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Nonadiabatic dynamics of atoms in nonuniform magnetic fields
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Dynamics of neutral atoms in nhonuniform magnetic fields, typical of quadrupole magnetic traps, is consid-
ered by applying an accurate method for solving nonlinear systems of differential equations. This method is
more general than the adiabatic approximation and, thus, permits one to check the limits of the latter and also
to analyze nonadiabatic regimes of motion. An unusual nonadiabatic regime is found when atoms are confined
from one side of the axis but are not confined from another side. The lifetime of atoms in a trap in this
semiconfining regime can be sufficiently long for accomplishing experiments with a cloud of such atoms. At
low temperature, the cloud is ellipsoidal, being stretched in the axial direction and moving alongutise
The possibility of employing the semiconfining regime for studying the relative motion of one component
through another in a binary mixture of gases is discuss&t)50-294{®7)06412-3

PACS numbsgps): 03.75-hb, 02.30.Hq

[. INTRODUCTION Second, studying other, nonadiabatic, regimes of motion per-

mits one to explain more profoundly the physics of atoms

The motion of neutral atoms in nonuniform magneticinside magnetic traps, as far as in these not all atoms are
fields is important to study for several applications, in par-confined. Knowing better different, including nonadiabatic,

ticular, for better understanding the mechanics of confinel€9imes of atomic motion may, possibly, give a hint on how
to improve confining characteristics of magnetic traps.

ment in quadrupole magnetic traps, such as the loffe- . .
9 P g b One more reason is related to the recently reported experi-

Pritchard traps with a static bottle fie[d—3] or dynamic ments on the simultaneous trapping of two different atomic
traps with a rotating bias fielf4,5]. This has become espe- species, two isotopes of rubidiufBo] and sodium and po-

cially interesting after the experimental observation of Boset um[31]. Th . i tarti int f
condensation in very cold gases of rubidifif)7], lithium assiumisl]. These expenments are a starting point for a

[8], and sodium[9—11]. There exists extensive literature MW series of studies of ultracold matter. The variety of ef-

considering statistical properties of confined Bose systeméecrfs t?ﬁt can be observed '? mlxture_srhgre incomparably
using various approaches, e.g., the quasiclassical density—cﬂ—C er than in one-component gases. IhiS concerns even
state approximationi12,13, the Gross-Pitaevskii equation equilibrium mixtures[32]. Much more interesting features
[14-16, the Monte Carlo density-matrix calculatioft7], appear whgn one Of. the components can move through' an-
the Thomas-Fermi approximatiofi8,1d, the Bogoliubov othe_r. For instance, in a t_)lnary mixture with such a relative
approximatior{20], and the gas approximation in the frame- g:)_tmnﬁth? heffect of cr(])nlcal strz?tltfrl]can[BS] cant oceur.
work of the Gibbs ensembld®1,22. Statistical properties IS eftect happens when one of thé Components moves In

of the weakly interacting Fermi gas confined in a potential.one direction through another component. Then the instabil-

well have also been studied in the Thomas-Fermi approxi'—ty can develop inside a cone with the axis along the relative
mation[23.24 velocity; as a result of this instability, the components

The aim of this paper is to consider not statistics but dy_stratlfy in space. Note that for this effect the one-directional

namics of atoms in nonuniform magnetic fields. When one iSrelative motion is necessary, but not relative oscillations or
interested in the behavior of confined atoms, one deals WitﬁO”ISrIOI’]S Oif Slrﬁs?i'nr? cIorﬁds. :]n thel prfsri?ci ct)|f 2 reI?tlt\;]e
their stationary motion. Stationary regimes can be describeEaC oscopic motion some unusual manitestations ot the

by the adiabatic approximation. When the confining potential oppler effect{34] may also arise. But can such a strange

is harmonic, then the dynamics of atoms is given by simpk{.eglme exist when the atoms of one kind move in one direc-

. . B . . . . H y ’) Lt . . .
harmonic oscillations. In general, the confining potential |s§'or't ?ﬁmg cor&fme? frorln anothe]rc. In adtdltlon, It||§ detsgalzile
not necessarily harmonic. For instance, the first demonstrat atnis one-directional €scape from a trap would not be oo
magnetic trag 25] used a quadrupole fielgwith zero mag- ast in order to be able to accomplish measurements. These
netic field at the centemwhich gave rise to a linear potential, requirements look too severe to allow the existence of such a

In any case, atomic motion in a strictly confining potential semiconfining regime. However, in what follows it will be

can be described by the adiabatic approximation. Such adi&_hown that this semiconfining regime does exist. Certainly, it

batic motion in various magnetic traps has been analyzed iﬁ nonadlat_)at|c and, even more, nonpoten.tlal, thus cannot be
Refs.[26—29. escribed in the framework of the adiabatic approximation.

A more general consideration of atomic motion, without
using the adiabatic approximation, is meaningful for several
reasons: First of all, a more general approach makes it pos- Since the aim of this paper is to present an accurate solu-
sible to understand the limits of the adiabatic approximationtion of evolution equations for atoms in nonuniform mag-

II. EVOLUTION EQUATIONS
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netic fields, it is reasonable, first of all, to pay attention to the

accurate formulation of the equations themselves.
The quantum Hamiltonian of a systemMfneutral atoms,
each with a masm and magnetic moment, is

N

1
2;&; @i

1

where p; is a momentum operatorS,, a spin operator;
B,=B(r;,t) is the total magnetic field acting on aratom;
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S
UEE<pi>:{UXva7Uz}1 (8)
S=(S)={S.S,.S
and the average interatomic force
N
f=—2 (V). 9)
i(#1)

Then Eqgs(3)—(5) can be reduced to the system of equations

and ®;=®(|r;—r}|) is an interaction potential. The mag-

netic momeniu is the product of the Bohr magneton and the dr .
hyperfineg factor [35]. The wave function of the system, dat v
W=[W(ry,f,, ... n,t)], is acolumn in spin space. The
guantum-mechanical average of an operator from the algebra do b o - f
of observablesA, is the scalar product q EV(S' B)+ o (10
=(V,AV). 2 >
()= (W, AW¥) @ S g
Using the Schidinger equation d¥/dt=HW, with the dt 4 ’

Hamiltonian (1), it is straightforward to get the evolution

equations for the average position of an atom which will be the main object of our consideration.

The derivation of Eq(10), though simple enough, con-

d . 1 . tains an important point which is worth emphasizing. The
ﬁ<r‘>zﬁ<pi>’ (3)  basic approximation(6) supposes that the system fields
slowly vary in real space, so that the spin and real-space
its average momentum degrees of freedom can be separated, which in the quantum-
mechanical language means that the wave function can be
q N factorized into a product of spin and real-space wave func-
RN (TR B 5 .. tions[35]. This quantum-mechanical separation of variables,
dt<p'> wVi(S-B)) 1(2#) Vi), @ as will be shown in what follows, is closely related to their
_ dynamical separation.
and the average spin The evolution equation§l0) are to be supplemented by
g the initial conditions
S M s o
a<si>_Z<SXBi>- 5 r(o):roz{XO:yolo}a

These equations may be simplified with a mean-field ap- v(0)=vo={v%,v},v%}, (11)

proximation A )
S(0)=Sp=1{S5, 4 So}-

(S"Bf)=(S")(Bf),

In specifying the form of the magnetic field, let us take it
where a,8=X,Y,z, valid for fields slowly varying in space as in the experiment§5—7] with dynamical quadrupole
[35]. Condition(6) is also called the semiclassical approxi- traps. Then the total magnetic field
mation and is usually supplemented by another approximate

(6)

equation B=B,(r)+By(t) (12)
<§(Fi )= é((ﬂﬂ), @ is the sum of the quadrupole field

which again assumes a slow variance of magnetic field in B1(r)=By(r—3ze) (13

space. When the magnetic field is a linear function of real—and the rotating bias field

space coordinates, then E@) is not an approximation but

an exact relation. This concerns quadrupole magnetic fields 3 —n (3 > .

which in what follows we shall deal with. Hence the sole Ba()=Ba(e,cosut+eysinot), (14

approximation we need is the mean-field one, . > . . _

Under conditions(6) and (7), Egs. (3)—(5) acquire the Wh-?;ieéﬁzrgcliggs\tﬁcfg; f?hra XY, 2.

same form for all indices, which permits us to simplify the g

notation by introducing B
o L=—2 (15)
r=(rpy={x.y.z}, B,
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of the quadrupole-field nonuniformity corresponds to the rafie|d. Using this, for the atomic space variablene gets the
dius of the field zero in the radial direction. This length de-Newton equation with the adiabatic force

fines approximately the upper limit for the radius of a

trapped atomic cloud. Keeping this in mind, it is convenient F.=SuV|B].

to pass to dimensionless space variables measuring the com-

ponents of the Cartesian vector{x,y,z} in units of L.  Assume that the field rotates much faster than the mechanical

Then we can profit from the inequality oscillations of atoms, but not so fast as to induce transitions
R in the Zeeman substructure. This means thait < w,.
Ir|<1. (16)  Then the adiabatic force can be averaged over the period

27/ w of the rotating bias field. Averaging this force and
To return to dimensional space variables, we have to seising Eq.(16), one gets

r—riL.
We introduce the characteristic frequencies - m > - >
| (Fa)i= 7 Swi(xectye,+82z6,),
_[mBi)® uB, .
R e A7 which immediately yields the adiabatic potential

of atomic and spin motions, respectively, and the collision Mmoo, 5
rate y defined by the ratio Ua=— 7 Swi(x"+y"+82%) + const.

. f This is a harmonic, although anisotropic, potential. The mo-
vé= mL’ (18) tion of atoms in such a potential is given by simple harmonic
oscillations, if S<0. WhenS=0, atoms fly away ballisti-
in which £ is treated as a stochastic variable representing theally and if S>0, they escape by the exponential law. In
interactions of atoms through their random collisions. A de-both latter cases atoms escape from the trap in all directions.

tailed definition of the variablé will be given in Sec. vV and 1€ ballistic flying away is isotropic. The exponential es-
in the Appendix. Then from Eq10) we obtain the evolution cape, because of the anisotropy of the adiabatic potential, is

equations for the space variable anisotropic: atoms escape faster along the axial direction
than in the radial one; but anyway the symmetry with respect
d?r R R . . to the inversior — —r is preserved.
T2 = OHSEt S8y 258 T vE (19

Ill. SCALE SEPARATION

and for the spin variable Return to the general equatiofik9) and (20). Written in

4s the standard form, they compose a nonlinear dynamical sys-
— =w,AS, (200  tem of the ninth order, that is, a system of nine nonlinear
dt differential equations. It seems that it is impossible to solve

. this complicated system of equations without invoking a
where the matriA=[Az], with «,8=1,2,3, consists of the rough approximation like the adiabatic one. Nevertheless,
elements these equations can be solved using the method of scale
separatior]36,37]. The mathematical foundation of this ap-
proach is based on the Krylov-Bogoliubov averaging method
[38] and the Poincar¢heory of generalized asymptotic ex-
pansiong 39]. The method of scale separation was success-
fully applied to several intricate problems, such as the origin
of self-organized spin superradiance in nuclear madi3&is
coherent radiation regimes of spin masgt6,41], and fast
polarization reversal in proton targets used for studying
g_eam scatterinfd2]. The accuracy of this approach has been
confirmed by good agreement of its solutions with experi-
mental datd43,44] and with computer simulatior{€5,46.

The first step of the method of scale separafi®®,37] is
classify the functional variables of the problem, separating

A= —Ax=—22,

A23= - A32= X+ coswt.

We are concerned about an accurate solution of the sy
tem(19) and(20) of nonlinear differential equations, without
using the adiabatic approximation. At this point, to distin-
guish what is what, it is useful to say several words about th?0

adiabatic approximation. Fortunately, this will not take toot. ies. Fortunately. in th ority of int » hvsi
much space, since the latter approximation is rather trivig/'Me scalés. Fortunately, in the majority or Interesting physi-

First, one assumes that the dynamical process is close to i‘f’é‘l p_roblems it |s_p055|ble to separate relatively slow _f“’“?
, L . > > relatively fast variables. In our case, such a separation is
stationary state, so that it is admissible to g&/dt=0.

. e . naturally related to the mean-field condititB) used for de-
Then, from the third equation in Eq10) it follows that fiving the evolution equation&l9) and (20). As has been

SxB=0. This means that the spin is aligned aldgwhich already discussed above, conditi@ assumes that the real-
can be written asS-B=9|B|. Thus one excludes the spin space nonuniformity in the system is, in some sense, small.
motion saying that spin adiabatically follows the magneticNow we ascribe an exact meaning to this phrase concretizing



56 NONADIABATIC DYNAMICS OF ATOMS IN ... 5007

in what sense the nonuniformity is small. The nonuniformity C, :(|ailz_A§2)2+(|ai|2+A§2)(A§3+ A§3).
in the system is connected with the quadrupole fié and
pair interactions in Eq(9), while the rotating bias field14) It can be checked straightaway that the vectors from(E4).
is spatially uniform. Therefore what we need is to comparegorm an orthonormal basis and satisfy the properties
the characteristic parameters related to the corresponding . L L
fields. Among these characteristic parameters we haye bf-bj=6;, bi=b,, bi=bs. (29
andw, in Eq. (17), andy in Eq. (18). The nonuniformity is ) )
weak if the characteristic parameters corresponding to nontherefore the general solution of H0) can be written as a
uniform fields are small as compared to that of a uniformlin€ar combination
field. The latter means nothing but the validity of the in- 3
equalities &(t) :-21 aié(t) (26)
<
(l)l< Wy, 'y< wy. (21)
of particular solutions

The meaning of the first inequality in E§21) is quite
evident, indicating that the frequency of mechanical oscilla- Si(t)=b;(t) exp{ei(t)}, (27)
tions of atoms is much smaller than that of spin fluctuations.
The second inequality is also very natural, as long as thén which b; are given by Eq(24). The coefficients in Eq.
collision rate is usually much smaller thas,. If y were  (26) are defined by the initial condition for spin from Eq.
comparable withw, this would imply atomic collisions are (11), which yields
causing radio-frequency transitions between magnetic sub-
levels. With Eq.(21) in mind, looking at the evolution equa- a;=S,-b*(0). (28)
tions (19) and(20), we notice at once that the varialsiés to

be treated as slow, compared to the fast vari&ble

At this point, it is worth emphasizing how naturally the t
separation of functional variables into slow and fast, with <pi(t):f wzai(t)—ﬁi*(t)
respect to time, is connected with the character of nonunifor- 0
mity in real space. This is why spending some time for re- . . '
membering the derivation of Eg&L0) was not in vain, but, From Eq.(29), invoking Eq.(25), we find that
on the contrary, is important for stressing the self-
consistency of the approximations used.

Following further the method of scale separatj86,37, Let us accent that, of course, not each system of equations
we need to solve the equations for fast variables, with slowjke Eq. (20) can be solved exactly. The possibility of obtain-
variables being kept as quasi-integrals of motion. The evolu-mg here the exact solution, E(R6), is due to the antisym-
tion equation for fast variables is Eq20) for spin. This metry of the matrixA.
equation for an arbitrary given antisymmetric mathixwith
elementsA;; = —A;;, can be solved exactly. This means that IV. ATOMIC VARIABLES

we are able to present an exact solution $dior any given
external fields. Because of the significance of such a solu- At the next step of the method of scale separaf&37]

Substituting Eq(27) into Eqg. (20), we obtain the phase

d.
(vt (29)

e1=—0¢1, @3=—¢z, @3=0. (30)

tion, we write it down explicitly. the solution for fast variables is to be substituted into the

First, we solve the eigenproblem equations for slow variables with time averaging the right-
hand side of the latter equations. As follows from E@)

Ab=aib;, |bi|2=1, (220 and(29), the fast spin fluctuations are described by the ef-

fective time-dependent frequencieg(t)/t. Hence the solu-
tion (26) does not have a definite period. Consequently, the

in which A is an antisymmetric matrix ang=1,2,3. The U o> R
time averaging is given by the rule

solution is straightforward, giving the eigenvalues

. . _ 1 (7
=i, a=—ia, a3=0, (23 (F)=lim ;J F(t)dt. (3D)
roo TJ0
with
Averaging Eq.(26) according to the rul€¢31) and using Eq.

a= AL+ Als+AS, (16), we find

The eigenvectors are .1 « - - -
(=51 XS +ySH—2zS](xetye,—4ze,).
-1 - - 32
Byl (st ArA)e+ (@hzs= Ay (32

! The equation for the guiding centers of atomic variables is
+(ai2+A§2)éz]' (24) obtained by time averaging the right-hand side of E)

with £ treated as a slow variable. Employing E82), we
with the normalization constant have
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dr . . X=X1+Xy, z=2Z1+2, 41
e F+ yé, (33
dt in which x; and z, are the solutions to the corresponding
homogeneous equations whitg andz, are the solutions to

with the force the nonhomogeneous equations. The homogeneous equations

2 are
- o - - -
F= 71[(1+X)Sé+y8%—22%](xex+yey+82ez).
(34) d?x, 5
F-%SwlZle:O,
This force essentially depends on the initial polarization of
spins, as it should be in the general case and in contrast to 427
the adiabatic force mentioned at the end of Sec. Il. Only for o 8Sw22=0 (42)
e . . 2 141 ’
one type of initial polarization, whe8y=S and S{=S;=0, dt

does the forc€34) reduce to the adiabatic one. This type of _ o N
spin polarization leads to the stationary confined motion fomwith the initial conditions
which the adiabatic approximation is admissible.

Le't us analyze anot.her situation when spins are initially X1(0)=Xg, 5(1(0)=v§,
polarized along the axis, so that
SéZO S%ZO SéZS. (35) 2,(0) =2y, -Zl(o):U(%M (43
Then the forcg34) becomes where the dot means the time derivative. Writing down the
nonhomogeneous equations, simplifying them a little, taking
E= —Swiz(ﬂ 7zéz). (36) into account that the collision rate is typically an order of

magnitude smaller thaw,, yields
As is evident, the forcé36) is nonadiabatic and, even more,

it is nonpotential since there exists no potentiakuch that @ 2 e a2
F would be equal to- VU. dt? T SeizXe =y Seixze,
With the force(36), Eq. (33) becomes
d?r S, @4—168(»22 Z,= y€ (44)
ﬁ+sw§z(r+7zez)= 3 (37) dt? A

S ) o ) the initial conditions for Eq(44) being
The force y&, according to Eq(18), originates from inter-

atomic interactions in Eq9). Because of the isotropy of the
interaction potentiaﬂ)(lﬂ—ﬂD, the force corresponding to
these interactions may be presented as an isotropic vector,

X(0)=0, X(0)=0,

that is, we may write 2,(0)=0, 2,(0)=0. (45)
P s 1A A To solve the system of equatiof¥?) and(44), we have,
=decteyte). 38) first, to solve the equation far;, then to substitute, into

Expanding Eq(37) into components, we get for thecom- the equation forx;, and to use the foun#; andz; in Eg.

(44).

ponent
d?x V. SEMICONFINED MOTION
— +Swizx= y¢. (39 o _
dt The system of equations in E42) for x; andz; is a

_ _ system of two nonlinear differential equations of second or-
The equation for they component is the same as H9)  der. However, these equations can be solved exactly.

with the replacement—y. Therefore we shall consider in Integrating once the second equation in Ep), we get
what follows only one of the radial components. For the
axial variable, Eq(37) gives dz;\? 16 s 3 3
(E :Eswl(zm_zl)’ (46)
d?z 2,2
dt? T8SwizT =78, 40 wherez,, is an integration constant which can be found from

the initial conditions in Eq(43) yielding
So, we have to solve the system of nonlinear equat{@8s
and (40). 3(06)2
The general solutions to Eg&9) and(40) can be written =23+ - (47)
in the form 165w
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Since the left—hand side in E(6) is nonnegative, this im-

plies thatz2 =27} if S>0, andz3<Z] if S<O0, that is,z, is
the maximal value ofz; for S>0 andz, is the minimal
value ofz; for S<O,

maxz,(t), S>0
t

Zm= minz,(t), S<O0. “8)
t

We introduce a function

4 2
P: - §Swlzl, (49)

for which Eg.(46) transforms to

dp\?
(H =4P°~g,P—gs, (50
where
256

g,=0, ggz—fzﬁqs%)‘j. (52)

Equation(50) is the Weierstrass equation with the Weier-

strass invariants in Eq51) and with the discriminant
A=g3—27g5=—2793.

The solution of the Weierstrass equati@) is the Weier-

5009

d’; 3
e 27— t)X

(55
for the radial motion. This is a Lamequation of degree
n=1/2, which is defined by the relatiam(n+1)=3/4. The
solution to the Lameequation is given by combinations of
Lame functions of different kind§49]. In the present case,
the solution to Eq(55) is
t—t
—1/2 0
]

X (t)= (56)

t—to
0173 T +Cy
Here

d
Es()= 5D

is a Lamefunction of degree 3, of the first kind. The inte-
gration constants; andc, are defined by the initial condi-
tions in Eqg.(43).

The solution (56) diverges together with Eq(52), as
t—tg, by the law

t—ty) Y2 t—to
Xl(t):cl 2 +CZ 2

Comparing Eqgs(57) and (54), we see that the divergence
along the axial direction is faster than in the radial one, the
aspect ratio being

3/2

(57)

strass functiorP(t —t), wheret, is an integration constant.

The Weierstrass function is an elliptic function, that is, a
doubly periodic function which is analytic, except at poles,
and which has no singularities other than poles in the finite
part of the complex plane. All properties of the Weierstrass

X5(t)
Zi(t)

~t—1to|32 (58)

functions are perfectly described in Ref47,48.
In this way, the solution of Eq46), and therefore of Eq.
(42), reads

3
2=~ 5Pt (52)

W7

The integration constart, is to be found from the initial
condition in Eq.(43), which gives

3P(ty) = —42,Sw?, (53)

This ratio tends to zero, ds~t,. Therefore a cloud of atoms
acquires an ellipsoidal shape stretched in the axial direction.
The behavior ok, (t) andz,;(t) shows that the atoms with

an initial polarizationS>0 are confined from the side>0

but are not confined from the side<0. Vice versa, the
atoms with an initial polarizatio®<0 are confined from the
sidez<<0 but are not confined from that>0. Thus an en-
semble of atoms, with a given polarization, loaded into a trap
would move predominantly in one direction eitherzta O or

to z>0 depending on whether the initial polarizatiorSis 0

or S<0, respectively. Such a regime is exactly that semicon-
fining regime we have been looking for.

where we took into account that the Weierstrass function is  ovever. we need yet to find the solutions of nonhomo-

an even function. Whenhtends totg, then

(t) :
z(t)y=——
! 4Swi

1 93, . .4 (54)

The general behavior of,(t) is as follows. IfS>0, then,
starting fromz,, the value ofz,(t) increases ta,, from Eq.
(47), after which it decreases, diverging tox ast—tg. If
S<0, thenz,(t) decreases to its minimal valug,, after
which it turns to the positive direction, increasing-toe as
t—to.

Substituting solution52) into the first of Egs.(42), we
have the equation

geneous equations in E@4). To this end, we have to con-
cretize the variabl€ originating from the averaged pair in-
teractions. For a rarefied system these interactions can be
treated as random pair collisions. The system is said to be
rarefied if the average atomic densjiyand the scattering
lengtha satisfy the inequalitpa®<1. This is just the case

of experiment$5—11] with alkali-metal atoms. Therefore we
can consideg as a random variable. More accuratedyt)

can be modeled by a stochastic field. The latter may be
specified as white Gaussian noigg0] with the stochastic
averages

((&(1))=0, (59)

((&(D&t)))=2Ds(t—t"),
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where D is a diffusion rate, and the meaning of double When the variablex; andz; diverge as in EqS56) and

brackets is explained in the Appendix. Then the nonhomo¢54), then for the random variables in Eq63) and (64) we

geneous equations in EGl4) become stochastic differential obtain

equations. An explicit way of treating the random variable

is presented in the Appendix. 4.3t
When solving the nonhomogeneous equations, it is useful ((x5(1)))= o[t —to|%ex —)

to invoke again the idea of scale separation. The time varia-

tion of solutions to stochastic differential equations reflects

the properties of the given stochastic fields. Since in our case B 3 4./3t

the stochastic field(t) is modeled by white noise, which is ((z5(1))) = x|t —to| "ex lt—to] )’

characterized by sharp time jumpS0], then the related

functional variablesx, and z, can be treated as fast com-

pared tox;, and z; satisfying the equations not containing

such random fields. Hence for the stochastic differentia

equations in Eq(44), the slow variablex; andz; can be

kept as quasi-integrals of motid36,37. Then using the

method of Laplace transforms, we obtain

|t—tof

(65

ast—tg. Since this expansion is governed by the same ex-
onentials, it is practically isotropic, with only a slight an-
sotropy due to different preexponential factors.

Remember that the general solutions to Eg8) and(40)
have the form of the sums in E¢41) containing both the
regular terms¢; andz; and the random terms, andz,. The

t relative contribution of these terms is regulated by the rela-
xz(t)=J’ Gy (t—n)[ y&( T)—Swfxlzz( 7)]dr (60) tion between the parameteysD, andw,. If y2D<wi, then
0 the influence of the random terms and z, is negligibly
and small, and the atomic motion is characterized by the regular
terms x; and z;. In this case we have the semiconfining
t regime. An ensemble of atoms would form an ellipsoidal
Zz(t)zf G (t— 1) yé(7)dT, (61 cloud moving in one of the directions along theaxis. If
y2D>w§, then the motion of atoms is governed by the ran-
where the initial conditions in Eq45) have been taken into dom termsx, andz,. In such a case, an ensemble of atoms

0

account, and the transfer functions are would form an almost isotropic exponentially expanding
cloud.
_sin(et) _ sin(4et) Assuming, as usual, that the diffusion rddeis propor-

Gx(t)= s Go(1)= 4 tional to temperaturd, we come to the conclusion that the
realization of either the regime of the fast exponential expan-
with the effective frequency sion or the regime of the slow semiconfined motion depends
on temperature. At high temperatures the former regime will
e=\Szw;. be realized while at low temperatures, the latter. A crossover

temperatureT . related to the equality?D = wf would cor-

Employing condition(59), we may find the moments of respond to the effective boundary between these two re-

solutions(60) and (61). For instance,

gimes.
((x2()))=0, ((z(1)))=0. (62)
. VI. NUMERICAL ESTIMATES

Calculating the second moments, we get the mean-square

deviations for the radial random variable, In order to impart to the whole consideration a completely
realistic flavor and to show the reasonableness of all in-

) yZDt[ sin(2¢t) yZDtx'f equalities assumed for employing the method of scale sepa-
({(x3(1))= 22 [1_ D¢t 3600:27 ration, let us adduce numerical estimates basing on the char-
1

acteristic quantities typical of the experiment-7] with
sin(4st) 8Rb in dynamical quadrupole traps.
Aot The mass of a rubidium atom m=1.45<10 2?2 g and
the magnetic moment jg=0.45x 10" ?° erg/G. The gradient
. of the quadrupole field iB;=120 G/cm, and the amplitude
X[coget)—cog4et)— 16et sm(st)]J, (63 of the rotating bias field i8,=10 G, the rotation frequency
of the latter beingo~5x 10* s~ 1. The nonuniformity length
and for the axial random variable, (15 is L~0.1 cm. The characteristic frequency of atomic
motion and the Larmor frequency of spins from E#j7) are
yth[ sin(8et) w,;~10% st andw,~5x 10" s~ 1, respectively. The colli-
1682[1_ Sst |’ (64 sion rate in Eq(18) can be estimated ag~ % pa/m, which,
with the average density~3x 102 cm™2 and the scatter-
Note that the collision rates enters here as?, thence the ind lengtha~10"° cm, givesy~10 s™*. Thus the follow-
behavior of the random variablég3) and (64) does not de- ing inequalities hold true:
pend on whether the interatomic interactions are repulsive or
attractive. YL <w<w;.

X : 1—-coget)cog4et)+

{230y =
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Hence the classification of atomic variables as slow and of TABLE I. The characteristic time,, in seconds, for several

spin variables as fast, based on the inequalities iN#y), is
correct.

To estimate the lifetime, of the semiconfined motion
described in Sec. V, we have to return to E80). Integrat-
ing this over time betweet=0 and some, we have

dp

jP(t—to)
Pty AP —g,P—gs

From here, taking into account thgg=0 andP(t—tq) — o,
ast—tg, we get

t.

0

dp
to= f .
O Jrig VAP — g5

Comparing Eqgs(51) and (53), we find for the Weierstrass
invariant

(66)

Zn\ 3
93=4| - P3(to).
0
Then Eq.(66) can be rewritten as

¢ z dz
0= 170 TR
—oNzo— 28

where we assume th&>0 and

The value ofz, is given by Eq.(47). The average kinetic

(67)

1

T0= 57—
0 4(,01

parameterg and different initial conditions.

l 10% 10° 104 10° 102 10! 1
Z
-0.1 0.08 0.07 007 0.06 0.05 004 0.03
-001 020 016 012 0.09 0.06 0.04 0.03
—-0.001 027 019 013 0.09 006 004 0.03
0 028 019 0.13 0.09 0.06 004 0.03
0.001 029 019 013 0.09 0.06 0.04 0.03
001 033 022 014 009 006 0.04 0.03
0.1 013 013 012 010 0.07 0.04 0.03

turesT~10 ° K the timet, becomes of order 0.1 s, and for
T~1 nK it reachest;=~0.3 s. Moreover, making the tem-
perature lower, it is possible to makg arbitrarily large,
sincety,—o when{— 0. Notice that the lifetime, does not
change much when varyirg in the interval—0.1<z,<0.1.

It is possible to pose the question: how well does the
lifetime ty characterize the real escape time of an atom from
a trap? Looking at Eq(54), we see thatz,(t) diverges as
t—to, while, according to conditionil6), the actual escape
of an atom from a trap occurs at the timne whenz(t;)~1.
The relation between the timggandtq, as follows from Eq.
(54), is t;—to~w; ' This, with the givenw,;~10? s 1,
makest; —ty~10 2 s. So, ift;=0.1 s, thert;~t,. There-
fore the timet, really plays the role of the average lifetime
of atoms in a trap during the regime of semiconfined motion.

If we are not satisfied by the simple estimates for the
characteristic time,, we can calculate iexactlyfrom the
equation of motion. The procedure is the same as that for
calculatingty. The results of this calculation confirm thigt

energy 1/2n(vg)®L? can be expressed through temperatureis very close to the time,, being smaller by about 0.02 s.

as 1/XgT. Therefore Eq(47) acquires the form

2=+, (68)
in which
3T _ mSwil?
§= 161—0! TO= kB .
Finally, for the lifetime(67) we obtain
o dz
(69

tO:TO T
—zo\Z3+ Zp+{

For the quantities considered, we hawg~10 2s and
To~10* K. The paramete¢ depends on temperature. In

the interval of temperatures between 1 nK and 1 mK, it

changes from 10° to 1. The quantityz,, according to Eq.
(43), is the initial coordinate;(0). It is clear that a cloud of
trapped atoms should have a distribution zgf which de-

Because of the mutual closeness of these times, we do not
repeat fort; the whole table as fory but, for cogency, we
present in Table Il the values of for the particles with the
initial location at the center of the trap. These values are
found from the formula

) 1 dz
=T —_—.
V%o B

Similarly to ty, the timet, also becomes arbitrarily large,
t,—«, as{—0, i.e., when temperature decreases.

Treating the interactions of atoms as random pair colli-
sions is admissible if the atomic system is rarefied, so that
pa’<1. For the case considerech~10? cm 3 and
a~10% cm, yielding pa®~107%. Thus the assumed in-
equality is well satisfied.

As is argued at the end of Sec. V, at high temperatures
there exists a regime of fast exponential expansion of an
almost isotropic cloud. At low temperatures, the regime

(70

tial. The average value @, can be interpreted as the initial

location of the center of an atomic cloud. This value can be

different for different experiments. Keeping this in mind, we
consider below several values pf. The integral(69) was
calculated numerically for different initial positiorzg. The

results are presented in Table I. As is seen, for the tempera

initially located at the center of the trap and for different parameters

10 100° 10* 10 102 10! 1

ty 0.26 0.17 0.11 0.07 0.04 0.02 0.01
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changes to the semiconfined motion of a slowly moving el<components can display a number of interesting features,
lipsoidal cloud. The crossover temperatiliecan be defined e.g., the effect of conical stratificatidB3].
by the equalityy?D = w3. The latter, with the diffusion rate The semiconfining regime can also be employed for sepa-
D~kgT/#, gives rating the species with different initial polarizations. For in-
stance, if one loads into a trap a mixture of two components,
hw? one having the spin polarization up and another down, then
the trap will act as a separator moving the first component
down and the second one up, thus separating them.
One more application of the semiconfining regime could

Substituting herew;~10% s™* and y~10 s™*, we have pe for realizing atom lasers, for which a directed motion of
T.~10" 7 K, which is close to the temperature of the Bose gtoms is necessary.

condensation observed in experimefs7]. Consequently,

Kgy

1 1

the s_e_miconfined regime can also be realized under similar ACKNOWLEDGMENTS
conditions.
Keeping in mind the future possibility of applying statis- | am very grateful to V.S. Bagnato and E.A. Cornell for

tical methods to describe an ensemble of atoms in the semgonsultations on experiments with trapped alkali-metal at-
confining regime, we have to understand whether the locatms and to E.P. Yukalova for mathematical advice and nu-
equilibrium can be established in this case. The time of locainerical calculations. Financial support of the National Sci-
equilibrium is related to the collision rate ag,.~7y . ence and Technology Development Council of Brazil is
Hence fory~10 s~ !, we haver,.~0.1 s. The local equi- appreciated.

librium develops if the lifetime of the cloud,, is longer

than the local-equilibrium time. If,~0.3 s, then the local APPENDIX: RANDOM VARIABLES

equilibrium can be achieved. Of course, the global equilib-

rium for a semiconfined motion cannot exist. Recall that the 1€ variable&(t) describing random pair collisions of
corresponding forcé36) is not confining for a semiaxis atoms has been treated as a stochastic variable. Conse-

and furthermore it is not potential. But the possibility of local Guently, Eqs.(44) are stochastic differential equations. To
equilibrium implies that a statistical description for such afind their solution, it was necessary to define the stochastic
regime can be done, e.g., with the help of hydrodynami@verage$59)- The explicit definition of the random variable

equations. If the local equilibrium is absent, one has to usé(t) and of the corresponding stochastic averages can be
kinetic equations. done in the following way.

Assume that there is a sfgp,(t)} of functionse,(t) enu-
merated by a multi-index. Let this set be complete and
orthonormal,

The method of scale separation is applied to the dynamics
of neutral atoms in nonuniform magnetic fields typical of > o* (1) (t')=(t—t"), J em(t) en(t)dt= Sy
quadrupole magnetic traps. We concentrate our attention on n
the case of a dynamic quadrupole trap with a rotating bias i .
field, as in experimentg5—7]. For the initial spin polariza- Then a functioné(t) can be represented as an expansion
tion S§<0, the motion of atoms is confined and well de-
scribed by the adiabatic approximation. £ = Epn(t).

For the atoms whose spins are initially polarized along the n
z axis a novel unusual regime appears where the motion i

confined in a half space: wheg§>0, the motion is confined I
from the sidez>0, and ifS{<0, it is confined from the side probability distribution p(¢,). For concreteness, we may
' ' think of p,(&,) as a Gaussian distribution.

2<0. This semiconfined motion is nonadiabatic and nonpo- " o &t 5" (o averaging for a functién(é(t)) of the

tential. An _ense_mble of atoms in a sem|c<_)nf|n_|ng .reg'sttochastic variablé€(t) is defined as the functional integral
forms an ellipsoidal cloud stretched in the axial direction an

slowly moving along thez axis to the nonconfining side.
The semiconfining regime can be used for studying mix- ((F(i(t))))If FE]T pa(&ndé,.
tures with a relative motion of components. For example, "

one component can have initial spin polarizat&§x 0, thus, If the random coefficient & is complex, then
n )

being confined, while another component, with initial spindg =d(Re¢,)d(Im&,). Whené, is centered at zero, then
polarization along the axis, can be semiconfined, moving " " " A ’

through the first. Or one can load into a trap two components

both being polarized along the axis, but one withS:>0 <<§n>>:f &Pn(€n)dEq=0.

while another withS{<0. Then both such species will be in

the semiconfining regime but moving in opposite directions,The dispersions, of a distributionp,(&,) is given by the
one to the negative and another to positive direction. The  equation

variant with three components, one of which is confined with

the two others semiconfined moving in opposite directions, 2 _

could also be realized. Mixtures witﬂ the Pé)lative motion of U”=<<|§”|2>>_f |60l *Pa(£n)dén.

VIl. CONCLUSION

Each coefficient, is considered as a random variable with a
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With these definitions, for the stochastic correlation func- .
tion we have (ED&))=2D2 ¢h(Degnlt'),

(&N =2 oreh(Den(t)).
" where it is taken into account thd(t) is real. From here,
In the case of white noise, all dispersiong are equal to because of the completeness of the bggigt)}, we obtain
each other, so that we may writé=2D. Thence the sto- Ed. (59 which was used in calculating expressioite)—

chastic correlation function becomes (65).
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