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Performance of superconvergent perturbation theory
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The performance of the so-called superconvergent perturbation thébr$cherer, Phys. Rev. Letf4,
1495 (1995] is investigated numerically in the case of the ground-state energy of a quartic anharmonic
oscillator. It is shown that Scherer’'s superconvergent approximation, which is rational in the coupling constant
B, gives in the case of small coupling constants somewhat better results than the strongly divergent but
asymptotic Rayleigh-Schdinger perturbation series if it is truncated at the same ordg. ilowever, the
transformation of this truncated perturbation series into” Resfgoximants or into another class of rational
functions by means of the sequence transformaﬂkﬁ‘?{{,sn) [E. J. Weniger, Comput. Phys. Rep0, 189
(1989] yields much more powerful rational approximants. Moreover, the performance of the superconvergent
approximation can be improved considerably by Wynn's epsilon algorffRmwWynn, Math. Tables Aids
Comput.10, 91(1956] or by 6f<”)(§,sn). Finally, it is shown that the other rational approximants provide much
better approximations to higher order terms of the Rayleigh-Siihger perturbation series than Scherer’s
superconvergent approximatidrs1050-29407)02112-4

PACS numbeps): 03.65—w, 02.30.Lt, 02.70-c

By means of some analogies with perturbation theorie®f the Rayleigh-Schdinger perturbation expansidg). For
for classical Hamiltonian systems, Schelrg)2] developed a  orders four or higher irB, expansion coefficients result that
new perturbation theory for Hamiltonians that can be ex-depend explicitly ong.

panded in a power series in the coupling consgint In order to demonstrate the power of his approach,
Scherer applied it in the case of the quartic anharmonic os-
. * B". cillator, which is defined by the following Hamiltonian:
HB)=2 —H,. (1) . e
n=0n! H(B) = p?+x>+px*, g=0. (3)

As usual, it is assumed that the Hamiltoniafs do not  Scherer[1] considered only approximations to the ground
depend ongs. state energy that are of fourth orderfn In the case of the

Ordinary Rayleigh-Sclidinger perturbation theory yields Rayleigh-Schrdinger perturbation theory this leads to fol-
in the case of a discrete and nondegenerate spectrum a foPVing truncated perturbation series:

mal power series expansion [ for an energy eigenvalue 3 21 333 30 885
E(B) of the Hamiltonian(1): ERA(B)=1+ 2B~ 1_6'62+ aﬂg_ 1024 B (4
c The series coefficients, which are rational nhumbers, can be
E(B) = X cB". )

=0 computed by solving a system of nonlinear difference equa-
tions (compare, for instance, the appendix of R&f).
In the case of Rayleigh-Schiimger perturbation theory, the By including exactly all contributions up to order four in
series coefficients, do not depend orB. Scherer’'s ap- g, Scherer{1] obtained the following superconvergent ap-
proach, which he calledsuperconvergent perturbation proximation to the ground-state energy of the quartic anhar-
theory, reproduces up to orders threegnthe coefficients, monic oscillator:

. 3 21 333 3(131 7760+ 129 354 7B+ 364 333 6B>+ 251 833 0B°)
ES(B)=1+ 2B~ B2+ — B~ 4, (5)
su 47 16 64 20484+98)(4+ 158)(4+21B)

If we compare the approximan(d) and(5), which are both  give much better results than truncated power series expan-
of orderO(8°) as3— 0, we see that Scherer’'s superconver-sions, the superconvergent approximati@ should yield
gent perturbation theory essentially introduces a coefficieninore accurate approximations to the ground state energy of
of B* that is rational in8. Since rational functions normally the anharmonic oscillator than the truncated Rayleigh-
Schralinger perturbation serigg). This is probably the rea-
son why Scherer, who did not present any numerical results,
*Electronic address: called his perturbation theoisuperconvergent
joachim.weniger@chemie.uni-regensburg.de Nevertheless, the approximan and(5) are not suited

1050-2947/97/56)/51654)/$10.00 56 5165 © 1997 The American Physical Society



5166 BRIEF REPORTS 56

to demonstrate thg superiority of superconvergent over ordi- 6@{:0' eg‘)=sn, (63
nary Rayleigh-Schidinger perturbation theory. Ever since

the seminal work of Bender and W], the Rayleigh-

Schralinger perturbation series for the ground-state energy el 1= M+ e -] (6b)
E(B) of the quartic anharmonic oscillator has been the

model example of a perturbation series that is onlyjf the input datas, for the epsilon algorithm are the partial
asymptotic a$8—>(_) and that diverges quite strongly for ev- sumsf,(z)=="_,y,z" of a formal power series for some
ery g;eo [5]. As is .We" kn.own, the accuracy that can b? function f(z), the eIementsa(Z’,}) with even subscripts are
obtained by truncating a divergent asymptotic power Se”e?-’adeapproximants according to

at the minimal term depends on the magnitude of the argu-
ment. Thus, reasonably accurate approximatiors(®) can

be obtained by truncating the divergent perturbation series if e =[n+k/k]¢(2). (7)
B is sufficiently small. If, howeverg is not small, accurate

approximations can only be obtained if the divergent perturrpe elementse™. . with odd subscripts are only auxiliary
bation series is used as the starting point of a summatio 2kt 1

| ; auantities that diverge if the whole process converges.
process. Thus, Scherer's superconvergent approximégjon The truncated Rayleigh-Schiimger perturbation series
which because of its rational nature can also be considered

be a summation method, should not be compared with th ) can be transformed into the followiig/2] Padeapprox-

truncated Rayleigh-Schdinger perturbation serie§) but ant
with other rational approximants that can be constructed
from it. <B) 1984+ 15 8623+ 19 56732 ®

In applied mathematics and in theoretical physics, Pade €R = 2
approximantg6] have become the standard tool to sum di- 3968+ 28 7483+22 7818
vergent power series. For example, the computer algebra sys-
tem MAPLE—which will be used quite extensively in this Padeapproximants are not necessarily the most efficient
Brief Report—contains explicit commands to convert therational approximants for the summation of strongly diver-
partial sums of a power series to Paajgproximants. Other- gent perturbation series. A different class of rational approxi-
wise, Padepproximants can be computed conveniently withmants can be obtained with the help of the following se-
the help of Wynn’s celebrated recursive epsilon algorithmquence transformatiofiEq. (8.4-4 of Ref. [8]], which is
[7]: applied to the partial sung,=="_,a, of an infinite series:

[k
EF:O(_]-)J( i )[(§+n+j)k1/(§+n+k)k1] Sn+jl@ntjr1

ML s0)= (9)

[k
2?:0(_1)]( i )[(§+n+j)k1/(§+n+k)k1] Yantj+1

Here, { is a parameter that has to be positive. The mosthe transformation of the partial sums of a formal power
obvious choice would bé=1. series into Padepproximants according to E¢7). How-

It was shown in several articles that the sequence transver, it can also be applied to other types of slowly conver-
formation 8{"(¢,s,), which can also be computed recur- gent or divergent sequences such as, for instance, the partial
sively[8], is able to sum effectively many strongly divergent sums of Scherer’'s superconvergent approximat®n This
quantum-mechanical perturbation expansipd®—-14 and Yields the fo[lowing expression, which is also rational@n
divergent asymptotic series for special functipg®,15,16.  but not a Padepproximant:

Further details orﬁ(k”)(g,sn) and on related transformations

can be found in Refg3,8,11,17,18 in Sec. 2.7 of the book esd B)=2[AB)/B(B)]. (113

by Brezinski and Redivo Zagligl9], or in an article by Roy,

Bhattacharya, and Bhowmidi0]. A(B)=550 018 3%5— 426 119 98*— 786 763 253
Application of the sequence transformati@ with k=3, A B # ®

n=0, andZ=1 to the truncated Rayleigh-Schiinger per- —317 094 0®B>— 488 729 — 253 952, (11b)

turbation serie$4) yields the following rational function:

B.(8)=103 157 14%°— 333 375 4%*— 124 258 99B°
33 152+ 370 7763+ 901 569+ 366 04(5° (B) B B B

Sed B)=4 . _ 2_ -
RS B) = 608+ 138 364 + 274 25855°+ 533 2815° 570 401 95°—939 36646—507904. (119

(10

Similarly, the sequence transformatiéfi’(£,s,), Eq.(9), is
Wynn's epsilon algorithm, Eq(6), is normally used for not restricted to power series and can also be applied to the
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TABLE |. Performance of the truncated Rayleigh-Salinger perturbation series for the ground-state
energy of the quartic anharmonic oscillator, of Scherer’s superconvergent approximation, and of the other

rational approximations for different values of the ¢

oupling consgant

B ER(B) EY €rs(B) Srs(B) esdB) 8 B) Exact

0.010 1.007 3737 1.007 3737 1.007 3737 1.007 3737 1.007 3737 1.0073737 1.007 3737
0.025 1.017 9992 1.0179996 1.0180008 1.0180010 1.0180011 1.0180012 1.0180010
0.050 1.0346807 1.0346926 1.0347254 1.0347288 1.0347319 1.0347346 1.034 7297
0.075 1.0501080 1.0501936 1.0504116 1.0504304 1.0504479 1.0504616 1.0504340
0.100 1.064 0620 1.0644042 1.0652179 1.0652769 1.0653347 1.0653737 1.065 2855
0.150 1.0852602 1.0876170 1.0926150 1.0928822 1.0931711 1.0933148 1.092 9050
0.200 1.0908672 1.0999570 1.1175406 1.1182589 1.1191183 1.1194180 1.118 2926
0.250 1.068 9507 1.0945322 1.1403997 1.1418723 1.1438188 1.1442480 1.1419018
0.300 1.003 0542 1.0621277 1.1614847 1.1640461 1.1677818 1.1681854 1.1640472
0.350 0.872 1973 0.9913248 1.1810200 1.1850157 1.1914383 1.1914882 1.1849585
0.400 0.6508750 0.8685770 1.1991863 1.2049580 1.2151754 1.2143328 1.2048103
0.450 0.3090586 0.6782601 1.2161324 1.2240098 1.2393619 1.2368392 1.2237391
0.500 —0.1878052 0.4027055 1.2319837 1.2422784 1.2643692 1.2590882 1.241 8541

partial sums of Scherer’s superconvergent approximagpn
Thus, the application ob{"(¢,s,) with k=3, n=0, and
=1 yields

Isd B)=4[As(B)IBB)], (129

As(B)=212 172 86- 475 991 04+ 377 654 937/
+135 545 497 183+ 230 043 300 0B*

+181 592 550 285+ 725 743 557@°,  (12b)

Bs(3)=848 691 26- 184 031 2323+ 138 373 539 842
+ 458 140 086 483+ 688 027 143 88*

+429 804 045 7B%+ 652 247 599B°. (120

In Table I, the truncated Rayleigh-Schinger perturba-
tion seriesE&2(B), Eq. (4), is compared with Scherer’s ra-
tional approximan€(), Eq. (5), with the rational approxi-
mants eg B), EQ. (8), and dr{(B), Eg. (10), which were
obtained by transforming&%2(3), and with the rational ap-
proximantseg (8), Eq. (12), and 65(B), Eq. (12), which
were obtained by transforming’"). The results in Table |
show thatEgﬁ) gives for 8<0.2 only marginally better re-

sults thanE&2(B). For B>0.3, bothE{2(B) andEY pro-

=37_ov,2" is constructed in such a way that its Taylor ex-
pansion coincides with the formal power series as far as pos-
sible, i.e.,

f(2)—pA2)/am(2)=0(z'*™1), z—0. (13

This asymptotic estimate implies that a Taylor expansion
aroundz=0 reproduces all terms of the power series, which
were used for the construction of the Paxmproximant.

This order-by-accuracyrinciple holds also in the case of
many other rational approximants. &f(“)(g,sn), Eq. (9), is
applied to the partial sumns,(z) =E?:07jzj, a rational func-
tion (" (¢,f,(z)) with numerator and denominator polyno-
mials of degree&+n andk results[Eq. (4.27) of Ref.[3]].

If the coefficientsvy,, of the power series fof(z) are all
nonzero, the asymptotic error estimateg. (4.29 of Ref.

[3]]
f(2)— 8¢, Fn(2)=0(Z*""*2), z—0

holds, which shows that all terms that were used for the
construction of5{"(¢,f,(z)) are reproduced exactly by a
Taylor expansion aroung=0.

No general statement can be made about the behavior of
the higher terms of the Taylor expansion of either the Pade
approximant [//m];(z) or of the rational function
8" (¢£,f,(2)), which do not reproduce exactly the terms of

(14)

duce nonsensical results. Much better results—in particulaghe power series forf(z). If, however, [//m]{(z) and

for larger values of3—are obtained by thg2/2] Padeap-
proximantegg8) and even more so by the rational approx-
imant g B), which clearly gives best resultsompare also
Tables IV-VI of Ref.[3]). Moreover, e, (8) and 5(B)
give clearly better results thaﬁgﬁ), from which they were
derived. However, they are not as efficient gg(B) or
Sz4(B), which were derived fromE2(B). The results in
Table | show that all other rational approximants give bette
results than Scherer’'s superconvergent approximzﬁﬁéh
The “exact” results in Table | were obtained by summing

8" (¢,f,(2)) converge tof (z) more rapidly than the partial
sumsfn(z)zE?:Oy,-zi, then also the higher terms of the
Taylor expansions of these rational functions should ulti-
mately converge to the corresponding terms of the power
series forf(z). Consequently, at least the leading terms of
the Taylor expansions of the differences
P2~ f,im(2)  and SO Fr(2)~ fiins1(2)
Ishould provideapproximationgo the corresponding terms of
the power series fof (z).

It seems that this idea was first formulated and used by

the renormalized perturbation series for the ground-state erGilewicz [21] in the context of Padapproximants. Later,
ergy of the quartic anharmonic oscillator with the help of thethis prediction property of Padapproximants was used by
sequence transformatias{” (¢,s,) as described in Ref3]. Samuel, Ellis, and Karlindi22] in connection with perturba-
There is also another possibility of analyzing the power oftive QCD calculations. Analogous prediction properties of
a rational approximant. As is well knowf6] a Pade sequence transformations were discussed by Sidi and Levin
approximant[//m]¢(z)=p,(2)/qm(z) to a function f(z) [23] and by Brezinski24].
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TABLE II. Approximations to the coefficients, with n=5,6,7 of the perturbation series for the ground-
state energy of the quartic anharmonic oscillator obtained by performing Taylor expansions of Scherer’s
superconvergent approximation and of the other rational approximations agotiid

n Exact EQ €rs(B) Srs(B) €sdB) 8 B)

5 223.8 43.2 188.6 212.4 231.9 255.6
6 —1999.5 —115.8 —1193.6 —1613.1 —1936.0 —2484.6

7 20777.1 335.6 7564.2 12 559.8 16 534.4 24 869.7

Because of Eqgs(13) and (14), respectively, Taylor ex-
pansions of the rational functioneggB), Eq. (8), and
ord B), Eg. (10), aroundB=0 produce expressions of the
following kind:

ers(B) =ERL(B) +esB°+esBl+e, 7+, (15

S B)=ERA(B)+dsB+dBe+d,87+---.  (16)

were obtained by transformirﬁgﬁ). The approximations to
the coefficients were obtained by applying therLE com-
mand Taylor to the symbolic expressions for the rational
functions. The resulting coefficients, which are exact rational
numbers, were then converted to floating-point numbers. In
the case ofey(8) and &5 (B) it is not known how many
terms of the perturbation series would be reproduced exactly.
It turned out that all rational approximants considered here

As mentioned above, there is no reason to assume that thgProduce exactly the truncated perturbation SR B),

coefficientse, andd, with v=5 would reproduce the corre-
sponding coefficients, of the Rayleigh-Schidinger pertur-

. ) ? . . i (4)
bation series exactly. Nevertheless, it should be interesting tBroxXimantEg,

see how well the exact coefficients

Cc5=916 731/4096, (17)
Cg=— 655184 01/32 768, (19
Cc;=272 329 4673/131 072 (19

are approximated by the coefficiemts eg, €; andds, dg, d
in Egs. (15 and(16), respectively.

Table 1l lists the approximations to the exact perturbatio
series coefficientg,, with n=5,6,7, which are obtained by
performing Taylor expansions arouggd=0 of Scherer’s ra-
tional approximantEg‘L‘,), Eqg. (5), of the rational approxi-
mants eg B), EQ. (8), and dr{(B), Eg. (10), which were
obtained by transformindﬁ&“%(ﬂ), and of the rational ap-

proximantseg (8), Eq. (11), and 65(B), Eq. (12), which

Eq. (4)

The results in Table Il show that Scherer’s rational ap-
produces only relatively poor approximations
to the perturbation coefficients;, cg, andc,. The other ra-
tional approximants produce much better approximations
upon Taylor expansion. In view of the simplicity of these
rational approximants, the predicted values of the perturba-
tion coefficients are actually remarkably accurate.

Of course, it is not yet possible to make a definite assess-
ment of the usefulness of Scherer's superconvergent pertur-
bation theory. First it would be necessary to know higher-
order terms of Scherer's perturbation expansion for the
ground-state energy of the quartic anharmonic oscillator.

"Moreover, it would be interesting to see how Scherer’s ap-

proach performs in the case of other systems. Nevertheless,
on the basis of the available data there is no evidence that the
attributesuperconvergenivould be justified.

The author would like to thank the Fonds der Chemischen
Industrie for financial support.
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