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Squeezing enhancement by competing nonlinearities:
Almost perfect squeezing without instabilities

C. Cabrillo, J. L. Rolda´n, and P. Garcı´a-Fernandez
Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid, Spain
~Received 17 December 1996; revised manuscript received 2 September 1997!

The competition between thex (2) nonlinearity of a resonant second-harmonic-generation~SHG! system and
an addedx (3) nonlinearity shifts the Hopf bifurcation of the standard SHG towards higher photon numbers
eventually completely stabilizing the system. Remarkably, perfect squeezing survives the stabilization. Two
important consequences are discussed, namely, efficient bright squeezing generation and strong suppression of
the excess noise which, for parameters corresponding to an experiment reported in the literature, can be
reduced by two orders of magnitude without diminishing the squeezing. Possible experimental implementa-
tions are finally discussed.@S1050-2947~97!05112-3#

PACS number~s!: 42.50.Dv, 42.50.Lc, 42.65.Ky
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From the pioneering ‘‘proof of the principle’’ experimen
~only 0.3 dB of noise reduction! of Slusheret al. @1#, the
generation of squeezed light has been steadily improv
Thus, in a landmark experiment, Polzik, Carri, and Kimb
@2# produced a squeezed vacuum tunable source with 6 d
noise suppression, Kim and Kumar@3# a 5.8-dB broadband
pulsed squeezed vacuum, and Schilleret al. @4# have been
able even of a complete determination of a 5.5-dB squee
vacuum state. Also, cw bright squeezing has been improv
~in noise reduction, output power, and stability! from the
early days of Pereira and co-workers@5# while pulsed bright
squeezing has also surpassed the 5 dB figure@6#.

All the above-mentioned experiments rely on purex (2) or
x (3) nonlinear interactions. Given the relative simplicity
these systems, they have enjoyed the favor of both theo
cians and experimentalists. There were, however, some
tively early incursions@7# in more complicated systems com
bining both kinds of nonlinearities, suggesting enhanc
quantum noise reduction. Recently, some theoretical w
has confirmed this possibility in two different experimen
configurations@8,9#. Here, we present a third approach
which the competition between the two nonlinearities is
vantageously exploited to enlarge the available power
squeeze the noise as well as to reduce the antisqueeze
cess noise. The benefits of competing nonlinearities are
limited only to systems withx (2) andx (3). Thus, higher non-
linearities could be even better for quadrature squeez
@10#, while combining two different kinds ofx (2) nonlineari-
ties improves the generation of twin beams in nondegene
parametric oscillators@11#.

The system consists of a resonant second harmonic
eration configuration with an added intracavity Kerr-lik
nonlinearity. To specify the model, two modes with freque
ciesv and 2v, respectively, both resonant in an optical ca
ity with only one mirror of finite reflectivity, interact with a
suitable nonlinear medium characterized by its secondx2v

(2)

and thirdxv,2v,v
(3) order susceptibilities. An effective inter

action Hamiltonian can be written in a suitable rotati
frame as (\51)

HI5 i
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2
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where k and G are proportional to thex2v
(2) and xv,2v,v

(3)

susceptibilities, respectively, anda, b are the usual annihila
tion operators for the fundamental and the second-harm
modes, respectively. A convenient normalization is achie
by defining

a5A k2

2gagb
a, b5

k

ga
b,

ga andgb being the total loss rates for thev, 2v modes. The
classical evolution equations generated by Eq.~1! are

da

dt
52a1ba* 2 iLa* a21l, ~2a!

1

r

db

dt
52b2a2, ~2b!

where

t5gat, r 5
gb

ga
, L5

2gbG

k2
, l5maAk2

gb
ain ,

ain being the amplitude of an input coherent driving field a
ma the ratio between the losses at the mirror and the t
losses of modea. The concept of squeezing refers to a pha
dependence of the quantum noise of an electromagn
wave so that for some phases the noise level is below tha
the vacuum state. This ‘‘miracle’’ can only happen for
finite band of frequencies and therefore the complete desc
tion of the phenomenon is accounted for by a pha
dependent noise power spectrum. The optimal phase i
general frequency dependent. An analytical optimization
the spectrum on such variable is possible yielding for
maximally squeezed phase and its normal

S7~v!511maS7
N ~v!, ~3!

with
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S7
N ~v!5

1

2E2`

`

$^:a†~t1s!,a~t!:&

7u^:a~t1s!,a~t!:&u%eivsds, ~4!

where colons denote normal and time ordering andv is
given in units ofga . An equivalent expression is obtaine
for the b mode. AsS2

N (v) reaches at best21, ma sets the
maximum squeezing available to 12ma . S1(v) corre-
sponds to the noise in the perpendicular phase which
virtue of Heisenberg’s principle, shows an excess no
above that of the vacuum which at best equals the n
reduction in the squeezed phase~when measured in dB with
respect to the vacuum noise!. Optimizing the squeezing gen
eration is a matter ofmaximizing the squeezing while min
mizing the excess noise. Whenever perfect squeezing
achieved,S1(v) must diverge. Such a dominant role of th
noise points towards a dynamical instability, and so perf
squeezing can only be reached on them. Strong noise re
tion is in this way linked to instabilities, making stabilit
analysis unavoidable. Linearization of Eqs.~2! yields a drift
matrix which is formally the same as that given in a previo
work @14#, since only the inhomogeneous part of the diffe
ential equations has been changed. The explicit form for
eigenvalues is@14#

k1,2,3,45
2r 211g7A~2r 116g!228r ua f u2

2
, ~5!

where g5ua f u2A123L2 and a f denotes a fixed point o
Eqs.~2!. The stability analysis evidences a Hopf bifurcati
at g5r 11, where Rek15Rek250 and Imk152Imk2Þ0.
Self-sustained oscillations build up, then, above a criti
normalized photon number given by

nc[ua f
cu25

r 11

A123L2
. ~6!

This critical value reaches infinity atL th51/A3 and, indeed,
it can be shown that for largerL the system is stable. From
the above,n[ua f u2 is in units of the photon number at th
second-harmonic-generation~SHG! Hopf bifurcation in the
limit r 50. The efficiencies for each mode~the ratio between
the input and the output powers! can be expressed as

ha5
~2ma212n!21n2L2

~11n!21n2L2
, ~7a!

hb5
4mambn

~11n!21L2n2
. ~7b!

As expected, thex (3) nonlinearity diminishes the SHG effi
ciency~from here the term ‘‘competing’’!. Although at a first
glance this appears as a disappointing consequence, from
noise reduction perspective, it will turn out to be advan
geous.

In order to calculate the quantum average implicit in E
~4! we follow the standard procedure first introduced in@12#.
This method relies on a linearization of the evolution eq
tions which fails near the instabilities and so, assertions s
y
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as ‘‘perfect squeezing’’ must be understood with some c
tion. However, more elaborate procedures@13# show that the
method only breaks down rather close to instabilities, m
ing it a reliable guide for squeezing prospection. When
Kerr effect is present, perfect squeezing can be reached a
critical point in the limits of total asymmetry in the losse
@12# (r→0 for perfect squeezing in the fundamental,r→`
for the harmonic mode!. In order to study how the squeezin
is affected by the third-order nonlinearity, we use the ma
mum squeezing available for fixed values ofn, L, and r
@denoted byS2(vm)# which is obtained by numerical opti
mization of S2(v) with respect to the frequency. We firs
focus on an ideal case withma51 andr 51026 as a numeri-
cal approximation to the limit caser 50. Figure 1 shows the
evolution of S2(vm) with increasing L. The curve for
L50.566 strongly suggests that perfect squeezing can
be reached at the corresponding critical point (nc55). In-
deed, this is the case for anync in the limit r 50, as will be
shown elsewhere. The noise suppression increases so
with n that, in practice, almost perfect squeezing@say,
S(vm),0.05# is reached fromn53 on. Most remarkably,
the same dependence onn remains tillL th, for which there is
no instability. In other words,the conventional wisdom link
ing strong noise suppression to the proximity to an instabi
is shattered into pieces. The importance of this result goe
beyond the particular system proposed here, as it opens
possibility of high squeezing free from the delicacy of wor
ing points close to instabilities. Theoretical studies aimed
clarify the general conditions under which this can happ
are in progress. The highly nontrivial behavior of the syst
below L th is also highlighted by the fact that the squeezi
~and so the quantum character of the state! increases mono-
tonically with the photon number~quantum number!, just in
counterposition to a naive application of the corresponde
principle. It is worth noticing that essentially the same plo
as in Fig. 1 are obtained tillr 50.01, not such an unthinkabl
value.

Turning now to a more realistic case we choose a m
asymmetry ofr 50.15 and a conservativema50.9. The be-
havior of the system is summarized in Fig. 2, showing b
S2(vm) andS1(vm) ~in dB’s relative to the vacuum noise!,
as well as the ‘‘efficiency’’ha . Now, the squeezing eve
increases above the standard SHG whenL is set toL th . The
excess noise, however, grows up disappointingly fast withn.

FIG. 1. The maximum squeezing in the fundamental mode a
function of the photon number for the ideal caser 51026 and
ma51. L50.566 corresponds tonc55.
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56 5133SQUEEZING ENHANCEMENT BY COMPETING . . .
Still, there is a significant reduction aroundn51.4, where
theL th case equals the maximum of the standard SHG. F
tunately, increasingL the excess noise decreases dram
cally while the squeezing diminishes slowly. Thus, f
L50.75 the squeezing still is very high, reaching the ma
mum of the SHG case aroundn510 and even surpassing
above thisn, while the excess noise is strongly suppress
~around 6 dB!. Indeed, settingma51 the excess noise show
an almost symmetric behavior with respect to the squeez
the signature of a Heisenberg limited performance. Inter
ingly enough,ha increases above a certain minimum locat
below the SHG Hopf bifurcation. In other words, the syste
presents unique properties as a quantum noise eater, na
any increase of the input power above the mentioned m
mum amounts in both a higher squeezing and a higher
ciency in the output power generation. In contrast, in
standard SHG system the maximum squeezing almost c
cides with the minimum of the power efficiency. Except f
the increasing power efficiency, the performance of the s
tem is essentially the same for the harmonic mode w
r .1.

The previous results, although certainly interesting,
derestimate the performance of the system. WhetherS2(vm)
reaches zero or not, atnc the noise must diverge at som
frequency. Once perfect squeezing is not achieved suc
frequency does not necessarily coincide withvm . The whole
spectrum is then necessary to completely characterize
noise behavior of the system. Figure 3 illustrates the po
very vividly. The parameter values have been chosen to
produce the theoretical curve of the experiment of Kurzet al.
@16# in order to make contact as much as possible with a
situation. The performance of the system is amazingly su

FIG. 2. The maximum noise reduction and the excess n
~fundamental mode! for r 50.15 andma50.9 ~a! and the corre-
spondingha efficiency ~b!.
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rior when thex (3) nonlinearity is introduced. The suppre
sion of the excess noise is huge~around 22 dB! without any
degradation of the squeezing. Equally high~from 27 to 6.5
dB! is the reduction of excess noise in the harmonic mo
One can reasonably expect a mitigation of the severe tec
cal problems found in@16# after such a suppresion of nois

From the definitions ofk, G, andgb and assuming plane
wave modes in the resonator and perfect phase matchin
can be shown thatL5(3Tb/8p)(la / l )@nrx

(3)/(x (2))2#,
with Tb being an effective transmission including all the m
rors as well as the scattering and absorption losses for m
b, nr the refraction index, andla the wavelength of modea.
The most obvious way of practical implementation of t
system would be to place two different materials in the sa
cavity, one suited for the second order interaction, the ot
for the third. However, for the low values ofL needed, a
simple crystal could be adequate for the task. For exam
from the KDP electro-optic Kerr coefficient
(s6650.9310218 m2/V2 @15#!, a x0,0,v

(3) of 1.1310218 m2/V2

at 512 nm is obtained. As a first approximation we sh
assumex0,0,v

(3) 5xv,2v,v
(3) . Although the approximation may

seem crude, it gives the right order of magnitude for liqu
CS2, for which both kinds of Kerr nonlinearities are reporte
in the literature @15#. Taking x2v

(2)510212 V/m @15#,
Tb50.03,la5512 nm, andl 50.5 cm,L equalsL th . Power
requirements are, however, quite strong with KDP but s
sible figures are still possible. For instance, forr 50.5,
ma50.9, andn51.44 ~the same proportion with respect t
nc as in @16#! the squeezing is around25 dB, while the
maximum excess noise in the standard SHG is around 33
With only a L50.3 (Tb.0.016, letting the rest of the pa
rameters remain unchanged! this excess noise is reduced b
13 dB. Assuming a waist of the beam of 33.5mm ~as in
@16#!, plane modes~with a section of radiusA2 times the
waist!, and perfect phase matching we estimate the in
power necessary to reachn51.44 in 195 mW, quite a sen
sible value. All of this is admittedly oversimplified. For in
stance, depending on the values of thex (3) tensor compo-
nents and the losses, the self-phase modulation of theb mode
and the cross phase modulation could be important, altho
not necessarily deleterious. The previous analysis mus
therefore be considered only as a preliminary plausibi
argument.

A second very interesting approach is the use of asy

e

FIG. 3. The effect ofx (3) on S2(v) andS1(v) for the funda-
mental mode;r 50.25,ma50.91, andn51.2.
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metric multiple quantum wells. These devices are curren
the object of an intense study regarding their applicability
SHG@17#. For our purposes, they are excellent candidates
the energy-level schemes used forx (2) optimization are, at
the same time, adequate forx (3) enhancement. Even more
the nonlinearities can be controlled with an applied dc fie
A drawback of such systems is the increased absorption
sociated with the resonant enhancement of nonlineari
The augmented total losses could force the use of pu
light so that the results shown here would not be direc
applicable. However, as we are not interested in a giantx (2)

but in a compensated value ofnrx
(3)/(x (2))2, resonance is

not so critical and maybe an adequate working point wit
sufficiently diminished absorption could be found.

Cascaded second-order nonlinearities~see, for instance
@18# for an experimental demonstration of dispersive bis
bility by cascading effect! are also very interesting since th
o-

-

ly
r
as

.
s-
s.
ed
y

a

-

x (2) and the effectivex (3) are, as in the previous cases, na
rally embedded in the same material.

Poled fibers@19# which generate a SHG signal would be
technologically very attractive possibility. Although pulse
are in principle needed in order to achieve an apprecia
self-phase modulation, maybe the cascading effect co
help to enable cw operation.

Finally, the stabilization induced by thex (3) nonlinearity
could be useful also at the classical level as it makes far m
accessible the point of maximum SHG efficiency~the mini-
mum of ha).
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