omit-
and ted the indicesn andl.) Furthermore, it follows from the

original equations that
h%a

41
K(r) = ——— ()2 ® T .
G =g[Hur=K(n]G", C)

denotes the potential-like contribution of the condensate, . _

whose wave function go(r) is normalized as Which is compatible with Eq(8).

Jd3 | 4o(r)|?=No. Ng is the number of particles in the con- Now the operatoHg has the form

densate and is thes-wave scattering length. In the follow- 5

ing we shall assume that>0. The quasiparticle amplitudes B ﬁ_ d_+ Uerel1) (10)
uj(r) andv;(r) are normalized according {77 HE™ 2mdr2 " e >
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where Solutions(16) are valid in the classically allowed region,
RA(1+1) i.e., between the classical turning pointg andr,>r, de-
fined by the conditiorp,(r;)=0, i=1,2. We shall assume
Ueri(r) = 2mr? U +2K(r) = p. 1D ihat thgre are two turrrr)lrigg“)points only. There may be three
cases: cash, if r<rie<r;,, in other words, the classical
In our WKB treatment we use Langer’s rule by replacingparticle enters the condensate, then leaves it, and returns
I(1+1) by (I+1/2)% In the followingU,(r) is considered again, etc.; cas®, if r{p<ry<r, i.e., we have only a

as a classical po'FentiaI. _ simple classical motion in the trapping potential, c&seif
We shall consider two types of solutions rq<ryp<rqg, in which case the classical motion is confined
] 5 to the condensate.
: Next we construct solutions of the forti3) proceeding
+ = —| — ...
GH(r) exr{ﬁ St i St ’ (12) similarly to before. Using the ansatk3) in Eq.(8), there can
L exist two different solutions fo,,
dsy
—~ ~ (D) — _ _iE2 k2
with real functionsSy(r),S,(r), ... andSy(r),S,(r), ..., lar”|= ar —\/Zm[Ueff+( 1)'VE?+K?],

respectively. Gathering terms having different powers: pf

one gets first-order ordinary differental eqations for the un-

known guantities occurring in Eq§12) and (13). i=1,2. (17)
First we consider solutions of the forfd2). The O(%°)

equation is the classical Hamilton-Jacobi equation for the

radial actionS,(r), from which one can express the classicalBoth signs are allowed, for example, in the Thomas-Fermi
radial momenta as approximation(5). The solution fori =1 is defined only out-

side the classically accessible region, while the other one
dS (i=2) is permissible for allr values, if Ug;>0 (as we
lp/|= ‘ —| = \/Zm( +\E2+K2— Uet)- (14 supposg and represents a solution that can only occur in the
dr present two-component quasiparticle dynamics. Let us define
furthermore quantitiew/") similar to those in Eq(15) by the

We shall assume thai >0, in which case only the plus

sign is allowed to have, real. This is the case, for instance, relation
in the Thomas-Fermi approximatiof®). We introduce the
radial velocity in the usual way,= dH/dp, by regardinge _ EZ+KX(r) qw
in (14) as the classical Hamiltoniad (p, ,r). The obtained wih= — (18)
expressiorj 10]
_[EPHKA(r) py Let us now consider the allowed solutions in céseRe-
v=\— == (15 . o ) . : .
E m quiring normalizibily and performing turning point matching
atry;, one obtains
reflects the peculiarity of the classical quasiparticle dynamics
in traps. The effective quasiparticle mass, which can be read _
off from Eq. (14), is energy and space dependent. It ap- Up Cyj vg (=) (rre 2
proaches the particle mass at the boundary of the condensate, |v,, = m —Ug X TJ q;”(r)dr
but can become much smaller yet remains nonzero even in '
the center of very large condensates in traps. This is a fun- Cyoi [ug
damental difference to the untrapped case, where the limit ! ( )F(r), (19
E—0 can be taken, in which the quasiparticle mass vanishes. NFARLE

By solving Eg.(8) with the ansat212) up to S;, then
using Eq.(9) for G™(r), and finally transforming back from
G™*(r) to upy(r) andv,,(r), particular solutions of the radial
Bogoliubov equations are obtained in the form

wherej=1 andj=2 correspond to <rig andr>rg, re-
spectively.C4; andC,; are arbitrary constants and

Un|(r))~ (UB(T) 1 L J’r ) 3 (_1)Jfrtj D
(Unl(r) _ConStX UB(r) \/mex _ﬁ pr(r)dr ’ F(r)_ex h ; qr (r)dr ’
(16)
whereud={1+[K(r)/E]?+1}/2 andu3—v3=1 are the W 0<r<ry (j=1)
generalizations of the usual Bogoliubov coefficients for the Z;=w; for Fo<r (1=2) (20

case without trapping potential. Note that the classical prob-
ability distribution is inversely proportional th,|, as ex-
pected physically. and
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[(=2)) [y T contribution to the action integral in ER3) comes from the
F(r)=2sin— j pr(r)dr+ ik region outside of the condensate, leading to a spectrum that
' is almost that of a harmonic oscillator. Expanding the action

fa<r<rre (j=1) integral to the next to leading correction ifE, | one gets
Zr=v for [rTF<r<rt2 (i=2). ) En=ECS9+iwody,
Requiring thatu(r), v(r) and their first derivatives are 4u 3 u 1\ 27372
continuous at g, one gets four homogeneous linear equa- 1 h—(2n+|+ 5~ h_> =1+ > }
. o @
tions for the four unknown constants. In order to get non- S 1= o— 5
trival solutions the determinant of the coefficient matrix T 3w 2n+|+§—L
should vanish. This leads to the semiclassical quantization 2 fhog
rule (25)
Pa Iat+1g PN This result and that of the perturbation theoretical calculation
0=- ?CO{T tsin ot [12] agree for large (8+1) values.
The other interesting limit is the region of excitation en-
(lg m\|mL L\2 #p3 ergies small compared to the chemical potential. To reach it
Xsin| =+ p—i_(ﬁ) 203+ hmL’ (22 formally, the angular momentum and the radial quantum

numberd andn are kept fixed, bui/% wg tends to infinity.
where we have introduced the notatiogs=p,(rtg), The main contribution to the radial action integred3)

pBEqEZ)(rTF), L=(K/r),. 40— (IKIIN). _o, la comes from those values that are within the condensate. To
_rrr i TF T leading order
_fru p.dr, andIB—frTFprdr.

Keeping only the first term on the right-hand side of Eq. Eni=fwg[2n%+2nl+3n+1+1]"2 (26)

(22) leads to the usual Bohr-Sommerfeld quantization rule
Our result(26) almost coincides with that of Stringari's hy-

1 1 \/ drodynamic calculatioi11], except for the last constant 1
= f dr V2m[ VEZ+K2(r)—Ugu(r)],
r

n+— within [ 1¥2in Eq. (26), which has an appreciable effect only
2 23 on the lowest levels. It is, of course, not unexpected that a
WKB approach may fail there. For somewhat higher ener-
with the integer radial quantum number0 and including  9i€s at fixed but large chemical potential there is a consider-
the Maslov indices due to the two turning points in the radial@ble region where the two spectra calculated in WKB and in
motion. CaseB can be treated in an analogous way, leadingydrodynamical approximations, respectively, overlap. For
to the quantization rulé23) with K(r)=0 within the range €Ven higher energies .th_e applicability of thg hydrodynamical
of integration. approach loses its validity. The task of solving E2g) for E
We discuss first the energy levels on the basis of(2g. ~ ¢an be carried out numerically in a straightforward manner
and will return to the consequences of the general expressidR! given scattering lengtla, trapping potentiali.e., wo),
(22) afterward. To evaluate Eq23) we choose a harmonic and numbeiN, of atoms in the condensate, fixing the single
potentialU(r) =mw2r?/2 often used in theoretical consider- Parameter 2/fwo=(15Noa/ Vi/mwg 25 on which  the
ation[8,9,11. To distinguish between cas#sandB let us spectrum depends. An example of the results obtained is de-

use the dimensionless variabled=7%wq(l+1/2)/2u, picted in Fig. 1.

= ) ) i Let us turn now to the discussion of EQ2). By solving
E=E/u. For energies and angular momenta in the region=q_(22) numerically for the energies we have found that the

1<2J—1<E<J? caseB occurs and the energy spectrum correctionsA E,, to the levels defined by E¢23) are small,
is simply that of a harmonic oscillator shifted by except when the classical inner turning paiptgets close to
the surface of the condensdtae border between regiords
(24) and B in the (n,l) pland, in which case the radial wave
numberp, goes to zeroAE, | then becomes large, but de-
] N . creases rapidly when going away from this situation. Note
The self-consistency condition for case B is theniat in this case the classical orbits are just glancing at the
| +1/2>2ulfiwo+ VA4u(2n+1)/fiwg . One can check that syrface of the condensate. The solution of the Bogoliubov
caseC, i.e., the classical motion is entirely inside the con-equations then contains an anomalous contribution, namely,
densate, is not possible. ___ the first term on the right-hand side of E(.9), which is
Considering the nontrivial casa in region 0<J2<E,  exponentially localized at the surface. The effect remains
the action integral in Eg23) can still be performed analyti- even for high energies whargy becomes negligible. At such
cally, but the result is rather cumbersome and the energiesnergies it is generally assumed that the Bogoliubov equa-
E,; cannot be expressed explicitly. However, due to@8)  tions go over to the Hartree-Fock equations. Our results sug-
the semiclassical energies fulfill the scaling relationgest that there might be exceptional states at the border of
En1=hwoG,, (n/fhwy). We discuss here some limiting regionsA andB. Physically, the effect is caused by the nar-
cases. One interesting limit is when one considers the highrow boundary layer of the condensate, which looks effec-
lying levels, i.e., wherk, > u is fulfilled. Then the main tively sharp for orbits glancing on the surface. Its qualitative

Th t1

3
Emsc):hwo 2n+1+ 7|
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condensate potenti&B), which is smooth(i.e., exceeds the
Thomas-Fermi approximatipnone has to solve the Bogo-
liubov equations within the boundary layer appropriately and
matching the result with the WKB solutions outside. Such a
procedure goes beyond the scope of the present paper and is
left as a future work. Finally, we note that experimentally
such anomalous states could be observed by their excitation
via modulations of the trapping potentials as[#5] or by

light scattering.

In this paper we have restricted ourselves, for the sake of
simplicity, to the case of the spherically symmetric trap po-
tential. Calculations along these lines for anisotropic
harmonic-oscillator trap potentials as they are used in the
experiment$4,5] will be discussed elsewhere. Here we only
mention that the corresponding classical Hamiltonian shows
chaotic behaviof13], especially for energies comparable to
the chemical potential.

E(n,1)
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andv (r,t). Through the usual steps one arrives at the continu-
ity equation @p/dt)+divj=0, with p=|u|>—|v|?> and
j=(R/m)Im(u*Vu+v*Vv). The appearance of different
signs for the contributions af in the expressions fos andj
leads to the unusual relatidii5) between velocity and mo-
mentum in the classical limit.



