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Performance of superconvergent perturbation theory

Ernst Joachim Weniger*
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~Received 20 February 1997!

The performance of the so-called superconvergent perturbation theory@W. Scherer, Phys. Rev. Lett.74,
1495 ~1995!# is investigated numerically in the case of the ground-state energy of a quartic anharmonic
oscillator. It is shown that Scherer’s superconvergent approximation, which is rational in the coupling constant
b, gives in the case of small coupling constants somewhat better results than the strongly divergent but
asymptotic Rayleigh-Schro¨dinger perturbation series if it is truncated at the same order inb. However, the
transformation of this truncated perturbation series into Pade´ approximants or into another class of rational
functions by means of the sequence transformationdk

(n)(z,sn) @E. J. Weniger, Comput. Phys. Rep.10, 189
~1989!# yields much more powerful rational approximants. Moreover, the performance of the superconvergent
approximation can be improved considerably by Wynn’s epsilon algorithm@P. Wynn, Math. Tables Aids
Comput.10, 91 ~1956!# or by dk

(n)(z,sn). Finally, it is shown that the other rational approximants provide much
better approximations to higher order terms of the Rayleigh-Schro¨dinger perturbation series than Scherer’s
superconvergent approximation.@S1050-2947~97!02112-4#

PACS number~s!: 03.65.2w, 02.30.Lt, 02.70.2c
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By means of some analogies with perturbation theo
for classical Hamiltonian systems, Scherer@1,2# developed a
new perturbation theory for Hamiltonians that can be
panded in a power series in the coupling constantb:

Ĥ~b!5 (
n50

`
bn

n!
Ĥn . ~1!

As usual, it is assumed that the HamiltoniansĤn do not
depend onb.

Ordinary Rayleigh-Schro¨dinger perturbation theory yield
in the case of a discrete and nondegenerate spectrum a
mal power series expansion inb for an energy eigenvalue
E(b) of the Hamiltonian~1!:

E~b! 5 (
n50

`

cnbn . ~2!

In the case of Rayleigh-Schro¨dinger perturbation theory, th
series coefficientscn do not depend onb. Scherer’s ap-
proach, which he calledsuperconvergent perturbatio
theory, reproduces up to orders three inb the coefficientscn
er
ie
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of the Rayleigh-Schro¨dinger perturbation expansion~2!. For
orders four or higher inb, expansion coefficients result tha
depend explicitly onb.

In order to demonstrate the power of his approa
Scherer applied it in the case of the quartic anharmonic
cillator, which is defined by the following Hamiltonian:

Ĥ~b! 5 p̂21 x̂21b x̂4 , b>0 . ~3!

Scherer@1# considered only approximations to the grou
state energy that are of fourth order inb. In the case of the
Rayleigh-Schro¨dinger perturbation theory this leads to fo
lowing truncated perturbation series:

ERS
~4!~b!511

3

4
b2

21

16
b21

333

64
b32

30 885

1024
b4. ~4!

The series coefficients, which are rational numbers, can
computed by solving a system of nonlinear difference eq
tions ~compare, for instance, the appendix of Ref.@3#!.

By including exactly all contributions up to order four i
b, Scherer@1# obtained the following superconvergent a
proximation to the ground-state energy of the quartic anh
monic oscillator:
Esu
~4!~b!511

3

4
b2

21

16
b21

333

64
b32

3~131 77601129 354 72b1364 333 68b21251 833 05b3!

2048~419b!~4115b!~4121b!
b4. ~5!
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If we compare the approximants~4! and~5!, which are both
of orderO(b5) asb→0, we see that Scherer’s superconv
gent perturbation theory essentially introduces a coeffic
of b4 that is rational inb. Since rational functions normally

*Electronic address:
joachim.weniger@chemie.uni-regensburg.de
-
nt

give much better results than truncated power series ex
sions, the superconvergent approximation~5! should yield
more accurate approximations to the ground state energ
the anharmonic oscillator than the truncated Raylei
Schrödinger perturbation series~4!. This is probably the rea-
son why Scherer, who did not present any numerical resu
called his perturbation theorysuperconvergent.

Nevertheless, the approximants~4! and ~5! are not suited
5165 © 1997 The American Physical Society
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to demonstrate the superiority of superconvergent over o
nary Rayleigh-Schro¨dinger perturbation theory. Ever sinc
the seminal work of Bender and Wu@4#, the Rayleigh-
Schrödinger perturbation series for the ground-state ene
E(b) of the quartic anharmonic oscillator has been
model example of a perturbation series that is o
asymptotic asb→0 and that diverges quite strongly for e
ery bÞ0 @5#. As is well known, the accuracy that can b
obtained by truncating a divergent asymptotic power se
at the minimal term depends on the magnitude of the ar
ment. Thus, reasonably accurate approximations toE(b) can
be obtained by truncating the divergent perturbation serie
b is sufficiently small. If, however,b is not small, accurate
approximations can only be obtained if the divergent per
bation series is used as the starting point of a summa
process. Thus, Scherer’s superconvergent approximation~5!,
which because of its rational nature can also be considere
be a summation method, should not be compared with
truncated Rayleigh-Schro¨dinger perturbation series~4! but
with other rational approximants that can be construc
from it.

In applied mathematics and in theoretical physics, P´
approximants@6# have become the standard tool to sum
vergent power series. For example, the computer algebra
tem MAPLE—which will be used quite extensively in thi
Brief Report—contains explicit commands to convert t
partial sums of a power series to Pade´ approximants. Other-
wise, Pade´ approximants can be computed conveniently w
the help of Wynn’s celebrated recursive epsilon algorit
@7#:
os
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e
-
ys-

e21
~n!50, e0

~n!5sn , ~6a!

ek11
~n! 5ek21

~n11!11/@ek
~n11!2ek

~n!#. ~6b!

If the input datasn for the epsilon algorithm are the partia
sums f n(z)5(n50

n gnzn of a formal power series for som
function f (z), the elementse2k

(n) with even subscripts are
Padéapproximants according to

e2k
~n!5@n1k/k# f~z!. ~7!

The elementse2k11
(n) with odd subscripts are only auxiliary

quantities that diverge if the whole process converges.
The truncated Rayleigh-Schro¨dinger perturbation serie

~4! can be transformed into the following@2/2# Padéapprox-
imant:

eRS~b!52
1984115 862b119 567b2

3968128 748b122 781b2
. ~8!

Padéapproximants are not necessarily the most effici
rational approximants for the summation of strongly dive
gent perturbation series. A different class of rational appro
mants can be obtained with the help of the following s
quence transformation@Eq. ~8.4-4! of Ref. @8##, which is
applied to the partial sumssn5(n50

n an of an infinite series:
dk
~n!~z,sn!5

( j 50
k ~21! j S k

j D @~z1n1 j !k21 /~z1n1k!k21# sn1 j /an1 j 11

( j 50
k ~21! j S k

j D @~z1n1 j !k21 /~z1n1k!k21# 1/an1 j 11

. ~9!
er

er-
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Here, z is a parameter that has to be positive. The m
obvious choice would bez51.

It was shown in several articles that the sequence tra
formation dk

(n)(z,sn), which can also be computed recu
sively @8#, is able to sum effectively many strongly diverge
quantum-mechanical perturbation expansions@3,9–14# and
divergent asymptotic series for special functions@8,9,15,16#.
Further details ondk

(n)(z,sn) and on related transformation
can be found in Refs.@3,8,11,17,18#, in Sec. 2.7 of the book
by Brezinski and Redivo Zaglia@19#, or in an article by Roy,
Bhattacharya, and Bhowmick@20#.

Application of the sequence transformation~9! with k53,
n50, andz51 to the truncated Rayleigh-Schro¨dinger per-
turbation series~4! yields the following rational function:

dRS~b!54
33 1521370 776b1901 569b21366 040b3

132 6081138 3648b1274 2588b21533 281b3
.

~10!

Wynn’s epsilon algorithm, Eq.~6!, is normally used for
t

s-

the transformation of the partial sums of a formal pow
series into Pade´ approximants according to Eq.~7!. How-
ever, it can also be applied to other types of slowly conv
gent or divergent sequences such as, for instance, the p
sums of Scherer’s superconvergent approximation~5!. This
yields the following expression, which is also rational inb
but not a Pade´ approximant:

esu~b!52@Ae~b!/Be~b!# , ~11a!

Ae~b!5550 018 35b52426 119 94b42786 763 20b3

2317 094 08b22488 7296b2253 952, ~11b!

Be~b!5103 157 145b52333 375 48b42124 258 992b3

2570 401 92b22939 3664b2507 904. ~11c!

Similarly, the sequence transformationdk
(n)(z,sn), Eq. ~9!, is

not restricted to power series and can also be applied to
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3737
0010
7297
4340
2855
9050
2926
9018
0472
9585
8103
7391
8541
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TABLE I. Performance of the truncated Rayleigh-Schro¨dinger perturbation series for the ground-sta
energy of the quartic anharmonic oscillator, of Scherer’s superconvergent approximation, and of th
rational approximations for different values of the coupling constantb.

b ERS
(4)(b) Esu

~4! eRS(b) dRS(b) esu(b) dsu(b) Exact

0.010 1.007 3737 1.007 3737 1.007 3737 1.007 3737 1.007 3737 1.007 3737 1.007
0.025 1.017 9992 1.017 9996 1.018 0008 1.018 0010 1.018 0011 1.018 0012 1.018
0.050 1.034 6807 1.034 6926 1.034 7254 1.034 7288 1.034 7319 1.034 7346 1.034
0.075 1.050 1080 1.050 1936 1.050 4116 1.050 4304 1.050 4479 1.050 4616 1.050
0.100 1.064 0620 1.064 4042 1.065 2179 1.065 2769 1.065 3347 1.065 3737 1.065
0.150 1.085 2602 1.087 6170 1.092 6150 1.092 8822 1.093 1711 1.093 3148 1.092
0.200 1.090 8672 1.099 9570 1.117 5406 1.118 2589 1.119 1183 1.119 4180 1.118
0.250 1.068 9507 1.094 5322 1.140 3997 1.141 8723 1.143 8188 1.144 2480 1.141
0.300 1.003 0542 1.062 1277 1.161 4847 1.164 0461 1.167 7818 1.168 1854 1.164
0.350 0.872 1973 0.991 3248 1.181 0200 1.185 0157 1.191 4383 1.191 4882 1.184
0.400 0.650 8750 0.868 5770 1.199 1863 1.204 9580 1.215 1754 1.214 3328 1.204
0.450 0.309 0586 0.678 2601 1.216 1324 1.224 0098 1.239 3619 1.236 8392 1.223
0.500 20.187 8052 0.402 7055 1.231 9837 1.242 2784 1.264 3692 1.259 0882 1.241
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partial sums of Scherer’s superconvergent approximation~5!.
Thus, the application ofdk

(n)(z,sn) with k53, n50, and
z51 yields

dsu~b!54@Ad~b!/Bd~b!# , ~12a!

Ad~b!5212 172 801475 991 040b1377 654 9376b2

1135 545 497 12b31230 043 300 00b4

1181 592 550 27b51725 743 5570b6, ~12b!

Bd~b!5848 691 201184 031 2320b1138 373 539 84b2

1458 140 086 40b31688 027 143 84b4

1429 804 045 72b51652 247 5995b6. ~12c!

In Table I, the truncated Rayleigh-Schro¨dinger perturba-
tion seriesERS

(4)(b), Eq. ~4!, is compared with Scherer’s ra
tional approximantEsu

(4) , Eq. ~5!, with the rational approxi-
mantseRS(b), Eq. ~8!, and dRS(b), Eq. ~10!, which were
obtained by transformingERS

(4)(b), and with the rational ap-
proximantsesu(b), Eq. ~11!, and dsu(b), Eq. ~12!, which
were obtained by transformingEsu

(4) . The results in Table I
show thatEsu

(4) gives for b<0.2 only marginally better re-
sults thanERS

(4)(b). For b.0.3, bothERS
(4)(b) and Esu

(4) pro-
duce nonsensical results. Much better results—in partic
for larger values ofb—are obtained by the@2/2# Padéap-
proximanteRS(b) and even more so by the rational appro
imantdRS(b), which clearly gives best results~compare also
Tables IV–VI of Ref. @3#!. Moreover, esu(b) and dsu(b)
give clearly better results thanEsu

(4) , from which they were
derived. However, they are not as efficient aseRS(b) or
dRS(b), which were derived fromERS

(4)(b). The results in
Table I show that all other rational approximants give be
results than Scherer’s superconvergent approximationEsu

(4) .
The ‘‘exact’’ results in Table I were obtained by summin

the renormalized perturbation series for the ground-state
ergy of the quartic anharmonic oscillator with the help of t
sequence transformationdk

(n)(z,sn) as described in Ref.@3#.
There is also another possibility of analyzing the power

a rational approximant. As is well known@6# a Pade´
approximant @ l /m# f(z)5pl (z)/qm(z) to a function f (z)
ar

r

n-

f

5(n50
` gnz

n is constructed in such a way that its Taylor e
pansion coincides with the formal power series as far as p
sible, i.e.,

f ~z!2pl ~z!/qm~z!5O~zl 1m11!, z→0. ~13!

This asymptotic estimate implies that a Taylor expans
aroundz50 reproduces all terms of the power series, wh
were used for the construction of the Pade´ approximant.

This order-by-accuracyprinciple holds also in the case o
many other rational approximants. Ifdk

(n)(z,sn), Eq. ~9!, is
applied to the partial sumsf n(z)5( j 50

n g j z
j , a rational func-

tion dk
(n)

„z, f n(z)… with numerator and denominator polyno
mials of degreesk1n andk results@Eq. ~4.27! of Ref. @3##.
If the coefficientsgn of the power series forf (z) are all
nonzero, the asymptotic error estimate@Eq. ~4.29! of Ref.
@3##

f ~z!2dk
~n!

„z, f n~z!…5O~zk1n12!, z→0 ~14!

holds, which shows that all terms that were used for
construction ofdk

(n)
„z, f n(z)… are reproduced exactly by

Taylor expansion aroundz50.
No general statement can be made about the behavio

the higher terms of the Taylor expansion of either the P´
approximant @ l /m# f(z) or of the rational function
dk

(n)
„z, f n(z)…, which do not reproduce exactly the terms

the power series forf (z). If, however, @ l /m# f(z) and
dk

(n)
„z, f n(z)… converge tof (z) more rapidly than the partia

sums f n(z)5( j 50
n g j z

j , then also the higher terms of th
Taylor expansions of these rational functions should u
mately converge to the corresponding terms of the po
series forf (z). Consequently, at least the leading terms
the Taylor expansions of the difference
pl (z)/qm(z)2 f l 1m(z) and dk

(n)
„z, f n(z)…2 f k1n11(z)

should provideapproximationsto the corresponding terms o
the power series forf (z).

It seems that this idea was first formulated and used
Gilewicz @21# in the context of Pade´ approximants. Later,
this prediction property of Pade´ approximants was used b
Samuel, Ellis, and Karliner@22# in connection with perturba-
tive QCD calculations. Analogous prediction properties
sequence transformations were discussed by Sidi and L
@23# and by Brezinski@24#.
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TABLE II. Approximations to the coefficientscn with n55,6,7 of the perturbation series for the groun
state energy of the quartic anharmonic oscillator obtained by performing Taylor expansions of Sc
superconvergent approximation and of the other rational approximations aroundb50.

n Exact Esu
(4) eRS(b) dRS(b) esu(b) dsu(b)

5 223.8 43.2 188.6 212.4 231.9 255.6
6 21999.5 2115.8 21193.6 21613.1 21936.0 22484.6
7 20 777.1 335.6 7564.2 12 559.8 16 534.4 24 869.7
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Because of Eqs.~13! and ~14!, respectively, Taylor ex-
pansions of the rational functionseRS(b), Eq. ~8!, and
dRS(b), Eq. ~10!, aroundb50 produce expressions of th
following kind:

eRS~b!5ERS
~4!~b!1e5b51e6b61e7b71•••, ~15!

dRS~b!5ERS
~4!~b!1d5b51d6b61d7b71•••. ~16!

As mentioned above, there is no reason to assume tha
coefficientsen anddn with n>5 would reproduce the corre
sponding coefficientscn of the Rayleigh-Schro¨dinger pertur-
bation series exactly. Nevertheless, it should be interestin
see how well the exact coefficients

c55916 731/4096 , ~17!

c652 655 184 01/32 768 , ~18!

c75272 329 4673/131 072 ~19!

are approximated by the coefficientse5, e6, e7 andd5, d6, d7
in Eqs.~15! and ~16!, respectively.

Table II lists the approximations to the exact perturbat
series coefficientscn with n55,6,7, which are obtained b
performing Taylor expansions aroundb50 of Scherer’s ra-
tional approximantEsu

(4) , Eq. ~5!, of the rational approxi-
mantseRS(b), Eq. ~8!, and dRS(b), Eq. ~10!, which were
obtained by transformingERS

(4)(b), and of the rational ap-
proximantsesu(b), Eq. ~11!, and dsu(b), Eq. ~12!, which
the

to

n

were obtained by transformingEsu
(4) . The approximations to

the coefficients were obtained by applying theMAPLE com-
mand Taylor to the symbolic expressions for the ratio
functions. The resulting coefficients, which are exact ratio
numbers, were then converted to floating-point numbers
the case ofesu(b) and dsu(b) it is not known how many
terms of the perturbation series would be reproduced exa
It turned out that all rational approximants considered h
reproduce exactly the truncated perturbation seriesERS

(4)(b),
Eq. ~4!.

The results in Table II show that Scherer’s rational a
proximantEsu

(4) produces only relatively poor approximation
to the perturbation coefficientsc5, c6, andc7. The other ra-
tional approximants produce much better approximatio
upon Taylor expansion. In view of the simplicity of thes
rational approximants, the predicted values of the pertur
tion coefficients are actually remarkably accurate.

Of course, it is not yet possible to make a definite asse
ment of the usefulness of Scherer’s superconvergent pe
bation theory. First it would be necessary to know high
order terms of Scherer’s perturbation expansion for
ground-state energy of the quartic anharmonic oscilla
Moreover, it would be interesting to see how Scherer’s
proach performs in the case of other systems. Neverthe
on the basis of the available data there is no evidence tha
attributesuperconvergentwould be justified.

The author would like to thank the Fonds der Chemisch
Industrie for financial support.
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