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Scaling properties and local forms of the correlation-energy functional
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~Received 23 October 1995; revised manuscript received 10 February 1997!

The scaling properties of the exact correlation-energy functional are applied in the study of the general
rational, polynomial, and logarithmic local forms~and their combinations! of the correlation-energy functional,
which depend on the density. It is concluded that these forms cannot satisfy the uniform and nonuniform
scaling properties at the same time; therefore, they would have to be modified to represent exact forms of the
correlation-energy density functional, at least in the high- and low-density limits. These results are not affected
by the application of the local spin density or the self-interaction correction procedures to the above function-
als. @S1050-2947~97!00312-0#

PACS number~s!: 31.15.Ew, 31.25.2v
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I. INTRODUCTION

There is an increasing interest in density-functional the
@1–3# because it represents a very important simplification
the many-electron problem. In the context of this theory
energy functional takes the form

E@r#5Ts@r#1
1

2 E E d3rW1d3rW2

r~rW1!r~rW2!

r 12

1E d3rW r~rW !v~rW !1Exc@r#, ~1!

wherer, Ts , Exc , andv are the electron density, the nonin
teracting kinetic energy, the exchange–correlation-ene
functional, and the external potential, respectively.

The properties of these functionals have been stud
through the years and many forms for the above function
have been proposed, starting from Thomas and Fermi in
early days of quantum mechanics to the most sophistic
forms ~see, e.g.,@1# and references therein!. The uniform and
nonuniform scaling properties of the exchange-correlat
functionals have been intensively studied by Levy and
workers ~see, e.g.,@4# and references therein!. It may be
possible to decompose the exchange-correlation function
we can make the separation

Exc@r#5Ex@r#1Ec@r# ~2!

where the correlation and exchange energy are defined
spectively, by

Ec@r#5^Cr
minuT̂1V̂eeuCr

min&2^Fr
minuT̂1V̂eeuFr

min&,
~3!

Ex@r#5^Fr
minuV̂eeuFr

min&2
1

2 E E drW1drW2

r~rW1!r~rW2!

r 12
,

~4!

with V̂ee5( i . j r i j
21. Cr

min yields r and minimizes ^T̂
1V̂ee&, while Fr

min yields r and minimizes^T̂&. We are
interested mainly in the scaling properties of the correlat
functional.
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Levy and Ou-Yang first conjectured@5# and later proved
@6# the unreasonability of the local-density approximati
correlation functionals~see, e.g.,@2#! based on the argumen
that they scaled in the same way if we apply one-coordin
scaling onx, y, and z. In this Brief Report we apply the
scaling properties of the exact correlation-energy functio
to the study of some general local forms of this function
depending only on the density. Also, we briefly discuss
case of including some dependence on the gradient of
density. We conclude that these expressions cannot sa
the uniform and nonuniform scaling properties at the sa
time. Therefore, they should be modified in order to rep
sent exact forms of the correlation-energy density function
in the sense of the scaling properties, guaranteeing cor
behavior in both the low- and high-density limits. In the loc
spin density or the self-interaction correction formalism
@1,2#, the results remain unaffected.

II. THE SIMPLEST FUNCTIONAL

Let us define the scaled densities we will use:

rl~x,y,z!5l3r~lx,ly,lz!, ~5!

rll
xy ~x,y,z!5l2r~lx,ly,z!, ~6!

rl
x~x,y,z!5lr~lx,y,z!. ~7!

The first is called uniform scaling, while the other two co
respond to nonuniform scaling. The low- and high-dens
limits can be obtained by taking the scaling constantl small
and large enough, respectively. Then, the main uniform s
ing properties of the correlation-energy functional a
@4,5,7,8#

Ec@rl#,lEc@r#, l,1 ~8!

Ec@rl#.lEc@r#, l.1 ~9!

lim
l→`

Ec@rl#5const.2`, ~10!

and
5169 © 1997 The American Physical Society
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lim
l→0

Ec@rl#50 ~11!

because the correlation energy should be zero in the
density limit. For nonuniform scaling the following relation
will apply @9#:

lim
l→`

Ec@rl
x #50, ~12!

lim
l→`

lEc@rl
x #5const, ~13!

lim
l→`

Ec@rll
xy #50, ~14!

lim
l→0

l21Ec@rl
x #50, ~15!

lim
l→0

l21Ec@rll
xy #50, ~16!

lim
l→0

l22Ec@rll
xy #5const. ~17!

Let us consider the following form of the correlation
energy functional:

Ec@r#5CE d3rW rs, ~18!

whereC is some constant. Now, applying Eqs.~5!–~7! and
considering that the volume scales asl2D, we obtain

Ec@rl#5CE d3rW

lD ~lDr!s5lD~s21!Ec@r#, ~19!

whereD is the order of the scaling: 3 for the uniform ca
and 1 and 2 for the nonuniform case, when we scale on
two coordinates. Using Eqs.~12! and~14! and Eqs.~15! and
~16! we obtain

lim
l→`

lD~s21!Ec@r#50 ~20!

and

lim
l→0

lD~s21!21Ec@r#50 ~21!

for D51 and 2. Excluding the trivial case ofEc@r#50, Eqs.
~20! and ~21! respectively imply that

D~s21!,0, ~22!

D~s21!.1. ~23!

This is, of course, contradictory.
Another way of getting a contradiction is by using E

~10!,

lim
l→`

l3~s21!Ec@r#5const.2`, ~24!

with s51, and Eq.~13!,
ull

or

lim
l→`

lsEc@r#5const, ~25!

with s50, in contradiction with Eq.~24!. This kind of func-
tional has been used by Boada, Maldonado, and Kara
@10#, with s5 5

3 , whereC is a function of the nuclear charg
and the number of electrons.

III. GENERALIZED POLYNOMIAL
AND RATIONAL FORMS

Let us define generalized polynomial and rational form
We do not expect to have integer exponents, just real n
negative ones. We require that the forms have a finite nu
ber of terms

P~r!5(
i 51

N

cir
a i, aN.aN21.•••.a1.0, N,`

~26!

and

Q~r!5Pn~r!/Pd~r!, ~27!

where the subscriptn stands for the numerator,d for the
denominator, and the variabler is the electronic density. The
coefficientsci can depend on quantities such as charge, nu
ber of electrons, or anything that always scales with the
roth power ofl. Without any loss of generality, we hav
ordered the powers in Eq.~26!.

Now let us consider a correlation-energy function
which has a generalized rational form and depends on
density,

Ec@r#5E d3rW Q~r!. ~28!

All the coefficients ofPn and Pd should be real and finite
andQ(r) should be such that the above integral exists. If
scale expression~28!, then we obtain a generalized ration
form in terms of the scaling constant~l!, i.e.,

Ec@rl
~D !#5E d3rW8

lD

(
i 51

Nn

ci@lDr~rW8!#a i

(
j 51

Nd

bj@lDr~rW8!#b j

5E d3rW8

(
i 51

Nn

cir~rW8!a ilD~a i21!

(
j 51

Nd

bjr~rW8!b jlDb j

, ~29!

whererW8 is the scaled position variable andD51, 2, or 3 for
nonuniform on one coordinate, on two coordinates, or u
form scaling, respectively. In the limitl→`, the dominant
power of l will be D(aNn

2bNd
21)[DDN , in the limit

l→0, D(a12b121)[DD1 will dominate. From Eqs.~13!
and ~10!,

DN1150 ~D51!, ~30!
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3DN50 ~D53!. ~31!

These equations are in obvious contradiction. From Eqs.~17!
and ~11!,

2D12250 ~D52!, ~32!

3D1,0 ~D53!, ~33!

also in contradiction. It should be remarked that there
contradictions in both low- and high-density limits. So n
generalized polynomial or rational form depending on
density can represent an exact form of the correlation-ene
functional either for the low- or for the high-density limit.
The polynomial case is just a special case of the ratio
form described above.

There are many functionals in the literature that ha
polynomial or rational forms, from Wigner’s functional@11#
to the fitting @12# of Monte Carlo results and to the recent
proposed form of@13#. In all these cases, the results obtain
above are valid. Fuentealba@14# proposed some functional
obtained from a Gaussian correlation-factor model~one of
them is Wigner-like! and discussed the fulfillment of th
scaling conditions, checking that they violate at least two
the nonuniform conditions, which is in agreement with o
findings.

IV. LOGARITHMIC DEPENDENCE

Let us consider now a logarithmic form that contains
rational or polynomial form of the coordinates and the de
sity

Ec@r#5E d3rW ln@Q~r!#. ~34!

After applying a scaling procedure of orderD and some
elementary algebra, we get for the high- and low-dens
limits

Ec
l@r#5l2DS E d3rW8 ln@Q̃~rW8,r;l!#

1D~a2b!lnlE d3rW8 D , ~35!

where rW8 is the scaled position variable,a5aNn
, and b

5bNd
for the high-density limit anda5a1 and b5b1 for

the low-density limit.
Any nonzero power ofl goes to zero or infinity faste

than the logarithm; therefore, in the null density limit
would give infinity. This in contradiction with the fact that i
the null limit, the correlation energy should be zero. It
remarkable that in the case of using the whole space as
integration volume~e.g., in atoms or molecules! we should
require thata5b because otherwise an untractable infin
appears. Even in this case, whenl→`, Eq. ~10! gives zero,
which is unphysical.

No logarithmic form can represent an exact correlatio
energy functional~either in the low- or in the high-densit
limit !. For the low-density limit, this result was known~see,
e.g., @8,15#! for the case of simple logarithmic functiona
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using uniform scaling. In the limit of high density it is com
mon to use logarithm of a polynomial, as in@16–18#.

V. DISCUSSION

If we consider a wider class of generalized rational for

Ec@r#5E d3rW (
k51

M

@Pk
n~r!#ekY (

k51

N

@Pk
d~r!#nk ~36!

for this case, all the results obtained in Sec. IV are trivia
valid. Boada, Maldonado, and Karasiov@10# also derived
several expressions of the form

Ec@r#5(
k

F E d3rW Qk~r!G ek

, ~37!

which is a special case of Eq.~36!.
In the case of mixed rational-logarithmic dependenc

~i.e., combinations of rational and logarithmic forms!

Ec@r#5E d3rW Q1~r!ln@Q2~r!#. ~38!

It is clear that if we scale Eq.~38! by any of the former
procedures, the leading behavior in terms ofl will corre-
spond to the multiplying rational form (Q1), so the results of
Sec. IV will hold. In the case of zero power leading behav
in both limits for Q1 , the results of Sec. V will be valid.

These combinations are very frequently used~see, e.g.,
@16,19–24#!, obtained mainly from fitting data or interpola
ing from expressions for low and high densities. In the ca
of the Carr-Gordon-Kim~see, e.g.,@19,25#! approximation
the functional is polynomial for low densities an
logarithmic-polynomial for high ones.

In some cases it is useful to expand the correlation ene
density in terms of the electronic density, as in the case
the Vosko-Wilk-Nussair functional@26#, for assessing the
behavior at low and high densities. It is enough to expand
term of an unknown behavior, in this case tan21@a/(2x1b)#,
with a and b constants,x5r s

21/2, and r s having the usual
meaning. Forx small

tan21S a

2x1bD5tan21S a

bD22
a

b21a2 x1O~x2! ~39!

and forx large

tan21S a

2x1bD5
1

2

a

x
1O~x22!. ~40!

We see that we can apply the previously obtained result
the cases discussed above.

The gradient-corrected functionals are of great use
atomic, molecular, and solid-state calculations~see, e.g.,@27#
and references therein!. For that reason, we will discus
briefly the application of the scaling properties to som
forms of such functionals.

Let us consider the correlation energy functional in t
form



he

f

a
h
b

n
ame
ults

on

our

to
in
ir

rm
es-

-
,

ipt.
m

5172 56BRIEF REPORTS
Ec5E d3rW Q1~r!F~s!5E d3rW Q1~r!~11a1s1a2s2!,

~41!

whereQ1(r) is a local rational form@see Eqs.~26! and~27!#
ands5u¹ru/r4/3. We retain terms up to second order, in t
spirit of a gradient expansion@28,29#.

We take into account that, forD53, s does not scale, for
l→0, s}l21/3 and s}l22/3; and for l→`, s}l2/3 and s
}l1/3 for D51 andD52, respectively. Then the behavior o
F(s) will be dominated by the scaling ofs2. Scaling Eq.
~41!, we will see that Eq.~31! remains unaffected~leading to
DN50!, but instead of Eq.~30! we will have

DN1 4
3 1150, ~42!

in obvious contradiction withDN50.
On the other hand, Eq.~33! remains unaffected (DN

,0), but instead of Eq.~32!, we find that

2D12 2
3 2250, ~43!

giving D15 4
3 , in contradiction withDN,0. So, for this kind

of correction, using the gradient of the density, we can s
isfy neither the low-density scaling properties nor the hig
density ones. Other forms of gradient corrections could
treated using similar arguments.

For the case of spin-dependent forms~e.g., in the local
spin density formalism! ~see, e.g.,@1,2,26#!, i.e.,
s

l

es

ol.

ett
t-
-
e

Ec5Ec@ra ,rb#, ~44!

wherera and rb stand for the spin-up and -down electro
densities, we have that the spin densities scale in the s
form as the total density and that the above described res
are also valid. If we consider a self-interaction correcti
procedure@1,2,12,30#,

Ec5Ec@ra1rb#2Ec@ra#2Ec@rb#, ~45!

then using the same arguments as above, we find that
conclusions are unaffected.

It is worth remarking that the present results apply only
local ~or local gradient! functionals that can be expanded
terms of polynomial, rational, logarithmic forms, or the
combinations in the low- or high-density limits~or both!.
The problem of whether nonlocal functionals satisfy unifo
and nonuniform scaling conditions remains an open qu
tion.
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