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Canonical formalism and quantization for a class of classical fields
with application to radiative atomic decay in dielectrics

A. Tip*
FOM–Instituut voor Atoom- en Molecuulfysica, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 20 September 1996; revised manuscript received 30 June 1997!

For the description of spectral and radiative decay properties of atoms or molecules, placed in a photonic
material, the electromagnetic field in the material must be quantized and active research is taking place in this
area. Here a unified account is given of such quantization procedures. Led by the Maxwell example, we
consider the canonical formalism and its quantization for a class of linear evolution equations] tF5NF2G,
obeying a conservation law forG50. If N has a nonempty null space~zero is an eigenvalue with associated
nonpropagating solutions!, an abstract form of the gauge concept makes its appearance and generalizations of
the familiar Coulomb and Lorentz gauges are obtained. A canonical formalism is set up and quantized. The
application to spatially inhomogeneous nonconducting electrodynamical systems is immediate, including the
interaction with matter. Next atomic decay in a medium is considered, in particular in the presence of band
gaps. For a simple two-level model with transition frequency in the gap, single-photon decay is inhibited and
also a different stable eigenvalue of the combined system is found. An open problem in connection with
random dielectrics, showing Anderson localization, is discussed. Finally, a mass renormalization, by means of
a Kramers transformation, is presented. In general, the renormalized mass is no longer a scalar quantity.
@S1050-2947~97!00412-5#

PACS number~s!: 42.50.2p, 03.50.2z, 03.70.1k
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I. INTRODUCTION

A. Physical background

The prime example, motivating the present investigati
consists of Maxwell’s equations in a nonconducting, s
tially inhomogeneous medium. The latter have recently
come a subject of active research in view of the emerge
of photonic crystals@1#. These are classical dielectric med
characterized by a periodic dielectric permeability, the pe
odicity giving rise to a band structure analogous to t
found for electrons in solid-state physics. Such systems h
become of interest in view of the possibility to alter the r
diative decay properties of embedded atoms relative to t
vacuum values. Possible technological applications are in
fields of semiconductor lasers, photovoltaic elements,
quantum computers.

Indeed, if a band gap is present and an embedded a
has a transition frequency in the gap, one expects that ra
tive decay does not take place by emission of a single pho
~the emitted radiation cannot propagate away!. However,
even if no gap develops, decay rates may change apprec
from their free values due to alterations in the photonic d
sity of states. As shown by Spriket al. @2#, for a scalar field
model, the former can be obtained through an application
Fermi’s golden rule after quantization of the field and tu
out to be proportional to the local density of statesNf(X) of
the field modes, a quantity that in essence measures the
nitude of the field modes at the atomic positionX. In a band
gapNf(X) vanishes and hence no decay takes place for t
sition frequencies in the gap.

Radiative decay of atoms placed inrandomdielectrics has
hardly been studied~for random electromagnetic wav

*Electronic address: tip@amolf.nl
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propagation see@3#!. This may be an interesting matter sinc
if the dielectric shows~Anderson! localization, decay with
transition frequency in a localization interval is once mo
expected to be inhibited. Here we can think of Lifshitz ta
in the gap of a randomized photonic crystal. An obvio
question is the dependence of the decay parameter on
size of a finite, randomized crystal that would exhibit loca
ization in the infinite limit.

The emerging technique of making photonic crystals
cool atoms in crossed laser beams@4# is particularly interest-
ing. Since atomic diameters are much smaller than the lat
distance, the atoms can be considered as point scatterer
recent theoretical work by van Coevordenet al. @5# shows
the existence of a band gap for such systems. At the mom
the fraction of occupied lattice sites in experimental setup
still 10% or less~with a random distribution over the sites, i
its simplest form of Bernouilli type, but the existing exper
mental evidence does not rule out correlated behavior!, but
as this increases an interesting random situation develop

Another promising approach is the use of colloid tec
niques to manufacture photonic crystals@6#. In this case there
is no severe limitation on the packing fraction and t
method allows the deposition of a variety of dielectric sc
terers on the lattice sites. The embedding of molecules
the study of decay rates and randomization of the crystal
possible as well.

A second type of photonic structure is encountered wit
the context of transition radiation@7#, the emission of elec-
tromagnetic radiation caused by the passage of fast elect
moving through layered dielectrics. At present this mec
nism is studied as a tool to produce x-ray radiation for dia
nostic purposes@8#. So far theoretical work on this phenom
enon has been mainly classical. A second quanti
approach can give significant simplifications since now
are dealing with a scattering process~from an electron with
5022 © 1997 The American Physical Society
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56 5023CANONICAL FORMALISM AND QUANTIZATION FOR A . . .
zero photons in to an electron with one photon out! and a
first order calculation suffices.

The calculation of radiative decay rates for atoms or m
ecules placed in dielectrics requires quantization of the
electric and active research is taking place in this field@9–
12#. Thus an appropriate Lagrange and Hamilton formali
is set up, which is then quantized by replacing Poiss
brackets by commutators according to Dirac’s recipe. T
precise procedure varies from one author to the other
usually the magnetic permeability is set equal to its vacu
value. Compared to the situation for free~constant perme-
abilities! fields, there is a snag. The point is that in a gene
dielectric the longitudinal fields and the nonpropagat
fields differ. Among other matters, this makes the usual C
lomb gauge less suitable.

B. General canonical formalism and its quantization

The above situation has led us to construct a general
proach to the quantization of linear evolution equatio
through the Lagrange-Hamilton procedure. If they posse
conservation law~energy conservation in the electroma
netic case!, a suitable inner product can be defined, lead
to a unitary time evolution in the corresponding Hilbe
space. In Sec. II we give a few examples. Thus we cons

] tF~ t !5NF~ t !2G~ t !, N* 52N, ~1.1!

in a separable, real Hilbert space. Here the anti-s
adjointness ofN reflects the conservation property in th
absence ofG(t). At this point a canonical setup look
straightforward, but the Hamiltonian does not necessa
correspond to the above conserved quantity. Being of m
importance in a ‘‘stand alone’’ system, this is not satisfa
tory if a coupling with other systems is contemplated. Ho
ever, amends can be made and at the same time it bec
clear that the existence of nonpropagating modes~a non-
empty null space ofN) gives rise to further subtleties. I
fact, the latter lead to a generalization of the usual scalar
vector potentials and associated gauge transformations
Sec. XI we briefly point out how to proceed with convolutiv
time evolutions of the type

] tF~ t !5NF~ t !1E
0

t

ds M~ t2s!F~s!, ~1.2!

which are relevant in the case in which the permeabilities
frequency dependent.

C. Application to Maxwell’s equations

The final result obtained above is then applied to Ma
well’s equations for a linear, nonhomogeneous, noncond
ing material medium, including the situation with extern
currents or the coupling with a Schro¨dinger quantum particle
system. In particular, we obtain the generalizations of
familiar Coulomb and Lorentz gauges. For atoms in diel
trics we not only find a~by now well-known! change in the
gauge condition for the vector potential~caused by modified
field modes as compared to the vacuum case!, but also the
atomic Coulomb potential is affected. Using an effecti
Hamiltonian setup, we then give a simple calculation to le
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ing order in the atom-field interaction of an atomic dec
rate. The scalar results of Spriket al., mentioned above, are
confirmed for the Maxwell case.

Our next application concerns the situation of a two-le
atom with transition frequency in a band gap of a classi
photonic system. Making a two-layer approximation to t
quantized photonic system~i.e., only one-photon processe
are considered!, this model can be treated quite rigorous
and we find that a bound state of the coupled system in
gap occurs, originating from the atomic excited-state eig
value. In addition, a new bound state is found. The situat
of a randomized band-gap system showing Anderson lo
ization is briefly discussed.

As in other situations, there are divergencies in the f
malism. In order to remove the latter, a Kramers transform
tion is made. The outcome is intriguing since the renorm
ized mass is no longer a scalar. In principle, this could
checked by measurements of spectral properties~Lamb
shifts! of atoms or molecules embedded in dielectrics.
Sec. XI we comment upon our results and make a comp
son with related work.

Below, the case«5m51 is referred to as the vacuum
case, everything else remaining the same. With the free
we mean a free electromagnetic field with arbitrary« andm
and a finite dielectric is a system with« and m constant
outside a bounded region~for the sake of brevity, a medium
where both« andm may deviate from their vacuum value
referred to as a dielectric!. Inner products are denoted a
( f ,g)5^gu f &, adjoint operators by an asterisk, and comp
conjugates by an overbar. A centered dot between two
sors indicates a contraction over the last index of the first
the first of the second. For the classical canonical formal
we mention@13# and for its quantization@14#.

II. EXAMPLES

Below we give some examples of field equations with
conservation law. They all lead to a coupled set of first-or
differential equations. Thusf5f(x,t), Rd3R→Rn, is an
n-component field overRd3R with value inRn, satisfying

] t f~x,t !5M ~x,]x!•f~x,t !, ~2.1!

whereM is ann3n matrix with real partial differential op-
erators with, in general, nonconstant coefficients as entr
In addition, there exists a conserved quantity, referred to
the energy, given by

E5
1

2E dx@r~x!•f~x,t !#2, ~2.2!

wherer(x), Rd→Rn3Rn, is a bounded, real, invertiblen3n
matrix with bounded inverse. Then

F~x,t !5r~x!•f~x,t ! ~2.3!

is real, square integrable for eacht, F(x,t)
PHr5L2(Rd,dx;Rn) with conserved normiF(x,t)i252E,
satisfying

] tF~x,t !5N~x,]x!•F~x,t !, N5r•M•r21. ~2.4!

It follows that N must be antisymmetric
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N52N* . ~2.5!

Supposing thatN has a unique anti-self-adjoint extensio
~this is essential for the time evolution to exist!, again de-
noted byN, it generates a unitary time evolution onHr :

F~ t !5exp@Nt#•F~0!. ~2.6!

It is common practice to embedHr in the corresponding
complex Hilbert spaceH5L2(Rd,dx;Cn) in which K5 iN is
self-adjoint. Initially we shall not do so since we want
introduce a~real! Lagrange-Hamilton formalism. We now
give a few examples. Other classical equations such as
massive Klein-Gordon equation and oscillator cha
~phonons! provide further ones.

A. Classical scalar waves

We start from the classical scalar wave equation in
form ( f : Rd→R)

] t
2f ~x,t !2]x•c~x!2]xf ~x,t !50. ~2.7!

Then, with F15] t f and F25c(x)]xf , we obtain Eq.~2.4!
with

F5S F1

F2
D , N5S 0 ]x•c

c]x 0 D ~2.8!

and

E5
1

2E dxF~x,t !2 ~2.9!

is conserved. In this caseHr5L2(Rd,dx;R4).

B. Schrödinger’s equation

Although not a classical wave equation, Schro¨dinger’s
equation inL2(Rd),

] tc~x,t !52 i @2]x
21V~x!#c~x,t !52 iHc~x,t !,

~2.10!
he
s

e

can be rewritten in the form~2.4!. Set F15Rec and
F25Imc. Now ~note thatH is a real operator!

F5S F1

F2
D , N5S 0 H

2H 0 D , ~2.11!

the conserved quantity is the total probability (51), and
Hr5L2(Rd,dx;R2).

C. Maxwell’s equations for a nonconducting material medium

We write Maxwell’s equations for a nonconducting m
dium with external current densityJ as

] tD5]x3H2J, D5«E,

] tB52]x3E, ]x•Bu t5050, H5m21B. ~2.12!

Here we assume«(x) and m(x) to be ‘‘nice,’’ i.e., real,
smooth, bounded@elements ofC2 (R)# scalar functions ofx,
bounded from below and above by positive constants~hence
invertible with bounded inverse!. Discontinuities can be
handled as a limiting case; see@15#. For J50 the conserved
energy is

E5
1

2E dx$«~x!E21m~x!21B2%5
1

2E dxuF~x,t !u2

5
1

2
iF~ t !i2, ~2.13!

whereF(x,t) is the six-dimensional vector field

F~x,t !5S «1/2E~x,t !
m21/2B~x,t ! D5S F1~x,t !

F2~x,t ! D ~2.14!

in Hr 5L2(R3,dx;R6), the Hilbert space of square inte
grable functions with value inR6 @norm i i and inner prod-
uct ( , )]. From Eq.~2.12! we obtain Eq.~2.4!, where now
l

N5S 0 N12

N21 0 D 5S 0 2«21/2~e•]x!m
21/2

m21/2~e•]x!«
21/2 0 D 5W•N0•W,

N05S 0 2e•]x

e•]x 0 D , W5S «21/2 0

0 m21/2D . ~2.15!

The matrix entries are operator-valued 333 blocks. Thus«21/2 represents«21/2U, whereU is the 333 unit matrix, ande is
the Levi-Civita pseudotensor (e12351 ande is antisymmetric in all three subscripts!. As is readily verified,N* 52N. Full
details for the complex case are given in a paper by Dorren and Tip@15#.

In the following we shall say that a three-dimensional vector fieldf is transverse (') if ]x•f50 and longitudinal (i) if
]x3f50. Thus the Fourier transformf̃ (k) of a transversef is orthogonal tok and of a longitudinalf alongk. The associated
projectors are denoted byP' and Pi. A six-dimensional vector field is transverse~longitudinal! if both three-dimensiona
components have this property. The associated projectors are

P
'

5S P' 0

0 P'D , P i5S Pi 0

0 Pi D . ~2.16!

The orthogonal eigenprojector ofN at the eigenvalue 0 is
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P05S P1 0

0 P2
D 5S A«]x@]x•«]x#

21]xA« 0

0 Am]x@]x•m]x#
21]xAm

D . ~2.17!
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In the vacuum case («5m51)

~P1•X!~x!5]x@]x
2#21]x•X

52]xE dx8@4pux2x8u#21]x8•X~x8!

~2.18!

and the same forP2•X. In Fourier ~momentum! space the
corresponding expression is simply (P1•X)(k)5ekek•X(k),
whereea is the unit vector alonga.

Remark. Note that in the vacuum case («5m51) the
nonpropagating fields~i.e., fields in the eigenspace ofN0 at
the eigenvalue 0) are precisely the longitudinal ones. In g
eral, this is no longer true. Thus we have to distinguish
tween longitudinal and nonpropagating fields~and also be-
tween transverse and propagating ones!.This would not be
the case if we had considered the time evolution of (B

D).
Then, however, the time evolution would not be unitary u
less the inner product is changed~andN0 no longer anti-self-
adjoint!.

Next we mention the eigenvalues and eigenvectors a
ciated with the electric and magnetic Helmholtz operato
They come into play in the field quantization below. Diffe
entiation of the two components of Eq.~2.4! and mutual
substitution give the wave equations

] t
2F j~ t !5Nj

2
•F j~ t !52H j•F j~ t !, ~2.19!

with the non-negative electric and magnetic Helmholtz o
erators

H152N12N215N21* N125«21/2~e•]x!•m21~e•]x!«
21/2,

~2.20!

H252N21N125N12* N125m21/2~e•]x!•«21~e•]x!m
21/2.
~2.21!

SinceN12•H25H1•N12 andN21•H15H2•N21 the eigenvec-
tors of theH j ’s are related. Thus, denoting the eigenvect
of H1 by ula ,

H1•ula5l2ula , ~2.22!

where l>0 and a labels the degeneracy,H2•N21•ula
5l2N21•ula and normalization is preserved. Note furth
that sinceH1 is a real operator,ūla is also an eigenvector a
the same eigenvalue, so we can always use real eigenve
by taking linear combinations.

Depending on the actual situation the spectrums(H j ) of
H j may not be the full positive real axisR1 ~a band gap in a
periodic dielectric! or may be partly a point spectrum~a lo-
calization interval in a realization of a random dielectric!.
However, for a finite dielectric, where the permeabiliti
only differ from their vacuum value in a bounded region, w
encounter a scattering situation. Initially free electromagn
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wave packets scatter from the dielectric and again propa
freely as timet→`. Now the Mo” ller ~wave! operators be-
tween the classical fields in the medium and classical f
fields exist ands(H j )5R1. In this case a connection with
the usual plane-wave expansion can be made~see also@9#!.
Thus, inL2(R3,dx;C3), denoting

H052N0
252~e•p!25p2Dp5p2U2pp, p52 i ]x ,

~2.23!

we introduce the wave operators~note thatDp projects away
the nonscattering longitudinal states!

V6
~h!5s2 lim

t→6`

exp @ iHht#•exp @2 iH0t#•Dp .

~2.24!

Their existence is readily verified by standard techniqu
The eigenvectors ofH0 at the eigenvalue k2 are the ‘‘plane
waves’’ @the ej (k)’s are two orthogonal polarization un
vectors'k#

uk j
~0!~x!5^xzk‹ej~k!5~2p!23/2exp @ ik–x#ej~k!,

~2.25!

^uk j
~0!uuk8 j 8

~0! &5d~k2k8!d j j 8. ~2.26!

Then, arbitrarily choosingV1
(h) ,

uk j
~h!5V1

~h!
•uk j

~0! ~2.27!

are eigenvectors ofHh at the same eigenvalue and, sin
(V1

(h))* •V1
(h)5Dp , the normalization~2.26! is preserved.

Also @see Eq.~2.22!#

uk j
~1!~x!5k21«21/2~x!~e•p!m21/2~x!•uk j

~2!~x!. ~2.28!

In later sectionsûk j (x)5uk j
(1)(x)5^xuV1

(1)
•uk j

(0)&. Note that
here we can label the eigenvectors ofH1 by kP R3 and
j 51,2. This is also the case in periodic systems.

For later reference we observe that the potentialsA andF
in

E52] tA2]xF, B5]x3A ~2.29!

satisfy

] t]x•«A1]x•«]xF52]x•D52r,

] t
2«A1]x3m21~]x3A!1«] t]xF5J. ~2.30!

Finally, the vector potential in the Coulomb gauge a
vacuum field Hamiltonian in second quantization are@14#

A~x!5(
j
E dk~2k!21/2$ak j* ūk j

~0!~x!1ak juk j
~0!~x!%,

~2.31!
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H f5(
j
E dk kak j* ak j , ~2.32!

where the creation and annihilation operators are those
the statesuk j

(0) .

III. LAGRANGE FORMALISM

A. A naive approach with a deficiency

We now turn back to general equations of the type~2.4!,
i.e., we consider

] tF~ t !5NF~ t !, N52N* , ~3.1!

in a separable, real Hilbert spaceHr ~we suppress the bold
face vector notation!. We want to obtain this equation from
Hamilton’s principle@13#

dE
t1

t2
dtL~ j̇,j,t !50, ~3.2!

whereL is the Lagrangian.. Takingj5F for the coordinate
field and

L5
1

2
~ j̇,j̇ !2

1

2
~Nj,Nj!, ~3.3!

we have, using d(Aj,Bj)5(Aj,Bdj)1(Adj,Bj)
52(B* Aj,dj) andN* 52N,

dE
t1

t2
dtL~ j̇,j,t !5E

t1

t2
dt~2] t

2j1N2j,dj!50,

leading to

] t
2j5N2j, ~3.4!

which is compatible with Eq.~3.1!. Note that we refrained
from introducing a Lagrangian density. Indeed,H can be a
general Hilbert space, not necessarily a function space
Rd. Still the momentum field can be introduced as a var
tional derivative ofL:

p5
dL

dj̇
5 j̇. ~3.5!

The Hamiltonian is now

H5~p,j̇ !2L5
1

2
~p,p!1

1

2
~Nj,Nj!. ~3.6!

Insertion of the actual equations of motion now gives

H5~NF,NF!, ~3.7!

which is not proportional toE5 1
2 iFi2.

The present procedure has a second deficiency in the

H5H1%H2 , N5S 0 N
12

N
21 0

D , N2152N12* ,

~3.8!
or

er
-

se

as in the examples. Then the Lagrangian equations of mo
result in separate second-order equations for the two com
nents ofF5(F2

F1) ~the electric and magnetic Helmholtz equ

tions in the electromagnetic case! and their connection is
lost. ~The situation is analogous to that of the electroma
netic potentials in the Lorentz gauge. They are the soluti
of separate wave equations, the connection being prov
by the Lorentz gauge condition.!

Remark.Below we restrict ourselves to the case~3.8!. A
structure similar to Eq.~3.8! can be obtained in the gener
situation as is detailed in Appendix A.

B. An improved approach

From Eq.~3.7! we note that the factorsN in front of F are
the cause of the inequalityHÞE. Thus it makes sense to tr
j5N21F as coordinate field. This works fine in the scal
wave case, where, switching back to vector notation,

N* •N52]xc~x!2]xS 1 0

0 1D ~3.9!

is strictly positive~and henceN invertible! for c(x).c0.0.
The same is true in the phonon case not considered her
the Maxwell case the situation is different due to the pr
ence of nonpropagating modes. Obviously, we have
project these away before applying the inverse. As will so
become clear, this has important consequences in furthe
velopments: It gives rise to a generalization of the gau
concept.

Before investigating the general case, let us first cons
how things work out for the vacuum Maxwell situation wit
external charges and currents. Here the null space ofN0 con-
sists of the longitudinal field modes, so we must project up
the transverse ones before taking the inverse. SinceB is al-

ready transverse (j2

j1)5N0
21( B

E'

) exists. HenceE'5]x3j2

andB52]x3j1, so2j1 is precisely the vector potentialA
in the Coulomb gauge~it is transverse, so]x•A50). Max-
well’s equations give

] tS E'

B D5N0•S E'

B D2S J'

0 D ,

so

] tS j1

j2
D5S E'

B D2N0
21

•S J'

0 D .

Due to the skew symmetry ofN0, the first component of

N0
21

•(0
J'

) vanishes, leaving

E'5] tj152] tA, B52]x3j15]x3A.

Using Eq. ~2.18!, we have Ei52]xF, with
F(x)5*dx8r(x8)/@4pux2x8u#, where r(x)5]x•E(x) is
the external charge density. Thus we have expressed
fields in terms of the potentials in the Coulomb gauge
means of a procedure that easily generalizes to more c
plex situations.
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Returning to the general case, letP be the~nonzero! pro-
jector upon the null spaceN5N(N) of N and Q512P.
SinceN(N)5N(N* N)5N(2N2) and, from Eq.~3.8!,

N* N52S N12N21 0

0 N21N12
D 52S N1

2 0

0 N2
2D , ~3.10!

it follows that P and Q decompose according to@cf. Eq.
~2.17! for the Maxwell case#

P5S P1 0

0 P2
D , Q5S Q1 0

0 Q2
D , Qj512Pj ,

~3.11!

with Pj acting inHj . We also allow an inhomogeneous ter
G(t)5(j2(t)

j1(t)
) in Eq. ~3.1!:

] tF~ t !5NF~ t !2G~ t !. ~3.12!

Since] tQF5QNF2QG5NQF2QG we have

] tN
21QF5QF2N21QG. ~3.13!

Splitting F into its components in theHj ’s, F5(F2

F1), we

have

Q
1
F15] t~N21QF!11~N21QG!1 , ~3.14!

Q
2
F25~NN21QF!25N21~N21QF!1 . ~3.15!

Thus, with

ĵ52~N21QF!1 , ~3.16!

we have

F152] tĵ1~N21QG!11P1F1 , ~3.17!

F252N21ĵ1P2F2 , ~3.18!

and also

P1ĵ50. ~3.19!

Comparing Eqs.~3.17! and~3.18! with the vacuum Maxwell
example earlier in this section, we see that a similar struc
emerges and that Eq.~3.19! is the generalization of the Cou
lomb gauge condition.

C. Gauges and Lagrangians

As noted above, Eq.~3.19! fixes a particular gauge. W
now change to a more general situation by setting

j5 ĵ1P1h, hPH1. ~3.20!

In the vacuum Maxwell case, discussed above,ĵ is the vec-
tor potential in the Coulomb gauge and, using Eq.~2.18!,
P1h can be written as the gradient]xx of a scalarx, so we
are dealing with a generalization of a gauge transformat
Now, noting thatN21P1h50,
re

n.

F152] tj1P1~F11] th!1~N21QG!1 , ~3.21!

F252N21j1P2F2 . ~3.22!

Although it is possible to continue within this general se
ting, there is no immediate application and so we set, a
the Maxwell case,

G5S G1

0 D , P2F2u t5050. ~3.23!

Then P2F250 for all t and also (N21QG)1
5N12(N

22QG)250, so

F152] tj1P1~F11] th!, ~3.24!

F252N21j. ~3.25!

Next we introduce a generalizationj0 of the scalar potentia
F of Maxwell theory: We assume that there exists a th
real Hilbert spaceH3 and a~closed, densely defined! invert-
ible operatorM from H3 into P1H1 (M : F→2]xF in the
vacuum Maxwell case!. Thus, for eachf PH1 there is ag
PH3 with

P1f 52Mg. ~3.26!

Now j0 is defined according to

P1~F11] th!52Mj0 , ~3.27!

so

F152] tj2Mj0 . ~3.28!

Note that Eqs.~3.28! and~3.25! are the generalizations of th
expressions for the fields in terms of the potentials of
vacuum Maxwell case. Since ] tF15N12F22G1,
] t(2] tj2Mj0)5N12$2N21j%2G1 or

] t
2j2N12N21j1] tMj05G1 , ~3.29!

and defining the quantityr through

M* P1F152r, ~3.30!

we arrive at the ‘‘continuity equation’’

] tr2M* P1G50. ~3.31!

Note the analogy with the vacuum Maxwell case. The
P1F1 corresponds to 2]xF and M* with ]x , so
M* P1F1→2]x

2F5r, the charge density. SinceP1F1(t)
only depends onP1F(0) andP1G(t), so doesr(t) and we
can consider it to be a given function oft, not depending on
the dynamics generated byN. Insertion of Eq.~3.28! into Eq.
~3.30! now gives

] tM* P1j1M* Mj05r. ~3.32!

Equations ~3.29! and ~3.32! are abstract versions of Eq
~2.30! and can be derived through Hamilton’s principle fro
the Lagrangian@( , ) j is the inner product inHj #
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L5
1

2
~] tj1Mj0 ,] tj1Mj0!12

1

2
~N21j,N21j!2

1~G1 ,j!12~r,j0!3 . ~3.33!

IV. SPECIFIC GAUGES AND HAMILTONIANS

In Eq. ~3.33! we encounter a phenomenon familiar fro
the Maxwell case, i.e., the absence of] tj0, thus preventing
the construction of a Hamilton formalism for all dynamic
variables. The way out follows the same route: We have
fix a suitable gauge. Here we consider three cases (C, L,
andT), which can be viewed as abstractions of the Coulom
Lorentz, and temporal gauges.

A. The C gauge

In this case we eliminatej0 from the formalism by ex-
pressing it in terms ofr. Thus we set

P1j50 ~4.1!

~as we have seen above the Coulomb gauge condition in
vacuum Maxwell case!. Thenj5 ĵPQ1H1 ~i.e., h50) and
Eq. ~3.32! reduces toM* Mj05r ~a generalization of the
Poisson equation relating potential and charge density! or

j05~M* M !21r, ~4.2!

so (] tj'Mj052P1F1 and ] tMj05P1G1 in the present
case!

] t
2j2N12N21j5Q1G1 ~4.3!

and

L5
1

2
~] tj,] tj!12

1

2
~N21j,N21j!21~G1 ,j!1

2
1

2
~Mj0 ,Mj0!1, ~4.4!

with j0 given by Eq.~4.2!. The canonical momentum fiel
associated withj and the Hamiltonian are

p5 j̇, ~4.5!

H5
1

2
~p,p!11

1

2
~N21j,N21j!22~G1 ,j!11

1

2
~Mj0 ,Mj0!1

~4.6!

and substitution of the equations of motion now results i

H5
1

2
iFi22~G1 ,j!1 , ~4.7!

which equalsE for vanishingG.

B. The L gauge

Here we encounter the generalization of the Lore
gauge condition] tF2]x•A50 of the vacuum Maxwell
case:
o

,

he

z

] tj02M* P1j50, ~4.8!

resulting in

] t
2j01M* Mj05r, ~4.9!

] t
2j2N12N21j1MM* P1j5G1 . ~4.10!

These equations can be derived from

L5
1

2
~] tj,] tj!11~Mj0 ,Mj0!12

1

2
~] tj0 ,] tj0!3

2
1

2
~N21j,N21j!2

1

2
~M* j,M* j!11~G1 ,j!12~r,j0!3 .

~4.11!

Since the equations obtained forj0 andj are decoupled, the
gauge condition~4.8! is needed as a subsidiary condition
select the proper solutions. The momentum fields arep05 j̇0

andp5 j̇, whereas

H5
1

2
~p,p!11

1

2
~N21j,N21j!21

1

2
~M* j,M* j!1

2
1

2
~p0 ,p0!31~Mj0 ,Mj0!12~G1 ,j!11~r,j0!3 .

~4.12!

In this caseh satisfies

] t
2h1MM* h5P1G1 . ~4.13!

C. The T gauge

In the vacuum Maxwell case the temporal gauge is fix
by F50, which now becomes

j050, ~4.14!

so ] th52P1F1. Thus

F152] tj ~4.15!

and

] t
2j1N12N21j5G1 . ~4.16!

Now

L5
1

2
~] tj,] tj!12

1

2
~N21j,N21j!21~G1 ,j!1 , ~4.17!

the momentum field isp5 j̇, and

H5
1

2
~p,p!11

1

2
~N21j,N21j!22~G1 ,j!1 . ~4.18!

V. QUANTIZATION

We are now in a position to quantize the Hamiltoni
systems obtained in the preceding section. Our proced
starts with expanding the coordinate and momentum field
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terms of an orthonormal basis. The expansion coefficie
are ordinary generalized coordinates and momenta andH is
expressed in the latter. Since these canonical variables sa
the usual Poisson bracket relations, we can now ap
Dirac’s recipe of replacing Poisson brackets~PB’s! by equal
time commutators~we set\51). At this point we have ob-
tained an abstract operator setting and our next step i
construct a Fock-space representation. Then all object
interest can be expressed in terms of Fock-space creation
annihilation operators and finally, by making a special cho
for the orthonormal basis above~the eigenvectors ofN21* N21,
i.e., the Helmholtz operatorH1 in the Maxwell case!, we end
th

in
re
un
In

rs
ts

sfy
ly

to
of
nd
e

up with expressions having a close resemblance to th
common in nonrelativistic quantized electromagnetic fie
theory. We discuss theC-gauge case in full detail and give
few comments about theL-gauge situation.

A. The C gauge

In theC gaugejPQ1H1. Now let $uj% be an orthonormal
basis for this subspace and setj j5j(uj )5(uj ,j)1 and
p j5p(uj )5(uj ,p)1 @in general j( f )5( f ,j)1 and
p( f )5( f ,p)1#. The latter form an infinite set of canonica
pairs in terms of which
H5
1

2
~p,p!11

1

2
~N21j,N21j!22~G1 ,j!11

1

2
~Mj0 ,Mj0!15

1

2
~p,p!11

1

2
~2N12N21j,j!12~G1 ,j!11

1

2
~Mj0 ,Mj0!1

5
1

2(j
~p,uj !1

21
1

2(j
~2N12N21j,uj !1~uj ,j!12(

j
~G1 ,uj !1~uj ,j!11

1

2
~Mj0 ,Mj0!1

5
1

2(j
p j

21
1

2(j ,h ~j,uh!1~uh,2N12N21uj !1~uj ,j!12(
j

~G1 ,uj !1j j1
1

2
~Mj0 ,Mj0!1

5
1

2(j
p j

21
1

2(j ,h ~N21uh,N21uj !2j jjh2(
j

~G1 ,uj !j j1
1

2
~Mj0 ,Mj0!1 ~5.1!
ut-
and the PB’s can be defined in the usual way, leading to

$j j ,ph%5d jh . ~5.2!

Quantization is accomplished by replacing the PB’s by
commutators

@j~uj !,p~uh!#5 id jh . ~5.3!

We give a representation of the operatorsj(uj ),p(uh) in
terms of boson creation and annihilation operators acting
Fock space in the usual way. So far we have dealt with
Hilbert spaces, but at this point we need their complex co
terpart. This is a trivial matter for the examples in Sec. II.
the general caseH, the complexification ofH1, is defined as
follows: For f ,gPH1 and l,mPC we define (l f ,mg)
5lm̄( f ,g) and for operatorsT, Tl f 5lT f . Furthermore, let
F5F(Q1H) be the symmetric~boson! Fock space over
Q1H anda* ( f ) anda(g) creation and annihilation operato
acting inF ~see Appendix B for details!. Thusa* is linear in
its argument,a* (m f 1g)5ma* ( f )1a* (g), and we have

@a~ f !,a* ~g!#5~g, f !, f ,gPQ1H. ~5.4!

We now take, withN15(N21* N21)
1/2,

j~ f !5a* S 1

A2N1

f D 1aS 1

A2N1

f D , ~5.5!

p~ f !5a* S iAN1

2
f D 1aS iAN1

2
f D 5j~ iN1f !.
e

a
al
-

Then

@j~ f !,p~g!#5 i Re~ f ,g!, ~5.6!

from which Eq.~5.3! follows. With $uj% an orthonormal ba-
sis for Q1H we have

~N1j,N1j!5(
j

~N1j,uj !~uj ,N1j!

5(
j

~j,N1uj !~N1uj ,j!

5(
j

j~N1uj !j~N1uj !*

5(
j

Fa* SAN1

2
uj D 1aSAN1

2
uj D G2

and, skipping the zero-point energies arising from comm
ing through a* ’s and a’s, noting that (G1 , ū j )5(uj ,G1)
sinceG1 is an element of the real spaceH1,

H5(
j

a* ~AN1uj !a~AN1uj !2(
j

H ~G1 ,uj !a* S 1

A2N1

uj D
1~uj ,G1!aS 1

A2N1

uj D J 1
1

2
~Mj0 ,Mj0!. ~5.7!

In particular, ifN1 has a pure point spectrum and$uj% is a set
of eigenvectors with associated eigenvalues$l j% ($uj% is
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complete, sinceN1 is invertible, but not necessarily uniqu
since degeneracies are allowed!, then, since for suitable func
tions F, F(N1)uj5F(l j )uj ,

H5(
j

l ja* ~uj !a~uj !2(
j

1

A2l j

$~G1 ,uj !a* ~uj !

1~uj ,G1!a~uj !%1
1

2
~Mj0 ,Mj0!. ~5.8!

If the spectrum ofN1
2 is continuous andN1

2 has an eigenfunc
tion expansionN1

25(a*0
`dl luula&^ ulau, wherea labels

the degeneracy, we have in Eq.~5.7!

a* ~AN1uj !5(
a

E dl a* @~AN1uj ,ula!ula#

5(
a

E dl a* @~uj ,AN1ula!ula#

5(
a

E dlAl ~uj ,ula!a* ~ula!,

a~AN1uj !5(
a

E dlAl ~ula ,uj !a~ula!, ~5.9!

etc., resulting in

H5(
a

E dl la* ~ula!a~ula!

2(
a

E dl
1

A2l
$~G1 ,ula!a* ~ula!

1~ula ,G1!a~ula!%1
1

2
~Mj0 ,Mj0!. ~5.10!

Note that the above expressions are similar to those enc
tered in the vacuum Maxwell case~2.32!. There theula’s
are the plane-wave statesuk j

(0) @Eq. ~2.25!#, l5k5uku, and
(a*dl is replaced by( j*dk.

The following remarks are in order.
~i! The spectrum ofN1

2 outside zero need not always b
pure, either point or continuous. In the free electromagn
case and also for finite dielectrics its spectrum is purely c
tinuous. If, in a realization of a random system, there i
localization interval, we encounter a mixed spectrum.

~ii ! In the electromagnetic case a common procedure c
sists of confining the fields to a box and imposing suita
boundary conditions, thus rendering the spectrum ofN1

2 pure
point, whereupon the size of the box is made infinite. H
our ~separable! Hilbert space is still general, but neverth
less, as is less well known, the spectrum ofN1

2 can be made
pure point by adding a suitable Schmidt class perturba
with arbitrarily small Schmidt norm~see@16#, p. 525, theo-
rem 2.1 and p. 527, theorem 2.3!, which can later be made t
vanish.
n-

ic
-

a

n-
e

e

n

B. The L gauge

Herej andp are no longer confined toQ1H1 but things
proceed as before except thatN1

2 is replaced by
T15(N1

21MM* )1/25N1% M1 andM15(MM* )1/2 ~the op-
erators act in the orthogonal subspacesQ1H andP1H). Let
f PH, f 5g1h, gPQ1H, andhPP1H. Then

j~ f !5a* S 1

A2T1

f D 1aS 1

A2T1

f D 5a* S 1

A2N1

gD
1aS 1

A2N1

gD 1a* S 1

A2M1

hD 1aS 1

A2M1

hD ,

p~ f !5j~ iT1f !. ~5.11!

With the pair (j0 ,p0) we proceed similarly. LetH8 be the
complexification ofH3 @inner product ( , )8 # andb* ( f ) and
b(g) creation and annihilation operators, respectively, act
in F(H8), satisfying

@b~ f !,b* ~g!#52~g, f !8, f ,gPH8. ~5.12!

Now, with M25(M* M )1/2,

j0~ f !5b* S 1

A2M2

f D 1bS 1

A2M2

f D , p0~ f !5j~ iM 2f !.

~5.13!

Then, if $yj% is an orthonormal basis forH and$wj% for H8,

H5(
j

a* ~AT1yj !a~AT1yj !2(
j

b* ~AM2wj !b~AM2wj !

2(
j

H ~G1 ,yj !a* S 1

A2T1

yj D 1~yj ,G1!aS 1

A2T1

yj D J
1(

j
H ~r,v j !b* S 1

A2M2

wj D 1~v j ,r!bS 1

A2M2

wj D J .

~5.14!

In the case whereN1, M1, andM2 have a pure point spec
trum we take$uj%,$l j% as before and for$wj% a ~complete!
set of eigenvectors ofM2 with $m j% the associated eigenva
ues. Then$v j5Mwj% is an orthonormal basis forP1H and
T1v j5m jv j . Thus

H5(
j

l ja* ~uj !a~uj !1(
j

m j$a* ~v j !a~v j !

2b* ~wj !b~wj !%2(
j

1

A2l j

$~G1 ,uj !a* ~uj !

1~uj ,G1!a~uj !%2(
j

1

A2m j

$~G1 ,v j !a* ~v j !

1~v j ,G1!a~v j !%1(
j

1

A2m j

$~r,v j !b* ~wj !

1~v j ,r!b~wj !%. ~5.15!
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Remark. Note that we definedb* (v j ) andb(v j ) such that
a minus sign appears on the right-hand side of Eq.~5.12!.
This is common practice in the indefinite metric formulati
in relativistic field theory@14,17#. Here we encounter essen
tially the same situation and the same methods can be
with appropriate modifications. In particular the quantu
version of Eq.~4.8! can be used to single out the set
physical states. Thus we see that this is a general feature
to the presence of a nonempty null space of the class
dynamics generator.

VI. APPLICATION TO MAXWELL’S EQUATIONS

We apply the formalism developed in Sec. IV to Ma
well’s equations as given in Sec. II. Noting th
N21•g52m21/2]x3«21/2g,

F15«1/2E52] t«
1/2A2«1/2]xF52] tj2Mj0 ,

F25m
21/2

B5m
21/2

]x3A52N21•j. ~6.1!

Also, since P1•«1/2]xF5«1/2]xF, we can identifyH1 as
L2(R3,dx;R3), H0 as the space of real scalar functionsf for
which «1/2]xf PH1, and

j52«1/2A, p52«1/2] tA, j05F, M5«1/2]x .
~6.2!

Moreover, (M f ,g)15( f ,M* •g)05( f ,2]x•«1/2g)0, so
M* •g52]x•«1/2g, M* •M52]x•«•]x , and MM * •g
52«1/2]x]x•«1/2g.

A. The C gauge

In the C gauge we have

]x•«A50, ~6.3!

leading to@see Eq.~2.30!#

] t
2«A1]x3m21~]x3A!5Q1J, ~6.4!

]x•«•]xF52r, ~6.5!

and (G15«21/2J)

L5E dxH 1

2
«~] tA!22

1

2
m21~]x3A!21J•A2

1

2
rFJ .

~6.6!

Thusp52«1/2] tA and

H5E dxH 1

2
«~] tA!21

1

2
m21~]x3A!22J•A1

1

2
rFJ .

~6.7!

The PB’s now become

$j~x!,p~y!%5$«1/2~x!A~x!,«1/2~y!] tA~y!%5Q1~x,y!,

~6.8!

whereQ1(x,y)5^xuQ1uy& is the kernel associated with th
projector upon the propagating modesQ 1 ~the projector
upon the transverse states in the vacuum case!.
ed

ue
al

B. The L gauge

In the L gauge

] tF1]x•«A50, ~6.9!

leading to the equations of motion

] t
2F2]x•«]xF5r, ~6.10!

] t
2A1«21]x3m21~]x3A!2]x

2«A5«21J. ~6.11!

In particular,

$2N12•N121MM * %•f5«21/2]x3m21~]x3«21/2f!

2«1/2]x]x•«1/2f

52«21/2~]x•m21]x«
21/2!f

1«21/2]xm
21]x«

21/2
•f

2«1/2]x]x•«1/2f. ~6.12!

Remark. Note that the two operators in the middle expre
sion in Eq.~6.12! act in orthogonal subspaces, whereas in
vacuum case the two last terms in the third expression c
cel, leaving2N12•N121MM * 52]x

2 , the well-known free
field result. The coordinate fields are$j05F,j52«1/2A%,
whereas

L5E dxH 1

2
«~] tA!22

1

2
~] tF!22

1

2
m21~]x3A!2

1«~]xF!21J•A2rFJ , ~6.13!

so the momentum fields are$p05] tF,p52«1/2] tA%. Thus

H5E dxH 1

2
«~] tA!21

1

2
m21~]x3A!22

1

2
~] tF!2

2«~]xF!22J•A1rFJ ~6.14!

and the PB’s become~U is the unit 333 matrix!

$F~x!,F~y!%5d~x2y!,

$«1/2~x!A‡~x!,«1/2~y!] tA‡~y!%5Ud~x2y!. ~6.15!

VII. QUANTIZATION OF MAXWELL’S EQUATIONS
IN THE C GAUGE AND COUPLING

TO MATERIAL PARTICLES

In applications theC gauge is the most convenient one
use and from now on we restrict ourselves to this case.
quantized version of Eq.~6.7! is directly obtained from Eq.
~5.10!:

H5H f1Hext ,

H f5(
a

E dl l a* ~ula!a~ula!,
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Hext52E dx J~x!•A~x!1
1

2E dx r~x!F~x!,

A~x!5«~x!21/2(
a

E dl~2l!21/2$a* ~ula!ūla~x!

1a~ula!ula~x!%, ~7.1!

whereH f is the field Hamiltonian in the absence of extern
charges and currents. Here we assumed thatH1 has a purely
continuous spectrum and possesses an eigenfunction ex
sion $ula% @see Eq.~2.22!#. As discussed in Sec. II, th
eigenvectors can be related to their vacuum counterp
ûk j5V1

(1)uk j
(0) for a finite dielectric and the labeling throug

k and j can also be used for periodic systems. Then(a*dl

is replaced by( j*dk in Eq. ~7.1! and, withâk j5a(ûk j ), etc.,

H f5(
j
E dk kâk j* âk j , ~7.2!

A~x!5«~x!21/2(
j
E dk~2k!21/2$âk j* ūk j~x!1âk juk j~x!%.

~7.3!

Finding the Lagrangian and Hamiltonian for a fu
coupled matter-field system does not pose any further p
lems if we assume that the forceF on a charged particle
positioned inx in a material medium, due to an extern
field, is still given by the Lorentz force

F5e$E~x,t !1v3B~x,t !%. ~7.4!

Then the Hamiltonian for a set of charged particles in
external field is

H5(
j

H 1

2mj
@pj2ejA~xj ,t !#21ejF~xj ,t !J ~7.5!

and for the full interacting system~chargesej , uej u51,
massesmj ), dismissing self-energies,

H5Hm1H f1Hint , ~7.6!

Hm5(
j

1

2mj
pj

21
1

2 (
j .h

ejehF~xj ,xh!, ~7.7!

Hint52(
j

ej

2mj
$pj•A~xj !1A~xj !•pj%1(

j

1

2mj
ej

2A~xj !
2,

~7.8!

where

2]x•«~x!]xF~x,y!5d~x2y!. ~7.9!

The following remarks are in order.
~i! As noted earlier by Kweon and Lawandy@12#, A(x) is

not transverse in theC gauge so the operatorspj andA(xj )
do not commute in general. In addition, if we solve Eq.~7.9!
for F we do not obtain a Coulomb potential. In Eq.~7.9!
«(x) is sandwiched between two space derivatives an
convolution is involved. These matters are rather irrelev
l

an-

rts

b-

n

a
t

in practical cases of atoms in a medium with optical char
teristic length scale, where« hardly changes over atomi
dimensions. Still, if such subtleties become important, o
reaches the borders of a setup where the phenomenolo
approach through the permeabilities seems trustworthy a
more sophisticated treatment is preferable.

~ii ! Quantization in theL gauge does not pose specifi
problems. The whole procedure can be patterned after@14#.
The complications that occur~due to the indefinite Hamil-
tonian! in the vacuum case once more make their appe
ance.

VIII. ATOMIC RADIATIVE DECAY IN DIELECTRICS

In this section we study the radiative decay of an exci
atom in a dielectric. For simplicity we consider a hydrog
atom with an infinitely heavy nucleus at the positionX and
make the long-wavelength approximation.

Remark.In the present situation the long-wavelength a
proximation involves the following:~i! The evaluation of the
vector potential in the pointX. ~ ii ! the replacement of«(x)
by «(X) in ~7.9!, leading to atomic Coulomb potentials o
the typeu4p«(X)r u21 thus the atomic eigenvalues depe
on X if the atom is situated in a space region where« devi-
ates from unity; and~iii ! in the vacuum case it is commo
practice to make the dipole approximation at this point: T
symmetry-breaking properties caused by generalx-
dependent permeabilities make this less obvious in
present situation.

Also we assume~as for a finite dielectric! that the classi-
cal field has, in addition to the eigenvalue zero for the no
propagating modes, only a continuous spectrum covering
positive real axis. The interaction with the field will turn th
excited atomic states into resonances, their imaginary p
giving the radiative decay rates of the now unstable sta
We calculate the corresponding complex eigenvalues to l
est nonvanishing order in the interaction, using an effect
Hamiltonian formalism. We have

H5Hat1H f1Hint , Hat5
p2

2m
2

1

4p«~X!r
,

p52 i ] r , r 5ur u,

Hint52
e

m
p•A~X!1

e2

2m
A~X!2,

A~X!5«~X!21/2(
a

E dl s~l!~2l!21/2

3$a* ~ula!ūla~X!1a~ula!ula~X!%. ~8.1!

Here we introduced a cutoff functions(l) in the definition
of A(X) in order to avoid divergencies. In the following w
neglect theA(X)2 term in the interaction. Further approx
mations will be made along the way, our main aim being
investigation of the leading deviations from the vacuum ca
We write

H5H01Hint , H05Hat1H f . ~8.2!
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The atomic eigenvaluesln have associated eigenvecto
wnlm , Hatwnlm5lnwnlm , and eigenprojectorsPn

at5( l Pnl
at

5( l ,muwnlm&^wnlmu. We setw1005w1 for the ground state
For later use it is convenient to write the three orthogonalp
states as the components of a three-dimensional ve
w25pw2, where w2 is a scalar quantity. Henc
P21

at5uw2&•^w2u5pzw2&•^w2up. Let wvac be the vacuum state
for the field, P0

f 5uwvac&^wvacu, and letPn
f be the projector

upon the nth Fock layer. In particular,
P1

f 5(a*dluual&^ualu. The eigenstates ofH0 are cnlm

5wnlm^ wvac and we write Pn5( l ,mucnlm&^cnlmu
5Pn

at
^ P0

f .
By the Feshbach projection formula (P is a projector,

Q512P, ImzÞ0, taken positive from now on,HP5PHP,
HPQ5PHQ, etc.!

@z2H#215@z2HQ#21Q1$P1@z2HQ#21HQP%GP~z!

3$P1HPQ@z2HQ#21%,

GP~z!5@z2HP2HPQ@z2HQ#21HQP#21

5@z2H ~e f f!~z!#21. ~8.3!

With P5Pn and Q512Pn and noting that they commut
with H0, we have

Pn@z2H#21Pn5@z2Hn
~e f f!~z!#21Pn ,

Hn
~e f f!~z!5lnPn1PnHintPn1PnHintQn@z2HQn

#21

3QnHintPn

5lnPn1PnHint@z2HQn
#21HintPn. ~8.4!

Since ^wvacuA(X)uwvac&50, we have PnHintPn50,
PnHintQn5PnHint , etc., which were used to arrive at th
final expression. We determine the resonance poles
@z2H#21 originating from the atomic eigenvalues, due
the perturbationHint , by approximately solving

zP5Hn
~e f f!~z!P ~8.5!

for complexz. In the solutionz is the perturbed eigenvalu
and P the associated projector. In essentially the same w
as in the vacuum case one calculates

^wvacuA~X!Q@z2H0#21A~X!uwvac&

5@2«~X!#21(
a

E dl s~l!2l21ula~X!

3@z2Hat2l#21ūla~X!. ~8.6!

Then, to leading~second! order in the interaction,
tor

of

y

Hn
~e f f!~z!5lnPn1PnHint@z2H0#21HintPn

5H lnPn
at1S e

mD 2

@2«~X!#21

3(
a

E dl s~l!2l21Pn
atp–ula~X!

3@z2Hat2l#21ūla~X!•pPn
atJ ^ P0

f .

~8.7!

As an example we consider the truncated system where
the 1s (n51) and 2p (n52, l 51) states are retained. A
far as the field is concerned, everything is in the vacu
subspace and we take this for granted. Thus

H ~e f f!~z!5l2P21
at1S e

mD 2

@2«~X!#21(
a

3E dl s~l!2l21P21
atp–ula~X!

3@z2Hat2l#21ūla~X!•pP21
at

5l2P21
at1S e

mD 2

@2«~X!#21(
a

E dl s~l!2l21

3@z2l12l#21P21
atp–ula~X!P1

atūla~X!•pP21
at .

~8.8!

Using the spherical symmetry ofw1 andw2 we have

P21
atp–ula~X!P1

atūla~X!•pP21
at

5uw2&•^w2upp–ula~X!uw1&^w1uūla~X!•ppuw2&^w2u

5
1

9
z^w1up•w2& z2uw2&–ula~X!ūla~X!•^w2u, ~8.9!

so

H ~e f f!~z!5l2P21
at1k~X!(

a
E dl s~l!2l21

3@z2l12l#21uw2&–ula~X!ūla~X!•^w2u,

k~X!5S e

3mD 2

@2«~X!#21z^w1up•w2& z2. ~8.10!

We now iterate Eq.~8.10!. To zeroth orderz05l2, P05P21
at ,

and to first order

z1P15l2P21
at1k~X!(

a
E dl s~l!2l21

3@l21 i02l12l#21uw2&–ula~X!ūla~X!•^w2u

5l2P21
at1uw2&–M ~X!•^w2u. ~8.11!
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This expression closely resembles that of the vacuum c
except that there(aula(X) ūla(X) can be replaced by23U,
leading toP15P21

at . In general, this isotropy is lost andl2

splits up into three different values; see below. Ma
ing the isotropy approximation (aula(X) ūla(X)
→1/3(auula(X)u2U we haveP15P21

at and

z15l21
1

3
k~X!(

a
E dls ~l!2l21

3@l21 i02l12l#21uula~X!u2. ~8.12!

Hence, settings(l)51,

G~X!5Imz1

52
p

3
k~X!(

a
E dl l21d~l22l12l!uula~X!u2

52
p

3
k~X!Nf~X!, ~8.13!

whereNf(X) is the so-called local density of states for t
classical~i.e., not quantized! field, its integral overX being
the field density of statesNf itself. The above result, valid fo
general« andm, generalizes the scalar case result by Sp
et al. @2#. For its numerical evaluation the mode functio
ula(X) must be calculated. The translation symme
present in a photonic crystal case makes a further Bloch
composition possible, but actual calculations do not yet se
to exist. In other situations it is sometimes convenient
recast Eq.~8.13! into a different form, featuring the electri
classical Helmholtz Green’s function. Withv05l22l1 we
have

G~X!52
2p

3
k~X!(

a
E dl d~v02l2!^Xuula&•^ulauX&

5Im
2

3
k~X!tr^XuQ1@v0

21 i02H1#21Q1uX&

5Im
2

3
k~X!tr^Xu@v0

21 i02H1#21uX&

5Im
2

3
k~X!tr^XuR~v0

21 i0!uX&

5Im
2

3
k~X!trG~X,X,v0

21 i0!, ~8.14!

where@see Eq.~2.17!# Q1512P1 is the projector upon the
propagating states associated withH1 and tr stands for the
trace over a 333 matrix. Since the imaginary part is taken
the above expression we could replaceQ1 by the unit opera-
tor, the contribution ofP1 @;d(v0

2)# being zero. Thus the
calculation ofG(X) amounts to the evaluation of the Green
function G(X,X,v0

21 i0)5^XuR(v0
21 i0)uX&. In general,

this is a complicated matter. Even for dielectric~Mie!
spheres this has only recently been achieved in full gene
se

-

k

e-
m
o

l-

ity by the author@18#. In that reference explicit formulas in
terms of Bessel functions are given for this and related
jects.

In the case where the isotropy approximation is not ju
fied we solve Eq.~8.11! by writing M5( j 51

3 mjaj b̄ j , where

$aj ,bj% form a biorthogonal set,aj• b̄h5d jh , ( j 51
3 aj b̄ j5U.

Then

z1P15(
j 51

3

~l21mj !uaj•w2&^bj•w2u, ~8.15!

from which we conclude that the eigenvalues arel21mj
with associated, in general, nonorthogonal project
uaj•w2&^bj•w2u.

The following remarks are in order.
~i! Other cases can be handled in a similar way. For p

tonic crystals with a band gap the gap is excluded in thel
integral soG(X) vanishes forv0 in the gap. Note that above
G(X) is only calculated to leading order. At this point th
possibility cannot be excluded that an eigenvalue situate
a gap actually disappears. The vanishing ofG(X) does not
imply that the atom does not decay. It may do so through
simultaneous emission of three or more photons provided
photon energies are not in a gap.

~ii ! Above we calculated the imaginary part of a perturb
eigenvalue. If we also want to determine the shift in its re
part the cutoff functions(l) is necessary in order to avoi
divergencies. Divergencies also appear if one tries to incl
degenerate states at a given eigenvalue~the 2s and 2p states
in the above example!. See Sec. X for a renormalizatio
procedure.

IX. BAND-GAP SYSTEMS AND RANDOMNESS

A. Atoms in band-gap dielectrics

In the preceding section we obtained results for the
havior of the excited states of a ‘‘two-level’’ atom coupled
the quantized electromagnetic field in a dielectric. These
sults were obtained to leading order in the atom-field int
action, which amounts to a truncation of the photon Fo
space to the first two layers~vacuum and single particle!.

For a better understanding of the situation where a b
gap is present, it is useful to consider first the spectrum of
two-level system and field Hamiltonian restricted to the fi
few Fock layers with the interaction deleted. We assume
the Helmholtz operatorH1 has, apart from the eigenvalu
zero, associated with the nonpropagating modes an~abso-
lutely! continuous spectrum covering the positive real a
except for a finite gap (la ,lb), which starts at some positiv
value, and that the difference of the two atomic eigenval
v05l22l1 is in this interval.

Using the fact that the spectrum ofHa ^ I b1I a ^ Hb is
the set of points$la1lb%, wherela runs through the spec
trum of Ha andlb through that ofHb , we obtain the results
displayed in Fig. 1. In Fig. 1~a! the spectrum of the field
Hamiltonian, restricted to the first two Fock layers, is pr
sented~see Appendix B for the layer Hamiltonians!. Note the
eigenvalue zero, associated with the vacuum state, at the
tom of the spectrum. In Figs. 1~b! and 1~c! the next layers are
added. Adding further layers removes the gap completel
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this example~in general, ifla.0, there is no gap left in the
full H f). The two eigenvaluesl1and l2 of the two-level
system are pictured in Fig. 1~d! and in Figs 1~e!–1~g! the
combined atom–truncated-field spectrum is given. Nowl1
is associated with the product of atomic ground state
field vacuum state andl2 with the atomic excited state an
vacuum state. With two and three layers presentl2 is at the
bottom of the second piece of continuous spectrum wit
gap to its left but with three layers@Fig. 1~g!# it has become
continuum embedded.

The next step is to add the interactio
Hint52(e/m)p•A(X), again suitably truncated. We discu
the situation for the two-level, two-layer case, relevant
single-photon processes. NowHint reduces to a finite-rank
operator

Hint5h$uw1^ c&•^w2^ wvacu1uw2^ wvac&•^w1^ cu

1uw1^ wvac&^w2^ •cu1uw2^ •c&^w1^ wvacu%,

c5A~X!uwvac&

5@2«~X!#21/2(
a

E dl s~l!l21/2ūla~X!uula&,

h52~e/3m!^w1up•w2&. ~9.1!

Herew1 andw2 are chosen such that^w1up•w2& is positive
and ^ • indicates a tensor product over vector compone
followed by a contraction. SetE5P1

at
^ P0

f 1P2
at

^ P1
f and

F5P2
at

^ P0
f 1P1

at
^ P1

f . Then E1F51 and (H1
f

5(a*dl luula&^ulau is the field Hamiltonian restricted to
layer one!

HintE5EHint ,

H0E5EH05H0E5l1P1
at

^ P0
f 1~l21H1

f !P2
at

^ P1
f ,

HintF5FHint ,

FIG. 1. Spectrum of a band-gap system~crosses are eigenvalue
lines continuous spectrum!. In ~a! the spectrum of the field Hamil
tonian restricted to the two first Fock layers is given. Note
vacuum eigenvalue in the origin and the band gap. In~b! and~c! the
third and fourth layers are added, respectively. In~d! the eigenval-
ues of the two-level system are presented. In~e!–~g! the combina-
tions of ~a!–~d!, ~b!–~d!, and~c!–~d! are given, respectively. Note
the complete embedding of the excited state in the last case.
d

a

r

s,

H0F5FH05H0F5l2P2
at

^ P0
f 1~l11H1

f !P1
at

^ P1
f .
~9.2!

ThusE andF reduceH: It breaks up into two partsHE and
HF , acting in the orthogonal subspacesHE andHF ~super-
selection sectors!. Note thatH0E has the isolated eigenvalu
l1 and the pieces of an absolutely continuous spectr
@l2 ,l21la# and@l21lb ,`#, whereasl2 is an isolated ei-
genvalue ofH0F , which has the intervals@l1 ,l11la# and
@l11lb ,`# as a continuous spectrum.Hint has finite rank
and so have its restrictions toHE andHF . In particular they
are trace-class operators, implying thatHE andHF have the
same ~absolutely! continuous spectrum. Further, since t
interaction is compact, the spectra of these operators out
the above intervals can only consist of isolated eigenval
with finite degeneracy. For these mathematical details,
@16,19#. In the present case this means that the isolated
genvalues may move or disappear and new ones may ap
The situation is controlled by the Weinstein-Aronszajn the
rem @16#. Alternatively, the isolated eigenvalues can be a
lyzed further by means of the Feshbach formula~8.3!. Again
we are led to the relationzP5H (e f f)(z)P, where onHE ,
taking P5P1

at
^ P0

f ,

z5l11k~X!(
a

E dl s~l!2l21@z2l22l#21uula~X!u2,

~9.3!

and onHF , with P5P2
at

^ P0
f ,

zP5l2P2
at1k~X!(

a
E dl s~l!l21

3@z2l12l#21uw2&–ula~X!ūla~X!•^w2u. ~9.4!

Herek is again given by Eq.~8.10!. We write Eq.~9.3! as

z5l11k~X!(
a

E
0

la
dl s~l!2l21@z2l22l#21uula~X!u2

1k~X!(
a

E
lb

`

dl s~l!2l21@z2l22l#21uula~X!u2

5l11X~z!1Y~z!5Z~z!. ~9.5!

Now, considering@z2l22l#21, we note thatZ(z),l1 for
z,l1, Z(z)→l1 as z→2` and Z(z)→2` as z↑l1. It
follows that there exists a solutionz1,l1 and thatz1→l1 as
k→0. This remains true if there is no gap, i.e.,la5lb .
Next consider the region (l21la ,l21lb). Now X(z)→`
as z↓l21la and Y(z)→2` as z↑l21lb . Thus Z(z)
ranges through the whole real axis asz runs through
(l21la ,l21lb), so there is a second solutionz3 in this
interval. We havez3→l21la as k→0, but for k50 the
only solution isl1, i.e., z3(k) is not analytic ink50.

The analysis of Eq.~9.4! is more complicated. In the iso
tropic approximation it takes the form

zP5l2P21
1

3
k~X!(

a
E dl s~l!2l21

3@z2l12l#21uula~X!z2P2 . ~9.6!
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and, by a similar argument as above, there is a solutionz2
P(l11la ,l11lb), which can be considered as the pe
turbedl2. A more involved argument leads to a correspon
ing result for the three solutions in the nonisotropic case

We did not check the details, but expect the situation to
similar for the three-layer case. With four or more layersl2
is already an embedded eigenvalue without interaction an
is expected to turn into a resonance onceHint is switched on.

The physical interpretation of the above is that ifv0 is in
the gap the atom cannot decay by the emission of one or
photons~in fact, the emission of an even number of photo
is prohibited for other reasons!, but it can by the emission of
three or more. Of course, the precise situation depends on
value of the atomic eigenvalues, the properties of the g
and the presence of symmetries~which can inhibit certain
decay processes!, but the general rule of thumb is tha
n-photon decay does not take place if the energies of
photons involved~they need not have the same energy! are
in the gaps of the corresponding classical dielectric. The s
ation can be expected to be similar for more precise mo
for an atom or molecule.

B. Band-gap systems with randomness

Next we consider the same case but with some rand
part «v added to the electric permeability
«(x)→«(x)1«v(x). As is customary in this field, the inde
v labels the realization of the random process involved. H
we can think of a lattice of dielectric spheres where ad
tional dielectric objects are placed between them in a rand
way, that some spheres are removed from the lattice
random way, that the positions of the original lattice sphe
are randomized, etc. Another, intensely studied case is
Anderson model, which in the present context amounts
random coupling constantsl j multiplying the « of each of
the spheres on the lattice positions:« j→l j« j . For a general
introduction into random classical wave motion, see@3# and
for the mathematical background@20#.

In general, it is expected that a random perturbation gi
rise to the occurrence of a spectrum in the gap of the cla
cal system, the so-called Lifshitz tails, and that this spectr
is Anderson localized~the vanishing of the diffusion coeffi
cient in this energy region!. Recently, some mathematical
precise results have been obtained in this direction. In@21# it
is shown that for a periodic system with a gap with rando
ness of a specific type added there is an interval in the o
nal gap containing a dense point spectrum with associ
exponentially decaying eigenfunctions~the definition of lo-
calization adopted in mathematical work!. Using a different
method, a similar result was obtained in@22#. There the pe-
riodicity of the original band-gap system is not required.

Next consider a two-level atom in a randomized band-g
dielectric that contains a localization intervalD in the gap
such that the atomic transition frequency is contained inD.
Then the situation of Fig. 1 changes. Suppose thatD is at the
left of the second field continuum; see Fig. 2~a!. Thus, in the
two-layer approximation,l2 becomes embedded in a den
set of square integrable field states and is at the bottom
field continuum; see Fig. 2~c!. Next, the interaction, which is
now also a random quantity, is switched on. The decom
sition above can still be made and the gap remains~we still
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have a finite-rank perturbation!, but it is by no means clear a
to what happens tol2. Present day perturbation theory ca
not cope with eigenvalues embedded in a dense point s
trum. This raises the question whether single photon deca
still inhibited. From a physical point of view this is expecte
to be the case. There are no propagating classical field m
with energy inD, so if the transition frequencyv0 is in D,
radiation cannot propagate away.

The situation may change if we average over randomn
Then the problem can be formulated in a bigger space
direct integral relative to the underlying probability measu
~see @23# for details!, and in this space the classical fie
Hamiltonian may once more have a continuous spectrum
D. Thus we are back to the situation of Sec. VIII. In thi
connection note that the eigenvalues inD strongly depend on
the actual realization@20# and averaging leads to a smearin
out. Further, if the random process is ergodic, the integra
density of states is deterministic@20#: It has the same value
for almost every realization. However, this is not true for t
local density of states, which determines the decay cons
in Eq. ~8.10!. In a system of randomly placed dielectric sca
terers the atom can be close to one of them in one realiza
but further away in another one, so the local density of sta
will be different in both cases.

X. DIVERGENCIES: KRAMERS TRANSFORMATION

Divergencies turn up if one attempts to calculate atom
properties such as the Lamb shift of atomic levels. In
vacuum case a Kramers transformation can be used to
cumvent them@14,24,25#. Here we extend it to material me
dia, once more making the restriction to the long-wavelen
approximation. Our starting point is Eq.~8.1!, where we in-
troduce a cutoffs(l) in A(X) ~a smoothing in coordinate
space! and replacem by the ‘‘bare mass’’m0. We write Eq.
~8.1! as

H5
1

2m0
@p2eAs~X!#21V~x!1H f ,

V~x!52u4p«~X!xu21,

As~X!5«~X!2 1/2(
a

E dl s~l!~2l!21/2

FIG. 2. Spectrum of a randomized band-gap system~crosses and
lines are the same as in Fig. 1, hatched lines are localization
gions!. In ~a! the spectrum of the first two Fock layers is displaye
Note the localized states to the left of the right part of the conti
ous spectrum. In~b! the eigenvalues of the two-level system a
given, whereas~c! shows the combined spectrum. In this case
second eigenvalue is embedded in the dense point spectrum a
the bottom of the continuous spectrum.



-

s
a

o

ted
-

r

ized
ent

e-
nical
a-

liar
ll’s

nd
the

t of
l

om
ic

en-
re-

cal-
in a

of
tic
na-

the
ke a
ic
um
f

cts

56 5037CANONICAL FORMALISM AND QUANTIZATION FOR A . . .
3$a* ~ula!ūla~X!1a~ula!ula~X!%.

~10.1!

The idea is to transform away the offending termp–A(X) in
favor of a more manageable change inV. For this purpose
we introduce the Hertz vector

Zs~X!5 i«~X!21/2(
a

E dl s~l!221/2l23/2

3$a* ~ula!ūla~X!2a~ula!ula~X!% ~10.2!

and note that

@Zs~X!,H f #52 iAs~X!,

@Zs~X!,As~X!#52 iFs~X!,

@Zs~X!,Fs~X!#50, ~10.3!

where

Fs~X!5«~X!21(
a

E dl s~l!2~2l2!21

3$ūla~X!ula~X!1ula~X!ūla~X!%. ~10.4!

Now let V be a real, symmetric matrix and

Ua5exp@ iap–VZs~X!#, Ta5UaTUa
21 . ~10.5!

Since

Ta5T1 ia@p•V•Zs~X!,T#

2
a2

2
†p–V•Zs~X!,@p–V•Zs~X!,T#‡•••, ~10.6!

we obtain

H f a5H f1ap–V•As~X!1
a2

2
p–V–Fs~X!•V–p,

As~X!a5As~X!1ap–V–Fs~X!,

Va~x!5V@x1aV•Zs~X!#. ~10.7!

With these results we obtainHa and equating the terms lin
ear inA(X)s to zero we find

aV5e@m01e2Fs~X!#215ems
21 , ~10.8!

leading to

Ha5
1

2
p–ms

21
•p1V@x1ems

21
•Zs~X!#1H f1

e2

2m0
As~X!2.

~10.9!

In the vacuum casems reduces to a scalar,ms5msU5mU.
In removing the cutoff, i.e., in the limits→1, m is kept
constant and identified as the observed mass. Here the
ation is rather puzzling, hinting in the direction of a nonsc
lar renormalized massm. Note that the presence ofV is not
related to this problem. Next, oncem is fixed, settings51
itu-
-

in V@x1em21
•Zs(X)# gives a pathological situation, due t

the small-l ~infrared! behavior of the Hertz vector. Its
vacuum expectation value, for instance, vanishes. As poin
out by van Kampen@25#, this can be remedied by transform
ing back. TakingUa5exp@2ip–m21

•Zt(X)# in Eq. ~10.5!,
we obtain

H5
1

2
p–mt

21
•p2p–m21

•At~X!1V@x1em21
•Z12t~X!#

1H f1
e2

2m0
As~X!2,

mt
215m211m21

•Ft•m21. ~10.10!

With t(l) equal to one for smalll and vanishing for large
l, At(X), Ft(X), andZ12t(X) are now well behaved. Fo
further discussion~for the vacuum case! see@25#, where also
the further renormalization ofH f1(1/2m0)As(X)2 is dis-
cussed, leading to an expression featuring the renormal
mass. A similar procedure can be followed in the pres
case where nowm enters. Thus Eq.~10.10! is a convenient
starting point for Lamb shift calculations.

XI. DISCUSSION

A. Summary of results

The quantization of Maxwell’s equations for material m
dia has led us to develop a general approach to the cano
formalism and quantization of a given linear evolution equ
tion ] tF(t)5NF(t)2G(t) in a real Hilbert space. The
gauge concept makes its appearance ifN has a nonempty
null space and we obtained generalizations of the fami
gauges of electrodynamics. The application to Maxwe
equations in a medium, characterized by permeabilities«(x…

andm(x), is immediate.
Next we considered atoms placed in dielectrics and fou

an expression for the spontaneous decay rate featuring
local density of states, thus generalizing an earlier resul
Sprik et al. for a scalar model@2# to a dielectric with genera
« andm.

If the classical dielectric has a band gap and the~two-
level! atom has its transition frequency in the gap, the at
is stable relative to single-photon decay. The original atom
eigenvalues are modified, but remain real. Also a new eig
value of the combined system appears. We make some
marks in the case where the medium shows Anderson lo
ization. This can lead to an atomic eigenvalue embedded
dense~electromagnetic! point spectrum.

A mass renormalization is necessary for the calculation
Lamb shifts. We gave a version of the nonrelativis
Kramers–van Kampen approach. Due to the nonisotropic
ture of the medium, a nonscalar renormalized massm
emerged. In the vacuum case the renormalized mass is
experimentally observed electron mass. Here we can ta
similar point of view, but experimentally this is problemat
since, even if we are able to position an atom in the medi
away from the dielectric scatterers~for instance, by means o
laser or colloid techniques! and try to retrievem from its
spectral and decay properties, other, nondielectric effe
will wash out the tiny changes caused by the medium.
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The approach of starting from the~approximative! phe-
nomenological equations and then quantizing leaves so
thing to be desired. The usual classical and quantum der
tions of the phenomenological Maxwell equations involve
averaging over volumes of atomic size@26–28#. At a more
sophisticated level a starting point could be the Heisenb
equations of motion for the field operators of the interact
system, from which a Bethe-Salpeter equation can be c
structed for the fields only~in fact, the latter originated
within a field-theoretical context@29#!. Here we are still deal-
ing with field operators, but we can, if so desired, make
of the Glauber-Sudarshanp-representation concept~expan-
sion in coherent states! @30# to replace them byc-number
quantities. If we are only interested in absorptive proces
the complicated irreducible vertex term in the Bethe-Salpe
equation can be skipped, leaving a formalism contain
only an effective Hamiltonian~mass operator!. However, the
way the matter part is ‘‘integrated out’’ will depend on th
actual process one wants to describe. It is also far from
vious how spatial dependences, so conveniently stored in
classical permeabilities, are recovered. In certain scatte
situations, for finite dielectrics, a simpler procedure suffic
In a channel with equal initial and final matter states
irreducible vertex term is not involved. Using the Feshba
projection formula, the transition operator can be written
terms of an effective Hamiltonian in which only the ma
operator appears and nonlinear photonic processes ar
cluded.

In conclusion, we note that the whole quantization pro
dure as discussed above and elsewhere aims for the det
nation of a second quantized formalism and the actual eq
tions of motion for thefields are rather irrelevant once th
Hamiltonian has been obtained. On the other hand, t
merit is the simple way in which the presence of matter
stored in the permeabilities.

B. Lagrange-Hamilton formalism:
Connection with related work

In general, a given equation of motion can be formula
in terms of a Lagrange formalism in many ways, each f
turing different generalized coordinates. Indeed the literat
shows such a variation in the choice of the latter. Glau
and Lewenstein@9#, for the casem51 and, initially, J50,
take A as the coordinate, leading to the associated mom
tum 2D. The gauge condition~6.3! is also employed here
They then continue by making an eigenmode expansion
the various field operators. Actually, except thatm51, the
expansion is the same as employed here, since notA but
A«A is expanded@see their Eq.~2.13! and below#. The rea-
son for this is also the same, the self-adjointness of
Helmholtz differential operator, giving an orthogonal set
eigenvectors.~Here we note that, alternatively, the weight
the inner product can be modified, making the expansion
A itself orthogonal. This, however, has the drawback that
free differential operator acts in a different Hilbert spac!
The authors then consider the relation between the ab
expansion and the eigenmode expansion in terms of vac
modes~plane waves!, the two being related through Mo” ller
wave operators. This requires the latter to exist, i
«(x)21 must tend to zero sufficiently rapidly for largex, so
e-
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this relation is not available for periodic dielectrics. Finall
the spontaneous decay of a two-level atom in a dielectri
studied. NowJ no longer vanishes and indeed the relati
~6.5! between charge density and scalar potential app
@their Eq.~7.3a!#.

Kweon and Lawandy@12# considered the case«(x) peri-
odic, m(x)51. Again A is the coordinate field and Eq
~4.8! the gauge condition, but the expansion functions
chosen differently. Since herem51, the magnetic Helmholtz
operator N2

252(e•p)«21(e•p) is transverse, self-adjoint
and its eigenvectors are used in the expansions. These
thors study the suppression of atomic radiative decay i
band gap and also give an expression for atomic decay r
~their Eq. 131!. Their observation of a dependence o
«(x)22, instead«(x)21 as in the present work, is tied to th
different choice of expansion functions@see Eq.~2.21! and
below#.

Huttner and Barnett@10# consider the quantization prob
lem in connection with dissipation for the special case t
the material part of the system has harmonic behavior. T
use the vector potential as the coordinate field and emp
the Coulomb gauge. Since the full system is consider
there are no problems with field quantization. The spec
nature of the Hamiltonian allows a transformation~in es-
sence, a Bogoliubov transformation! to a new representation
featuring anx-independent but frequency-dependent«. More
recently, Matloobet al. @11# also considered the case of a
absorbing medium and specific dielectric media.

C. Outlook

We did not consider more general situations such
frequency-dependent permeabilities~lossy dielectrics!. This
case is often encountered, for instance, in our example
transition radiation@8#. Here we outline briefly how such
situations can be treated by means of the present formal
For details, see@32#, where the electromagnetic case is d
cussed. Instead of Eq.~3.1! we now have inHc ~for nota-
tional shortness formulated for the complexified case!

] tF~ t !52 iKF ~ t !2 i E
0

t

ds L~ t2s!F~s!. ~11.1!

Note that onlyt>0 appears, so we can considerL(utu) with-
out penalty. Suppose it has a Fourier transform

L~ utu!5E dv exp@2 ivt# L̃ ~v!, ~11.2!

with L̃ (v)>0 ~this property holds in the Maxwell case wit
general linear-response expressions for the susceptibilit!.
Now let F1(t)5F(t) andF2(t,v) be a second field with the
propertyF2(0,v)50. Consider the set

] tF1~ t !52 iKF ~ t !2 i E dv L̃ ~v!1/2F2~ t,v!,

~11.3!

] tF2~ t,v!52 ivF2~ t,v!2 i L̃ ~v!1/2F1~ t !. ~11.4!

Solving the second and substituting into the first then gi
Eq. ~11.1!. However,F5(F2

F1) now has a unitary time evolu
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tion in H5Hc%H8, H85Hc^ L2(R,dv), and a canonica
formalism and its quantization can again be obtained.

Nonlinear evolutions, relevant if a description of param
ric and other nonlinear processes is required, were not c
sidered. Probably, some of these can be handled. The a
native, starting from a fully quantized matter-field syste
and integrating out the matter part, using an effective Ham
tonian approach, is likely to give a more accurate result
particular, a microscopic description of the coefficients in
nonlinear terms.

The result~8.13! for the decay of atomic excited state
coincides with what would have been obtained using Ferm
golden rule. The effective Hamiltonian approach employ
is rather crude and it would be interesting to investigate
possibility of developing a complex scaling~dilatation ana-
lytic! method for this case. Such spectral deformation me
ods @31# have been quite successful for Schro¨dinger opera-
tors. They lead to a deformation of the continuous spectr
away from the real axis, which reduces the calculation
resonances to the perturbation theory of isolated eigenva
of a non-self-adjoint operator. In particular this can be use
if multiphoton processes are studied. In the case of a fi
dielectric a version of the exterior scaling method@31# for
the field part seems to be indicated. In Eq.~8.13! the factor
«(X)21 is not always significant, for instance, if interstiti
atoms in a dielectric are situated at positions where the
meabilities are unity.~In the point interaction model, studie
by van Coevordenet al. @5#, «51 everywhere outside th
lattice points.! As emphasized by Spriket al. @2#, who ob-
tained a similar result, the field quantities are purely clas
cal. However, the quantum-electrodynamical formalism
needed to find out how these classical quantities enter
the expression of the perturbed eigenvalue.

In band-gap systems single-photon atomic decay can
inhibited. Still multiphoton decay may occur and this mak
it worthwhile to investigate this situation. For this a highe
order approximation for the effective Hamiltonian of Se
VIII can be used.

Atomic decay in random band-gap systems show
Anderson localization is intriguing. Here we encounter si
ations where the atomic eigenvalue is embedded in a d
~field! point spectrum and its perturbation theory seems to
an open question. As mentioned in Sec. IX, it is possible
consider the situation in a broader context where an avera
decay parameter may exist. If so, the next step would be
calculation of its fluctuations.
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APPENDIX A: LAGRANGE FORMALISM
FOR THE GENERAL CASE

We return to Eq. ~3.12!, ] tF(t)5NF(t)2G(t),
N* 52N, in the real Hilbert spaceHr , where we no longer
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assume the structure~3.8!. N, being closed, densely defined
allows the decomposition

N5UuNu, uNu5~N* N!1/2, ~A1!

whereN is a partial isometry~for details, see@16#, p. 334!.
SinceN* 52N, we have, withP the projector upon the nul
space ofN andQ512P,

U* U5Q, U* 52U, uNu5NU5UN. ~A2!

We also note that if A* 52A, A f' f since (A f , f )
5( f ,A* f )5( f ,2A f)52(A f , f )50. Now let

V65
1

A2
~16U !Q. ~A3!

Then V6 are unitary onQHr , V 1
2 52V2

2 5U, and their
ranges are orthogonal,V1 f'V2 f . Now let

F6~ t !5V6F~ t !, G6~ t !5V6G~ t !. ~A4!

Then

] tF1~ t !5
1

A2
~11U !QUuNuF~ t !2G1~ t !

5
1

A2
~U21!uNuF~ t !2G1~ t !

52uNu
1

A2
~12U !F~ t !2G1~ t !

52uNuF2~ t !2G1~ t !,

and similarly] tF2(t)51uNuF1(t)2G2(t), so

] tS F1~ t !
F2~ t ! D5S 0 2uNu

uNu 0 D S F1~ t !
F2~ t ! D2S G1~ t !

G2~ t ! D . ~A5!

Note that, althoughF1(t)'F2(t), each of them is not con
fined to a fixed subspace ofHr . Also, since

exp@Nt#Q5exp@UuNut#Q5$cos~ uNut !1Usin~ uNut !%Q,

a generalization of de Moivre’s formula, we have for vanis
ing G(t)

F~ t !5PF~ t !1cos~ uNut !QF~0!1sin~ uNut !UQF~0!

5PF~ t !1Fa~ t !1Fb~ t !. ~A6!

HereFa(t)'Fb(t) and each is confined to a fixed subspa
of Hr , but now their equations of motion are decouple
Starting from Eq.~A5!, we can follow a procedure similar to
that used in Sec. III: Withĵ52uNu21F2(t),

F1~ t !52] tĵ2uNu21G2~ t !,

F2~ t !52uNu ĵ, ~A7!

and
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] t
2ĵ1uNu2ĵ5G1~ t !2uNu21] tG2~ t !, ~A8!

which can be obtained from Hamilton’s principle with

L5
1

2
~] tĵ,] tĵ !2

1

2
~ uNu ĵ,uNu ĵ !

1„G1~ t !2uNu21] tG2~ t !,ĵ…. ~A9!

Note that here everything is restricted to QHr . The remain-
ing dynamics

] tPF~ t !52PG~ t ! ~A10!

can also be incorporated through a new coordinate fieldj0
and also gauge transformations in the spirit of Eq.~3.20! can
be introduced.

APPENDIX B: FOCK SPACE

Given the Hilbert spaceH, the symmetric Fock spac
F(H) overH is defined as

F~H!5C%H% ~H^H!sym% ~H^H^H!sym% •••

5 % n50
` Fn , ~B1!

where (H^H)sym etc., are symmetrized tensor produc
With f 5( f (0), f (1), f (2), f (3), . . . ), f nPFn and, similarly for
g, the inner product onF is defined as

~ f ,g!5 (
n50

`
1

n!
~ f ~n!,g~n!!n , ~B2!

where ( , )n is the inner product on̂ k51
n H @so ( , )1 is the

inner product on H#. With wPH and
f (n)5( f k1

(n)
^ ••• ^ f kn

(n))sym5(k1 ,..,kn
f k1

(n)
^ ••• ^ f kn

(n) , where

the sum is over all permutations of 1, . . . ,n, we definea(w)
anda* (w) by

@a~w! f #n215 (
k1 , . . . ,kn

f k1

~n!
^ ••• ^ f kn21

~n! ~ f kn

~n! ,w!1 , ~B3!
s.

om
,

d

k,
.

@a* ~w! f #n115 (
k1 , . . . ,kn11

f k1

~n!
^ ••• ^ f kn11

~n! , f n11
~n! 5w.

Since a general element ofFn can be written as a linea
combination off (n)’s of the above type, this fixesa* (w) and
a(w). Explicitly, for the caseH5L2(Rd),

@a~w! f #n21~x1 ,x2 , . . . ,xn21!5E dxn

3 f ~n!(x1 ,x2 , . . . ,xn) w̄ ~xn!,

@a* ~w! f #n11~x1 ,x2 , . . . ,xn11!

5(
j 51

n

w~xj !

3 f ~n!~x1 ,x2 , . . . ,xj 21 ,xn11 ,xj 11 , . . . ,xn!

1w~xn11! f n~x1 ,x2 , . . . ,xn!. ~B4!

These definitions result in the equations used in the main
such as the commutation relations~5.4!.

As discussed in the main text, the field Hamiltonian h
the form

H f5(
a

E dl la* ~ula!a~ula!. ~B5!

SinceH f leaves each Fock layerFn invariant, we can de-
compose it as a direct sum of its components on the lay

H f5 % n50
` H f

~n! , ~B6!

where

H f
~0!50, H f

~1!5N1 , H f
~2!5I ^ N11N1^ I , . . . .

~B7!

This expression is a convenient starting point for the study
spectral properties associated with atomic decay in a die
tric with a band gap.
A
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