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Scaling properties and local forms of the correlation-energy functional

Ramiro Pino and Roberto lpez-Boada
Centro de Qumica, Instituto Venezolano de Investigaciones Cieais, Apartado 21827, Caracas 1020-A, Venezuela
(Received 23 October 1995; revised manuscript received 10 February 1997

The scaling properties of the exact correlation-energy functional are applied in the study of the general
rational, polynomial, and logarithmic local fornfand their combinationof the correlation-energy functional,
which depend on the density. It is concluded that these forms cannot satisfy the uniform and nonuniform
scaling properties at the same time; therefore, they would have to be modified to represent exact forms of the
correlation-energy density functional, at least in the high- and low-density limits. These results are not affected
by the application of the local spin density or the self-interaction correction procedures to the above function-
als.[S1050-294{@7)00312-d

PACS numbd(s): 31.15.Ew, 31.25-v

[. INTRODUCTION Levy and Ou-Yang first conjecturd®] and later proved
[6] the unreasonability of the local-density approximation
There is an increasing interest in density-functional theorycorrelation functionalgsee, e.g.[2]) based on the argument
[1-3] because it represents a very important simplification othat they scaled in the same way if we apply one-coordinate
the many-electron problem. In the context of this theory thescaling onx, y, andz. In this Brief Report we apply the
energy functional takes the form scaling properties of the exact correlation-energy functional
R R to the study of some general local forms of this functional
B 1 3= 13- P(r)p(ra) depending only on the density. Also, we briefly discuss the
Elp]=Tdpl+ 2 f f d°rad°r, M case of including some dependence on the gradient of the
density. We conclude that these expressions cannot satisfy
) the uniform and nonuniform scaling properties at the same
time. Therefore, they should be modified in order to repre-
sent exact forms of the correlation-energy density functional,
wherep, Ts, E,c, andv are the electron density, the nonin- in the sense of the scaling properties, guaranteeing correct
teracting kinetic energy, the exchange-—correlation-energgehavior in both the low- and high-density limits. In the local
functional, and the external potential, respectively. spin density or the self-interaction correction formalisms
The properties of these functionals have been studiefil 2], the results remain unaffected.
through the years and many forms for the above functionals
have been proposed, starting from Thomas and Fermi in the
early days of quantum mechanics to the most sophisticated

+f&FmﬂMﬂ+EdM,

Il. THE SIMPLEST FUNCTIONAL

forms(see, e.g[ 1] and references thergiriThe uniform and Let us define the scaled densities we will use:
nonuniform scaling properties of the exchange-correlation
functionals have been intensively studied by Levy and co- pr(X,Y,2)=N3p(AX,\Y,\2), (5)
workers (see, e.g.[4] and references therginlt may be
possible to decompose the exchange-correlation functional if P (X,Y,2)=N%p(AX,\Y,2), (6)
we can make the separation
X(x,¥,2)=Ap(AX,Y,2). 7
Exdp]=Edp]+Edp] @ PV ZIZAPOXY.2) "

. ' The first is called uniform scaling, while the other two cor-
where the correlation and exchange energy are defined, rsspong to nonuniform scaling. The low- and high-density
spectively, by limits can be obtained by taking the scaling constasmall
and large enough, respectively. Then, the main uniform scal-

Eclp]= (W5 T+Ved W) — (@M T+ Ve 1), ing properties of the correlation-energy functional are

[4151718
A 1 r1)p(F
€)= (@)oo 5 [ [ aryar, 22, Edp<NEdp]l A<l ®)
12
) Elp]>NEdp], A>1 9

with Vee=2i>jri]'1. \I’IT"‘ yields p and minimizes (T lim Ep,]=const—, (10)
+Vee), while @' yields p and minimizes(T). We are Ao
interested mainly in the scaling properties of the correlation
functional. and
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lim Ec[p\]=0 (13)
A—0
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lim ASE.[p]=const, (25

A—oo

because the correlation energy should be zero in the nulith s=0, in contradiction with Eq(24). This kind of func-
density limit. For nonuniform scaling the following relations tional has been used by Boada, Maldonado, and Karasiov

will apply [9]:
lim Ec[p}]=0, (12
A—00
lim NE[p}]=const, (13
A—o
lim EJpXY]1=0, (14
A—oo
lim A ~E [ p}]=0, (15
A—0
lim A"1EJ{pY]=0, (16)
A—0
lim N "2EpY]=const. (17

A—0

Let us consider the following form of the correlation-

energy functional:

Ec[p]=CJ d’f p®, (18

whereC is some constant. Now, applying Ed8)—(7) and
considering that the volume scales)as®, we obtain

32

d
Elp]=C| S5 (0P =\CVEL] (19

whereD is the order of the scaling: 3 for the uniform case

[10], with s= 3, whereC is a function of the nuclear charge
and the number of electrons.

Ill. GENERALIZED POLYNOMIAL
AND RATIONAL FORMS

Let us define generalized polynomial and rational forms.
We do not expect to have integer exponents, just real non-
negative ones. We require that the forms have a finite num-
ber of terms

aN>aN_1>--->a1>0, N <o

(26)

N
P(m:g1 cip“,

and

Q(p)=Pn(p)/Py(p), (27)

where the subscriph stands for the numeratod for the
denominator, and the variabtds the electronic density. The
coefficientsc; can depend on quantities such as charge, num-
ber of electrons, or anything that always scales with the ze-
roth power of\. Without any loss of generality, we have
ordered the powers in E@26).

Now let us consider a correlation-energy functional,
which has a generalized rational form and depends on the
density,

Ec[p]=f d*F Q(p). (28)

and 1 and 2 for the nonuniform case, when we scale one o the coefficients ofP,, and P4 should be real and finite

two coordinates. Using Egél2) and(14) and Eqs(15) and
(16) we obtain

lim APG~VE [p]=0 (20)
A—®©
and
lim APG~V1E [p]=0 (21
A—0

for D=1 and 2. Excluding the trivial case &[p]=0, Egs.

(20) and (21) respectively imply that
D(s—1)<0, (22
D(s—1)>1. (23

This is, of course, contradictory.

Another way of getting a contradiction is by using Eqg.

(10),

lim A3"DE [ p]=const> -, (29)

Ao

with s=1, and Eq.(13),

andQ(p) should be such that the above integral exists. If we
scale expressiof28), then we obtain a generalized rational
form in terms of the scaling constati), i.e.,

. Ci i[NPp(F)]%

3-»;
c[PxD)] fd)\D Ng
2 bi[APp(F")]P
Nn
2, cip(F)nPle
_ f o . (29
2 b;p(F")PinDA;

wherer” is the scaled position variable abd=1, 2, or 3 for
nonuniform on one coordinate, on two coordinates, or uni-
form scaling, respectively. In the limk—oco, the dominant
power of N will be D(a,\,n—ﬁN —1)=DAy, in the limit
A—0, D(a;— B,—1)=DA; will dominate. From Eqs(13)
and(10),

Ay+1=0 (D=1), (30)
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3Ay=0 (D=3). (31) using uniform scaling. In the limit of high density it is com-
mon to use logarithm of a polynomial, as[ib6—18§.
These equations are in obvious contradiction. From Egs.

and(11), V. DISCUSSION

2A,-2=0 (D=2), (32 If we consider a wider class of generalized rational forms

3A,<0 (D=3), (33 M N
Edpl= f a2, [PR(p)]% / > [PR(p)]™ (36)
also in contradiction. It should be remarked that there are k=1 k=1
contradictions in both low- and high-density limits. So no ) ] ] o
generalized polynomial or rational form depending on thefor_thls case, all the results obtained in Sec. IV are f[r|V|aIIy
density can represent an exact form of the correlation-energy@lid- Boada, Maldonado, and Karasi¢¥0] also derived
functional either for the low- or for the high-density limit Several expressions of the form
The polynomial case is just a special case of the rational
form described above. Elp]=>
There are many functionals in the literature that have ¢ K
polynomial or rational forms, from Wigner's functiongl1]
to the fitting[12] of Monte Carlo results and to the recently which is a special case of E(B6).
proposed form of13]. In all these cases, the results obtained In the case of mixed rational-logarithmic dependences
above are valid. Fuentealha4] proposed some functionals (i.e., combinations of rational and logarithmic forms
obtained from a Gaussian correlation-factor mog@weie of
them is Wigner-lik¢ and discussed the fulfillment of the 3
scaling conditions, checking that they violate at least two of Ec[P]:f d*F Q1(p)IN[Q2(p)]. (38)
the nonuniform conditions, which is in agreement with our

findings. It is clear that if we scale Eq38) by any of the former
procedures, the leading behavior in termsxofwill corre-
IV. LOGARITHMIC DEPENDENCE spond to the multiplying rational forn;), so the results of

id | ithmic f h . Sec. IV will hold. In the case of zero power leading behavior
Let us consider now a logarithmic form that contains a;, poh |imits for Q,, the results of Sec. V will be valid.

rational or polynomial form of the coordinates and the den- thase combinations are very frequently ugede, e.g.,

sity [16,19-24), obtained mainly from fitting data or interpolat-

ing from expressions for low and high densities. In the case
EC[p]:f d3f In[Q(p)]. (34) of the Carr-Gordon-Kim(see, e.g.[19,25) approximation
the functional is polynomial for low densities and
logarithmic-polynomial for high ones.

In some cases it is useful to expand the correlation energy
nsity in terms of the electronic density, as in the case of

the Vosko-Wilk-Nussair functiona[26], for assessing the
_ behavior at low and high densities. It is enough to expand the
Eé[p]=)\D( f d3f" In[Q(F",p;\)] term of an unknown behavior, in this case t§@/(2x+b)],

with a and b constantsx=r_ 2, andr, having the usual

Kis Qk<p>} , @)

After applying a scaling procedure of ordér and some
elementary algebra, we get for the high- and Iow-densityde
limits

3 meaning. Fox small
+D(a—B)In\ | d°F' |, (35

o " - tan ! =tan ! a -2 a x+0(x?) (39
where " is the scaled position variabley=ay , and g 2x+b b b2+ a2
= B, for the high-density limit andv=«, and 8= B, for
the low-density limit. and forx large

Any nonzero power ol goes to zero or infinity faster

than the logarithm; therefore, in the null density limit it tan-1 :EEJFO(X_z) (40)
would give infinity. This in contradiction with the fact that in 2x+b) 2 x '

the null limit, the correlation energy should be zero. It is

remarkable that in the case of using the whole space as th&'e see that we can apply the previously obtained results in

integration volume(e.g., in atoms or moleculgsve should the cases discussed above.

require thata= B because otherwise an untractable infinity The gradient-corrected functionals are of great use in

appears. Even in this case, when-, Eq.(10) gives zero, atomic, molecular, and solid-state calculatigese, e.9.[27]

which is unphysical. and references therginFor that reason, we will discuss
No logarithmic form can represent an exact correlation-briefly the application of the scaling properties to some

energy functionaleither in the low- or in the high-density forms of such functionals.

limit). For the low-density limit, this result was knowgsee, Let us consider the correlation energy functional in the

e.g.,[8,15]) for the case of simple logarithmic functionals form



5172

£~ [ @ QupIF(9)= [ ¥ Quip)(1+asstas?)
@

whereQ(p) is a local rational fornjsee Eqs(26) and(27)]

ands=|Vpl|/p*3. We retain terms up to second order, in the

spirit of a gradient expansidr28,29.

We take into account that, f@ =3, s does not scale, for
A—0, scA "2 andsxh "3 and forn—o, scA?® ands
«\3for D=1 andD =2, respectively. Then the behavior of
F(s) will be dominated by the scaling of>. Scaling Eq.
(41), we will see that Eq(31) remains unaffecteleading to
An=0), but instead of Eq(30) we will have

Ay+3+1=0, (42
in obvious contradiction with = 0.

On the other hand, Eq(33) remains unaffected Ay

<0), but instead of Eq(32), we find that

2A,—-2-2=0, (43)

giving A; =3, in contradiction withA < 0. So, for this kind

BRIEF REPORTS
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EC:EC[pa!pﬁ]’ (44)
wherep, and p; stand for the spin-up and -down electron
densities, we have that the spin densities scale in the same
form as the total density and that the above described results
are also valid. If we consider a self-interaction correction
procedurdg1,2,12,3(,

Ec:Ec[Pa+P,B]_Ec[Pa]_Ec[Pﬁ]r (45)
then using the same arguments as above, we find that our
conclusions are unaffected.

It is worth remarking that the present results apply only to
local (or local gradientfunctionals that can be expanded in
terms of polynomial, rational, logarithmic forms, or their
combinations in the low- or high-density limit®r both.

The problem of whether nonlocal functionals satisfy uniform
and nonuniform scaling conditions remains an open ques-
tion.
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