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Canonical formalism and quantization for a class of classical fields
with application to radiative atomic decay in dielectrics

A. Tip*
FOM-Instituut voor Atoom- en Molecuulfysica, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
(Received 20 September 1996; revised manuscript received 30 June 1997

For the description of spectral and radiative decay properties of atoms or molecules, placed in a photonic
material, the electromagnetic field in the material must be quantized and active research is taking place in this
area. Here a unified account is given of such quantization procedures. Led by the Maxwell example, we
consider the canonical formalism and its quantization for a class of linear evolution equafieablF—G,
obeying a conservation law f@=0. If N has a nonempty null spa¢eero is an eigenvalue with associated
nonpropagating solutiopsan abstract form of the gauge concept makes its appearance and generalizations of
the familiar Coulomb and Lorentz gauges are obtained. A canonical formalism is set up and quantized. The
application to spatially inhomogeneous nonconducting electrodynamical systems is immediate, including the
interaction with matter. Next atomic decay in a medium is considered, in particular in the presence of band
gaps. For a simple two-level model with transition frequency in the gap, single-photon decay is inhibited and
also a different stable eigenvalue of the combined system is found. An open problem in connection with
random dielectrics, showing Anderson localization, is discussed. Finally, a mass renormalization, by means of
a Kramers transformation, is presented. In general, the renormalized mass is no longer a scalar quantity.
[S1050-294{@7)00412-5

PACS numbdis): 42.50—p, 03.50--z, 03.70+k

I. INTRODUCTION propagation seg8]). This may be an interesting matter since,
if the dielectric showgAnderson localization, decay with
transition frequency in a localization interval is once more
The prime example, motivating the present investigationexpected to be inhibited. Here we can think of Lifshitz tails
consists of Maxwell's equations in a nonconducting, spain the gap of a randomized photonic crystal. An obvious
tially inhomogeneous medium. The latter have recently bequestion is the dependence of the decay parameter on the
come a subject of active research in view of the emergencsize of a finite, randomized crystal that would exhibit local-
of photonic crystal$l]. These are classical dielectric media, ization in the infinite limit.
characterized by a periodic dielectric permeability, the peri- The emerging technique of making photonic crystals of
odicity giving rise to a band structure analogous to thatcool atoms in crossed laser beasis particularly interest-
found for electrons in solid-state physics. Such systems haviag. Since atomic diameters are much smaller than the lattice
become of interest in view of the possibility to alter the ra-distance, the atoms can be considered as point scatterers and
diative decay properties of embedded atoms relative to theiecent theoretical work by van Coevordenal. [5] shows
vacuum values. Possible technological applications are in theghe existence of a band gap for such systems. At the moment
fields of semiconductor lasers, photovoltaic elements, anehe fraction of occupied lattice sites in experimental setups is
guantum computers. still 10% or lesgwith a random distribution over the sites, in
Indeed, if a band gap is present and an embedded atoits simplest form of Bernouilli type, but the existing experi-
has a transition frequency in the gap, one expects that radianental evidence does not rule out correlated behgvimrt
tive decay does not take place by emission of a single photoas this increases an interesting random situation develops.
(the emitted radiation cannot propagate awastowever, Another promising approach is the use of colloid tech-
even if no gap develops, decay rates may change appreciabiyques to manufacture photonic crystg@$ In this case there
from their free values due to alterations in the photonic denis no severe limitation on the packing fraction and the
sity of states. As shown by Sprit al.[2], for a scalar field method allows the deposition of a variety of dielectric scat-
model, the former can be obtained through an application oferers on the lattice sites. The embedding of molecules for
Fermi's golden rule after quantization of the field and turnthe study of decay rates and randomization of the crystal are
out to be proportional to the local density of stakgg¢X) of  possible as well.
the field modes, a quantity that in essence measures the mag- A second type of photonic structure is encountered within
nitude of the field modes at the atomic posit¥nin a band  the context of transition radiatiof¥], the emission of elec-
gapN¢(X) vanishes and hence no decay takes place for trartromagnetic radiation caused by the passage of fast electrons
sition frequencies in the gap. moving through layered dielectrics. At present this mecha-
Radiative decay of atoms placedremdomdielectrics has nism is studied as a tool to produce x-ray radiation for diag-
hardly been studiedfor random electromagnetic wave nostic purposef8]. So far theoretical work on this phenom-
enon has been mainly classical. A second quantized
approach can give significant simplifications since now we
*Electronic address: tip@amolf.nl are dealing with a scattering procg$om an electron with
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zero photons in to an electron with one photon)aaurid a  ing order in the atom-field interaction of an atomic decay
first order calculation suffices. rate. The scalar results of Sprét al, mentioned above, are
The calculation of radiative decay rates for atoms or mol-confirmed for the Maxwell case.
ecules placed in dielectrics requires quantization of the di- Our next application concerns the situation of a two-level
electric and active research is taking place in this f[@d  atom with transition frequency in a band gap of a classical
12]. Thus an appropriate Lagrange and Hamilton formalisnphotonic system. Making a two-layer approximation to the
is set up, which is then quantized by replacing Poissorguantized photonic systeffie., only one-photon processes
brackets by commutators according to Dirac’s recipe. Thare considered this model can be treated quite rigorously
precise procedure varies from one author to the other andnd we find that a bound state of the coupled system in the
usually the magnetic permeability is set equal to its vacuungap occurs, originating from the atomic excited-state eigen-
value. Compared to the situation for fréeonstant perme- value. In addition, a new bound state is found. The situation
abilities) fields, there is a snag. The point is that in a generabf a randomized band-gap system showing Anderson local-
dielectric the longitudinal fields and the nonpropagatingization is briefly discussed.
fields differ. Among other matters, this makes the usual Cou- As in other situations, there are divergencies in the for-

lomb gauge less suitable. malism. In order to remove the latter, a Kramers transforma-
tion is made. The outcome is intriguing since the renormal-
B. General canonical formalism and its quantization ized mass is no longer a scalar. In principle, this could be

checked by measurements of spectral propertiesmb

The above situation has led us to construct a general aRhifty of atoms or molecules embedded in dielectrics. In

proach to the quantization of linear evolution equationsg,. 'y we comment upon our results and make a compari-

through the Lagrange-Hamilton procedure. If they possess 8on with related work
conservation law(energy conservation in the electromag- Below. the CaS&:=.,u=l is referred to as the vacuum

POEt:: ﬁ?]istirs ?il:]:tsb:aevgrgﬂe(;npﬁdl:ﬁé Cfgrrzip%enfg}ﬁg' L?iﬁ)d;?tgcase, everything else remaining the same. Wi@h the free case
space. In Sec. Il we give a few examples. Thus we considel o, oan & fre_e elegtrqmagnetlc field .W'th arbitrargnd u
And a finite dielectric is a system with and u constant
aF()=NF()—G(t), N*=-—N, (1.1  outside a bounded regidifor the sake of brevity, a medium
where bothe and . may deviate from their vacuum value is
in a separable, real Hilbert space. Here the anti-selfféferred to as a dielectjicinner products are denoted as
adjointness ofN reflects the conservation property in the (f.9)=(g]f), adjoint operators by an asterisk, and complex
absence ofG(t). At this point a canonical setup looks €onjugates by an overbar. A centered dot between two ten-
straightforward, but the Hamiltonian does not necessarily#0rs indicates a contraction over the last index of the first and
correspond to the above conserved quantity. Being of minothe first of the second. For the classical canonical formalism
importance in a “stand alone” system, this is not satisfac-We mention[13] and for its quantization14].
tory if a coupling with other systems is contemplated. How-
ever, amends can be made and at the same time it becomes Il. EXAMPLES

clear that the eX|stence_of nonpropagating mo(has'_non- Below we give some examples of field equations with a
empty null space ofN) gives rise to further subtleties. In

o conservation law. They all lead to a coupled set of first-order
fact, the latter lead to a generalization of the usual scalar anﬂp y P
n

. . . ifferential equations. Thug=f(x,t), RIXR—R", is an
vector potentials and associated gauge transformations. . dom o S n s

. ) . ' nh-component field oveR“ X R with value inR", satisfying
Sec. XI we briefly point out how to proceed with convolutive

time evolutions of the type 3 FO ) =M(X,dy) - f(X,1), (2.2
t whereM is annXxn matrix with real partial differential op-
GF()=NF(1)+ fods M(t=s)F(s), (1.2 erators with, in general, nonconstant coefficients as entries.

In addition, there exists a conserved quantity, referred to as

which are relevant in the case in which the permeabilities aré€ energy, given by
frequency dependent. 1
E= Ef dx[ p(x)-f(x,1)]2, (2.2
C. Application to Maxwell’'s equations

The final result obtained above is then applied to Max-Wherep(x), R*—R"xR", is a bounded, real, invertiblex n
well’s equations for a linear, nonhomogeneous, nonconduciMatrix with bounded inverse. Then
ing material medium, including the situation with external _
currents or the coupling with a Sclimger quantum particle F(xt)=p(x)-1(x.1) 23
system. In particular, we obtain the generalizations of thegg real, square integrable for eacht, F(xt)
familiar Coulomb and Lorentz gauges. For atoms in dielec-_ H,=L2(R% dx; R") with conserved normF(x,t)]2=2¢,
trics we not only find &by now well-known change in the satisfying
gauge condition for the vector potentigaused by modified
field modes as compared to the vacuum gabket also the HF(X,1)=N(X,d9)-F(x,t), N=p-M-p~ 1 (2.9
atomic Coulomb potential is affected. Using an effective
Hamiltonian setup, we then give a simple calculation to leadit follows thatN must be antisymmetric
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N= — N*. (2.5 can be rewritten in the form(2.4). Set F;=Rey and
F,=Imd. Now (note thatH is a real operatgr
Supposing thaiN has a unique anti-self-adjoint extension
(this is essential for the time evolution to e¥jshgain de- = 0 H
noted byN, it generates a unitary time evolution @t} : F:(Fl)’ N:( H 0), (2.11)
F(t)=exd Nt]- F(0). (2.6 ?

It is common practice to embe#, in the corresponding the conserved quantity is the total probability-1), and
complex Hilbert spacé/=L%(RY,dx;C") in whichK=iNis  Hi= L?(RY,dx; R?).

self-adjoint. Initially we shall not do so since we want to c. Maxwell's equations for a nonconducting material medium
introduce a(real) Lagrange-Hamilton formalism. We now . , . .
give a few examples. Other classical equations such as thcf: We yvnte Maxwell's equatlon_s for a nonconducting me-
massive Klein-Gordon equation and oscillator chaingdum with external current density as

(phononsg provide further ones. 9D=0,XxH—J, D=¢E,

_ _ _ -1
A. Classical scalar waves 9B=—dxXE, ‘9x'5|t:0—0’ H=un""B. (212

We start from the classical scalar wave equation in the

form (f: R9—R) Here we assume(x) and w(x) to be “nice,” i.e., real,
' smooth, boundefelements ofc? (R)] scalar functions ok,
ath(X,t) — dy- (X) 20, (x,1)=0. (2.7 bounded from below and above by positive consténésnce

invertible with bounded inverge Discontinuities can be
Then, with F,=4,f and F,=c(x)d,f, we obtain Eq.(2.4) handled as a limiting case; sgk5]. For J=0 the conserved

with energy is
Fiq 0 dycC
FZ( FZ)' N= ( cdy O ) @9 E= %f dx{e(Xx)E?+ u(x) B3 = %f dx|F(x,t)|?
and 1 ,
E= }J dxF(x,t)? (2.9 _EHF(U” | e
2

. : 2 0d 4 whereF(x,t) is the six-dimensional vector field
is conserved. In this cask,=L“(R" dx;R").

F1(x,t)
Fao(x,t)

(2.19

1/2
B. Schradinger’s equation F(x t)=( e E(Xt) )

,bL_l/zB(X,t)

Although not a classical wave equation, Salinger's
equation inL2(RY), _ . .
in H, =L?%(R3 dx;R®), the Hilbert space of square inte-
Aup(x,t)=—i[— 2+ V(X)Jp(x,t) = —iH p(x,1), grable functions with value i®® [norm|| | and inner prod-
(2.10 uct (, )]. From Eq.(2.12 we obtain Eq.(2.4), where now

. ( 0 le) ( 0 _871/2(6' O—)X)M71/2 W
- N21 0 - M_l/Z(E'aX)EJ_l’z 0 — VUV INgT VYV,
\ ( 0 —e-dy w e 2 0 -
les, 0o )0 T L0 ¥ 219

The matrix entries are operator-valuet 3 blocks. Thus: Y2 represents ~2U, whereU is the 3x 3 unit matrix, ande is

the Levi-Civita pseudotensore{,3=1 ande is antisymmetric in all three subscript®s is readily verified N* = —N. Full
details for the complex case are given in a paper by Dorren anf1bip

In the following we shall say that a three-dimensional vector ffeisl transverse () if d,-f=0 and longitudinal [() if
a,xf=0. Thus the Fourier transformf(k) of a transversé is orthogonal tck and of a longitudinaf alongk. The associated
projectors are denoted by and Pl. A six-dimensional vector field is transverflengitudina) if both three-dimensional
components have this property. The associated projectors are

. [PH0 | Pl 0

The orthogonal eigenprojector df at the eigenvalue 0 is
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P 0 ( Ved Loy ed,]  oxe 0 217
“lo P, 0 Vid Ly wa] toalu]’ '
|
In the vacuum casesEu=1) wave packets scatter from the dielectric and again propagate
N freely as timet—«. Now the Mdler (wave operators be-
(P1-X)(X) = dx[ 35] "9 X tween the classical fields in the medium and classical free
fields exist anda(Hj)z]R*. In this case a connection with
= _gxf dx'[4a|x—X'|]"dy - X(X") the usual plane-wave expansion can be m@ée alsd9]).
Thus, inL2(R3,dx;C%), denoting
2.1
( & H0:_N2=_(€_p)2:p2Ap:p2u_pp' p:—iﬂx,
and the same foP,- X. In Fourier (momentum space the (2.23
corresponding expression is simplp( X) (k) = e.g- X(k), _ )
wheree, is the unit vector along. we introduce the wave operatdrsote thatA, projects away

Remark Note that in the vacuum case £ =1) the the nonscattering longitudinal states
nonpropagating field§.e., fields in the eigenspace bf; at My 1 . r
the eigenvalue 0) are precisely the longitudinal ones. In gen- all'=s tﬂr‘fwexph Hit]-exp[—iHot]- A,
eral, this is no longer true. Thus we have to distinguish be- (2.24)
tween longitudinal and nonpropagating field@sd also be-
tween transverse and propagating oridss would not be Their existence is readily verified by standard techniques.
the case if we had considered the time evolution f. ( The eigenvectors ofl, at the eigenvalue®are the “plane
Then, however, the time evolution would not be unitary un-waves” [the g(k)'s are two orthogonal polarization unit
less the inner product is chang@hdN, no longer anti-self-  vectorsL k]
adjoin.

Next we mention the eigenvalues and eigenvectors asso- Ui (X)=(x|k)e (k)= (2m) %exp[ik-x]g(k),
ciated with the electric and magnetic Helmholtz operators. (2.29
They come into play in the field quantization below. Differ- on..(0)
entiation of the two components of E¢.4) and mutual <Uf<j)|ukrjr>:5(k—k')5jjf- (2.26

substitution give the wave equations o o
Then, arbitrarily choosmg)( )

P2F (1) =N2-F;(t)=—H;-Fi(1), 2.1
FIO=N-Fi()=—H}-F0, (19 i .
with the non-negative electric and magnetic Helmholtz op-
erators are eigenvectors oH, at the same eigenvalue and, since
@M)*. 0M=A,, the normalization(2.26 is preserved.
Hi=—NpNy=N3Np=2 Y€ d,) - n e d)e 2 Also [see Eq(2.22]
(2.20

) ) ) u () =k te T YAx) (e p) M%) - U (x). (2.28

Ho= —NpiNpp= NiNp=p Y€ 0y) - e e du Y2

(22D In later sectionsly;(x) = uP(x)=(x| QY- u). Note that

here we can label the eigenvectors léf by ke R® and
sj:1,2. This is also the case in periodic systems.

For later reference we observe that the potenfiadsd d

Sincele' H2: Hl' le and N21' H1: H2' N21 the eigenVeC'
tors of theH;’s are related. Thus, denoting the eigenvector
of Hy by uy,,

in
. = 2

Hi o= M. (222 E=—gA—dd, B=dxA 2.29
where A\=0 and a labels the degeneracyl,-Ny;-u,, satisfy
=X2N,;- Uy, and normalization is preserved. Note further
that sinceH; is a real operatony, , is also an eigenvector at Opdy- €A+ dy-edyP=—3dy-D=—p,
the same eigenvalue, so we can always use real eigenvectors
by taking linear combinations. 26 A+ 0y X Y9 X A) + £0,0, P =1J. (2.30

Depending on the actual situation the spectra(f;) of _ o
H; may not be the full positive real axi$" (a band gap ina Finally, the vector potential in the Coulomb gauge and
periodic dielectri¢ or may be partly a point spectrufa lo- vacuum field Hamiltonian in second quantization Etd|
calization interval in a realization of a random dieledtric
Howeyer, for a fir}ite dielectric, Where the permegbilities A(x)=2 fdk(2k)‘1’2{a’k‘iﬁo)(x)+ak»uf<°’(x)},
only differ from their vacuum value in a bounded region, we ; 1 17K
encounter a scattering situation. Initially free electromagnetic (2.31)
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. as in the examples. Then the Lagrangian equations of motion
H¢= EJ: J’ dk kajjay;, (2.32  result in separate second-order equations for the two compo-

nents osz(E;) (the electric and magnetic Helmholtz equa-

where the creation and annihilation operators are those fajons in the electromagnetic casand their connection is
the statesu(k?). lost. (The situation is analogous to that of the electromag-
netic potentials in the Lorentz gauge. They are the solutions
Ill. LAGRANGE FORMALISM of separate wave equations, the connection being provided
by the Lorentz gauge condition.
Remark.Below we restrict ourselves to the cads). A
We now turn back to general equations of the type)),  structure similar to Eq(3.8) can be obtained in the general

A. A naive approach with a deficiency

i.e., we consider situation as is detailed in Appendix A.
= = — *
GFM=NFD, N N*, (3.) B. An improved approach
in a separable, real Hilbert spagg (we suppress the bold-  From Eq.(3.7) we note that the factomd in front of F are
face vector notation We want to obtain this equation from the cause of the inequalitst # £. Thus it makes sense to try
Hamilton's principle[13] £=N"F as coordinate field. This works fine in the scalar
. wave case, where, switching back to vector notation,
2 .
5[ “aeen-o, 32 Lo
i N* . N=— 0xc(x)2(?x( 0 1) 3.9
wherelL is the Lagrangian.. Taking=F for the coordinate

field and is strictly positive(and henceN invertible) for c(x)>cy>0.

1. . 1 The same is true in the phonon case not considered here. In
L= E(g,g)— E(Ng,Ng), (3.3 the Maxwell case the situation is different due to the pres-
ence of nonpropagating modes. Obviously, we have to
project these away before applying the inverse. As will soon
become clear, this has important consequences in further de-
velopments: It gives rise to a generalization of the gauge
t, ) t, concept.
1) dtL(g,g,t)=J dt(—af§+ N2¢,5€) =0, Before investigating the general case, let us first consider
h t how things work out for the vacuum Maxwell situation with
external charges and currents. Here the null spad& abn-
sists of the longitudinal field modes, so we must project upon
J2e=N?¢, (3.4  the transverse ones before Eaking the inverse. Sihieal-
o _ _ _ ready transverse?z():Ng YEY) exists. HenceE' =0,X &,
which is compatible with Eq(3.1). Note that we refrained andB= — 4, &, S0 — £, is precisely the vector potential

from introducing a Lagrangian density. Indeéd,can be a . L o
general Hilbert space, not necessarily a function space ovév'geﬁ?g g%ﬂg?ﬂi g?:eg’et Is transverse, s@,-A=0). Max-
RY. Still the momentum field can be introduced as a varia- g g
EL EL ‘]L
ol )-mle)-[o)

we have, using &(A&,BE)=(AEBSE)+(ASEBE)
=2(B*A¢&,6¢) andN*=—N,

leading to

tional derivative oflL:

® (35
mT=——=¢G. .
23 o]
The Hamiltonian is now
§1 3 EJ. . JJ_
. 1 1 Mg =\ g No™| o)
H=(m§)-L=5(mm+5(NENE. (36
Due to the skew symmetry dfly, the first component of
Insertion of the actual equations of motion now gives Nal, (gi) vanishes, leaving
H=(NF,NF), (3.7

Elt=0i&,=— A, B=—09,X&=0d,XA.

which is not proportional t€= 3| F|2.

The present procedure has a second deficiency in the cakl$ind Ed. (2.18, we have E'=-4,®, with

D (x)=fdx'p(x)/[47|x—x'|], where p(x)=d,-E(X) is

o N the external charge density. Thus we have expressed the
H=H,®H,, N= 12 . Np=—N5%,, fields in terms of the potentials in the Coulomb gauge by
N, O means of a procedure that easily generalizes to more com-

(3.8 plex situations.
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Returning to the general case, Rtbe the(nonzerg pro- Fi=—é+Py(Fi+am)+(N"1QG);, (3.2)
jector upon the null spacad/=A(N) of N andQ=1—P.
Since M(N) = M(N*N) =M —N?) and, from Eq.(3.8), Fo=—Nyé+P,F,. (3.22
. NNy 0 Ni 0 Although it is possible to continue within this general set-
N*N=— 0 NyNgy/ |0 N2/’ (310 ting, there is no immediate application and so we set, as in

the Maxwell case,
it follows that P and Q decompose according faf. Eq.

G
(2.17) for the Maxwell casg G= 01)’ P,F,|,_o=0. (3.23
P, O Q O .
P= 0 P, Q= 0 Q) Qj=1-Py, Then P,F,=0 for all t and also N "QG);
2 2 = -2 =
(3.11) Ni3(N"“QG),=0, so
with P; acting in; . We also allow an inhomogeneous term F1= = a&+Pa(Fatam), (3.29
_ (&(O)y .
G(t)— (fz(t)) In Eq (31) F2: _ N21§. (325
dF()=NF(t)—G(t). (3.12 Next we introduce a generalizatigg of the scalar potential
_ @ of Maxwell theory: We assume that there exists a third
SincedQF=QNF-QG=NQF-QG we have real Hilbert spacé{; and a(closed, densely defingihvert-
e 1 ible operatorM from H; into Py H; (M: ®— —9,® in the
dN""QF=QF-N""QG. (3.13 vacuum Maxwell cage Thus, for eachf € H, there is ag
ith
Splitting F into its components in thé{;’s, F:(E?' we €Ha Wi
have P,f=—Mg. (3.26
Q1F1=at(N*1Q F);+(N"'QG),, (3.14  Now & is defined according to
_ _ Pi(Fi+dim)=—ME, 3.2
Q,F2=(NN"'QF);=Ny(N"'QF);. (319 f(Fatdon) = =M (3.2
. so
Thus, with
R . F1=—d&— M. (3.28
§=—(N""QF)y, (3.19
Note that Eqs(3.28 and(3.25 are the generalizations of the
we have expressions for the fields in terms of the potentials of the
R . vacuum  Maxwell case. Since d/F;=N,F,—Gy,
Fl:_&tg_l—(N QG)1+P1F11 (31D 07t(_5t§_Mfo):le{_Nﬂf}_Gl or
Fo=—Npé+P,Fy, (3.18 &= NiNyé+ M ép=Gy, (3.29
and also and defining the quantity through
P,£=0. (3.19 M*P;F;=—p, (3.30

Comparing Egs(3.17) and(3.18 with the vacuum Maxwell we arrive at the ““continuity equation”
example eatrlier in this section, we see that a similar structure .
emerges and that E¢B.19 is the generalization of the Cou- dhp—M*P,G=0. (3.31

lomb gauge condition. ,
Note the analogy with the vacuum Maxwell case. There

P,F, corresponds to—4,® and M* with 4., so
_ _ M*P,F,——#2®d=p, the charge density. SincB,F,(t)
As noted above, Eq3.19 fixes a particular gauge. We only depends oP,F(0) andP,G(t), so doesp(t) and we

C. Gauges and Lagrangians

now change to a more general situation by setting can consider it to be a given function gfnot depending on
X the dynamics generated by Insertion of Eq(3.28 into Eq.
§=¢E+Pim, meHy (320  (3.30 now gives
In the vacuum Maxwell case, discussed abdvis the vec- HM*PLEFM* M Ey=p. (3.32

tor potential in the Coulomb gauge and, using E218),

P, 7 can be written as the gradieaty of a scalary, so we Equations(3.29 and (3.32 are abstract versions of Eq.
are dealing with a generalization of a gauge transformation(2.30 and can be derived through Hamilton’s principle from
Now, noting thatN,,P, =0, the Lagrangiarni( , ); is the inner product irt;]
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1 1 0éo—M*P1£=0, (4.8
L= E(é’tf"‘ Mé&gy,diE+MEp)— E(N21§,N21§)2
resulting in
+(G1,8)1—(p, . 3.3
( 1 g)l (p 50)3 ( 3) a?go_’_M*MgO:p’ (49)
IV. SPECIFIC GAUGES AND HAMILTONIANS 32— NyNosé+ MM*Pyé=G,. (4.10

In Eq. (3.33 we encounter a phenomenon familiar from
the Maxwell case, i.e., the absencedf,, thus preventing
the construction of a Hamilton formalism for all dynamical 1
variables. The way out follows the same route: We have ta.= E(atg,atf)ﬁ(Mgo,Mgo)l— E(ﬁtgo.ﬁtfo)s
fix a suitable gauge. Here we consider three casgsl(,

These equations can be derived from

andT), which can be viewed as abstractions of the Coulomb, 1 1
Lorentz, and temporal gauges. — 5 (N2 N218) 25 (M*EM* )1 +(Gy, €)1~ (p,€o)s-
A. The C gauge (4.11

In this case we eliminat&, from the formalism by ex- Since the equations obtained &y and ¢ are decoupled, the
pressing it in terms op. Thus we set gauge conditior{4.8) is needed as a subsidiary condition to

select the proper solutions. The momentum fieldsmaye &,
and 7= ¢, whereas

(as we have seen above the Cqulomb gauge condition in the 1 1

vacuum Maxwell case Thené=¢&e QqH; (i.e., n=0) and H=z(m, 7)1+ 5 (Ns1&E, Ny &) o+ = (M*EM* E)4

Eqg. (3.32 reduces toM*M&y=p (a generalization of the 2 2 2

Poisson equation relating potential and charge density

P.£=0 4.9

1
- 5(770,770)3“‘(MfoyMfo)l_(G1,§)1+(Pa§o)3-

&o=(M*M)"*p, (4.2
i (4.12
S0 (0L MEy=—P,F; and M &,=P,G, in the present
case In this caseyn satisfies
02— N1 Npé=Q,G, (4.3 2n+MM* 9=P,G;. (4.13
and

C. The T gauge

1 1 In the vacuum Maxwell case the temporal gauge is fixed
L= E(at§1(9t§)l_ E(N21§1N21§)2+(Gll§)1 by q)zol which now becomes
1 £=0, (4.19
—5(Méo,Méo)s, (4.4

with &, given by Eq.(4.2). The canonical momentum field Fi=—a¢ (4.15

associated witl¥ and the Hamiltonian are
and

T=¢, (4.5 ,
€+ NNy E=Gy . (4.1
1 1 1
H= 5(77'77)1"' E(N21§1N21§)2_(61,§)1+ E(M§0:M§o)1 Now

(4.6

1 1
. . ) i L=E(atgyatf)l_E(N21§,N21§)2+(Gl;§)1, (4.1
and substitution of the equations of motion now results in

1 the momentum field isr= &, and
H= §||F||2—(G1,§)1, (4.7

1 1
, o HZE(W,W)1+ E(N21§,N21§)2_(G1,§)1- (4.18
which equalst for vanishingG.

B. The L gauge V. QUANTIZATION

Here we encounter the generalization of the Lorentz We are now in a position to quantize the Hamiltonian
gauge conditiond;® —d,-A=0 of the vacuum Maxwell systems obtained in the preceding section. Our procedure
case: starts with expanding the coordinate and momentum fields in
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terms of an orthonormal basis. The expansion coefficientap with expressions having a close resemblance to those
are ordinary generalized coordinates and momentathiigl  common in nonrelativistic quantized electromagnetic field
expressed in the latter. Since these canonical variables satisfiyeory. We discuss th€-gauge case in full detail and give a
the usual Poisson bracket relations, we can now appljew comments about thie-gauge situation.

Dirac’s recipe of replacing Poisson bracké®8'’s) by equal
time commutatorgwe seti=1). At this point we have ob-
tained an abstract operator setting and our next step is to
construct a Fock-space representation. Then all objects of In theC gauge e Q,H;. Now let{u;} be an orthonormal
interest can be expressed in terms of Fock-space creation abdsis for this subspace and sgt=é£(u;)=(u;,é); and
annihilation operators and finally, by making a special choicer;= mr(u;)=(u;,m); [in general g(f) (f,&, and
for the orthonormal basis abovthe eigenvectors dfi5;N,, w(f) (f 7),]. The latter form an infinite set of canonical
i.e., the Helmholtz operatdt; in the Maxwell casg we end  pairs in terms of which

A. The C gauge

1 1 1 1 1 1
H:5(77',77)14'E(N21§,N21§)2_(G1,§)1+E(Mmefo)l:E(WﬂT)l‘FE(_N12N21§,§)1_(G115)1+E(Mgo,Mfo)l
1
=52 (mu)i+ E( NiNaa U)a(U;, )1 2 (G1,Uy)a(uj €)1+ <M§O,M§o>1
e , 1
=52 ™+ 52 (£:Un)a(un, ~NiNat)a(u; )1 2<Gl,u>1§,+ 5(Méo,M&o)

1 1 1
:EEJ': 7Tj2+ 5121 (N21uh,N21uj)2§j§h_§j: (Glauj)§j+§(M§01M§O)l (5.9

and the PB’s can be defined in the usual way, leading to Then

{& 7m0} =jn - (5.2 [&(F),m(g)]=i Re(f,9), (5.6
Quantization is accomplished by replacing the PB’s by thérom which Eq.(5.3) follows. With {u;} an orthonormal ba-
commutators sis forQ,;H we have
[E(U)),m(Up) =16} (5.3

(N1&:Nw) =2 (N1, (U N )
We give a representation of the operatd(®;),=(uy) in

terms of boson creation and annihilation operators acting in a _ 2

Fock space in the usual way. So far we have dealt with real ~< (&,Nauj)(Nau;, &)
Hilbert spaces, but at this point we need their complex coun-

2
+a

terpart. This is a trivial matter for the examples in Sec. Il. In S .
the general cas®, the complexification o, is defined as ~ 4 &(N1u;) E(N1u;)
follows: For f,geH, and A,ueC we define {f,uQ)

=\u(f,g) and for operator, TAf=\Tf. Furthermore, let —E \/,\Tu \/Eu)
F=F(Q;H) be the symmetric(boson Fock space over J 2!

Q.M anda* (f) anda(g) creation and annihilation operators

acting inF (see Appendix B for detailsThusa* is linearin  and, skipping the zero-point energies arising from commut-
its argumenta* (uf+g)=pa*(f)+a*(g), and we have  ing througha*’s and a’s, noting that G,,u;)=(u;,G,)
sinceG; is an element of the real spagg,

[a(f),a*(9)]=(g,f), f,geQH. (5.4
1
We now take, withN;=(N3;N,,)2, H=§j: a*(\/Nluj)a(\/Nluj)—Ej: (Gl,uj)a*(\/?l\lluj)
fy=a* _1 ! f (5.5 1 1
g( )=a 2N1 2N1 ) . +(uj,Gl)a(Wuj)]+§(M§O,M§0). (57)
1

In particular, ifN; has a pure point spectrum afud} is a set

= &N, ). of eigenvectors with associated eigenvalgas} ({u;} is

w(f)za*(i\/%f
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complete, sinceN; is invertible, but not necessarily unique B. The L gauge

since degeneracies are allowgtthen, since for suitable func- Here £ and 7 are no longer confined 1@+, but things

tionsF, F(Ny)uj=F(Aj)u;, proceed as before except thai? is replaced by
Ti=(N2+MM*)Y2=N; &M, andM,;=(MM*)*'2 (the op-
erators act in the orthogonal subspa€gg{ andP,H). Let

H= E Ajar(upauy) - 2 F{(Gl’“)a (uj) feH, f=g+h, geQ,H, andhe P,H. Then
Még,M&). (5.9 g(f)=a* D o)ial Eog]oar| L
uj,Gy)a(u; + , : =a a =
If the spectrum gNi is continuous andll? has an eigenfunc- ta 1 gl +ar 1 nlta 1 hl
tion expansioN7=X,[5d\ \|uy,){ U\,|, wherea labels V2N, V2M, V2M 4
the degeneracy, we have in E§.7) _
m(f)=&(Tf). (5.11
a* (YNyu) =2 f dh a*[(VN1Uj Uy, Uy ] With the pair €, 7o) we proceed similarly. Let{’ be the
a complexification ofH; [inner product ( , ) ] andb*(f) and

b(g) creation and annihilation operators, respectively, acting

=> f d\ a*[(Uj,VNjUy ) Uyl in F(H'), satisfying
) [b(f),b*(9)]=~(g.f)", f.geH. (512
=2 Jdkﬁ(uj,um)a*(um), Now, with M= (M* M)
1 1 .
2N =3 [ @, ua,, 69 0T Jz_sz)’ WO(f):g('M(;f)l'a
etc., resulting in Then, if{y;} is an orthonormal basis fdt and{w;} for ',

H=2 de Na* (Uya)a(uy,) H=2 a*(VTwy)a(VTay)) = 2 b* (WMow))b(VMow))

1 1
1 - 1 (G yya* —y-)+(y-,G )a<—y->}
—g f dxﬁ{ml,um)a*(um ] S V73 ey B WS i
Uy, Grally )+ 5 (MEMEy). (510 (pop)b™| g |+ vy pIb| e | (-
(5.19

Note that the above expressions are similar to those encoup- th heral. M dM. h int
tered in the vacuum Maxwell cag@.32. There theu,,’s N Ihe case wherel, i, andvi; have a pure point spec-

) 0) — trum we take{u;},{\;} as before and fofw;} a (completg
;ref(tjh}\eispltr':\;elav(\:/:gebsta}%rﬁli [Eq. (2.29], A=k=[k|, and set of eigenvectors d¥l, with {«;} the associated eigenval-
P ) ues. Then{v;=Mw;} is an orthonormal basis fd?;H and
The following remarks are in order. ! J

(i) The spectrum oN? outside zero need not always be Twj=nyv;. Thus

pure, either point or continuous. In the free electromagnetic
case and also for finite dielectrics its spectrum is purely con-  H= 2 Nja* (uja(u; )+E mifa* (vya(v))
tinuous. If, in a realization of a random system, there is a
localization interval, we encounter a mixed spectrum.

_ (ii) In the electromagnetic case a common procedure con- —b* (wj)b(w))}— 2 —{(Gy,upa*(u;)
sists of confining the fields to a box and imposing suitable \/_J
boundary conditions, thus rendering the spectrurNi)pure
point, whereupon the size of the box is made infinite. Here +(u;,Gp)a(u))} - E
our (separable Hilbert space is still general, but neverthe- \/7]
less, as is less well known, the spectrum\gfcan be made
pure point by adding a suitable Schmidt class perturbation
with arbitrarily small Schmidt nornisee[16], p. 525, theo- +(vj.Ga(v; )}+2 \/7{(’) 0j)* (W)
rem 2.1 and p. 527, theorem 2.8vhich can later be made to
vanish. +(vj,p)b(w))}. (5.15

G]_U)a(v)
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Remark Note that we defineti* (v;) andb(v;) such that B. The L gauge

a minus sign appears on the right-hand side of G&dql2.

In theL gauge
This is common practice in the indefinite metric formulation gaug

in relativistic field theory{14,17]. Here we encounter essen- 3D+ dy-eA=0, (6.9

tially the same situation and the same methods can be used

with appropriate modifications. In particular the guantumleading to the equations of motion

version of Eq.(4.8) can be used to single out the set of 5

physical states. Thus we see that this is a general feature, due P —dy-edx®@=p, (6.10

to the presence of a nonempty null space of the classical

dynamics generator. 2A+ e ta X um (9 X A)— d2eA=e"1].  (6.1D)
VI. APPLICATION TO MAXWELL'S EQUATIONS In particular,

We apply the formalism developed in Sec. IV to Max-  {—Nip Nyp+ MM *}-f=g7 Y29, x u=1(9,x e~ V%)
well’'s equations as given in Sec. Il. Noting that o 1
N21'g:—,l/«71/23x><871/29, £7%0y0y- € i

— -1/2 -1 —-1/2
=- dy- ) f
Fi=eY%E= — 9 2A— 612 b= — 9,6~ M&,, g "y u e )
e U2y 1l =12,
Fo=p "B=u o, xA=—Ny & (6.1) o e
2T M M X 21' & . _81/28)((9)(.81/2]:. (6.12

Also, sinceP;- Y29, ®=¢Y29,®, we can identify,; as
L2(R3,dx;R®), H, as the space of real scalar functidnfor
which ¥29,f € H,, and

§:_81/2A, ﬂ.:_sl/ZD—,tA’ gozq), MZSUZ&X.
(6.2
Moreover, Mf,g);=(f,M*-g)o=(f,—dy-e¥%0)y, SO
M*.g:—ﬁx.sl/Zg, M*,Mz_ax.g.o’)x, and MM*g
— —81/2(9,((9)(-81/29.
A. The C gauge
In the C gauge we have
dy-eA=0, (6.3

leading to[see Eq.(2.30]

28 A+ 9, X (93X A)=Q4J, (6.4

dy-€- 0, P=—p, (6.5

and G;=¢"Y3)

1 2 1 -1 2 1
LZJ dx 58(07tA) _EM (IxXA)“+J-A— qu) .
(6.6)

Thus 7= — £'29,A and

1 1 1
H= f dx[ze(ﬁtA)2+ EM—l(axxA)z—J.AJr Epcb].
(6.7)

The PB’s now become

{£00, 7(y)}={e 0 AX), e " y) AY)} = Qu(X,Y),
6.9

Remark Note that the two operators in the middle expres-
sion in Eq.(6.12 act in orthogonal subspaces, whereas in the
vacuum case the two last terms in the third expression can-
cel, leaving—N;,- Njo,+ MM * = — a§ , the well-known free
field result. The coordinate fields afé,=®,&=—e?A},
whereas

L= f dx{%a(&tA)z— %(a@)z— ;M—l(axxA)Z
+8(<9XCI))2+J~A—pCD], (6.13

so the momentum fields afer,=d,®, 7= —'29,A}. Thus

1 1 1
H= J dX[zS(o”tA)z-i- Epfl(axxA)z— E(atcb)2

—e(0,®)%—J-A+pd (6.19
and the PB’s becom@J is the unit 3x 3 matrix)
{P(x),®(y)}=d(x—y),
{2 Al(x),e"(y)3Al(Y)} =Ud(x~y). (6.15

VII. QUANTIZATION OF MAXWELL'S EQUATIONS
IN THE C GAUGE AND COUPLING
TO MATERIAL PARTICLES

In applications theC gauge is the most convenient one to
use and from now on we restrict ourselves to this case. The
quantized version of Eq6.7) is directly obtained from Eq.

(5.10:
H=H;+Heyq,

where Q,(x,y) =(x|Q|y) is the kernel associated with the
projector upon the propagating modé€¥, (the projector
upon the transverse states in the vacuum)case

Hfzg f dx A a*(u}\a)a(u)\a)l
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1
Hexi= —f dx J(x)-A(x) + §J dx p(X)P(x),

AX)=g(x)" Y2 f dN(2N) " YHa* (Uy ) Uy o(X)

+a(u)\a)u)\a(x)}1 (71)

A. TIP 56

in practical cases of atoms in a medium with optical charac-
teristic length scale, where hardly changes over atomic
dimensions. Still, if such subtleties become important, one
reaches the borders of a setup where the phenomenological
approach through the permeabilities seems trustworthy and a
more sophisticated treatment is preferable.

(i) Quantization in theL gauge does not pose specific
problems. The whole procedure can be patterned gf@r

whereH; is the field Hamiltonian in the absence of external The complications that occudue to the indefinite Hamil-

charges and currents. Here we assumedHhabas a purely

tonian in the vacuum case once more make their appear-

continuous spectrum and possesses an eigenfunction expaHiCe.

sion {u,,} [see Eqg.(2.22]. As discussed in Sec. Il, the

eigenvectors can be related to their vacuum counterparts viii. ATOMIC RADIATIVE DECAY IN DIELECTRICS

Uy =QMu for a finite dielectric and the labeling through

k andj can also be used for periodic systems. Thegjf dA
is replaced by [ dk in Eq. (7.1 and, witha,;=a(Uy;), etc.,

J

A(x)=s(x)’1’2; f dk(2k) ~M2{aj Uy (X) + ;g (X) -
(7.3

In this section we study the radiative decay of an excited
atom in a dielectric. For simplicity we consider a hydrogen
atom with an infinitely heavy nucleus at the positi¥nand
make the long-wavelength approximation.

Remark.In the present situation the long-wavelength ap-
proximation involves the following(i) The evaluation of the
vector potential in the poinX. (ii) the replacement of(x)
by £(X) in (7.9, leading to atomic Coulomb potentials of
the type|4ms(X)r| ! thus the atomic eigenvalues depend
on X if the atom is situated in a space region wherdevi-
ates from unity; andiii) in the vacuum case it is common

Finding the Lagrangian and Hamiltonian for a full, practice to make the dipole approximation at this point: The
coupled matter-field system does not pose any further prolsymmetry-breaking properties caused by genesal

lems if we assume that the forde on a charged particle dependent permeabilities make this less obvious in the
positioned inx in a material medium, due to an external present situation.

field, is still given by the Lorentz force

F=e{E(x,t)+VXB(x,1)}. (7.4

Then the Hamiltonian for a set of charged particles in a

external field is
1 2
]

and for the full interacting systenichargese;, |ej|=1,
massesn;), dismissing self-energies,

H=H,+H;+Hj., (7.6
1,1
m:; Z_meJ + E]Zh ejehq)(Xj ,Xh), (77)

e; 1
Hmt:—E z—gh{pyA(xjHA(xj)-p,»Hg Z—mjejZA(xj)z,
(7.8

where

= dx- 8(X) P (XY) = 6(X~Y). (7.9

The following remarks are in order.

(i) As noted earlier by Kweon and Lawanfii2], A(x) is
not transverse in th€ gauge so the operatops and A(x;)
do not commute in general. In addition, if we solve EG9)
for & we do not obtain a Coulomb potential. In ET..9)

Also we assumeas for a finite dielectricthat the classi-
cal field has, in addition to the eigenvalue zero for the non-
propagating modes, only a continuous spectrum covering the

rpositive real axis. The interaction with the field will turn the

excited atomic states into resonances, their imaginary parts
giving the radiative decay rates of the now unstable states.
We calculate the corresponding complex eigenvalues to low-
est nonvanishing order in the interaction, using an effective
Hamiltonian formalism. We have

H=H+H¢+H Hye 2 !
=Hat+ He+Hing, a~2m  Aas(X)r’
p=—id,, r=|r|,

e e? )
Hine=— EP'A(X)‘*‘ ﬁA(X) ,

AX)=g(X) V2> fdx o(N)(2\) 12

X{a*(u)\a)u)\a(x)+a(u)\a)u)\a(x)}' (81)
Here we introduced a cutoff functiom(\) in the definition

of A(X) in order to avoid divergencies. In the following we
neglect theA(X)? term in the interaction. Further approxi-
mations will be made along the way, our main aim being an
investigation of the leading deviations from the vacuum case.
We write

e(x) is sandwiched between two space derivatives and a

convolution is involved. These matters are rather irrelevant

H:H0+Hint! HO:Hat+Hf' (82)
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The atomic eigenvalued, have associated eigenvectors HEM(z)=\,P,+P,Hin[z—Ho] H;P
i . at at n ntn n'tint 0 intt n

@nim» Hat®nim=Anenim, and eigenprojector® =3Py, 2

=3 mlenim){@niml- We setei0= ¢4 for the ground state. _|y\ paty e [26(X)] L

For later use it is convenient to write the three orthogomal 2 LR

states as the components of a three-dimensional vector

©,=pe,, Where ¢, is a scalar quantity. Hence XE fd)\ 2y —1pat
a(N)NTTPRP-Uyo(X)

P31=1¢2) - (@2l =Ple2) - (@2|p. Let o 4. be the vacuum state e

for the field, P)=|¢,ac){¢yad, and letP! be the projector

upon the nth  Fock layer. In  particular, X[z=Ha— A1~ Uy o(X) - pP2t @ PE.
PI=3_fd\|u, u,,|. The eigenstates ofH, are inm ¢ "
=Pnm® Prac  and we write PnZEI,m|¢nIm><¢nlm| (8.7
=PdepP].

n 0

By the Feshbach projection formuld (is a projector, As an example we consider the truncated system where only
Q=1-P, Imz#0, taken positive from now otlp=PHP,  the 1s (n=1) and 2 (n=2, |=1) states are retained. As
Hpo=PHQ, etc) far as the field is concerned, everything is in the vacuum

subspace and we take this for granted. Thus

[z=H] *=[2—Hql 'Q+{P+[z—Hql "Hqp!Ge(2)

X {P+Hpg[z—Ho] "1, He™(z) =\ P2‘1+ 260001 2
Gr(2)=[2—Hp—Hpglz—Hgl *Hopl * fdx T (M)A HPEIP Uy a(X)
=[z—H®M(z)]" L. (8.3

X[z—Hat—x]*lﬁa<X>~pP3t

With P=P,, andQ=1- P, and noting that they commute =\, Pat+
with Hy, we have 2

[ZS(X)] 12 de oML

X[2= N1 =N P3P Uya(X)P3 Uy o(X) - PP}
Pilz—H] *Py=[z—H{"(2)] Py,

(8.9
|_|§1eff>(z):)\nanr P HinPnt PnHinth[Z_HQn]_l Using the spherical symmetry ef; and ¢, we have
X QnHin(Py P31p-Uro(X) P§'Uy o(X) - P53}
— . —_ -1 . T
=MaPnt PoHindz=Ho 1" HiniPn. (849 =12 (2lPP-Uo(X) | @1){@1|Ura(X) - PPl 02} 2

1 _
Since (¢ ad A(X)|@,ac)=0, we have P,Hi,P,=0, :§|<991|p'¢2>|2|¢’2>'U)\a(x)u)\a(x)'<¢2|v (8.9
P,HintQn=P,Hin:, etc., which were used to arrive at the
final expression. We determme the resonance poles q
[z—H] ! originating from the atomic eigenvalues, due to
the perturbatiorH;,;, by approximately solving

HEM(2) =N P3i+ k(X)X fdx oM\
zP=H"(2)P (8.5 . _
><[Z_)\jl__)\] |¢2>'u)\a(x)u)\a(x)'<¢2|!
for complexz. In the solutionz is the perturbed eigenvalue

2
and P the associated projector. In essentially the same way k(X)) = ( € ) [26(X)]" Y @lp- @) 2. (8.10
as in the vacuum case one calculates

1 We now iterate Eq(8.10. To zeroth ordegg= N\, Py= P21,
(@rad AX)Q[z—Ho]*A(X)|¢@yac) and to first order

_ -1 2y -1
[26(X)] Ea: Jd)‘ TN tha(X) 2Py = NP3+ k(X)X fdx o)A

X[2=Ham AT ). 8.9 X[ +Hi0= N1 = N1 @) Uy o(X) Uy o X) - (2]

Then, to leadingsecond order in the interaction, =N\2P31+[ @) -M(X) - (g]. (8.11)
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This expression closely resembles that of the vacuum casgy by the authof18]. In that reference explicit formulas in

except that ther& ,u, ,(X)u, ,(X) can be replaced bju,  terms of Bessel functions are given for this and related ob-
leading toP;=P3.. In general, this isotropy is lost and,  J€cCts. _ S o
splits up into three different values; see below. Mak- [N the case where the isotropy approximation is not justi-

ing the isotropy approximation = U, ,(X)U, 4(X) fied we solve Eq(8.11) by writing I\/I_—Ejzlmjajbj ,lvhere

—1/32 ,|uyo(X)|?U we haveP,=P3! and 1a;,b;} form a biorthogonal set; - b,= &y, Ef;laj bj=U.
Then
Z,= N+ EK(X)E f dho ()AL 3
3 @ ZlPl:jzl (No+my)|a - e2)(bj- ¢, (8.19

X[Np+i0=N1—N]"YHuy(X)|2. (8.12
from which we conclude that the eigenvalues aretm,

Hence, settingr(\)=1, with associated, in general, nonorthogonal projectors
|aj'¢2><bj'¢2_|- _
I'(X)=1Imz, The following remarks are in order.

(i) Other cases can be handled in a similar way. For pho-
o . ) tonic crystals with a band gap the gap is excluded inxhe
- EK(X)%: f dA NS = A= M) Uy o(X))] integral sol"(X) vanishes fowg in the gap. Note that above
I'(X) is only calculated to leading order. At this point the
T possibility cannot be excluded that an eigenvalue situated in
== §K(X)Nf(x)' 8.13 a gap actually disappears. The vanishingl'¢X) does not
imply that the atom does not decay. It may do so through the
simultaneous emission of three or more photons provided the
photon energies are not in a gap.
(i) Above we calculated the imaginary part of a perturbed
eigenvalue. If we also want to determine the shift in its real
art the cutoff functiono(\) is necessary in order to avoid
divergencies. Divergencies also appear if one tries to include
degenerate states at a given eigenvalne 2s and 2p states
Sh the above example See Sec. X for a renormalization

whereN¢(X) is the so-called local density of states for the
classical(i.e., not quantizedfield, its integral overX being
the field density of statel; itself. The above result, valid for
generale and u, generalizes the scalar case result by Spri
et al. [2]. For its numerical evaluation the mode functions
Uyo(X) must be calculated. The translation symmetry
present in a photonic crystal case makes a further Bloch d
composition possible, but actual calculations do not yet see

. N - ! _ r re.
to exist. In other situations it is sometimes convenient t ocedure

recast Eq(8.13 into a different form, featuring the electric

classical Helmholtz Green’s function. Withp=XA,—\; we IX. BAND-GAP SYSTEMS AND RANDOMNESS

have A. Atoms in band-gap dielectrics

5 In the preceding section we obtained results for the be-
(X)=— il K(X) >, f A\ S(wo— A (X|Uy ) - (Uy ol X) havior of the excited states of a “two-level” atom coupled to
3 a the quantized electromagnetic field in a dielectric. These re-
5 sults were obtained to leading order in the atom-field inter-
=Imz k(X)tr(X|Qi[ w2+i0—H;]71Q4|X) action, which amounts to a truncation of the photon Fock
3 space to the first two layefsacuum and single partidle
For a better understanding of the situation where a band

= |m3 kOOt X|[ w3 +i10—H{]7YX) gap is present, it is useful to consider first the spectrum of the
3 two-level system and field Hamiltonian restricted to the first
2 few Fock layers with the interaction deleted. We assume that

:lmEK(x)tr(x|R(w3+io)|x> the Helmholtz operatoH; has, apart from the eigenvalue

zero, associated with the nonpropagating modegadso-
2 lutely) continuous spectrum covering the positive real axis
=Imz K(X)trG(X,X,wSHO), (8.149 except for a finite gapN, ,\p), Which starts at some positive
3 value, and that the difference of the two atomic eigenvalues
wg=M\,— N\ is in this interval.
where[see Eq(2.17] Q,=1—P is the projector upon the Using the fact that the spectrum &f,®1 4+1,8H is
propagating states associated with and tr stands for the the set of point§\ ,+ X g}, where\ , runs through the spec-
trace over a X 3 matrix. Since the imaginary part is taken in trum ofH,, and\ 4 through that oH 5, we obtain the results
the above expression we could repl&gby the unit opera- displayed in Fig. 1. In Fig. (B) the spectrum of the field
tor, the contribution ofP; [~ &(w3)] being zero. Thus the Hamiltonian, restricted to the first two Fock layers, is pre-
calculation ofl’(X) amounts to the evaluation of the Green’s sented'see Appendix B for the layer Hamiltonign#lote the
function G(X,X,w3+i0)=(X|R(w3+i0)|X). In general, eigenvalue zero, associated with the vacuum state, at the bot-
this is a complicated matter. Even for dielectriMie) tom of the spectrum. In Figs(ld) and Xc) the next layers are
spheres this has only recently been achieved in full generakdded. Adding further layers removes the gap completely in
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HoF =FHo=Hoe=\,P3'@ P{+ (N1 +H))PI@P].

O . S — 9.2
(B)  wooomeeeimmeimeanaeens )._ ............. — ThuskE gndF reduceH: It breaks up into two partslg and
: Hg, acting in the orthogonal subspacks and Hg (super-
LG B He—————— selection sectojsNote thatHyz has the isolated eigenvalue
% % ! N, and the pieces of an absolutely continuous spectrum
(@) A [N2, N2+ N ] and[N,+ N\ ,0], whereas\, is an isolated ei-
P A— X f genvalue ofHyr, which has the intervalgh{,A 1+ \,] and
: [N+ X\p,@] as a continuous spectrurl;,,; has finite rank
D % X : and so have its restrictions @z andHg . In particular they
@ X v - are trace-class operators, implying tiklt andHg have the

same (absolutely continuous spectrum. Further, since the
interaction is compact, the spectra of these operators outside
FIG. 1. Spectrum of a band-gap systérosses are eigenvalues the above intervals can only consist of isolated eigenvalues
lines continuous spectrumin (a) the spectrum of the field Hamil- with finite degeneracy. For these mathematical ‘?'Eta"s’ se_e
tonian restricted to the two first Fock layers is given. Note thel16:19. In the present case this means that the isolated ei-

vacuum eigenvalue in the origin and the band gagbjrand(c) the ~ 9envalues may move or disappear and new ones may appear.
third and fourth layers are added, respectively(dnthe eigenval-  The situation is controlled by the Weinstein-Aronszajn theo-

ues of the two-level system are presented(d}ﬁ.(g) the combina- rem [16] Alternatively, the isolated eigenva|ue3 can be ana-
tions of (8)—(d), (b)—(d), and(c)—(d) are given, respectively. Note lyzed further by means of the Feshbach form@a8). Again
the complete embedding of the excited state in the last case. ~ we are led to the relatioa P= H€™(z)P, where onHg,
taking P=P3'® P,

this exampl€(in general, ifA >0, there is no gap left in the
full H¢). The two eigenvalues ;and \, of the two-level _ 2y —1 1 2
system are pictured in Fig.(d) and in Figs 1e)-1(g) the Z_)‘1+K(X)§ fd)‘ M)A 22 A e X
combined atom-truncated-field spectrum is given. Now 9.3
is associated with the product of atomic ground state and
field vacuum state anl, with the atomic excited state and and onHg, with P= P3'® P{) )
vacuum state. With two and three layers presents at the
bottom of the second piece of continuous spectrum with a _ at J -1
gap to its left but with three layef§ig. 1(g)] it has become 2P=A2P +K(x)§a: dh oA
continuum embedded. o

The next step is to add the interaction X[2= A =N H@2) Uy o X) Uy o(X) (2| . (9.9)
Hi+= —(e/m)p- A(X), again suitably truncated. We discuss . o _
the situation for the two-level, two-layer case, relevant for€re « is again given by Eq(8.10. We write Eq.(9.3) as
single-photon processes. Nawli,,; reduces to a finite-rank

)\a
operator z=)\1+K(X)2J dh a(M)2N T z= A= N Yup(X))?
@ 0
Hint= 7{l 019 4) - (€28 @yacl +|€2@ @rac) (@010 ] .
2y =170\ _y7-1 2
+|‘P1®‘Pvac><¢2®'ﬂ+|¢2®'¢><¢1®¢vac|}! +K(X)§ f)\bd)\ A |u>\a(X)|
= AX)| @yac) =M HX(2)+Y(2)=2(2). (9.5
_ ~12 Y~ Now, consideringz—\,—\] "%, we note thaZ(z) <\, for
[22(X)] ; Jd)\ OO oK) ya), Z<\y, Z(2)—\; asz——o and Z(z)——© as z\,. It

follows that there exists a solutiaq<<A; and thatz;—\; as
n=—(el3m){@4|p- ¢©,). (9.))  k—0. This remains true if there is no gap, i.8,=\;.

Next consider the region\G+ N4, Ao+ \p). Now X(z) —
Here ¢; and ¢, are chosen such thapy|p- ¢) is positive  as z| A, +\, and Y(z)——c as z]\,+\,. Thus Z(2)
and® - indicates a tensor product over vector componentsganges through the whole real axis asruns through
followed by a contraction. SeE=P{'®@ Pg+P3'@P] and  (\,+\,,A,+\p), S0 there is a second solutiag in this
F=P3'®P{+Py'®Pl. Then E+F=1 and #H| interval. We havezs—\,+\, as k—0, but for k=0 the
=3, Jd\ N|uy,){(u,,| is the field Hamiltonian restricted to only solution is\ 4, i.e., z3(k) is not analytic ink=0.
layer one¢ The analysis of Eq(9.4) is more complicated. In the iso-

tropic approximation it takes the form
HintE=EHint,

1
— 2y -1
HoE=EHo=Hoe=\P{'® P{+ (N, +H])P3'@ P!, ZP=N\oP>+ §K(X)Ea fdk (M)A

HintF =FHint, X[Z=N 1= N1 Huy o (X) PP, (9.6)
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and, by a similar argument as above, there is a solutjon

e (Ni+ Xz, N1t )\p), Which can be considered as the per- (@) e A

turbedh,. A more involved argument leads to a correspond- :

ing result for the three solutions in the nonisotropic case. T
We did not check the details, but expect the situationtobe .y ... Y

similar for the three-layer case. With four or more laykgs

is already an embedded eigenvalue without interaction and it _

is expected to turn into a resonance ohfg is switched on. FIG. 2. Spectrum of a randomized band-gap sysemsses and
The physical interpretation of the above is thabjfis in  lines are the same as in Fig. 1, hatched lines are localization re-

the gap the atom cannot decay by the emission of one or tw@ions. In (a) the spectrum of the first two Fock layers is displayed.

photons(in fact, the emission of an even number of photonsNOte the localized states to the left of the right part of the continu-

is prohibited for other reasopgutit can by the emission of ~©US Spectrum. Ir(b) the eigenvalues of the two-level system are

three or more. Of course, the precise situation depends on tff/e": Whereasc) shows the combined spectrum. In this case the

value of the atomic eigenvalues, the properties of the gapsecond eigenvalue is embedded in the dense point spectrum and at

I PR . the bottom of the continuous spectrum.
and the presence of symmetriéshich can inhibit certain

decay processgsbut the general rule of thumb is that

n-photon decay does not take place if the energies of thhave a finite-rank perturbatiprbut it is by no means clear as
photons involvedthey need not have the same engrgse to what happens ta,. Present day perturbation theory can-

in the gaps of the corresponding classical dielectric. The situ?0t cope with eigenvalues embedded in a dense point spec-

ation can be expected to be similar for more precise model§um- This raises the question whether single photon decay is
for an atom or molecule. still inhibited. From a physical point of view this is expected

to be the case. There are no propagating classical field modes
with energy inA, so if the transition frequency, is in A,
B. Band-gap systems with randomness radiation cannot propagate away.

Next we consider the same case but with some rando The situation may change if we average over randomness.
art e added to the electric ermeability: Mhen the problem can be formulated in a bigger space, a
P © . ectnc -~ p I direct integral relative to the underlying probability measure
e(X)—e(X)+e,(X). As is customary in this field, the index %_'

o labels the realization of the random process involved. Her see[23] for detaily, and in this space the classical field

. . ; . . Hamiltonian may once more have a continuous spectrum in
we can think of a lattice of dielectric spheres where addi- Y P

tional dielectric objects are placed between them in a randor%' Thus we are back to the situation of Sec. VIII. In this

way, that some spheres are removed from the lattice in connection note that the eigenvalueiirstrongly depend on

. - . e actual realizatiof20] and averaging leads to a smearing
random way, that the positions of the original lattice spheres : . . .
g ) . . out. Further, if the random process is ergodic, the integrated
are randomized, etc. Another, intensely studied case is th

Anderson model, which in the present context amounts tgensity of states is d.ete'rministﬁ20]: It ha; t.he same value
random coupling’ constants, multiplying the & of each of ?or almost every real|zat|on. However_, this is not true for the
the spheres on the lattice pjositiora§'ﬁ)\~s- For a general !ocal density of states, which determines the (_:Iecay_constant
introduction into random classical Wavé rJ‘n.otion $8kand in £q.(8.10. In a system of randomly placed.dlelectnc gca’g-

| ' terers the atom can be close to one of them in one realization
for the mathematical backgrouh@Q].

In general, it is expected that a random perturbation give but further away in another one, so the local density of states

rise to the occurrence of a spectrum in the gap of the class?-vIII be different in both cases.

cal system, the so-called Lifshitz tails, and that this spectrum
is Anderson localizedthe vanishing of the diffusion coeffi-
cient in this energy regionRecently, some mathematically  pjyvergencies turn up if one attempts to calculate atomic
precise results have been obtained in this directiof21it  properties such as the Lamb shift of atomic levels. In the
is shown that for a periodic system with a gap with random-~acuum case a Kramers transformation can be used to cir-
ness of a SpeCifiC type added there is an interval in the Origicumvent then[14,24,23 Here we extend it to material me-
nal gap containing a dense point spectrum with associategia, once more making the restriction to the long-wavelength
exponentially decaying eigenfunctiofihe definition of lo-  approximation. Our starting point is E¢B.1), where we in-
calization adopted in mathematical warkJsing a different  troduce a cutoff(N) in A(X) (a smoothing in coordinate

riodicity of the original band-gap system is not required. (g 1) as

Next consider a two-level atom in a randomized band-gap
dielectric that contains a localization interval in the gap 1
such that the atomic transition frequency is contained in H=—[p—eA,(X)]?+V(x)+H;,
Then the situation of Fig. 1 changes. Suppose that at the 2mg
left of the second field continuum; see FigaR Thus, in the
two-layer approximation), becomes embedded in a dense V(x)=—|4me(X)x| 7L,
set of square integrable field states and is at the bottom of a
field continuum; see Fig.(2). Next, the interaction, which is
now also a random quantity, is switched on. The decompo- A (X)=8(X)" 1/22 f dn o(A)(20) 12
sition above can still be made and the gap reméives still 7 @

X. DIVERGENCIES: KRAMERS TRANSFORMATION
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X{a* (Uy o) Uy o(X) +a(Uy o) Uy (X))
(10.1)

The idea is to transform away the offending teprA(X) in
favor of a more manageable changeMnFor this purpose
we introduce the Hertz vector

Z,(X)=ie(X)" V2> fdx o(N)2712\ 732

X{@* (Uya) Una(X) —2(Uy ) Una(X)} (10.2
and note that
[Z,(X),Hi]=—1A(X),
[Z5(X),As(X)]=—iF(X),
[Z,(X),Fs(X)]=0, (10.3

where
Fo(X)=e(X) ">, fdx a(MA(2n2) L

XUy (X Uy (X) + Uy o(X) Uy o(X)}. (109
Now let V be a real, symmetric matrix and
U.=exdiap-VZ,(X)], T,=U,TU;'. (105

Since

T,=T+ia[p-V-Z,(X),T]
2
- S IPVZ, 0[PV Z,X).TI]- -, (106

we obtain
aZ
Hia=Hi+ap-V-A(X)+ 5 p-V-F,(X)-V-p,
Ay (X)a=Ax(X)+ap-V-F,(X),

Va(X)=V[x+aV-Z,(X)]. (10.7)

With these results we obtaid, and equating the terms lin-

ear inA(X),, to zero we find

aV=e[my+e’F,(X)]"t=em?!,

(10.8

leading to

1 -1 -1 ez 2
Hazip-m,, -p+V[x+em, - Z (X)]+H;+ WOA"(X) .

2
(10.9

In the vacuum casm,, reduces to a scalam,=m,U=muU.
In removing the cutoff, i.e., in the limit— 1, m is kept

5037

in V[x+em~1.Z_(X)] gives a pathological situation, due to
the smallx (infrared behavior of the Hertz vector. Its
vacuum expectation value, for instance, vanishes. As pointed
out by van Kampeif25], this can be remedied by transform-
ing back. TakingU,=exd—ip-m~1.Z(X)] in Eq. (10.5,

we obtain

1
H=Zpm " p=p-m " AX)+V[x+em 1 Z,_(X)]

2

FH A (X)?
fzmoﬂ'()a

m;'=m i4+mtF.m?% (10.10

With 7(\) equal to one for smalk and vanishing for large

N, A(X), F.(X), andZ,_(X) are now well behaved. For
further discussioiffor the vacuum cagesee[25], where also

the further renormalization of+ (1/2mg)A,(X)? is dis-
cussed, leading to an expression featuring the renormalized
mass. A similar procedure can be followed in the present
case where nown enters. Thus Eq10.10 is a convenient
starting point for Lamb shift calculations.

XIl. DISCUSSION

A. Summary of results

The quantization of Maxwell's equations for material me-
dia has led us to develop a general approach to the canonical
formalism and quantization of a given linear evolution equa-
tion gF(t)=NF(t)—G(t) in a real Hilbert space. The
gauge concept makes its appearancdl ihas a nonempty
null space and we obtained generalizations of the familiar
gauges of electrodynamics. The application to Maxwell’'s
equations in a medium, characterized by permeabilities
and u(x), is immediate.

Next we considered atoms placed in dielectrics and found
an expression for the spontaneous decay rate featuring the
local density of states, thus generalizing an earlier result of
Sprik et al. for a scalar modd]2] to a dielectric with general
e andu.

If the classical dielectric has a band gap and (tveo-
level) atom has its transition frequency in the gap, the atom
is stable relative to single-photon decay. The original atomic
eigenvalues are modified, but remain real. Also a new eigen-
value of the combined system appears. We make some re-
marks in the case where the medium shows Anderson local-
ization. This can lead to an atomic eigenvalue embedded in a
dense(electromagneticpoint spectrum.

A mass renormalization is necessary for the calculation of
Lamb shifts. We gave a version of the nonrelativistic
Kramers—van Kampen approach. Due to the nonisotropic na-
ture of the medium, a nonscalar renormalized mass
emerged. In the vacuum case the renormalized mass is the
experimentally observed electron mass. Here we can take a
similar point of view, but experimentally this is problematic
since, even if we are able to position an atom in the medium

constant and identified as the observed mass. Here the sitaway from the dielectric scatterefer instance, by means of
ation is rather puzzling, hinting in the direction of a nonsca-laser or colloid techniqug¢sand try to retrievem from its

lar renormalized mas®. Note that the presence bfis not
related to this problem. Next, oneer is fixed, settingo=1

spectral and decay properties, other, nondielectric effects
will wash out the tiny changes caused by the medium.
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The approach of starting from th@pproximative phe-  this relation is not available for periodic dielectrics. Finally,
nomenological equations and then quantizing leaves soméhe spontaneous decay of a two-level atom in a dielectric is
thing to be desired. The usual classical and quantum derivsstudied. NowJ no longer vanishes and indeed the relation
tions of the phenomenological Maxwell equations involve an(6.5 between charge density and scalar potential appears
averaging over volumes of atomic sig26—28. At a more  [their Eq.(7.33].
sophisticated level a starting point could be the Heisenberg Kweon and Lawandy12] considered the casg(x) peri-
equations of motion for the field operators of the interactingedic, x(x)=1. Again A is the coordinate field and Eq.
system, from which a Bethe-Salpeter equation can be corf4-8) the gauge condition, but the expansion functions are
structed for the fields onlyin fact, the latter originated Cchosen differently. Since heye= 1, the magnetic Helmholtz
within a field-theoretical contexe9]). Here we are still deal- OPeratorN;=—(e-p)e~*(e-p) is transverse, self-adjoint,
ing with field operators, but we can, if so desired, make us@nd its eigenvectors are used in the expansions. These au-
of the Glauber-Sudarshamrepresentation concegéxpan- thors study the suppression of ato_mlc radlatlvg decay in a
sion in coherent state$30] to replace them by-number band gap and also give an expression for atomic decay rates

guantities. If we are only interested in absorptive processes(.the'r Eq. 13). Their observation of a dependence on

3 -2 -1 . . .
the complicated irreducible vertex term in the Bethe—SaIpete?.(X) ' mste_ads(x) as in the present work, is tied to the
. } ; . .~ “different choice of expansion functiofisee Eq.(2.21) and
equation can be skipped, leaving a formalism contammq)elow]

only an effective Hamiltoniatmass operatar However, the Huttner and Barnett10] consider the quantization prob-

\;V;ﬁ;rgrgnca;;ir cf)r?ertvllsanigtte(?rdaetzigrick))it |'\[NIISI;I gligefr;? f? ert]hg lem in connection with dissipation for the special case that

) . ' . .~ the material part of the system has harmonic behavior. They
vious how spatial dependences, so conveniently stored in thL‘lase the vector potential as the coordinate field and employ
classical permeabilities, are recovered. In certain scatterinﬁ1e Coulomb gauge. Since the full system is considered
situations, for finite dielectrics, a simpler procedure suffices ' '

In a channel with equal initial and final matter states thethere are no problems with field quantization. The specific
. . que . . nature of the Hamiltonian allows a transformati¢n es-
irreducible vertex term is not involved. Using the Feshbach

projection formula, the transition operator can be written in>onee. a Bogoliubov transformatjoto a new representation,

terms of an effective Hamiltonian in which only the massfeaturing an-independent but frequency-dependenore
y recently, Matloobet al. [11] also considered the case of an

glzzr:é?r appears and nonlinear photonic processes are I<'r:]1E)sorbing medium and specific dielectric media.
In conclusion, we note that the whole quantization proce-
dure as discussed above and elsewhere aims for the determi-
nation of a second quantized formalism and the actual equa- We did not consider more general situations such as
tions of motion for thefields are rather irrelevant once the frequency-dependent permeabilitidsssy dielectrics This
Hamiltonian has been obtained. On the other hand, theitase is often encountered, for instance, in our example of
merit is the simple way in which the presence of matter istransition radiation/8]. Here we outline briefly how such

C. Outlook

stored in the permeabilities. situations can be treated by means of the present formalism.
For details, se¢32], where the electromagnetic case is dis-
B. Lagrange-Hamilton formalism: cussed. Instead of Eq¢3.1) we now have inH, (for nota-
Connection with related work tional shortness formulated for the complexified gase

In general, a given equation of motion can be formulated t
in terms of a Lagrange formalism in many ways, each fea- aF(t)= —iKF(t)—if ds L(t—s)F(s). (11.1
turing different generalized coordinates. Indeed the literature 0

shows such a variation in the choice of the latter. Glaubeyyqa that onlyt=0 appears, so we can considsit|) with-
and Lewensteir9], for the casex=1 and, initially, J=0, out penalty. Suppose it has a Fourier transform
take A as the coordinate, leading to the associated momen-

tum —D. The gauge conditio6.3) is also employed here. o
They then continue by making an eigenmode expansion of |—(|t|)=f do exd —iwt]L(w), 11.2

the various field operators. Actually, except that 1, the

expansion is the same as employed here, sinceAnbtit  wjth T (w)=0 (this property holds in the Maxwell case with
JeA is expandedsee their Eq(2.13 and below. The rea-  general linear-response expressions for the susceptibilities
son for this is also the same, the self-adjointness of theow let F,(t)=F(t) andF,(t,») be a second field with the
Helmholtz differential operator, giving an orthogonal set of propertyF,(0,0)=0. Consider the set

eigenvectors(Here we note that, alternatively, the weight in
the inner product can be modified, making the expansion of

— i T 1/2
A itself orthogonal. This, however, has the drawback that the F ()= —1KF (1) 'f do L(0)"F(to),

free differential operator acts in a different Hilbert space. (11.3
The authors then consider the relation between the above _
expansion and the eigenmode expansion in terms of vacuum OFo(t,w)=—iwF(t,0)—iL (0)Y?F(t). (11.4

modes(plane wave the two being related through NMer _ o _ _
wave operators. This requires the latter to exist, i.e.Solving the second and substituting into the first then gives

e(x)—1 must tend to zero sufficiently rapidly for largeso  Eq.(11.1). However,F= (E;) now has a unitary time evolu-
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tion in H=H.&H', H'=H.®L%(R,dw), and a canonical assume the structur8.8). N, being closed, densely defined,

formalism and its quantization can again be obtained. allows the decomposition
Nonlinear evolutions, relevant if a description of paramet- _ ™
ric and other nonlinear processes is required, were not con- N=UIN[, |N|=(N*N)™%, (A1)

sidered. Probably, some of these can be handled. The alter- : . .
native, starting from a fully quantized matter-field systemWhereN Is a partial isometryfor details, se¢16], p. 339.

. . . .
and integrating out the matter part, using an effective Ham”_SmceN =-N, W_e have, withP the projector upon the null
tonian approach, is likely to give a more accurate result, irPace oN andQ=1-P,
particular, a microscopic description of the coefficients in the U*U=Q, U*=—U, |N|=NU=UN. (A2)
nonlinear terms.

The result(8.13 for the decay of atomic excited states We also note that ifA*=—A, AfLf since Af,f)
coincides with what would have been obtained using Fermi's=(f A*f)=(f,— Af)=—(Af, f)=0. Now let
golden rule. The effective Hamiltonian approach employed
is rather crude and it would be interesting to investigate the 1
possibility of developing a complex scalir{dilatation ana- Vt:7(li U)Q. (A3)
lytic) method for this case. Such spectral deformation meth- 2
ods[31] have been quite successful for Satirmer opera- . 2 2 .
tors. They lead to a deformation of the continuous spectrumThen V= are unitary onQ¥H,, V4=-VZ=U, and their
away from the real axis, which reduces the calculation of 2Nges are orthogonak,, 1L V_f. Now let
resonances to the perturbation theory of isolated eigenvalues F.()=V.F(1), G.()=V.G(1). (A4)
of a non-self-adjoint operator. In particular this can be useful - - - -
if multiphoton processes are studied. In the case of a finitghen
dielectric a version of the exterior scaling methi@1] for
the field part seems to be indicated. In E8.13 the factor 1
g(X) ! is not always significant, for instance, if interstitial HF (1) = T(1+ U)QUIN|F (1) =G (1)
atoms in a dielectric are situated at positions where the per- 2
meabilities are unity(In the point interaction model, studied

by van Coevorderet al. [5], e=1 everywhere outside the = i(U—1)|N|F(t)—G+(t)
lattice points) As emphasized by Sprikt al. [2], who ob- V2

tained a similar result, the field quantities are purely classi-

cal. However, the quantum-electrodynamical formalism is ——|N| 1

needed to find out how these classical quantities enter into \/5(1 WF1=G.(b)
the expression of the perturbed eigenvalue.
In band-gap systems single-photon atomic decay can be =—IN|F_(1)—G.(1),
inhibited. Still multiphoton decay may occur and this makes o
it worthwhile to investigate this situation. For this a higher- and similarlyd,F _(t) = +[N[F (1) =G _(t), so
order approximation for the effective Hamiltonian of Sec.
Fa(t) ( 0 —INI)(a(t)) <G+<t>

VIIl can be used. ) (A5)
Atomic decay in random band-gap systems showing F_(1) INf 0o JIF_(t)) 1G_(1))

Anderson localization is intriguing. Here we encounter situ-

ations where the atomic eigenvalue is embedded in a dend¥ote that, althought , (t) L F _(t), each of them is not con-

(field) point spectrum and its perturbation theory seems to béned to a fixed subspace @&, . Also, since

an open question. As mentioned in Sec. IX, it is possible to i

consider the situation in a broader context where an averaged ©XH Nt]Q=exd U|N|t]Q={cog|N|t)+Usin(|N|t)}Q,

decay parameter may exist. If so, the next step would be the o S .
calculation of its fluctuations a generalization of de Moivre’s formula, we have for vanish-

ing G(t)

t

)= t)+co t +si t
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APPENDIX A: LAGRANGE FORMALISM Fi()=—a¢ |N| G-(v),

FOR THE GENERAL CASE N
F_(t)=—|N|¢, (A7)
We return to Eq. (3.12, 4F(t)=NF(t)—G(1),
N* = —N, in the real Hilbert spac@{, , where we no longer and
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(9'[2%+|N|2%:G+(t)_|N|_1‘9th(t)r (A8) [a*((P)f]nJrl: E ff(n)®“.®f(kn) f§1n+)1:<P
K 1 n+1’ '

which can be obtained from Hamilton’s principle with

1 1 Since a general element &, can be written as a linear
L= E(f?t%,ﬁt%)— E(|N|gl|N|g) combination off "’s of the above type, this fixes* (¢) and
a(¢). Explicitly, for the caseH{=L“(R"),

+(G+ ()~ IN|*G - (1),9). (A9)
i i i i [a(go)f]n*l(xl!XZv e 1anl):f an
Note that here everything is restricted tG{Q The remain-
ing dynamics X FM(Xg,Xa, - -« Xn) @(Xn),
PF(t)=—-PG(t) (A10)
' [a* (@) flnra(X1 . X2, -+ Xns1)
can also be incorporated through a new coordinate figld n
and also gauge transformations in the spirit of 8320 can = o(x)
be introduced. = PV

) . .
APPENDIX B: FOCK SPACE XEP(XaXa, - oo Xjm 1 Xne 20X 410 - Xn)

Given the Hilbert spacé{, the symmetric Fock space (X 1) (X Xz, - - Xn) (B4)

F(H) over’iis defined as These definitions result in the equations used in the main text

F(H)=CoOHS (HOM)syn® (HOHOH) syn® - - - such as the commutation relatio(&4).
As discussed in the main text, the field Hamiltonian has
=&, _oFn, (B1)  the form
where (H®H) etc., are symmetrized tensor products.
With f=(fO. 0 £ 1@ ) e £ and, similarly for Hi=2 fdk Aa* (Uya)a(Uyq)- (BS)
g, the inner product ot is defined as
= 4 SinceH; leaves each Fock layefF, invariant, we can de-
(f,g)= Z H(f(n)’gm))“’ (B2) compose it as a direct sum of its components on the layers
Hi=@n_oH{", (B6)

where ( , ), is the inner product om}_,H [so ( , ) is the

inner  product on H]. With ¢eHX and Where
f0=(fo- - @ f) =2, i fl®- - @, where
the sum is over all permutations of .1 . ,n, we definea(¢)
anda*(¢) by

H®=0, H{Y=N;, HP=I1aN;+N;®I,....
(B7)

This expression is a convenient starting point for the study of
[a(@)fln1= 2 Ve af™ (fV 0),, (B3)  spectral properties associated with atomic decay in a dielec-
ki, ook L n-1""n tric with a band gap.
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