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Gaussian-Wigner distributions and hierarchies of nonclassical states in quantum optics:
The single-mode case
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A recently introduced hierarchy of states of a single-mode quantized radiation field is examined for the case
of centered Gaussian-Wigner distributions. It is found that the onset of squeezing among such states signals the
transition to the strongly nonclassical regime. Interesting consequences for the photon-number distribution, and
explicit representations for them, are presented. The effects of nonideal detection are also carefully analyzed.
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I. INTRODUCTION

Squeezed states of light, and other states exhibiting ei
antibunching or sub-Poissonian photon statistics or both,
well known examples of so-called ‘‘nonclassical’’ states
radiation @1–4#. In fact these are the simplest and most
miliar ones out of an infinite hierarchy of independent sign
tures of nonclassical states in quantum optics; many o
signatures have been presented in the literature@5#.

The precise definition of a nonclassical state of radiat
is based upon the diagonal coherent state expansion o
density matrixr̂ of the state in the quantum theory. Limitin
ourselves to the single-mode radiation field this expansio
@6#

r̂5E d2z

p
f~z!uz&^zu, ~1.1!

where the coherent statesuz& are the familiar normalized
eigenstates of the photon annihilation operatorâ with com-
plex eigenvaluez andf(z) is a real normalized weight func
tion which is in general a distribution. The stater̂ is said to
be ‘‘classical ’’ if f(z) is pointwise nonnegative, and no
where more singular than ad function, so that it can be
interpreted as a classical probability density over the co
plex plane. Otherwiser̂ is a ‘‘nonclassical ’’ state. This clas
sification is clearly invariant under rotations and translatio
in phase space.

It has been shown elsewhere that there is a dual ope
based approach to this distinction between classical and
classical states, which is physically quite instructive@7#. The
representation~1.1!, as is well known, is closely related t
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the normal ordering rule of correspondence between class
dynamical variables and quantum operators. Given any
classical functionf (z!,z) of a complex variablez and its
conjugate, one defines a Hermitian operatorF̂ in quantum
theory by the replacementz→â,z!→â† and then brings all
factorsâ† ‘‘by hand’’ to the left of all factorsâ:

f ~z!,z!→F̂5 f ~ â†,â!u â† to left, âto right,

^zuF̂uz&5 f ~z!,z!. ~1.2!

Then the quantum mechanical expectation value ofF̂ in the
stater̂ is

^F̂&5Tr~ r̂F̂ !5E d2z

p
f~z! f ~z!,z!. ~1.3!

The key observation now is that while the corresponde
f↔F̂ is linear and takes real functions to Hermitian ope
tors and vice versa, a real non-negativef (z!,z) may well
lead to a Hermitian indefiniteF̂. A stater̂ is then said to be
classical if this permitted ‘‘quantum negativity’’ in operato
never shows up in expectation values, nonclassical ot
wise:

r̂ classical⇔Tr~ r̂F̂ !>0 for every f ~z!,z!>0,

r̂ nonclassical⇔Tr~ r̂F̂ !,0 for some f ~z!,z!>0.
~1.4!

With this alternative characterization~completely equiva-
lent to the usual one!, one has the possibility of defining
several degrees or levels of nonclassicality, if one restrict
various ways the collection of operatorsF̂ for which one
tests the conditions given in Eq.~1.4! @7#. Specifically, for a
single-mode system, it has been shown by considering

-
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56 5043GAUSSIAN-WIGNER DISTRIBUTIONS AND . . .
subset of phase invariant~number conserving! operatorsF̂
which arise fromf (z!,z) obeying

f ~z!e2 ia,zeia!5 f ~z!,z! ~1.5!

that an exhaustive and mutually exclusive threefold clas
cation of states is possible. Iff (z!,z) obeys Eq.~1.5!, then
for the expectation value of the correspondingF̂ it suffices to
use an angle average off(z):

@ F̂,â†â#50⇒Tr~ r̂F̂ !5E
0

`

dIP~ I ! f ~ I 1/2,I 1/2!,

P~ I !5E
0

2p du

2p
f~ I 1/2eiu!. ~1.6!

One can then obtain the following finer classification of
states:

r̂ classical⇔f~z!>0, so P~ I !>0,

r̂ weakly nonclassical⇔P~ I !>0, but f~z!>” 0,

r̂ strongly nonclassical⇔P~ I !>” 0, so f~z!>” 0.
~1.7!

Thus the previous ‘‘nonclassical’’ has been subdivided n
into ‘‘weakly nonclassical’’ and ‘‘strongly nonclassical’
states. Up to and including the weakly nonclassical lev
P(I ) can be treated as a classical probability density for
tensity, whether or notf(z) can be regarded as a probabili
distribution over the complex plane; in the third strong
nonclassical regime, evenP(I ) ceases to be a probabilit
density.

The aim of this paper is to illustrate these ideas in
concrete case of states described by Gaussian-Wigner d
butions on phase space. It is well known that in a wide
riety of physical processes the states of radiation that
produced are indeed of this type@8#. Their description also
lends itself to direct analytical treatment. The photon-num
distribution for Gaussian states has been studied by sev
authors@9#. What we shall demonstrate is that within this s
of states, the onset of squeezing signals an abrupt ch
from classical to the strongly nonclassical regime; thus
weakly nonclassical states do not show up at all in this fa
ily.

The material of this paper is arranged as follows. In S
II we trace the connection between the descriptions of
operator via its Weyl weight and its Wigner representati
and the diagonal weightf(z). This gives us a clear pictur
of the extent to whichf(z) can be a singular distribution
and in turn how singular the quantityP(I ) can in principle
be. Section III examines the class of centered Gauss
Wigner distributions. These are fully parametrized by t
variance or noise matrix which has to be positive semid
nite and also must obey the uncertainty principle. Amo
these states the only two qualitatively different ones are
nonsqueezed and squeezed ones. In the former case,
f(z) andP(I ) can be computed explicitly, and as expect
they are finite nonnegative normalized functions. This is c
sistent with their being classified as classical states. In c
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trast, the squeezed states are shown to be strongly non
sical, and one never sees the weakly nonclassical possib
at all. In Sec. IV we connect our work with recent expe
mental developments and analyze the effect of nonideal
tection on our classification. Section V gives an example
weakly nonclassical states which are naturally outside
Gaussian-Wigner family, and offers some concluding
marks.

II. NATURE OF THE DISTRIBUTIONS f„z… AND P„I …

It is useful to begin by recalling the general properties
the diagonal weightf(z) and its angular averageP(I ), and
by giving an indication of the kinds of singular distribution
we must be prepared to encounter@10#. This is best done by
viewing the set of all possible density matricesr̂ as a subset
of the family of Hilbert-Schmidt~HS! operators. An operato
A on Hilbert space is of HS type if

Tr~A†A!,`, ~2.1!

and among HS operators we have a natural inner produ

~A,B!5 Tr~A†B!. ~2.2!

We deal throughout with systems of one degree of freed
and with the annihilation and creation operatorsâ,â† related
to Hermitianq̂ and p̂ in the standard way:

â5
1

A2
~ q̂1 i p̂ !, â†5

1

A2
~ q̂2 i p̂ !. ~2.3!

The unitary phase space displacement operators are de
by and have the following properties:

D~s,t!5 exp~ isq̂2 i t p̂!, 2`,s,t,`

D~s,t!†5D~s,t!215D~2s,2t!,

Tr@D~s8,t8!†D~s,t!#52pd~s82s!d~t82t!.
~2.4!

Any HS operatorA can be expanded in the form of an o
erator Fourier integral representation using its ‘‘We
weight’’ Ã(s,t) as expansion coefficient@11#:

A5E E dsdt

A2p
Ã~s,t!D~s,t!,

Ã~s,t!5
1

A2p
„D~s,t!,A…,

Tr~A†A!5~A,A!5E E dsdtuÃ~s,t!u2. ~2.5!

Thus the HS property~2.1! of A is translated exactly into the
L2 property ofÃ(s,t) overR2.

From Ã(s,t) we pass to the Wigner representative
Wigner distributionW(q,p) of the operatorA by a double
Fourier transform at thec-number level@12#:
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W~q,p!5E E dsdt

~2p!3/2
Ã~s,t!exp~ isq2 i tp!. ~2.6!

Here q and p are canonical coordinates over a classi
phase space, and in caseA is Hermitian its Wigner represen
tativeW(q,p) is real. Now the HS property forA amounts to
W(q,p) being anL2 function overR2:

Tr~A†A!5~A,A!52pE E dqdpuW~q,p!u2. ~2.7!

For density matrices we are also interested in the ordin
trace:

Tr~A!5A2pÃ~0,0!5E E dqdpW~q,p!. ~2.8!

It is in the passage fromÃ(s,t) or W(q,p) to f(z) that
the distribution character of the latter shows up. From
diagonal representation

A5E dxdy

2p
f~z!uz&^zu, ~2.9!

wherez5(1/A2)(x1 iy), when we connect up with the pre
vious relations~2.5!, ~2.6! we get the result

f~z!5E E dsdt

A2p
e~1/4!~s21t2!Ã~s,t!ei ~sx2ty!

5E E dsdt

2p
e~1/4!~s21t2!1 i ~sx2ty!

3E E dqdpW~q,p!ei ~tp2sq!. ~2.10!

Thus the most singular kind off(z) is one whose Fourie

transform is the increasing Gaussian factor exp1
4(s

21t2)

times a square integrable functionÃ(s,t)—this is the worst
behavior that can in principle occur. Conversely for a clas
cal stateÃ(s,t) must more than overwhelm this exponent
factor and moreover yield a non-negativef(z).

Let us next see what this situation forf(z) entails for its
angular averageP(I ). We work directly with the Wigner
distribution W(q,p) and find after performing the angula
integration

P~ I !5E
0

2p du

2p
f~ I 1/2eiu!

5E E dsdt

2p
e~1/4!~s21t2!J0@A2I ~s21t2!#

3E E dqdpW~q,p!ei ~tp2sq!. ~2.11!

If we substitutes5A2Kcosc, t5A2Ksinc, we can carry
out one more angular integration and bringP(I ) to the fol-
lowing form:
l

ry

e

i-
l

P~ I !5E
0

`

dKeK/2J0~2AIK !E E dqdpW~q,p!

3J0@A2K~q21p2!#

5E
0

`

dKeK/2J0~2AIK !E
0

`

dLJ0~2AKL !

3E
0

2p

dxW~A2Lcosx,A2Lsinx!. ~2.12!

Now just as the relation~2.10! betweenf(z) and Ã(s,t)
involved the classical two dimensional Fourier transform
tion, here one is concerned with the single variable Four
Bessel transformation over the half line (0,`) which states
@13#

E
0

`

dIu f ~ I !u2,`⇒ f ~ I !5E
0

`

dKg~K !J0~2AIK !,

g~K !5E
0

`

dI f ~ I !J0~2AIK !,

E
0

`

dIu f ~ I !u25E
0

`

dKug~K !u2,

E
0

`

dKJ0~2ALK !J0~2AIK !5d~ I 2L !. ~2.13!

This means that the most singular possible behavior forP(I )
which can in principle occur is that its Fourier-Bessel tran
form can be the factoreK/2 times a square integrable functio
of K over the domain (0,̀), namely, the Fourier-Besse
transform of the angular average ofW(q,p). The factoreK/2

is just the earlier factore(1/4)(s21t2) present in Eq.~2.10!;
and the situation forP(I ) is marginally better than forf(z)
since now only the angular average off(z) is involved.

The use of phase space language in describing opera
in quantum mechanics leads naturally to an examination
the behaviors off(z) andP(I ) under phase space rotation
and translations. As is easy to see, their behavior under
tations is simple:

W8~q,p!5W~qcosa2psina,pcosa1qsina!⇔f8~z!

5f~zeia!⇒P8~ I !5P~ I !. ~2.14!

This invariance ofP(I ) is as expected. Under translations w
have

W8~q,p!5W~q2q0 ,p2p0!⇔f8~z!5f~z2z0!,

z05
1

A2
~q01 ip0!. ~2.15!

However, nowP8(I ) is not expressible in terms ofP(I )
alone as phase sensitivity is introduced by a translat
Therefore while our threefold classification scheme~1.7! is
obviously invariant under phase space rotations, the beha
with respect to translations is much more subtle.
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It is evident that the classical states with bothf(z) and
P(I ) nonnegative remain classical under translations. Ho
ever, a weakly nonclassical state becomes strongly nonc
sical for a suitably chosen translation, as the following phy
cal argument shows. At the originP(0) reduces tof(0) as
no angular average remains. If a weakly nonclassical sta
given, itsf(z) must become effectively negative somewhe
in the complex plane. By translating the origin to such
point and then computingP8(0) we see that the resultin
state is strongly nonclassical. Following a similar argum
we also see that we can recoverf(z) in its entirety by sub-
jecting the initial state to all possible phase space displa
mentsz0, f8(z)5f(z2z0), and then computing the resul
ing P8(I ) and collecting the results.

We conclude this section by relating the distributionP(I )
to the photon-number probabilities. Indeed these involv
complete independent set of phase insensitive quantities
their expectation values:

f ~z!,z!5e2z!z
~z!z!n

n!
↔F̂5un&^nu,

p~n!5Tr~ r̂F̂ !5^nur̂un&5E
0

`

dIP~ I !e2I
I n

n!
. ~2.16!

Thesep(n)’s always give well defined normalized probabi
ties for finding various numbers of photons, whether or
P(I ) is itself a probability density. Formally one can inve
the above to getP(I ) in terms ofp(n), as indeed one would
expect. If we define the generating functionq(K) by

q~K !5 (
n50

`
~21!n

n!
Knp~n! ~2.17!

we see thatq(K) converges for all realK and is related to
P(I ) by

q~K !5 (
n50

`
~21!n

n!
KnE

0

`

dIP~ I !e2I
I n

n!

5E
0

`

dIP~ I !e2IJ0~2AIK !. ~2.18!

Using the formula~2.13! of the Fourier Bessel transforma
tion again we get the inversion

P~ I !5eIE
0

`

dKq~K !J0~2AIK !. ~2.19!

In the classical and weakly nonclassical cases, then, the
erating functionq(K) is itself well behaved and leads t
non-negativeP(I ), but in the strongly nonclassical case,
causesP(I ) to be a distribution, or at any rate not a pro
ability.
-
s-

i-

is

t

e-
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t

n-

III. THE CASE OF GAUSSIAN-WIGNER DISTRIBUTIONS

We consider the family of centered Gaussian-Wigner d
tributions, namely, those which have vanishing means foq
andp @14#. The most general such distribution is determin
by a real symmetric 232 matrix G,

WG~q,p!5
A detG

p
expF2~q p!GS q

pD G ,
G5S A B

B CD . ~3.1!

The condition thatWG(q,p) represent a physically realizabl
quantum mechanical state imposes the following restricti
on G corresponding, respectively, to normalizability and t
uncertainty principle@15#:

G.0, i.e., A1C.0, D5detG5AC2B2.0,
~3.2a!

G211 i S 0 1

21 0D>0, i.e., A1C>0, D>D2.

~3.2b!

Combining these we have the complete set of restrictions
G given by

A1C.0, 0,D<1. ~3.3!

The noise or variance matrixV is defined and given by

V5S ~Dq!2 D~q,p!

D~q,p! ~Dp!2 D 5
1

2
G215

1

2DS C 2B

2B A D ,

~Dq!25E E dq dp q2 WG~q,p!,

D~q,p!5E E dq dp qp WG~q,p!,

~Dp!25E E dq dp p2 WG~q,p!. ~3.4!

Here the vanishing of the means ofq and p has been
used. In terms ofV, the uncertainty principle appears in th
following form @16#:

detV5
1

4D
>

1

4
. ~3.5!

We can use the covariance off(z) and the invariance of
P(I ) under phase space rotations to simplify the situat
and to assume without loss of generality thatG and V are
diagonal. Moreover these rotations do not disturb the thr
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fold classification of states~1.7!. Therefore we parametriz
G and V using two real positive parametersa and b as
follows:

V5
1

2S a2 0

0 b2D ,

G5S 1/a2 0

0 1/b2D , a,b.0, ab>1

W~a,b!~q,p!5
1

pab
expS 2

q2

a2
2

p2

b2D . ~3.6!

To deal withf(z) andP(I ) we need, respectively, the Fou
rier transform and the angular average ofW(a,b)(q,p); these
are

E E dqdpW~a,b!~q,p!exp~ i tp2 isq!

5 expS 2
a2s2

4
2

b2t2

4 D , ~3.7a!
e

le
a
an
ng

T
m

of

th
ng
E
0

2p

dxW~a,b!~A2Lcosx,A2Lsinx!

5
2

ab
expF2LS 1

a2
1

1

b2D G I 0XLS 1

a2
2

1

b2D C.
~3.7b!

HereI 0(w)5J0( iw) is the Bessel function of order zero an
imaginary argument.

Returning to the Wigner functionW(a,b)(q,p), the non-
squeezed case corresponds to botha,b>1, while if one of
them becomes less than unity we have a squeezed state
definiteness in the latter case we takep to be the squeezed
variable, so we takeb,1 and a.1 maintainingab>1.
Formally we have throughout, on combining Eqs.~2.10! and
~3.7a!,

f~a,b!~z!5E E dsdt

2p
ei ~sx2ty!expF2

1

4
~a221!s2

2
1

4
~b221!t2G . ~3.8!

In the nonsqueezed regime these integrals can be comp
and we get expected results:
f~a,b!~z!55
2~a221!21/2~b221!21/2expF2

x2

a221
2

y2

b221
G , a,b.1

A2pd~x!A2~b221!21/2expS 2
y2

b221
D , a51,b.1

A2pd~y!A2~a221!21/2expS 2
x2

a221
D , a.1,b51

2pd~x!d~y!, a5b51.

~3.9!
r

e

In all these cases the state is classical. However, oncb
dips below unity, we see from Eq.~3.8! that the Fourier
transform off(z) is an increasing Gaussian in the variab
t. This means thatf(z) has switched abruptly to being
distribution, essentially of the most singular kind that c
arise.@Of course, ifb continually decreases and squeezi
increases,f(z) does become more and more singular.# This
is consistent with squeezed states being nonclassical.
interesting point is that there is no intermediate regi
~among ‘‘Gaussian-Wigner’’ states! in which the singularity
of f(z) is somewhat milder, say involving finite number
derivatives ofd functions.

To follow the behavior ofP(a,b)(I ) as we pass from the
nonsqueezed state to the squeezed regime, and whenb,1 to
discriminate between the weakly nonclassical and
strongly nonclassical possibilities, we begin by combini
he
e

e

Eqs.~2.12! and~3.7b! to get a formal integral expression fo
P(a,b)(I ):

P~a,b!~ I !5
2

abE0

`

dKeK/2J0~2AIK !

3E
0

`

dL e2L~1/a211/b2!J0~2ALK !

3I 0XLS 1

a2
2

1

b2D C. ~3.10!

The first integral, overL, always converges thanks to th
asymptotic behaviors ofJ0(z) and I 0(z):
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J0~z! →
z→1`

A 2

pz
cos~z2p/4!,

I 0~z! →
z→1`

ez

A2pz
. ~3.11!

Moreover, by suitable and permitted analytic continuation
a standard definite integral available in the literature~Ref.
@17#, p. 711, formula 6.644! we obtain a formula with whose
help theL integral can be done explicitly. The requisite fo
mula is, for real parametersa,b,c obeyinga.ucu>0,b.0,

E
0

`

dxe2axJ0~2Abx!I 0~cx!

5
1

Aa22c2
expS 2ab

a22c2D I 0S cb

a22c2D .

~3.12!

Taking a51/a211/b2,b5K,c51/a221/b2 here and using
the result in Eq.~3.10! we get forP(a,b)(I ) the single inte-
gral

P~a,b!~ I !5E
0

`

dKeK/2J0~2AIK !

3e2K[ ~a21b2!/4]I 0S K

4
~a22b2! D . ~3.13!

First let us look at the classical nonsqueezed situat
Leaving aside the marginal cases whena or b equals unity,
we again use the result~3.12! to evaluate Eq.~3.13! explic-
itly:

a,b.1:

P~a,b!~ I !52~a221!21/2~b221!21/2

3expF2I S 1

a221
1

1

b221
D G

3I 0 F I S 1

a221
2

1

b221
D G . ~3.14!

This is explicitly nonnegative, and is consistent with the st
being classical. In this case, we can go further and obta
closed-form expression for the photon-number probabili
p(a,b)(n). We have

p~a,b!~n!5E
0

`

dIP~a,b!~ I !e2I
I n

n!

5
1

n!

2

A~a221!~b221!
E

0

`

dIe2aII nI 0~bI !,
f

n.

e
a
s

a511
1

a221
1

1

b221
5

a2b221

~a221!~b221!
,

b5
~b22a2!

~a221!~b221!
. ~3.15!

The resulting integral is a known one leading to an expr
sion in terms of the hypergeometric function~Ref. @17#, p.
711, formula 6.621!

E
0

`

dx e2axxnI 0~bx!5
n!

an11
FS n

2
1

1

2
,
n

2
11;1;

b2

a2D
~3.16!

so the probabilitiesp(a,b)(n) are

p~a,b!~n!5
2

A~a221!~b221!
F ~a221!~b221!

a2b221
G n11

3FS n

2
1

1

2
,
n

2
11;1;zD ,

z5S a22b2

a2b221
D 2

, a,b.1. ~3.17!

The combinationz of a andb does not exceed unity as w
havea, b.1:

12z5~a421!~b421!/~a2b221!2. ~3.18!

It is interesting to note that the result~3.17! for p(a,b)(n) is
a manifestly nonnegative closed-form expression; in this
spect it may be contrasted with the expression given ea
in the literature@8#.

Next let us consider the squeezed regimeb,1,a>1/b.
Then the exponential factoreK/2 in the integral in Eq.~3.13!
overpowers the remaining factors:

eK/2e2K~a21b2!/4I 0„K~a22b2!/4…

→
K→1`

1

Aa22b2
A 2

pK
eK~12b2!/2. ~3.19!

This means thatP(a,b)(I ) is no longer the Fourier-Besse
transform of a square integrable function ofK; it has
switched abruptly from being a classical probability dens
for intensity to being a distribution, essentially as singular
is permitted by the general considerations of the preced
section.

There is thus no regime in whichP(a,b)(I ) remains ‘‘clas-
sical’’ while f is not—the weakly nonclassical possibility
not realized at all in the family of Gaussian-Wigner stat
Even thoughP(a,b)(I ) is a distribution in the squeezed re
gime, we can obtain the photon-number probabilities by a
lytic continuation starting from the result~3.17! in the
nonsqueezed case. The justification is the following. At
level of Wigner distributions we know that the probabili
p(a,b)(n) is the phase space integral of the product
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W(a,b)(q,p) and the Wigner functionW(n)(q,p) for the nth
state of the harmonic oscillator@18#:

r̂5un&^nu⇒W~n!~q,p!5
~21!n

p
e2~q21p2!Ln„2~q21p2!…,

p~a,b!~n!52pE E dqdpW~a,b!~q,p!W~n!~q,p!.

~3.20!

HereLn( ) is thenth order Laguerre polynomial. Using th
rotational invariance ofW(n)(q,p) and Eq. ~3.7b! for the
angular average ofW(a,b)(q,p), we can reducep(a,b)(n) to
a single radial phase space integral:

p~a,b!~n!5
~21!n

p

2

ab
2pE

0

`

dL

3expH 22L2LS 1

a2
1

1

b2D J
3Ln~4L !I 0XLS 1

b2
2

1

a2D C. ~3.21!
r

ow
ex
This is valid for alla andb subject to the standard restric
tions a, b.1, ab>1. Since we have symmetry ina and
b, we may assume with no loss of generality thata>b.
Then the asymptotic behavior~3.11! for I 0(z) as z→`
shows that for largeL the integrand here behaves like

Ln21/2exp$22L~111/a2!%. ~3.22!

Thus the integral~3.21! is absolutely convergent for alla
and b, and is in fact analytic in these variables~in the ap-
propriate regions of the complex planes!.

Having established this, we may now go back to t
closed expression~3.17! valid in the nonsqueezed case a
analytically continue it tob,1, ab>1. Now from Eq.
~3.18! we see that the argumentz of the hypergeometric
function exceeds unity, which lies outside the domain
convergence of the power series expansion
F„(n11)/2,n/211;1;z…. By analytically continuing to
z.1, and keeping track of phases generated in switch
from (b221) to (12b2) in the prefactors in Eq.~3.17!, we
find that in the squeezed regime we have different exp
sions forp(a,b)(n) for evenn and for oddn:
p~a,b!~n!5
2

Ap

@~a221!~12b2!#n11/2

~a2b221!n11

1

z~n11!/2 5
G~m11/2!

m!
F~m11/2,m11/2;1/2;1/z!, n52m

2

Az

G~m13/2!

m!
F~m13/2,m13/2;3/2;1/z!, n52m11,

z5S a22b2

a2b221
D 2

.1, a.
1

b
, b,1. ~3.23!
r’’

and

hat

res-
of
c-
Once again we have manifestly non-negative closed-fo
expressions@8#.

The actual expressions for the first few probabilities sh
the general trend. We find after simplification that, as
pected, both Eq.~3.17! and Eq.~3.23! give identical func-
tions of a andb:

p~a,b!~0!523$~a211!~b211!%21/2, ~3.24!

p~a,b!~1!52~a2b221!3$~a211!~b211!%23/2,

p~a,b!~2!5$~a22b2!212~a2b221!2%

3$~a211!~b211!%25/2,

p~a,b!~3!5~a2b221!$3~a22b2!212~a2b221!2%

3$~a211!~b211!%27/2,

p~a,b!~4!5
1

4
$3~a22b2!4124~a22b2!2~a2b221!2

18~a2b221!4%3$~a211!~b211!%29/2,
m

-

p~a,b!~5!5
1

4
~a2b221!$15~a22b2!4140~a22b2!2

3~a2b221!218~a2b221!4%

3$~a211!~b211!%211/2,

p~a,b!~6!5
1

8
$5~a22b2!6190~a22b2!4~a2b221!2

1120~a22b2!2~a2b221!4116~a2b221!6%

3$~a211!~b211!%213/2.

The appearance of the ‘‘uncertainty principle facto
(a2b221) in p(a,b)(n) for odd n alone is immediately un-
derstandable: when the uncertainty limit is saturated
ab51, the Gaussian-Wigner functionW(a,1/a)(q,p) de-
scribes the squeezed vacuum, for which it is well known t
p(a,1/a)(n) vanishes whenn is odd@19#. Conversely, even in
the nonsqueezed regime, despite the uniform looking exp
sion ~3.17!, there is a discrimination between the cases
even and oddn which is seen when the hypergeometric fun
tion is worked out in detail. In the limita5b51, we have
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of course just the vacuum state, and thenp(1,1)(n) vanishes
for all n>1. This can be seen quite explicitly in the expre
sions displayed in Eq.~3.24!.

IV. CONNECTION WITH RECENT EXPERIMENTS

In this section we discuss our results, making connec
with some recent experiments. We begin with the experim
of Munroe et al. @20#, which shows that the distinction be
tween strong and weak nonclassicality of states is ind
experimentally relevant. It turns out that this experiment
constructs precisely the information contained inP, and
hence it can detect only strong nonclassicality; it cannot
tinguish between a classical state and a weakly nonclas
state.

Optical homodyne detection~OHD! is routinely employed
to measure the probability distribution

Pu~qu!5^quur̂uqu&5^quÛ~u!†r̂Û~u!uq& ~4.1!

of the quadrature componentq̂u5(1/A2)(â†e2 iu1âeiu) in
the state r̂ under consideration. HereÛ(u)5e2 iuâ†a,
â5(1/A2)(q̂1 i p̂), andu is the relative phase between th
signal r̂ and the local oscillator of the OHD apparatus. M
nroeet al. @20# study the situation where this relative pha
is random, and hence their OHD apparatus gives the ph
averaged quadrature amplitude distribution.

P̄~j!5
1

2pE0

2p

duPu~qu5j!. ~4.2!

It is clear that the effect of phase averaging is equivalen
setting to zero the off-diagonal elements of the density
eratorr̂ in the Fock basis thus

P̄~j!5 (
n50

`

rnnz^jun& z2, ~4.3!

where rnn5^nur̂un& and ^jun& is the configuration spac
wave function of the Fock stateun&. Interestingly,P̄(j) cap-
tures all the information contained in the sequen
$pn5rnn%, as Munroeet al. show by analytically inverting
Eq. ~4.3!. See also the detailed analysis of Leonhardtet al.
@21#.

Thus phase-averaged OHD can detect only the str
form of nonclassicality; it cannot distinguish a weakly no
classical state from a classical state obtained from it
modifying the off-diagonal elements ofrnn by independent
amounts. Further, since$pn% andP̄(j) are invertibly related,
it follows that the quasiprobabilityP(I ) and the true prob-
ability P̄(j) are invertibly related to one another.

Gaussian states have been experimentally most rele
candidates for nonclassical states of light. Indeed, almos
the nonclassical states generated convincingly so far be
to this category, with rare exceptions like the single pho
state of Hong and Mandel@22#. We have shown in Sec. II
that the centered Gaussian states are either classica
strongly nonclassical. They are never weakly nonclass
and hence their nonclassicality is amenable to pha
-
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averaged OHD. We believe that this is true of noncente
Gaussians as well and we outline here an argument to ju
this belief.

The diagonal coherent state distribution function for t
centered Gaussian-Wigner function, Eq.~3.8!, has a simple
behavior under displacement, namely,f(z)→f(z2z0) un-
der a complex displacementz0 @this is of course true for any
f(z)#. Therefore the distribution properties off(z) do not
change under displacement. Further, in the squeezed re
b,1 Eq. ~3.8! tells us thatf(z) is singular everywhere in
the complex plane, unlike ad function or finite number of
derivatives of ad function. For such cases the distributio
corresponds essentially to the Fourier transform of a poly
mial of finite degree and the integral is singular only at s
lected points. However, here we have the Fourier transfo
of an exploding Gaussian and therefore the singularity
f(z) is spread everywhere in the complex plane. On
other hand, the distributionP(I ), which is the phase-
averagedf(z), coincides forI 50 with f(0) as no averag-
ing remains at that point. Therefore for the above case w
f(z) is singular everywhereP(I ) is expected to be singula
at least at the origin, which suggests that noncente
Gaussian-Wigner distributions are strongly nonclassical.

Recent years have witnessed remarkable progres
quantum state reconstruction using optical homodyne tom
raphy@23#. As a consequence one is now able to map out
quasiprobability—often the Wigner distribution—associat
with the quantum mechanical state of the system under c
sideration or reconstruct the density matrix in the Fock ba
Schilleret al. @24# report such a reconstructed density mat
rm,n for m,n<6. The reported values ofpn5rn,n for n50
to 6 are 0.44, 0.07, 0.13, 0.05, 0.06, 0.03, and 0.04 in
order. We have made a least squares fit of these values~with
equal weights! to our formulas~3.24!, leading to the param-
eter valuesa2515.3,b250.265 in our Gaussian state~3.6!.
Sinceb,1, the state of Schilleret al. is strongly nonclassi-
cal: it is a quadrature squeezed state.

For the Gaussian state~3.6! we have the relationship
Tr( r̂2)5(ab)21. Thus the Schilleret al. state has the value
0.497 for Tr(r̂2), showing that it is a mixed state. In thi
experiment the state produced was known to be squee
vacuum. However, the determined photon statistics co
sponds toab.1, rather than the minimum uncertainty valu
ab51 appropriate for squeezed vacuum. This is due
overall losses in the system.

Following Schiller et al. we may collect the losses o
various origins and effectively account for them as aris
from nonideal detection efficiencyh,1 in an otherwise
ideal lossless system~an ideal detector corresponding
h51). It is of interest to analyze the effect of a nonide
detector on the measurability of nonclassicality. In particu
one may like to ask if nonideal detection will result in
transition across our classical, weakly nonclassical, stron
nonclassical divide. To begin such an analysis, one ha
model the inefficient detector in a suitable manner.

Following Caves@25#, we may model our lossy detecto
by the following statement: thenormal orderedfluctuations
~second moments! of the quadrature components are atten
ated ~phase insensitively! by the factorh ~it may be noted
that the computation of Schilleret al. indeed corresponds to
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this model!. For our Gaussian state~3.6!, this model corre-
sponds to the following changes in the parameters:

a2→a82511h~a221!,

b2→b82511h~b221!. ~4.4!

Sincea8221 has the same signature asa221 andb8221
has the same signature asb221, the classical-nonclassica
divide is left unaffected by the lossy detector. Only the d
gree of nonclassicality~degree of squeezing! gets reduced.

Let the Schilleret al. squeezed vacuum have an expone
tial squeeze parameterr .0 so thata25er and b25e2r

~note thatS6 in their notation corresponds toe6r21 in our
notation!. Using these expressions fora,b in Eq. ~4.4! one
obtains

h5
~a8221!~12b82!

a821b8222
. ~4.5!

Using in Eq.~4.5! the valuesa82515.3,b8250.265 obtained
earlier through least squares fit we deduceh50.79. The
slight difference between our values of Tr(r̂2), h, and those
deduced by Schilleret al. is probably due to the fact tha
they used in their computation the reconstructedrm,n up to
m5n512.

One could have modeled the inefficient detector by
following statement, instead of the earlier statement: Ev
photon is detected with a probabilityh,1, irrespective of
the presence or otherwise of other photons. This means
Ph(n), the measured photon-number distribution~PND!, is
related top(n), the actual PND, in the following manner:

Ph~n!5 (
k50

` S n1k

n Dhn~12h!kp~n1k!. ~4.6!

Substitution of this convolution in Eq.~2.16! shows that the
effect of less than ideal detection modeled in this way is
produce the following transformation on the quasiprobabi
P(I ):

P~ I !→Ph8 ~ I !5h21P~h21I !. ~4.7!

This simple contraction map on the quasiprobabilityP(I )
does not affect its pointwise nonnegativity or otherwise,
iterating our earlier conclusion that nonclassicality is not
fected by imperfect detection described through Eq.~4.6!.

As yet another model of nonideal detection we consi
the one discussed in the interesting work of Leonhardt
Paul @26#. This may be described as follows: IfWh8 (q,p) is

the Wigner distribution of a stater̂ reconstructed in optica
homodyne tomography using a detector of efficiencyh, and
if W(q,p,s) is the s-ordered quasiprobability@27# of the
stater̂, then

Wh8 ~q,p!5h21W„h21/2q,h21/2p;2~12h!/h…. ~4.8!

Recalling that the Wigner distribution corresponds tos50 in
the Cahill-Glauber scheme ofs ordering, we see that Eq
~4.8! involves two distinct operations:~i! change of thes
parameter from 0 to2(12h)/h, and ~ii ! scaling of the
-

-

e
y

at

o

-
-

r
d

phase space variables by the factorh1/2. Both these opera-
tions clearly respect normalization. The first operation h
the following effect on the Gaussian state~3.6!:

a2→a825a21~12h!/h,

b2→b825b21~12h!/h, ~4.9!

and the effect of the second operation is to further modify
parameters in this manner:

a82→a925ha82,

b82→b925hb82. ~4.10!

Thus the effect of inefficient detection on the Gaussian s
~3.6! is to simply make the following change in the param
eters of the state:a2→11h(a221), b2→11h(b221).
This result is consistent with that of the earlier models.

The content and beauty of the Leonhardt-Paul form
~4.8! attains its naked simplicity when presented in t
P-distribution language (s511). If f(z) is theP distribu-
tion of the stater̂ and if fh(z) is the P distribution corre-
sponding to the Wigner distribution reconstructed using
detector of efficiencyh, then Eq.~4.8! is equivalent to

fh8 ~z!5h21f~h21/2z!. ~4.11!

This simple scaling mapping leaves unaffected the pointw
positivity character off(z), rendering our finer classification
of the nonclassicality invariant under nonideal detectio
Further, since Eq.~4.11! implies Eqs.~4.7! and ~4.4!, this
more detailed model subsumes the two models consid
earlier. We may note in passing that under Eq.~4.8! a coher-
ent stateuz& simply goes over to another coherent stateuz8&
with z85h1/2z.

In the above models for less than ideal detection, nonc
sicality is not altogether destroyed for any state for the f
lowing reason: the mode of the detector into which the u
detected (12h) fraction of the signal is lost is assumed to b
in the vacuum state or equivalently, to be in equilibrium
an effective temperatureT50. If we assume that this mod
into which the undetected signal escapes is at an effec
temperatureT.0 then the effect of a less than ideal detec
would be to mix the signal with a thermal state rather th
the vacuum state. In that case, nonclassicality can be lost
to inefficient detection, even though in the visible spectru
this can happen only if eitherh is very close to zero orT is
very large, as the following analysis of the modifie
Leonhardt-Paul model shows.

We assume the mode into which part of the signal is l
to be in a thermal state at temperatureT, instead of being in
a vacuum state, described by a Wigner distribution

W~q2 ,p2!5
p

k2
e2~q2

2/k21p2
2/k2! ~4.12!

wherek is related to the temperature andk51 correspond-
ing to the zero temperature model of Leonhardt and Pau

An analysis along the lines of Leonhardt and Paul sho
that the effect on the phase space distribution function
given by the following equation corresponding to Eq.~4.8!:
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Wh8 ~q,p!5h21W„h21/2q,h21/2p;k2@2~12h!#/h….
~4.13!

Using Eq. ~4.13! for our Gaussian state~3.6! and setting
k2511d2 we obtain the following formulas for the chang
in parameters of the state as a result of inefficient detec
with the detector at a finite temperature:

a2→11h~a221!1d2~12h!,

b2→11h~b221!1d2~12h!. ~4.14!

In this case, the signatures ofa8221 and b8221 are no
longer the same as that fora221 andb221. For the non-
classicality of the state~3.6! to show up in the measureme
a minimum amount of squeezing is required; more precis
we need

b2,12d2S 12h

h D . ~4.15!

It is not just that the finer classification of the nonclassi
states is no longer protected against the inefficiency of
tectors, the classical-nonclassical divide is itself no lon
invariant. As we have seen above, a nonclassical sque
Gaussian state with 1.b2.12d2(12h)/h will not reveal
its nonclassical nature in a measurement of this type. A z
temperature limitd→0 clearly gives us back the results d
scribed earlier in this section.

V. CONCLUDING REMARKS

We have examined the class of Gaussian-Wigner distr
tions for a single-mode radiation field in quantum opt
from the point of view of a recently introduced classificati
of quantum states into three mutually exclusive types
classical, weakly nonclassical, and strongly nonclassical.
have found that only the first and third possibilities arise
this case, corresponding, respectively, to the nonsque
and squeezed situations. As shown elsewhere, there i
interesting class of pure states which give physical exam
of the weakly nonclassical type. These are superposition
the number states of the following general type:

uc&5e2~1/2!uau2(
n50

`
an

An!
eib~n!un&, ~5.1!

where a is any complex number andb(n) is a nonlinear
function of n. Here the photon-number probabilities are i
dependent ofb(n) and follow the Poisson distribution, s
Pc(I ) is a d function:

Pc~ I !5d~ I 2a!a!. ~5.2!

However, on the basis of Hudson’s theorem@28# it turns out
that the Wigner functionWc(q,p), which is not Gaussian,
must be negative somewhere, so in turnf(z) cannot be non-
negative. This shows that the states~5.1! are weakly nonclas-
sical.
n

ly

l
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ed

ro
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e
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Our result that the centered Gaussian-Wigner distributi
are never weakly nonclassical has an important physical c
sequence. In the regimea.1,b,1 which corresponds to
quadrature squeezing, sinceP(I ) is not nonnegative the
nonclassical nature of the statemust already show upin
properties of the photon-number distribution probabiliti
p(a,b)(n), i.e., via phase insensitive quantities. The simpl
such signal, namely, sub-Poissonian statistics, does not, h
ever, display the nonclassicality of the state@8#. We find after
simple algebra that the MandelQ parameter is always non
negative:

Q~a,b!5
^â†2

â2&2^â†â&2

^â†â&

52$~a221!21~b221!2%/~a21b222!2>0.

~5.3!

There are, however,~infinitely many! other signatures of a
nonclassical photon-number distribution, some of which
local in that they involve only a few contiguous probabilitie
p(n). For example, we have the result@7#

P~ I !>0⇒ l ~n!5~n11!p~n21!p~n11!2np~n!2>0,

n51,2,3,. . . . ~5.4!

Therefore if anyl (n) is negative for some given state, that
evidence for the strongly nonclassical nature of that st

For the statesW(a,b)(q,p), taking a52, 1
2,b,1 as an ex-

ample, we do find explicitly as shown in Fig. 1 th
l (2), l (4), l (6), . . . arenegative for some range of value
of b before turning positive asb increases; while
l (1), l (3), l (5), . . . do notdisplay such nonclassical be
havior.

The examination of several available models for nonid
detectors presented in Sec. IV leads to the interesting c
clusion that the distinction between the different levels
classicality is preserved though the degree of nonclassic

FIG. 1. Violation of the local conditions on photon-number d
tribution in the squeezed regime.
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may well be reduced. However, in the case of inefficie
detection involving finite nonzero temperature the situat
is different and there is a threshold below which nonclas
cality escapes detection. It is expected that our conclus
.
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will not be altered drastically if we consider general nonce
tered Gaussian-Wigner distributions. This aspect and o
examples of states and the cases of two or more modes,
be taken up elsewhere.
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