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Squeezing enhancement by competing nonlinearities:
Almost perfect squeezing without instabilities

C. Cabrillo, J. L. Rolda, and P. Gare-Fernandez
Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid, Spain
(Received 17 December 1996; revised manuscript received 2 Septembgr 1997

The competition between thg? nonlinearity of a resonant second-harmonic-generg&G) system and
an addedy(® nonlinearity shifts the Hopf bifurcation of the standard SHG towards higher photon numbers
eventually completely stabilizing the system. Remarkably, perfect squeezing survives the stabilization. Two
important consequences are discussed, namely, efficient bright squeezing generation and strong suppression of
the excess noise which, for parameters corresponding to an experiment reported in the literature, can be
reduced by two orders of magnitude without diminishing the squeezing. Possible experimental implementa-
tions are finally discussefiS1050-294{®7)05112-3

PACS numbd(s): 42.50.Dv, 42.50.Lc, 42.65.Ky

From the pionee_ring “proof of the principle” experiment where k and I' are proportional to the((zzw) and Xf),w,w
(only 0.3 dB of noise reductionof Slusheret al. [1], the  susceptibilities, respectively, ard b are the usual annihila-
generation of squeezed light has been steadily improvingjon operators for the fundamental and the second-harmonic

Thus, in a landmark experiment, Polzik, Carri, and Kimbleyades, respectively. A convenient normalization is achieved
[2] produced a squeezed vacuum tunable source with 6 dB ij defining

noise suppression, Kim and Kumgg] a 5.8-dB broadband

pulsed squeezed vacuum, and Schibel. [4] have been
able even of a complete determination of a 5.5-dB squeezed a= / K a, 8= ib,
vacuum state. Also, cw bright squeezing has been improving 2YaYp Ya

(in noise reduction, output power, and stabjlifyom the
early days of Pereira and co-work¢g while pulsed bright vy, andy, being the total loss rates for tlhe 20 modes. The

squeezing has also surpassed the 5 dB fifife classical evolution equations generated by @g.are
All the above-mentioned experiments rely on pyf& or
x® nonlinear interactions. Given the relative simplicity of da e e 2
these systems, they have enjoyed the favor of both theoreti- dr atpa’—iAa*a”+X, (28

cians and experimentalists. There were, however, some rela-
tively early incursion$7] in more complicated systems com-
L . . o ) 1dg
bining both kinds of nonlinearities, suggesting enhanced - ——=—pB-a? (2b)
guantum noise reduction. Recently, some theoretical work rdr
has confirmed this possibility in two different experimental
configurations[8,9]. Here, we present a third approach in where
which the competition between the two nonlinearities is ad-

vantageously exploited to enlarge the available power to Yo 2yl P
squeeze the noise as well as to reduce the antisqueezed ex- 7=7vy,t, r=—, A= > A= a\[ @i,
cess noise. The benefits of competing nonlinearities are not Ya K b

limited only to systems witty(®) andx®. Thus, higher non- _ _ _ S
linearities could be even better for quadrature squeezingin P€INg the amplitude of an input coherent driving field and
[10], while combining two different kinds of® nonlineari-  #a the ratio between the losses at the mirror and the total
ties improves the generation of twin beams in nondegeneraf@sses of moda. The concept of squeezing refers to a phase
parametric oscillatorf11]. dependence of the quantum noise of an electromagnetic
The system consists of a resonant second harmonic geM@ve so that for some phases the noise level is below that of
eration configuration with an added intracavity Kerr-like the vacuum state. This “miracle” can only happen for a
nonlinearity. To specify the model, two modes with frequen-finite band of frequencies and therefore the complete descrip-
ciesw and 2w, respectively, both resonant in an optical cav-tion of the phenomenon is accounted for by a phase-
ity with only one mirror of finite reflectivity, interact with a dependent noise power spectrum. The optimal phase is in
suitable nonlinear medium characterized by its secpﬁgj general frequency dependent. An analytical optimization of

and third y® order susceptibilities. An effective inter- the spectrum on such variable is possible yielding for the

0, 0,0 i i
action Hamiltonian can be written in a suitable rotatingmaxImally squeezed phase and its normal

frame as £=1) Se(w)=1+ u,SN(w), 3

Kt ot U o
Hi=i=(a"b-a’h")+5a'%? @ ith
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N 1= L0 e
3:(60)25 {(:a%(7+s),a(7):) " 0
- s 0.8 ¢ A =0.566
F|(:a(r+s),a(7):)|}e'*ds, (4) o o A=A,
where colons denote normal and time ordering ands s — —-A=075

given in units ofy,. An equivalent expression is obtained ~, (.4
for the b mode. AsSN(w) reaches at best 1, u, sets the

maximum squeezing available to—lu,. S,(w) corre- 0.2
sponds to the noise in the perpendicular phase which, by

virtue of Heisenberg’'s principle, shows an excess noise ¢ S
above that of the vacuum which at best equals the noise N T T Pl

reduction in the squeezed phaséhen measured in dB with 0 1 2 3 4 5 6 7 8
respect to the vacuum nojs@®ptimizing the squeezing gen- n

er.at.lon IS a matter Olfna'XImIZIng the squeezing Wh”e, mm," FIG. 1. The maximum squeezing in the fundamental mode as a
mlz!ng the excess no!sNVhenever perfec_t Squeezing IS fynction of the photon number for the ideal case 10 ® and
achieved S. (w) must diverge. Such a dominant role of the , _1 A 0566 corresponds t,=5.

noise points towards a dynamical instability, and so perfect

squeezing can only be reached on them. Strong noise redugs “perfect squeezing” must be understood with some cau-
tion is in this way linked to instabilities, making stability tion. However, more elaborate proceduf8] show that the
analysis unavoidable. Linearization of E8) yields a drift method only breaks down rather close to instabilities, mak-
matrix which is formally the same as that given in a previousind it a reliable guide for squeezing prospection. When no
work [14], since only the inhomogeneous part of the differ- Kerr effect is present, perfect squeezing can be reached at the

ential equations has been changed. The explicit form for thgrtical point in the limits of total asymmetry in the losses
eigenvalues i$14] 12] (r—0 for perfect squeezing in the fundamental; o

for the harmonic mode In order to study how the squeezing
—r—1+g7(—r+1+9)2—8r|a;? is affected by the third-order nonlinearity, we use the maxi-
Ki2347 , (5 mum squeezing available for fixed values mf A, andr
2 [denoted byS_(w,,)] which is obtained by numerical opti-
mization of S_(w) with respect to the frequency. We first
focus on an ideal case with,=1 andr=10"° as a numeri-

where g=|a;|21—3A? and a; denotes a fixed point of
Egs.(2). The stability analysis evidences a Hopf bifurcation cal approximation to the limit cage=0. Figure 1 shows the
atg=r+1, where R, =Rek;=0 and Ink,= —Imk,#0.  gyoiution of S_(w,) with increasingA. The curve for
Self-su_stamed oscillations bL_uId up, then, above a criticaly — 5gg strongly suggests that perfect squeezing can also
normalized photon number given by be reached at the corresponding critical poing=£5). In-
deed, this is the case for amy in the limitr =0, as will be
ne=|at|2= r+1 ©6) shown elsewhere. The noise suppression increases so fast
¢ f ' with n that, in practice, almost perfect squeezifgpy,
S(wy,)<0.05] is reached froom=3 on. Most remarkably,
This critical value reaches infinity at,,=1/y3 and, indeed, the same dependence pmemains till A, for which there is
it can be shown that for largek the system is stable. From no instability. In other wordsthe conventional wisdom link-
the aboven=|a;|? is in units of the photon number at the ing strong noise suppression to the proximity to an instability
second-harmonic-generatig@HG) Hopf bifurcation in the is shattered into piecesThe importance of this result goes
limit r =0. The efficiencies for each modene ratio between beyond the particular system proposed here, as it opens the

the input and the output powérsan be expressed as possibility of high squeezing free from the delicacy of work-
ing points close to instabilities. Theoretical studies aimed to
(2ua—1—n)2+n2A2 clarify the general conditions under which this can happen

Na= (73 are in progress. The highly nontrivial behavior of the system

2 272
(1+m)+n°A below Ay, is also highlighted by the fact that the squeezing

(and so the quantum character of the gtaiereases mono-
_ A ppappn (7b) tonically with the photon numbegquantum numbey just in
(1+n)2+A2n? counterposition to a naive application of the correspondence
principle. It is worth noticing that essentially the same plots
As expected, the(® nonlinearity diminishes the SHG effi- as in Fig. 1 are obtained till=0.01, not such an unthinkable
ciency(from here the term “competing/’ Although at a first ~ value.
glance this appears as a disappointing consequence, from the Turning now to a more realistic case we choose a mild
noise reduction perspective, it will turn out to be advanta-asymmetry ofr =0.15 and a conservative,=0.9. The be-
geous. havior of the system is summarized in Fig. 2, showing both
In order to calculate the quantum average implicit in Eq.S_(w.,) andS, (o) (in dB’s relative to the vacuum noise
(4) we follow the standard procedure first introducedifl].  as well as the “efficiency”n,. Now, the squeezing even
This method relies on a linearization of the evolution equa-increases above the standard SHG wheis set toA,. The
tions which fails near the instabilities and so, assertions sucbxcess noise, however, grows up disappointingly fast with

Mo
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FIG. 3. The effect ofy‘® on S_(w) andS, (w) for the funda-
mental modey =0.25, u,=0.91, andn=1.2.

rior when thex® nonlinearity is introduced. The suppres-
sion of the excess noise is hug@ound 22 dB without any
degradation of the squeezing. Equally higfom 27 to 6.5
dB) is the reduction of excess noise in the harmonic mode.
One can reasonably expect a mitigation of the severe techni-
cal problems found ih16] after such a suppresion of noise.
0 2 4 6 8 10 From the definitions ok, I, andy, and assuming plane-
n wave modes in the resonator and perfect phase matching, it

FIG. 2. The maximum noise reduction and the excess nois€an be shown thatA = (3Ty/8m)(Na/l)[n x'V1(x?)?],
(fundamental modefor r=0.15 andu,=0.9 (@) and the corre- With T}, being an effective transmission including all the mir-
spondingz, efficiency (b). rors as well as the scattering and absorption losses for mode
b, n, the refraction index, andl, the wavelength of mode.
The most obvious way of practical implementation of the
System would be to place two different materials in the same
cavity, one suited for the second order interaction, the other

S, (©,)

Still, there is a significant reduction aroumd= 1.4, where
the Ay, case equals the maximum of the standard SHG. Fo
tunately, increasing\ the excess noise decreases dramati .
cally vghile the sgl\Jeezing diminishes slowly. Thus, forf(?r the third. However, for the low values of needed, a
A=0.75 the squeezing still is very high, reaching the maxi_S|mple crystal could be adequate_for the task. For _e>_<ample,
mum of the SHG case aroumd= 10 and even surpassing it from the _ lléDE ) electro-ogc;c Kerr 7cl(g;eff|20|e2nts
above thisn, while the excess noise is strongly suppressed Ses=0-9% 107" m7V=[15)), a xgg,, of 1.1X10"* m7/V
(around 6 dB. Indeed, setting.,= 1 the excess noise shows at 912 nm 1S ob;amed. As a first approximation we shall
an almost symmetric behavior with respect to the squeezing?}ssume)(g,c)m:_Xslg,)f«u,w- Although the approximation may
the signature of a Heisenberg limited performance. Interes€em crude, it gives the right order of magnitude for liquid
ingly enough,z, increases above a certain minimum locatedCS:, for which both kinds of Kerr nonlinearities are reported
below the SHG Hopf bifurcation. In other words, the systemin the literature [15]. Taking x%)=10"*? V/m [15],
presents unique properties as a quantum noise eater, namelg=0.03,\ ;=512 nm, and =0.5 cm,A equalsAy,. Power
any increase of the input power above the mentioned minirequirements are, however, quite strong with KDP but sen-
mum amounts in both a higher squeezing and a higher effisible figures are still possible. For instance, for0.5,
ciency in the output power generation. In contrast, in theu,=0.9, andn=1.44 (the same proportion with respect to
standard SHG system the maximum squeezing almost coiry, as in[16]) the squeezing is aroune 5 dB, while the
cides with the minimum of the power efficiency. Except for maximum excess noise in the standard SHG is around 33 dB.
the increasing power efficiency, the performance of the sysWith only a A=0.3 (T,=0.016, letting the rest of the pa-
tem is essentially the same for the harmonic mode whemnameters remain unchangettis excess noise is reduced by
r>1. 13 dB. Assuming a waist of the beam of 33.8n (as in

The previous results, although certainly interesting, un{16]), plane modegwith a section of radiusy2 times the
derestimate the performance of the system. Whehéw,,) waist, and perfect phase matching we estimate the input
reaches zero or not, ai. the noise must diverge at some power necessary to react+1.44 in 195 mW, quite a sen-
frequency. Once perfect squeezing is not achieved such gble value. All of this is admittedly oversimplified. For in-
frequency does not necessarily coincide with. The whole  stance, depending on the values of &) tensor compo-
spectrum is then necessary to completely characterize theents and the losses, the self-phase modulation df thede
noise behavior of the system. Figure 3 illustrates the poinand the cross phase modulation could be important, although
very vividly. The parameter values have been chosen to reaot necessarily deleterious. The previous analysis must be
produce the theoretical curve of the experiment of Ketral.  therefore be considered only as a preliminary plausibility
[16] in order to make contact as much as possible with a readrgument.
situation. The performance of the system is amazingly supe- A second very interesting approach is the use of asym-



5134 C. CABRILLO, J. L. ROLD;N\I, AND P. GARCIA-FERNANDEZ 56

metric multiple quantum wells. These devices are currentlyy(?) and the effectivey® are, as in the previous cases, natu-
the object of an intense study regarding their applicability forrally embedded in the same material.

SHG[17]. For our purposes, they are excellent candidates, as Poled fiber§19] which generate a SHG signal would be a
the energy-level schemes used §gf) optimization are, at technologically very attractive possibility. Although pulses
the same time, adequate fgf®) enhancement. Even more, are in principle needed in order to achieve an appreciable

the nonlinearities can be controlled with an applied dc ﬁe'd.se|f_phase modulation, maybe the Cascading effect could
A drawback of such systems is the increased absorption agg|p to enable cw operation.

sociated with the resonant enhancement of nonlinearities. Finally, the stabilization induced by thés) nonlinearity

The augmented total losses could force the use of pulseg, 4 he useful also at the classical level as it makes far more

Ilght_so that the results shown here_z would nqt be _d'reCtlyaccessible the point of maximum SHG efficierye mini-
applicable. However, as we are not interested in a gyt mum of 7,)
a) -

but in a compensated value of y®/(x®)?, resonance is
not so critical and maybe an adequate working point with a This work was supported in part by Project No. TIC95-
sufficiently diminished absorption could be found. 0563-C05-03 (CICYT, Spain. C.C. wishes to thank S.

Cascaded second-order nonlinearitisse, for instance, Schiller, C. Fabre, and F. Agulbopez for useful conversa-
[18] for an experimental demonstration of dispersive bistations and R. Serna for providing valuable bibliographic and
bility by cascading effeg¢tare also very interesting since the nonlinear materials data.
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