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Gaussian-Wigner distributions and hierarchies of nonclassical states in quantum optics:
The single-mode case

Arvind*
Department of Physics, Indian Institute of Science, Bangalore 560 012, India

N. Mukundd
Center for Theoretical Studies and Department of Physics, Indian Institute of Science, Bangalore 560 012, India

R. Simon
Institute of Mathematical Sciences, CIT Campus, Madras 600 113, India
(Received 11 November 1996; revised manuscript received 12 August 1997

A recently introduced hierarchy of states of a single-mode quantized radiation field is examined for the case
of centered Gaussian-Wigner distributions. It is found that the onset of squeezing among such states signals the
transition to the strongly nonclassical regime. Interesting consequences for the photon-number distribution, and
explicit representations for them, are presented. The effects of nonideal detection are also carefully analyzed.
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I. INTRODUCTION the normal ordering rule of correspondence between classical

dynamical variables and quantum operators. Given any real
Squeezed states of light, and other states exhibiting eithelassical functionf(z*,z) of a complex variablez and its
antibunching or sub-Poissonian photon statistics or both, argonjugate, one defines a Hermitian operafoin quantum
well known examples of so-called “nonclassical” states Oftheory by the replacemerztaé,z*aé* and then brings all

radiation[1-4]. In fact these are the simplest and most fa ¢ 2 “by hand” to the left of all f A~
miliar ones out of an infinite hierarchy of independent signa- actorsa’ “by hand™ to the left of all factorsa:

tures of nonclassical states in quantum optics; many other

* C__f/51T AV]~ .
signatures have been presented in the literdthife f(z.2)—F=f(a".a)lar et ato rights
The precise definition of a nonclassical state of radiation ~
is based upon the diagonal coherent state expansion of the (zIF|2)=1(Z",2). (1.2

density matrixp of the state in the quantum theory. Limiting
ourselves to the single-mode radiation field this expansion ighen the quantum mechanical expectation valu af the

(6] statep is

~ dZZ S A dzz *
p=J7¢(Z)|Z><Z|, (1.1 <F>=Tr(pF)=f7¢(Z)f(z 2). 1.3

where the coherent staté®) are the familiar normalized The key observation now is that while the correspondence

eigenstates of the photon annihilation opera}onvith com- f<F is linear and takes real functions to Hermitian opera-
plex eigenvalue and ¢(z) is a real normalized weight func- tors and vice versa, a real non-negatifeg*,z) may well

tion which is in general a distribution. The statés said to  lead to a Hermitian indefinité. A statep is then said to be

be “classical " if ¢(z) is pointwise nonnegative, and no- classical if this permitted “quantum negativity” in operators
where more singular than & function, so that it can be never shows up in expectation values, nonclassical other-
interpreted as a classical probability density over the comwise:

plex plane. Otherwisg is a “nonclassical ” state. This clas- . ) .

sification is clearly invariant under rotations and translations P classica&Tr(pF)=0 for every f(z*,2)=0,

in phase space.

It has been shown elsewhere that there is a dual operator p nonclassicak Tr(pF)<0 for some f(z*,2)=0.

based approach to this distinction between classical and non- (1.9

classical states, which is physically quite instruc{ivg The

representatioril.1), as is well known, is closely related to ~ With this alternative characterizatidnompletely equiva-
lent to the usual one one has the possibility of defining
several degrees or levels of nonclassicality, if one restricts in

*Electronic address: arvind@physics.iisc.ernet.in various ways the collection of operatofs for which one
TAlso at Jawaharlal Nehru Center for Advanced Scientific Re-tests the conditions given in E¢L.4) [7]. Specifically, for a
search, Jakkur, Bangalore 560 064, India. single-mode system, it has been shown by considering the
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subset of phase invariathumber conservingoperatorsk  trast, the squeezed states are shown to be strongly nonclas-

which arise fromf(z*,z) obeying sical, and one never sees the weakly nonclassical possibility
o at all. In Sec. IV we connect our work with recent experi-
f(z'e ', zd*)=1(z",2) (1.5 mental developments and analyze the effect of nonideal de-

) ) __tection on our classification. Section V gives an example of
that an exhaustive and mutually exclusive threefold C|ass'f'WeakIy nonclassical states which are naturally outside the
cation of states is possible. {z*,2) obeys Eq(1.9), then  Gaussian-Wigner family, and offers some concluding re-
for the expectation value of the corresponding sufficesto  marks.
use an angle average ¢{z):

Il. NATURE OF THE DISTRIBUTIONS ¢(z) AND P(1)

£ ata1— oS 121
[F.a'a]=0=Tr(pF)= Jo dIP()f(IH2143), It is useful to begin by recalling the general properties of

the diagonal weighty(z) and its angular averagg(l), and
27d 6 _ by giving an indication of the kinds of singular distributions
P(I)zf Zdy(l”"‘e' 9. (1.6)  we must be prepared to encounft&6]. This is best done by
0

viewing the set of all possible density matrigess a subset

One can then obtain the following finer classification of all ©f the family of Hilbert-Schmid{HS) operators. An operator
states: A on Hilbert space is of HS type if

~ T [o¢]
p classicak ¢(z)=0, so P(1)=0, THATA) <, 2.3

and among HS operators we have a natural inner product:
p weakly nonclassicabP(1)=0, but ¢(z)#0,
(A,B)= Tr(A'B). (2.2

strongly nonclassicabP(1)#0, so ¢(z)#0. )
av ) #(2) (1.7) We deal throughout with systems of one degree of freedom,

and with the annihilation and creation operatfarz?fr related

Thus the previous “nonclassical” has been subdivided now,, Hermitiang andp in the standard way:
into “weakly nonclassical” and “strongly nonclassical”
states. Up to and including the weakly nonclassical level, 1 A 1 . .
P(1) can be treated as a classical probability density for in- a=—(q+ip), a'=-—=(q—ip). (2.3
tensity, whether or no$#(z) can be regarded as a probability \/E V2
distribution over the complex plane; in the third strongly ) . '
nonclassical regime, eveR(l) ceases to be a probability The unitary phase space dlsplacgment operators are defined
density. by and have the following properties:

The aim of this paper is to illustrate these ideas in the
concrete case of states described by Gaussian-Wigner distri-
butions on phase space. It is well known that in a wide va-
riety of physical processes the states of radiation that are
produced are indeed of this typ8]. Their description also N _ , ,
lends itself to direct analytical treatment. The photon-number TD(e",7")'D(o,n)]=2m (0"~ ) 5(7" = 7). (2.4)
distribution for Gaussian states has been studied by several ‘
authors[9]. What we shall demonstrate is that within this setany HS operatorA can be expanded in the form of an op-
?f statles, Fhel (t)nstﬁt Oft squleezing I'Sign_a|3| an _abru% Ch?ﬁ%ator Fourier integral representation using its “Weyl
rom classical to the strongly nonclassical regime; thus C e R : .- )
weakly nonclassical states do not show up at all in this fam?lvelght Ala,7) as expansion coefficiedL 1]

ily.

holbl

D(o,7)= explicq—irp), —o<g,7<

D(O’,T)T:D(O’,T)_lzD(—O',—T),

. . . dod7r-
The material of this paper is arranged as follows. In Sec. A:f f A(o,7)D(a,7),
Il we trace the connection between the descriptions of an V2

operator via its Weyl weight and its Wigner representative,

and the diagonal weight(z). This gives us a clear picture _ 1

of the extent to whichp(z) can be a singular distribution, A(o,7)= \/?(D(U,T),A),

and in turn how singular the quantify(l) can in principle ™

be. Section Ill examines the class of centered Gaussian-

Wigner distributions. These are fully parametrized by the Tr(ATA):(A,A)zf f dodrA(c, 7|2 (2.5
variance or noise matrix which has to be positive semidefi-

nite and also must obey the uncertainty principle. Amon . .
these states the only two qualitatively different ones are th hus the HS piopertw.l) of Als translated exactly into the
nonsqueezed and squeezed ones. In the former case, béth propeﬁy ofA(c,7) over R

¢(z) andP(l) can be computed explicitly, and as expected From A(o,7) we pass to the Wigner representative or
they are finite nonnegative normalized functions. This is conWigner distributionW(q,p) of the operatorA by a double
sistent with their being classified as classical states. In corfFourier transform at the-number leve[12]:
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dodr - »
W(q,p)zf f(z(;);zA(a,T)exp(iaq—iTp). 2.6 7’(')=JO dKeK’ZJo(ZW)J qude\(q,p)
X Jo[ V2K (g% +p?)]

Here g and p are canonical coordinates over a classical

phase space, and in ca&ds Hermitian its Wigner represen- o %

tativeW(q, p) is real. Now the HS property fok amounts to =f dKeKlzJo(Z\/m)f dLJo(2VKL)
H 2 7 2. 0 0

W(q,p) being anL“ function overR<:

2m
X dyW(v2L ,V2Lsiny). 2.1
Tr(ATA):(A,A):zﬂ-f quddW(q,p)|2_ 2.7) fo X (\/_003( \/_sm)() (2.12

Now just as the relatiori2.10 betweend(z) and A(a,7)

For density matrices we are also interested in the ordinar - ? . .
Yy anolved the classical two dimensional Fourier transforma-

trace: tion, here one is concerned with the single variable Fourier-
Bessel transformation over the half line €0, which states
Tr(A)= \/27TA(0,0)=J f dqdpWa,p). (2.8 [13]
It is in the passage fromA(a,7) or W(q,p) to ¢(z) that JO diff()[><we=f(1)= fo dKg(K)Jo(2V1K),

the distribution character of the latter shows up. From the
diagonal representation

g(K>=f°°d|f(l>Jo<2wK>,
2 ’ ’

| | [Canrap= [ “akigor
wherez=(1/\2)(x+iy), when we connect up with the pre- 0 0

vious relationg2.5), (2.6) we get the result

" dKJ (2LK)Jo(2V1IK)=8(1-L).  (2.13
¢(z):J Jd"_‘“eumxazwz);(mT)ei<axw) fo ’ °

V27 This means that the most singular possible behavioP{o)
dodr (Wt (02 ) 4o 7y) which can in principle occur is that its Fpurier-BesseI trfins-
= J J We form can be the factee®’? times a square integrable function
of K over the domain (&), namely, the Fourier-Bessel
transform of the angular average\W{q,p). The factoreX’?
is just the earlier factoe@¥©@*+7™ present in Eq(2.10);
and the situation foP(l) is marginally better than fop(z)
Thus the most singular kind ab(z) is one whose Fourier since now only the angular average ¢fz) is involved.
transform is the increasing Gaussian factor Eup+ ) The use of phase space language in describing operators
times a square integrable functi@}(a,r)—this is the worst N quantum mechanics leads naturally to an examinatipn of
behavior that can in principle occur. Conversely for a classiin® behaviors oif(z) andP(1) under phase space rotations

~ . ._and translations. As is easy to see, their behavior under ro-
cal stateA(o,7) must more than overwhelm this exponential ___. P )
X ) tations is simple:
factor and moreover yield a non-negatig¢z).

><f qude\(q,p)e‘“”“””- (2.10

Let us next see what this situation f¢(z) entails for its W' (g, p) = W(qcosx — psina, pcose + gsina) < ¢' (z)
angular averagéP(l). We work directly with the Wigner )
distribution W(q,p) and find after performing the angular =¢(ze“) =P (H=P(l). (2.14
integration

This invariance ofP(l) is as expected. Under translations we
have

2740 .
P = [T5m g0l
° W' (g,p) =W(q—do,p— po)& &' (2)= p(z—20),

dod
= f f ZWTe(1/4)((r2+ TZ)‘]O[ 2] (0_2+ 7_2)]

1
ZOZE(QOHPO)- (2.19
><f qude\(q,p)ei“”*"q). (2.11)

However, nowP’(l) is not expressible in terms oP(l)
alone as phase sensitivity is introduced by a translation.
If we substitutec=2Kcosy, 7=2Ksing, we can carry Therefore while our threefold classification sche(fe?) is

out one more angular integration and brifgl) to the fol-  obviously invariant under phase space rotations, the behavior
lowing form: with respect to translations is much more subtle.
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It is evident that the classical states with batiz) and  lll. THE CASE OF GAUSSIAN-WIGNER DISTRIBUTIONS
P(1) nonnegative remain classical under translations. How- We consider the family of centered Gaussian-Wigner dis-
ever, a weakly nonclassical state becomes strongly nondaﬁ'ibutions namelv. those which have vanishing meansifor

sical for a suitably chosen translation, as the following physi- : Y, S vanishing 9

i andp [14]. The most general such distribution is determined

cal argument shows. At the origiR(0) reduces tap(0) as 2 real svmmetric 22 matrix G

no angular average remains. If a weakly nonclassical state %y Y '

given, its¢(z) must become effectively negative somewhere

in the complex plane. By translating the origin to such a _ VdeG q

point and then computing’ (0) we see that the resulting Ws(a,p)= exg —(q p)G o/ |’
A B
B C/

state is strongly nonclassical. Following a similar argument
we also see that we can recowg{z) in its entirety by sub-
jecting the initial state to all possible phase space displace- G=(
mentsz,, ¢’ (2)= ¢(z—2zy), and then computing the result-
ing P’ (1) and collecting the results.

We conclude this section by relating the distributiB )
to the photon-number probabilities. Indeed these involve
complete independent set of phase insensitive quantities a
their expectation values:

(3.9

The condition thatWg(q,p) represent a physically realizable
antum mechanical state imposes the following restrictions
G corresponding, respectively, to normalizability and the
uncertainty principld 15]:

. ()" . G>0, ie., A+C>0, A=delG=AC—B2>0,
f(z,2)=e " *——<F=[n)n|, (3.29
~n - * " -1 1 = i = A=A2
p(n)=Tr(pF)=(n|p|n)=J dIP(I)e"m. (2.16 G i -1 0 =0, ie, A+C=0, A=A~
0 .

(3.2b

Thesep(n)'s always give well defined normalized probabili- combining these we have the complete set of restrictions on
ties for finding various numbers of photons, whether or noig given by

P(1) is itself a probability density. Formally one can invert
the above to geP(l) in terms ofp(n), as indeed one would

expect. If we define the generating functiq(K) by A+C>0, 0<A<l. 33

The noise or variance matriX is defined and given by

]

-1 n
q)=3 ¢ nl) K"p(n) (2.17) ,
i=o ! :((Aq) A(q,p)) 1, 1( C —B)

Afg,p)  (Ap)2) 2 -B A

26 Taa
we see thafj(K) converges for all reak and is related to
P(1) by

(Aq)2=f qu dp o We(a.p),

o

_1 n © |n
a(K)= >, ( n!) K“f o||7>(|)e—'m

n=0 0

A(q,p)=f qu dp gp W(a,p),

:f dIP(1)e ' Jo(2\1K). (2.18
0

(Ap)2=f qu dp F We(a,p). 3.9
Using the formula(2.13 of the Fourier Bessel transforma-

tion again we get the inversion Here the vanishing of the means qfand p has been

used. In terms oV, the uncertainty principle appears in the
following form [16]:

P(l)=¢' f:qu(K)Jo(zJR). (2.19
(3.5

N

dt\/—1>
V= 1=

In the classical and weakly nonclassical cases, then, the gen-

erating functionq(K) is itself well behaved and leads to =~ We can use the covariance #{z) and the invariance of
non-negativeP(l), but in the strongly nonclassical case, it P(1) under phase space rotations to simplify the situation
causesP(l) to be a distribution, or at any rate not a prob- and to assume without loss of generality tlatandV are
ability. diagonal. Moreover these rotations do not disturb the three-
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fold classification of state€l.7). Therefore we parametrize 27 .
G and V using two real positive parametets and 8 as JO dXW(q,p)(V2LcOsy, V2Lsiny)
follows:
2 1 1 N L 1 1
=—wexg —L|—=+— ——
1( a? 0) apB a?  B? o\l @2 B2

20 p? (3.7b
Herelo(w)=Jy(iw) is the Bessel function of order zero and
Ua?® 0 imaginary argument.
) 182’ a,>0, ap=1 Returning to the Wigner functiokV, 4 (q,p), the non-
squeezed case corresponds to betg=1, while if one of
them becomes less than unity we have a squeezed state. For

1 2 2 definiteness in the latter case we tgkeo be the squeezed
W<ayﬁ)(q,p)=—exp( - q_z_ p_z) (3.6)  Vvariable, so we takgg<1l and #>1 maintaininga=1.
maB a® B Formally we have throughout, on combining E¢A10 and
3.79,
To deal with¢(z) andP(l) we need, respectively, the Fou- 379
rier transform and the angular averageVdf, 5 (q,p); these
are dod7 ;) 15 2
¢(Q,B)(z)=J’f 5 e ex —Z(a -1)o
f f dqdpW. g (g,p)expiTp—ioq) _%(32_1)72} 3.9
— exd — oo’ _/327'2 (373 In the nonsqueezed regime these integrals can be computed
4 4 ) ' and we get expected results:
( / / 2 y2
2(a®—1)" Y p2—1) Yeexg — - . a,B>1
(a?-1)" Y4 pg2-1) iy L
2
_ y
V27 8(x)V2(82—1) Yeexg — . a=18>1
bap@={ /2081 p( Bz—l) aLh (3.9

\/Eﬁ(y)\/z(az—l)l’zexp(— 2)(1) a>1p8=1

\ 2mo(X)é(y), a=p=L1

In all these cases the state is classical. However, ghce Eqgs.(2.12 and(3.7b to get a formal integral expression for
dips below unity, we see from Eqd3.8) that the Fourier P, g(l):
transform of$(z) is an increasing Gaussian in the variable
7. This means thatp(z) has switched abruptly to being a 2 (e
d|§tr|but|on, esseqt|ally of. the most singular kind that can P(a,ﬁ)(l):_f dKeX234(241K)
arise.[Of course, if8 continually decreases and squeezing aBlo
increasesg(z) does become more and more singylahis

: ; : ; : * _ 2 2
is consistent \_Nlth_ squeezed states be_lng nonc_lassu:al._ The XJ dL e LWt 1B% 3 (2 LK)
interesting point is that there is no intermediate regime 0
(among “Gaussian-Wigner” statgn which the singularity

i i i ing fini 1
of ¢(z) is somewhat milder, say involving finite number of il == (3.10
derivatives ofé§ functions. -\ 22 B? ’

To follow the behavior ofP(, 4 (1) as we pass from the
nonsqueezed state to the squeezed regime, and gdidnto
discriminate between the weakly nonclassical and thdhe first integral, ovel, always converges thanks to the
strongly nonclassical possibilities, we begin by combiningasymptotic behaviors afy(z) andly(2):
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| 2 1 1 2p2-1
Jo(2) — —cogz—7/4), a=1+ + = «h ,
2ot | T2 a’=1 p*-1 (a®-1)(B%-1)

e’ b:M (3.15
IO(Z)Z:DCJE' (3.11 (a?—1)(B%-1)° '

The resulting integral is a known one leading to an expres-
Moreover, by suitable and permitted analytic continuation ofsion in terms of the hypergeometric functioRef. [17], p.
a standard definite integral available in the literatURef. 711, formula 6.62)1L
[17], p. 711, formula 6.644we obtain a formula with whose

help theL integral can be done explicitly. The requisite for- n! n 1n b2
mula is, for real parameteesb,c obeyinga>|c|=0,b>0, J dx e " o(bx)= 2Tt
| (3.16
—ax
fo dxe”*Jg(2bx)lo(eX) so the probabilitiep,, g (n) are
1 exp( —ab)l cb : 2 (@®-1)(B*-1)
22— 2 a2—c?) % a2—¢? Pa,p)( (@@-1)(-1)| a’p°-1
XF|l5+5.5+1;1;2],
. . 2 2'2
Takinga= 1/a?+ 1/8%,b=K,c=1/a?— 1/8? here and using
the result in Eq(3.10 we get forP, (1) the single inte- ?— 2
gral z=| ——|, a,B>1 3.1
(aZ,BZ— 1 B (3.17
P(ayﬂ)(l)=J dKek23,(2\IK) The combinatiorz of @ and 8 does not exceed unity as we
0 havea, B>1:
K
x e Kl +A2a) Z(az—ﬁz)). (3.13 1-z=(a*-1)(B*~D/(a?B2-1)2.  (3.18

It is interesting to note that the resi8.17) for p(,, g(n) is
First let us look at the classical nonsqueezed situationa manifestly nonnegative closed-form expression; in this re-
Leaving aside the marginal cases wheir 8 equals unity, spect it may be contrasted with the expression given earlier
we again use the resul8.12 to evaluate Eq(3.13 explic- in the literature8].

itly: Next let us consider the squeezed regife1l,a=1/8.
Then the exponential fact@<’? in the integral in Eq(3.13
a,B>1: overpowers the remaining factors:

(a2 2
p( ,3)(|)=2(a2—1)71/2(,82—1)71/2 eKi2g=K(a“+p8 )/4|O(K(a2_,32)/4)

1 2
1 1 T L kA=A
o255 A

a’-1 ,82—
|< 1 1 )
a®~1 p-1 switched abruptly from being a classical probability density
for intensity to being a distribution, essentially as singular as
This is explicitly nonnegative, and is consistent with the statés permitted by the general considerations of the preceding
being classical. In this case, we can go further and obtain &ection.
closed-form expression for the photon-number probabilities There is thus no regime in which, 4 (1) remains “clas-

This means tha?, g(l) is no longer the Fourier-Bessel

Xlg (3.19  transform of a square integrable function &f; it has

P(a,p(N). We have sical” while ¢ is not—the weakly nonclassical possibility is
not realized at all in the family of Gaussian-Wigner states.

o In Even thoughP, g (1) is a distribution in the squeezed re-
Pia,p(N)= fo dIP 4 (] ye! o gime, we can obtain the photon-number probabilities by ana-

lytic continuation starting from the resulf3.17) in the
1 nonsqueezed case. The justification is the following. At the
_ f dle~a1M o(bl), level of Wigner distributions we know that the probability

Tt V(a?—1)(B*— P(e,p(n) is the phase space integral of the product of
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W(a.5)(a,p) and the Wigner functio(™(q,p) for the nth
state of the harmonic oscillatdt8]:

n
p= (| = W(q,p) = e @ L (224 p?)),

p(a,ﬁ>(n)=2wf J dadpW., s (a,p)W™(q,p).
(3.20

HereL,( ) is thenth order Laguerre polynomial. Using the
rotational invariance oW("(q,p) and Eq.(3.7b for the
angular average o, 5(d,p), we can reduc@, s (n) to

a single radial phase space integral:

U2, [
1

><exp|—2L—L —

11
X La(4L)1o|L el (3.20)

Pia,p(N)=

2 [(e?2-1)(1-pHI"12 1
p(aﬂ)(n)_\/; (27— 1)1 S Di2| 2
\/E

a,Z_BZ

Once again we have manifestly non-negative closed-form

expression$8].
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This is valid for alla and 8 subject to the standard restric-
tionsa, B>1, aB=1. Since we have symmetry il and
B, we may assume with no loss of generality thet 3.
Then the asymptotic behavigi3.11) for 1,(z) as z—
shows that for largé. the integrand here behaves like

L' Y2exp{ — 2L (1+ 1/a?)}. (3.22

Thus the integral3.21) is absolutely convergent for alk
and B, and is in fact analytic in these variablés the ap-
propriate regions of the complex planes

Having established this, we may now go back to the
closed expressiof8.17) valid in the nonsqueezed case and
analytically continue it toB<1, «B8=1. Now from Eg.
(3.18 we see that the argumeant of the hypergeometric
function exceeds unity, which lies outside the domain of
convergence of the power series expansion of
F((n+1)/2nh/2+1;1;z). By analytically continuing to
z>1, and keeping track of phases generated in switching
from (B8%2—1) to (1— B2) in the prefactors in Eq3.17), we
find that in the squeezed regime we have different expres-
sions forp(,, g (n) for evenn and for oddn:

I'(m+1/2)

m—F(m+ 1/2m+1/2;1/2;1¢), n=2m

I'(m+3/2)

—F(m+3/2 m+3/2;3/2;1), n=2m+1,
1

1
p(a'/;)(S) = Z(azﬁz_ 1){15(a2— B2)4+ 4(Xa2_ ,82)2

The actual expressions for the first few probabilities show

the general trend. We find after simplification that, as ex-

pected, both Eq(3.17 and Eq.(3.23 give identical func-

tions of ¢ and B:
Pap(0)=2x{(?+1)(B*+1)} 72 (3.29

Plap)(1)=2(a?B?~ 1) x{(a®+1)(B2+1)} ¥,

P(ap)(2)={(a?~B?)?+2(a’B*~1)%}
X{(a®+1)(B2+1)} 2

Pla,p)(3)=(a’B*=1){3(a?~ B*)*+2(a’F*~ 1)%}
x{(a?+1)(B*+ 1)}
Plap)(4)= %{:«az—ﬂ2>4+24<a2—ﬂ2>2(a232— 1)2

+8(a?B2- 1) x{(a?+1)(B2+ 1)},

X (a?B?—1)?+8(a?p?—1)%
x{(a®+1)(g2+1)} 172

_ B2)4( aZﬁZ_ 1)2
1)°)

1
Pa,p)(6)= 5{5(02_ %)%+ 90(a?

+120(a®~ B?)*(a?B*—1)*+16(a” B>~
X{(a?+1)(B2+1)} 132

The appearance of the *“uncertainty principle factor”
(a®B%—1) in p(, p(n) for oddn alone is immediately un-
derstandable: when the uncertainty limit is saturated and
aB=1, the Gaussian-Wigner functiow, 1,,)(q,p) de-
scribes the squeezed vacuum, for which it is well known that
P(a,1/a)(N) vanishes whem is odd[19]. Conversely, even in
the nonsqueezed regime, despite the uniform looking expres-
sion (3.17), there is a discrimination between the cases of
even and oda which is seen when the hypergeometric func-
tion is worked out in detail. In the limitbe=8=1, we have
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of course just the vacuum state, and thgn,y(n) vanishes averaged OHD. We believe that this is true of noncentered
for all n=1. This can be seen quite explicitly in the expres-Gaussians as well and we outline here an argument to justify

sions displayed in Eq3.24). this belief.
The diagonal coherent state distribution function for the
IV. CONNECTION WITH RECENT EXPERIMENTS centered Gaussian-Wigner function, £§.8), has a simple

behavior under displacement, namefy,z) — ¢(z— z;) un-

r:(;ier a complex displacemegy [this is of course true for any
®(2)]. Therefore the distribution properties @fz) do not
hange under displacement. Further, in the squeezed regime

In this section we discuss our results, making connectio
with some recent experiments. We begin with the experime
of Munroe et al. [20], which shows that the distinction be-
tween strong and weak nonclassicality of states is indee o )
experimentaﬂy relevant. It turns out tha): this experiment re <1 Eq.(3.8 tells us t.hatqb(z) IS _smgular gverywhere n
constructs precisely the information contained 7 and (e complex plane, unlike & function or finite number of
hence it can detect only strong nonclassicality: it cannot disderivatives of as function. For such cases the distribution
tinguish between a classical state and a weakly nonclassic&Prresponds essentially to the Fourier transform of a polyno-

state. mial of finite degree and the integral is singular only at se-
Optical homodyne detectidi®HD) is routinely employed lected points. However, here we have the Fourier transform
to measure the probability distribution of an exploding Gaussian and therefore the singularity of

¢(z) is spread everywhere in the complex plane. On the
Pa(ds)=(alplas=(alU(6)"p0(6)|q)  (4.1) other hand, the distributiorP(1), which is the phase-
averagedp(z), coincides forl =0 with ¢(0) as no averag-

of the quadrature componeqp=(1/y/2)(a’e "?+ae'?) in  ing remains at that point. Therefore for the above case when
the state p under consideration. Here’)(a):efiaéTa, ¢(2) is singular everywher@(l) is expected to be singular

~ An . . at least at the origin, which suggests that noncentered
a=(1/y2)(q+ip), and ¢ is the relative phase between the Gaussian-Wigner distributions are strongly nonclassical.

signalp and the local oscillator of the OHD apparatus. Mu-  Recent years have witnessed remarkable progress in
nroeet al.[20] study the situation where this relative phasequantum state reconstruction using optical homodyne tomog-
is random, and hence their OHD apparatus gives the phasgaphy[23]. As a consequence one is now able to map out the

averaged quadrature amplitude distribution. quasiprobability—often the Wigner distribution—associated
with the quantum mechanical state of the system under con-

P(¢)= ifzwdeP (q,=£&) 4.2) sideration or reconstruct the density matrix in the Fock basis.

2 gLH0 ' ' Schilleret al.[24] report such a reconstructed density matrix

pmn for m,n<6. The reported values qf,=p, , for n=0
It is clear that the effect of phase averaging is equivalent tdo 6 are 0.44, 0.07, 0.13, 0.05, 0.06, 0.03, and 0.04 in that
setting to zero the off-diagonal elements of the density oporder. We have made a least squares fit of these vélids
eratorp in the Fock basis thus equal weightsto our formulas(3.24), leading to the param-
eter valuese®=15.38%=0.265 in our Gaussian sta(8.6).
o * Since <1, the state of Schilleet al. is strongly nonclassi-
P(&)=2> panl(&IN3, (4.3 cal: itis a quadrature squeezed state.
n=0 For the Gaussian stat€8.6) we have the relationship

Tr(p?) =(aB) L. Thus the Schilleet al. state has the value

0.497 for Tr(p?), showing that it is a mixed state. In this
experiment the state produced was known to be squeezed
vacuum. However, the determined photon statistics corre-
sponds taxB3>1, rather than the minimum uncertainty value
aB=1 appropriate for squeezed vacuum. This is due to
overall losses in the system.

9 Following Schiller et al. we may collect the losses of
various origins and effectively account for them as arising

where p,,=(n|p|n) and (£|n) is the configuration space
wave function of the Fock state). Interestingly,P(§) cap-
tures all the information contained in the sequence
{Pn=pnn}, @ Munroeet al. show by analytically inverting
Eq. (4.3. See also the detailed analysis of Leonhadal.
[21].

Thus phase-averaged OHD can detect only the stron
form of nonclassicality; it cannot distinguish a weakly non-

classic_al state fror_n a classical state obtai_ned from it b3from nonideal detection efficiencyy<1l in an otherwise
modifying the off-diagonal elements gf, by independent 4o, |ossiess systenfan ideal detector corresponding to
amounts. Further, singg,} andP(¢) are invertibly related, ,,=1). It is of interest to analyze the effect of a nonideal
it follows that the quasiprobabilitf>(1) and the true prob- detector on the measurability of nonclassicality. In particular,
ability P(¢) are invertibly related to one another. one may like to ask if nonideal detection will result in a
Gaussian states have been experimentally most relevatransition across our classical, weakly nonclassical, strongly
candidates for nonclassical states of light. Indeed, almost afionclassical divide. To begin such an analysis, one has to
the nonclassical states generated convincingly so far belongodel the inefficient detector in a suitable manner.
to this category, with rare exceptions like the single photon Following Caveq25], we may model our lossy detector
state of Hong and Mand¢R2]. We have shown in Sec. lll by the following statement: theormal orderedfluctuations
that the centered Gaussian states are either classical @econd momentf the quadrature components are attenu-
strongly nonclassical. They are never weakly nonclassicahted (phase insensitivejyby the factor (it may be noted
and hence their nonclassicality is amenable to phasehat the computation of Schillest al. indeed corresponds to
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this mode). For our Gaussian stat8.6), this model corre- phase space variables by the facigf?. Both these opera-
sponds to the following changes in the parameters: tions clearly respect normalization. The first operation has

the following effect on the Gaussian std86):
a’—a'?’=1+n(a?-1),

a’—a'?=a’+(1—p)ly,
B?—pB'2=1+5(B>—1). (4.4

B*—B'?=p*+(1— )7, (4.9
Sincea’?—1 has the same signature @—1 andg’?—1
has the same signature ﬁ%— 1, the classical-nonclassical and the effect of the second operation is to further modify the
divide is left unaffected by the lossy detector. Only the de-parameters in this manner:
gree of nonclassicalitydegree of squeezingyets reduced.
Let the Schilleret al. squeezed vacuum have an exponen-
tial squeeze parameter>0 so thata’=e' and g?=e™'

arZ_)a/IZZ na/Z’

(note thatS. in their notation corresponds & "—1 in our B'?—B"=np"% (4.10
nota.tlor). Using these expressions fer,8 in Eq. (4.4) ON€ 1, 4 the effect of inefficient detection on the Gaussian state
obtains (3.6) is to simply make the following change in the param-
(2= 1)(1— B'2) eters of the stateaw®—1+ n(a®—1), B2—1+ p(B%—1).
= , (4.5  This result is consistent with that of the earlier models.
a'?+ -2 The content and beauty of the Leonhardt-Paul formula

o . 1o ] (4.9 attains its naked simplicity when presented in the
Using in Eq.(4.5) the valuesy'*=15.3"°=0.265 obtained  p_gistribution languages=+1). If ¢(z) is the P distribu-

earlier through least squares fit we deduge 0.79. The tion of the statep and if ¢,(2) is the P distribution corre-

slight difference between our values of #}, », and those sponding to the Wigner distribution reconstructed using a
deduced by Schilleet al. is probably due to the fact that yetector of efficiencyy, then Eq.(4.8) is equivalent to
they used in their computation the reconstructggd, up to

m=n=12. ¢ (2=7"1b(n ). (4.19
One could have modeled the inefficient detector by the
following statement, instead of the earlier statement: Evernyhis simple scaling mapping leaves unaffected the pointwise
photon is detected with a probability<<1, irrespective of positivity character otp(z), rendering our finer classification
the presence or otherwise of other photons. This means thaf the nonclassicality invariant under nonideal detection.
P,(n), the measured photon-number distributi®ND), is  Further, since Eq(4.11 implies Egs.(4.7) and (4.4), this
related top(n), the actual PND, in the following manner: more detailed model subsumes the two models considered
‘ earlier. We may note in passing that under Eg8) a coher-
n+ ent statgz) simply goes over to another coherent stat
Pn(n)zgo ( . )7,“(1— Np(+k). (48  ith Z,j;l/zz_ P9 s
In the above models for less than ideal detection, nonclas-

Substitution of this convolution in Eq2.16 shows that the Sicality is not altogether destroyed for any state for the fol-
effect of less than ideal detection modeled in this way is tdowing reason: the mode of the detector into which the un-

produce the following transformation on the quasiprobabilitydetected (1 #) fraction of the signal is lost is assumed to be
P(1): in the vacuum state or equivalently, to be in equilibrium at

an effective temperatur€=0. If we assume that this mode
P(H)—P,(1)= 7 Py M), (4.7  into which the undetected signal escapes is at an effective
temperaturd >0 then the effect of a less than ideal detector
This simple contraction map on the quasiprobabiliyl) would be to mix the signal with a thermal state rather than
does not affect its pointwise nonnegativity or otherwise, rethe vacuum state. In that case, nonclassicality can be lost due
iterating our earlier conclusion that nonclassicality is not af-to inefficient detection, even though in the visible spectrum
fected by imperfect detection described through @cp). this can happen only if eithey is very close to zero of is
As yet another model of nonideal detection we considewvery large, as the following analysis of the modified
the one discussed in the interesting work of Leonhardt andleonhardt-Paul model shows.
Paul[26]. This may be described as foIIows:W;](q,p) is We assume the mode into which part of the signal is lost
the Wigner distribution of a state reconstructed in optical 0 be in a thermal state at temperatiiginstead of being in
homodyne tomography using a detector of efficiengyand @ vacuum state, described by a Wigner distribution
if W(q,p,s) is the s-ordered quasiprobability27] of the

statep, then W(Q,,p,) = lzef(q§//<2+ pjlx
K

W (q,p)=75" "W(n "2q,7" ¥p;—(1-n)7n). (4.9
wherex is related to the temperature ard=1 correspond-
Recalling that the Wigner distribution corresponds+00 in  ing to the zero temperature model of Leonhardt and Paul.
the Cahill-Glauber scheme o ordering, we see that Eqg. An analysis along the lines of Leonhardt and Paul shows
(4.8 involves two distinct operationgi) change of thes  that the effect on the phase space distribution functions is
parameter from 0 to—(1—%)/#, and (ii) scaling of the given by the following equation corresponding to E4.9):

©

2)

4.12
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W.(d,p)= 7" W(p~ Y2, 77 ¥2p; k[ — (1— )1 m). 0.004
(4.13
Using Eq. (4.13 for our Gaussian stat€3.6) and setting
k?=1+ 5% we obtain the following formulas for the change 0.002 |

in parameters of the state as a result of inefficient detection
with the detector at a finite temperature:

0
a?—1+p(a®—1)+ 82(1—p),
BZ—1+n(B*—1)+5%(1—n). (4.14 0.002
In this case, the signatures ef 2>—1 and 8'?—1 are no
longer the same as that fa’—1 and 82— 1. For the non-
classicality of the stat€3.6) to show up in the measurement -0.004 ,
a minimum amount of squeezing is required; more precisely 0.5 0.75 1
we need i
,32<1_ 52 1-9 (4.15 FIG. 1. Violation of the local conditions on photon-number dis-
' ) tribution in the squeezed regime.

It is not just that the finer classification of the nonclassical Our result that the centered Gaussian-Wigner distributions

states is no longer protected against the inefficiency of ded"® never weakly nonclassical has an important physical con-
tectors, the classical-nonclassical divide is itself no longegeguence. In the regime>1,8<1 which corresponds to
invariant. As we have seen above, a nonclassical squeez&§fadrature squeezing, since>(l) is not nonnegative the
Gaussian state with>282>1— §%(1— »)/» will not reveal ~ Nonclassical nature of the stateust already show ufn

its nonclassical nature in a measurement of this type. A zergroperties of the photon-number distribution probabilities

temperature limits—0 clearly gives us back the results de- P(a,(N), i-€., via phase insensitive quantities. The simplest
scribed earlier in this section. such signal, namely, sub-Poissonian statistics, does not, how-

ever, display the nonclassicality of the ste&g We find after

V. CONCLUDING REMARKS simple algebra that the Mand@ parameter is always non-

negative:
We have examined the class of Gaussian-Wigner distribu- o o
tions for a single-mode radiation field in quantum optics (a""a?)—(a'a)?
from the point of view of a recently introduced classification Q(a.B) :T
of quantum states into three mutually exclusive types—
classical, weakly nonclassical, and strongly nonclassical. We =2{(a?—1)?+(B8%—1)%/(a*+ Bg*—2)*=0.

have found that only the first and third possibilities arise in 5.3
this case, corresponding, respectively, to the nonsqueezed '

and squeezed situations. As shown elsewhere, there is gthere are, howevelnfinitely many other signatures of a
interesting class of pure states which give physical examplegonclassical photon-number distribution, some of which are
of the weakly nonclassical type. These are superpositions g4 in that they involve only a few contiguous probabilities

the number states of the following general type: p(n). For example, we have the res{if
cogn P(1)=0=I(n)=(n+1)p(n—1)p(n+1)—np(n)>=0,
e 1S 2 iy - (1)=0=1(n)=(n+1)p(n—1)p(n+1)—np(n)
i=0 \n! n=1,23, ... (5.4)

where a is any complex number an@(n) is a nonlinear  Therefore if anyl(n) is negative for some given state, that is
function of n. Here the photon-number probabilities are in- evidence for the strongly nonclassical nature of that state.

dependent of3(n) and follow the Poisson distribution, so Eqr the statesV,, 4 (a,p), taking a=2, <B<1 as an ex-

Py(1) is a6 function: ample, we do find explicitly as shown in Fig. 1 that
1(2), 1(4), 1(6), ... arenegative for some range of values
Py)=6(1-a"a). (5.2 of B before turning positive asB increases; while
(1), 1(3), I(5),... do notdisplay such nonclassical be-
However, on the basis of Hudson's theorf?8] it turns out  havior.
that the Wigner functionW,(q,p), which is not Gaussian, The examination of several available models for nonideal

must be negative somewhere, so in tdrfz) cannot be non- detectors presented in Sec. IV leads to the interesting con-
negative. This shows that the statbsl) are weakly nonclas- clusion that the distinction between the different levels of
sical. classicality is preserved though the degree of nonclassicality
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may well be reduced. However, in the case of inefficientwill not be altered drastically if we consider general noncen-
detection involving finite nonzero temperature the situatiorntered Gaussian-Wigner distributions. This aspect and other
is different and there is a threshold below which nonclassiexamples of states and the cases of two or more modes, will
cality escapes detection. It is expected that our conclusionige taken up elsewhere.

[1] M. C. Teich and B. E. A. Saleh iRrogress in Opticsedited  [13] N. N. Lebedev Special Functions and Their ApplicatiofBo-

by E. Wolf (North-Holland, Amsterdam, 1988Vol. 26; D. F. ver, New York, 1972 p. 130.

Walls, Nature(London 280, 451(1979. [14] R. G. Littlejohn, Phys. Repl38 193(1986.

[2] D. Stoler, Phys. Rev. I, 3217(1970; H. P. Yuen, Phys. Rev. [15] R. Simon, N. Mukunda, and E. C. G. Sudarshan, Phys. Lett. A
A 13, 2226 (1976; D. F. Walls, Nature(London 306, 141 124, 223(1987; R. Simon, E. C. G. Sudarshan, and N. Mu-
(1983. kunda, Phys. Rev. A36, 3868 (1987); R. Simon, N. Mu-

[3] H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. kunda, and B. Duttaipid. 49, 1567 (1994).

39, 691 (1977. [16] B. Dutta, N. Mukunda, R. Simon, and A. Subramaniam, J. Opt.
[4] R. Short and L. Mandel, Phys. Rev. Le#tl, 384 (1983. Soc. Am. B 10, 253 (1993; Arvind, Biswadeb Dutta, N.
[5] C. K. Hong and L. Mandel, Phys. Rev.32, 974(1985; G. S. Mukunda, and R. Simon, Pramana, J. Ph&.471(1995.

Agarwal and K. Taraibid. 46, 485(1992. [17] 1. S. Gradshteyn and I. W. RyzhiRables of Integrals, Series
[6] R. J. Glauber, Phys. Re31, 2766(1963; E. C. G. Sudar- and Products/Academic Press, New York, 1972

shan, Phys. Rev. Letl0, 277 (1963. [18] M. Hillery et al, Phys. Rep106, 121(1984).

[7] Arvind, N. Mukunda, and R. Simon, Report No. [19] W. Schleich and J. A. Wheeler, Natufeondon 326, 574
quant-ph/9512020. (1987; J. Opt. Soc. Am. B4, 1715(1990.

[8] G. S. Agarwal, J. Mod. OpB34, 909 (1987. [20] M. Munroe, D. Boggavarapu, M. E. Anderson, and M. G.

[9] G. S. Agarwal and G. Adam, Phys. Rev.38, 750(1988); 39, Raymer, Phys. Rev. A2, R924(1995.

6259(1989; S. Chaturvedi and V. Srinivasaibid. 40, 6095 [21] U. Leonhardt, M. Munroe, T. Kiss, Th. Richter, and M. G.

(1989; P. Marian and T. A. Marianbid. 47, 4474(1993; 47, Raymer, Opt. Commuril27, 144(1996.

4487 (1993; 47, 4487(1993; A. Vourdas and R. M. Weiner, [22] C. K. Hong and L. Mandel, Phys. Rev. LeB6, 58 (1986.
ibid. 36, 5866(1987; V. V. Dodonov, O. V. Man’ko, and V. [23] K. Vogl and H. Risken, Phys. Rev. A0, 2847 (1989; M.

I. Manko, ibid. 49, 2993 (1994); B. Dutta, N. Mukunda, R. Freyberger and W. P. Schleich, Natufieondon 386, 121
Simon, and A. Subramaniam, J. Opt. Soc. Am.18 253 (1997. Further references to these exciting developments can
(1993; M. Selvadoray, M. S. Kumar, and R. Simon, Phys. be found in G. Breitenbach, S. Schiller, and J. Mlyniid.
Rev. A 49, 4957(1994. 387, 471(1997).

[10] J. R. Klauder and E. C. G. Sudarsh&undamentals of Quan- [24] S. Schiller, G. Breitenbach, S. F. Pereira, T. Muller, and J.
tum Optics(Benjamin, New York, 1968 I. M. Gel'fand and Mlynek, Phys. Rev. Lett77, 2933(1996.
G. E. Shilov, Generalized Functions, Vol. |, Properties and [25] C. M. Caves, Phys. Rev. R3, 1693(1981), Eq. (3.4).
Operations(Academic Press, New York, 1954 [26] U. Leonhardt and H. Paul, Phys. Rev.48, 4598(1993.

[11] H. Weyl, The Theory of Groups and Quantum Mechari@s- [27] K. E. Cahill and R. J. Glauber, Phys. RewZ7, 1857 (1969);
ver, New York, 193], p. 275. 177, 1882(1969.

[12] E. P. Wigner, Phys. Rev. AQ, 749(1932. [28] R. L. Hudson, Rep. Math. Phy8, 249 (1974.



