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Nonadiabatic dynamics of atoms in nonuniform magnetic fields
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Dynamics of neutral atoms in nonuniform magnetic fields, typical of quadrupole magnetic traps, is consid-
ered by applying an accurate method for solving nonlinear systems of differential equations. This method is
more general than the adiabatic approximation and, thus, permits one to check the limits of the latter and also
to analyze nonadiabatic regimes of motion. An unusual nonadiabatic regime is found when atoms are confined
from one side of thez axis but are not confined from another side. The lifetime of atoms in a trap in this
semiconfining regime can be sufficiently long for accomplishing experiments with a cloud of such atoms. At
low temperature, the cloud is ellipsoidal, being stretched in the axial direction and moving along thez axis.
The possibility of employing the semiconfining regime for studying the relative motion of one component
through another in a binary mixture of gases is discussed.@S1050-2947~97!06412-3#

PACS number~s!: 03.75.2b, 02.30.Hq
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I. INTRODUCTION

The motion of neutral atoms in nonuniform magne
fields is important to study for several applications, in p
ticular, for better understanding the mechanics of confi
ment in quadrupole magnetic traps, such as the Io
Pritchard traps with a static bottle field@1–3# or dynamic
traps with a rotating bias field@4,5#. This has become espe
cially interesting after the experimental observation of Bo
condensation in very cold gases of rubidium@6,7#, lithium
@8#, and sodium@9–11#. There exists extensive literatur
considering statistical properties of confined Bose syste
using various approaches, e.g., the quasiclassical densit
state approximation@12,13#, the Gross-Pitaevskii equatio
@14–16#, the Monte Carlo density-matrix calculations@17#,
the Thomas-Fermi approximation@18,19#, the Bogoliubov
approximation@20#, and the gas approximation in the fram
work of the Gibbs ensembles@21,22#. Statistical properties
of the weakly interacting Fermi gas confined in a poten
well have also been studied in the Thomas-Fermi appr
mation @23,24#.

The aim of this paper is to consider not statistics but
namics of atoms in nonuniform magnetic fields. When one
interested in the behavior of confined atoms, one deals w
their stationary motion. Stationary regimes can be descri
by the adiabatic approximation. When the confining poten
is harmonic, then the dynamics of atoms is given by sim
harmonic oscillations. In general, the confining potentia
not necessarily harmonic. For instance, the first demonstr
magnetic trap@25# used a quadrupole field~with zero mag-
netic field at the center! which gave rise to a linear potentia
In any case, atomic motion in a strictly confining potent
can be described by the adiabatic approximation. Such a
batic motion in various magnetic traps has been analyze
Refs.@26–29#.

A more general consideration of atomic motion, witho
using the adiabatic approximation, is meaningful for seve
reasons: First of all, a more general approach makes it
sible to understand the limits of the adiabatic approximati
561050-2947/97/56~6!/5004~10!/$10.00
-
-
-

e

s,
of-

l
i-

-
is
th
d
l

e
s
ed

l
ia-
in

t
l
s-
.

Second, studying other, nonadiabatic, regimes of motion p
mits one to explain more profoundly the physics of ato
inside magnetic traps, as far as in these not all atoms
confined. Knowing better different, including nonadiabat
regimes of atomic motion may, possibly, give a hint on ho
to improve confining characteristics of magnetic traps.

One more reason is related to the recently reported exp
ments on the simultaneous trapping of two different atom
species, two isotopes of rubidium@30# and sodium and po-
tassium@31#. These experiments are a starting point for
new series of studies of ultracold matter. The variety of
fects that can be observed in mixtures are incompara
richer than in one-component gases. This concerns e
equilibrium mixtures@32#. Much more interesting feature
appear when one of the components can move through
other. For instance, in a binary mixture with such a relat
motion the effect of conical stratification@33# can occur.
This effect happens when one of the components move
one direction through another component. Then the insta
ity can develop inside a cone with the axis along the relat
velocity; as a result of this instability, the componen
stratify in space. Note that for this effect the one-direction
relative motion is necessary, but not relative oscillations
collisions of sloshing clouds. In the presence of a relat
macroscopic motion some unusual manifestations of
Doppler effect@34# may also arise. But can such a stran
regime exist when the atoms of one kind move in one dir
tion being confined from another? In addition, it is desirab
that this one-directional escape from a trap would not be
fast in order to be able to accomplish measurements. Th
requirements look too severe to allow the existence of suc
semiconfining regime. However, in what follows it will b
shown that this semiconfining regime does exist. Certainly
is nonadiabatic and, even more, nonpotential, thus canno
described in the framework of the adiabatic approximatio

II. EVOLUTION EQUATIONS

Since the aim of this paper is to present an accurate s
tion of evolution equations for atoms in nonuniform ma
5004 © 1997 The American Physical Society
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56 5005NONADIABATIC DYNAMICS OF ATOMS IN . . .
netic fields, it is reasonable, first of all, to pay attention to
accurate formulation of the equations themselves.

The quantum Hamiltonian of a system ofN neutral atoms,
each with a massm and magnetic momentm, is

H5(
i 51

N S pW i
2

2m
2mSW iBW i D 1

1

2 (
iÞ j

N

F i j , ~1!

where pW i is a momentum operator;SW i , a spin operator;
BW i5BW (rW i ,t) is the total magnetic field acting on ani atom;
and F i j 5F(urW i2rW j u) is an interaction potential. The mag
netic momentm is the product of the Bohr magneton and t
hyperfineg factor @35#. The wave function of the system
C5@Cs(rW1 ,rW2 , . . . ,rWN ,t)#, is a column in spin space. Th
quantum-mechanical average of an operator from the alg
of observables,A, is the scalar product

^A&5~C,AC!. ~2!

Using the Schro¨dinger equationi\]C/]t5HC, with the
Hamiltonian ~1!, it is straightforward to get the evolutio
equations for the average position of an atom,

d

dt
^rW i&5

1

m
^pW i&, ~3!

its average momentum

d

dt
^pW i&5m^¹W i~SW i•BW i !&2 (

j ~Þ i !

N

^¹W iF i j &, ~4!

and the average spin

d

dt
^SW i&5

m

\
^SW i3BW i&. ~5!

These equations may be simplified with a mean-field
proximation

^Si
aBi

b&5^Si
a&^Bi

b&, ~6!

wherea,b5x,y,z, valid for fields slowly varying in space
@35#. Condition ~6! is also called the semiclassical approx
mation and is usually supplemented by another approxim
equation

^BW ~rW i ,t !&5BW ~^rW i&,t !, ~7!

which again assumes a slow variance of magnetic field
space. When the magnetic field is a linear function of re
space coordinates, then Eq.~7! is not an approximation bu
an exact relation. This concerns quadrupole magnetic fi
which in what follows we shall deal with. Hence the so
approximation we need is the mean-field one, Eq.~6!.

Under conditions~6! and ~7!, Eqs. ~3!–~5! acquire the
same form for all indicesi , which permits us to simplify the
notation by introducing

rW[^rW i&5$x,y,z%,
e

ra

-

te

in
l-

ds

vW [
1

m
^pW i&5$vx ,vy ,vz%, ~8!

SW [^SW i&5$Sx ,Sy ,Sz%,

and the average interatomic force

fW[2 (
j ~Þ i !

N

^¹W F i j &. ~9!

Then Eqs.~3!–~5! can be reduced to the system of equatio

drW

dt
5vW ,

dvW

dt
5

m

m
¹W ~SW •BW !1

fW

m
, ~10!

dSW

dt
5

m

\
SW 3BW ,

which will be the main object of our consideration.
The derivation of Eq.~10!, though simple enough, con

tains an important point which is worth emphasizing. T
basic approximation~6! supposes that the system field
slowly vary in real space, so that the spin and real-sp
degrees of freedom can be separated, which in the quan
mechanical language means that the wave function can
factorized into a product of spin and real-space wave fu
tions @35#. This quantum-mechanical separation of variabl
as will be shown in what follows, is closely related to the
dynamical separation.

The evolution equations~10! are to be supplemented b
the initial conditions

rW~0!5rW05$x0 ,y0 ,z0%,

vW ~0!5vW 05$v0
x ,v0

y ,v0
z%, ~11!

SW ~0!5SW 05$S0
x ,S0

y ,S0
z%.

In specifying the form of the magnetic field, let us take
as in the experiments@5–7# with dynamical quadrupole
traps. Then the total magnetic field

BW 5BW 1~rW !1BW 2~ t ! ~12!

is the sum of the quadrupole field

BW 1~rW !5B18~rW23zeW z! ~13!

and the rotating bias field

BW 2~ t !5B2~eW xcosvt1eW ysinvt !, ~14!

whereeWa is a unit vector fora5x,y,z.
The characteristic length

L[
B2

B18
~15!
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5006 56V. I. YUKALOV
of the quadrupole-field nonuniformity corresponds to the
dius of the field zero in the radial direction. This length d
fines approximately the upper limit for the radius of
trapped atomic cloud. Keeping this in mind, it is convenie
to pass to dimensionless space variables measuring the
ponents of the Cartesian vectorrW5$x,y,z% in units of L.
Then we can profit from the inequality

urWu,1. ~16!

To return to dimensional space variables, we have to
rW→rW/L.

We introduce the characteristic frequencies

v1[S mB18

mL D 1/2

, v2[
mB2

\
~17!

of atomic and spin motions, respectively, and the collis
rateg defined by the ratio

gjW[
fW

mL
, ~18!

in which jW is treated as a stochastic variable representing
interactions of atoms through their random collisions. A d
tailed definition of the variablejW will be given in Sec. V and
in the Appendix. Then from Eq.~10! we obtain the evolution
equations for the space variable

d2rW

dt2
5v1

2~SxeW x1SyeW y22SzeW z!1gjW ~19!

and for the spin variable

dSW

dt
5v2ÂSW , ~20!

where the matrixÂ5@Aab#, with a,b51,2,3, consists of the
elements

A115A225A3350,

A1252A21522z,

A1352A3152y2sinvt,

A2352A325x1cosvt.

We are concerned about an accurate solution of the
tem ~19! and~20! of nonlinear differential equations, withou
using the adiabatic approximation. At this point, to dist
guish what is what, it is useful to say several words about
adiabatic approximation. Fortunately, this will not take t
much space, since the latter approximation is rather triv
First, one assumes that the dynamical process is close t
stationary state, so that it is admissible to setdSW /dt50W .
Then, from the third equation in Eq.~10! it follows that
SW 3BW 50W . This means that the spin is aligned alongBW , which
can be written asSW •BW 5SuBW u. Thus one excludes the spi
motion saying that spin adiabatically follows the magne
-
-

t
m-

et

n

e
-

s-

e

l.
its

field. Using this, for the atomic space variablerW one gets the
Newton equation with the adiabatic force

FW a5Sm¹W uBW u.

Assume that the field rotates much faster than the mechan
oscillations of atoms, but not so fast as to induce transiti
in the Zeeman substructure. This means thatv1!v!v2.
Then the adiabatic force can be averaged over the pe
2p/v of the rotating bias field. Averaging this force an
using Eq.~16!, one gets

^FW a& t.
m

2
Sv1

2~xeW x1yeW y18zeW z!,

which immediately yields the adiabatic potential

Ua.2
m

4
Sv1

2~x21y218z2!1const.

This is a harmonic, although anisotropic, potential. The m
tion of atoms in such a potential is given by simple harmo
oscillations, if S,0. WhenS50, atoms fly away ballisti-
cally and if S.0, they escape by the exponential law.
both latter cases atoms escape from the trap in all directi
The ballistic flying away is isotropic. The exponential e
cape, because of the anisotropy of the adiabatic potentia
anisotropic: atoms escape faster along the axial direc
than in the radial one; but anyway the symmetry with resp
to the inversionrW→2rW is preserved.

III. SCALE SEPARATION

Return to the general equations~19! and ~20!. Written in
the standard form, they compose a nonlinear dynamical
tem of the ninth order, that is, a system of nine nonline
differential equations. It seems that it is impossible to so
this complicated system of equations without invoking
rough approximation like the adiabatic one. Neverthele
these equations can be solved using the method of s
separation@36,37#. The mathematical foundation of this ap
proach is based on the Krylov-Bogoliubov averaging meth
@38# and the Poincare´ theory of generalized asymptotic ex
pansions@39#. The method of scale separation was succe
fully applied to several intricate problems, such as the ori
of self-organized spin superradiance in nuclear magnets@36#,
coherent radiation regimes of spin masers@40,41#, and fast
polarization reversal in proton targets used for study
beam scattering@42#. The accuracy of this approach has be
confirmed by good agreement of its solutions with expe
mental data@43,44# and with computer simulations@45,46#.

The first step of the method of scale separation@36,37# is
to classify the functional variables of the problem, separat
time scales. Fortunately, in the majority of interesting phy
cal problems it is possible to separate relatively slow fro
relatively fast variables. In our case, such a separation
naturally related to the mean-field condition~6! used for de-
riving the evolution equations~19! and ~20!. As has been
already discussed above, condition~6! assumes that the rea
space nonuniformity in the system is, in some sense, sm
Now we ascribe an exact meaning to this phrase concreti
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56 5007NONADIABATIC DYNAMICS OF ATOMS IN . . .
in what sense the nonuniformity is small. The nonuniform
in the system is connected with the quadrupole field~13! and
pair interactions in Eq.~9!, while the rotating bias field~14!
is spatially uniform. Therefore what we need is to comp
the characteristic parameters related to the correspon
fields. Among these characteristic parameters we havev1
andv2 in Eq. ~17!, andg in Eq. ~18!. The nonuniformity is
weak if the characteristic parameters corresponding to n
uniform fields are small as compared to that of a unifo
field. The latter means nothing but the validity of the i
equalities

v1!v2 , g!v2 . ~21!

The meaning of the first inequality in Eq.~21! is quite
evident, indicating that the frequency of mechanical osci
tions of atoms is much smaller than that of spin fluctuatio
The second inequality is also very natural, as long as
collision rate is usually much smaller thanv2. If g were
comparable withv2 this would imply atomic collisions are
causing radio-frequency transitions between magnetic s
levels. With Eq.~21! in mind, looking at the evolution equa
tions ~19! and~20!, we notice at once that the variablerW is to
be treated as slow, compared to the fast variableSW .

At this point, it is worth emphasizing how naturally th
separation of functional variables into slow and fast, w
respect to time, is connected with the character of nonuni
mity in real space. This is why spending some time for
membering the derivation of Eqs.~10! was not in vain, but,
on the contrary, is important for stressing the se
consistency of the approximations used.

Following further the method of scale separation@36,37#,
we need to solve the equations for fast variables, with s
variables being kept as quasi-integrals of motion. The evo
tion equation for fast variables is Eq.~20! for spin. This
equation for an arbitrary given antisymmetric matrixÂ, with
elementsAi j 52Aji , can be solved exactly. This means th
we are able to present an exact solution forSW for any given
external fields. Because of the significance of such a s
tion, we write it down explicitly.

First, we solve the eigenproblem

ÂbW i5a ibW i , ubW i u251, ~22!

in which Â is an antisymmetric matrix andi 51,2,3. The
solution is straightforward, giving the eigenvalues

a15 ia, a252 ia, a350, ~23!

with

a[AA12
2 1A13

2 1A23
2 .

The eigenvectors are

bW i5
1

ACi

@~a iA131A12A23!eW x1~a iA232A12A13!eW y

1~a i
21A12

2 !eW z#, ~24!

with the normalization constant
e
ng

n-

-
.
e

b-

r-
-

-

w
-

t

u-

Ci5~ ua i u22A12
2 !21~ ua i u21A12

2 !~A13
2 1A23

2 !.

It can be checked straightaway that the vectors from Eq.~24!
form an orthonormal basis and satisfy the properties

bW i* •bW j5d i j , bW 1* 5bW 2 , bW 3* 5bW 3 . ~25!

Therefore the general solution of Eq.~20! can be written as a
linear combination

SW ~ t !5(
i 51

3

aiSW i~ t ! ~26!

of particular solutions

SW i~ t !5bW i~ t ! exp$w i~ t !%, ~27!

in which bW i are given by Eq.~24!. The coefficients in Eq.
~26! are defined by the initial condition for spin from Eq
~11!, which yields

ai5SW 0•bW i* ~0!. ~28!

Substituting Eq.~27! into Eq. ~20!, we obtain the phase

w i~ t !5E
0

tFv2a i~ t !2bW i* ~ t !
d

dt
bW i~ t !Gdt. ~29!

From Eq.~29!, invoking Eq.~25!, we find that

w1* 52w1 , w2* 52w2 , w350. ~30!

Let us accent that, of course, not each system of equat
like Eq. ~20! can be solved exactly. The possibility of obtai
ing here the exact solution, Eq.~26!, is due to the antisym-
metry of the matrixÂ.

IV. ATOMIC VARIABLES

At the next step of the method of scale separation@36,37#
the solution for fast variables is to be substituted into
equations for slow variables with time averaging the rig
hand side of the latter equations. As follows from Eqs.~27!
and ~29!, the fast spin fluctuations are described by the
fective time-dependent frequenciesw i(t)/t. Hence the solu-
tion ~26! does not have a definite period. Consequently,
time averaging is given by the rule

^F& t[ lim
t→`

1

tE0

t

F~ t !dt. ~31!

Averaging Eq.~26! according to the rule~31! and using Eq.
~16!, we find

^SW & t5
1

2
@~11x!S0

x1yS0
y22zS0

z#~xeW x1yeW y24zeW z!.

~32!

The equation for the guiding centers of atomic variables
obtained by time averaging the right-hand side of Eq.~19!

with jW treated as a slow variable. Employing Eq.~32!, we
have
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5008 56V. I. YUKALOV
d2rW

dt2
5FW 1gjW , ~33!

with the force

FW 5
v1

2

2
@~11x!S0

x1yS0
y22zS0

z#~xeW x1yeW y18zeW z!.

~34!

This force essentially depends on the initial polarization
spins, as it should be in the general case and in contra
the adiabatic force mentioned at the end of Sec. II. Only
one type of initial polarization, whenS0

x5S andS0
y5S0

z50,
does the force~34! reduce to the adiabatic one. This type
spin polarization leads to the stationary confined motion
which the adiabatic approximation is admissible.

Let us analyze another situation when spins are initia
polarized along thez axis, so that

S0
x50, S0

y50, S0
z5S. ~35!

Then the force~34! becomes

FW 52Sv1
2z~rW17zeW z!. ~36!

As is evident, the force~36! is nonadiabatic and, even mor
it is nonpotential since there exists no potentialU such that
FW would be equal to2¹W U.

With the force~36!, Eq. ~33! becomes

d2rW

dt2
1Sv1

2z~rW17zeW z!5gjW . ~37!

The forcegjW , according to Eq.~18!, originates from inter-
atomic interactions in Eq.~9!. Because of the isotropy of th
interaction potentialF(urW i2rW j u), the force corresponding to
these interactions may be presented as an isotropic ve
that is, we may write

jW5j~eW x1eW y1eW z!. ~38!

Expanding Eq.~37! into components, we get for thex com-
ponent

d2x

dt2
1Sv1

2zx5gj. ~39!

The equation for they component is the same as Eq.~39!
with the replacementx→y. Therefore we shall consider i
what follows only one of the radial components. For t
axial variable, Eq.~37! gives

d2z

dt2
18Sv1

2z25gj. ~40!

So, we have to solve the system of nonlinear equations~39!
and ~40!.

The general solutions to Eqs.~39! and~40! can be written
in the form
f
to
r

r

y

or,

x5x11x2 , z5z11z2 , ~41!

in which x1 and z1 are the solutions to the correspondin
homogeneous equations whilex2 andz2 are the solutions to
the nonhomogeneous equations. The homogeneous equa
are

d2x1

dt2
1Sv1

2z1x150,

d2z1

dt2
18Sv1

2z1
250, ~42!

with the initial conditions

x1~0!5x0 , ẋ1~0!5v0
x ,

z1~0!5z0 , ż1~0!5v0
z , ~43!

where the dot means the time derivative. Writing down t
nonhomogeneous equations, simplifying them a little, tak
into account that the collision rate is typically an order
magnitude smaller thanv1, yields

d2x2

dt2
1Sv1

2z1x25gj2Sv1
2x1z2 ,

d2z2

dt2
116Sv1

2z1z25gj, ~44!

the initial conditions for Eq.~44! being

x2~0!50, ẋ2~0!50,

z2~0!50, ż2~0!50. ~45!

To solve the system of equations~42! and~44!, we have,
first, to solve the equation forz1, then to substitutez1 into
the equation forx1, and to use the foundx1 and z1 in Eq.
~44!.

V. SEMICONFINED MOTION

The system of equations in Eq.~42! for x1 and z1 is a
system of two nonlinear differential equations of second
der. However, these equations can be solved exactly.

Integrating once the second equation in Eq.~42!, we get

S dz1

dt D 2

5
16

3
Sv1

2~zm
3 2z1

3!, ~46!

wherezm is an integration constant which can be found fro
the initial conditions in Eq.~43! yielding

zm
3 5z0

31
3~v0

z!2

16Sv1
2

. ~47!
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56 5009NONADIABATIC DYNAMICS OF ATOMS IN . . .
Since the left–hand side in Eq.~46! is nonnegative, this im-
plies thatzm

3 >z1
3 if S.0, andzm

3 <z1
3 if S,0, that is,zm is

the maximal value ofz1 for S.0 and zm is the minimal
value ofz1 for S,0,

zm5H max
t

z1~ t !, S.0

min
t

z1~ t !, S,0.
~48!

We introduce a function

P52
4

3
Sv1

2z1 , ~49!

for which Eq.~46! transforms to

S dP
dt D

2

54P32g2P2g3 , ~50!

where

g250, g352
256

27
zm

3 S3v1
6 . ~51!

Equation ~50! is the Weierstrass equation with the Weie
strass invariants in Eq.~51! and with the discriminant

D[g2
3227g3

25227g3
2 .

The solution of the Weierstrass equation~50! is the Weier-
strass functionP(t2t0), wheret0 is an integration constant
The Weierstrass function is an elliptic function, that is,
doubly periodic function which is analytic, except at pole
and which has no singularities other than poles in the fin
part of the complex plane. All properties of the Weierstra
functions are perfectly described in Refs.@47,48#.

In this way, the solution of Eq.~46!, and therefore of Eq
~42!, reads

z1~ t !52
3

4Sv1
2
P~ t2t0!. ~52!

The integration constantt0 is to be found from the initial
condition in Eq.~43!, which gives

3P~ t0!524z0Sv1
2 , ~53!

where we took into account that the Weierstrass function
an even function. Whent tends tot0, then

z1~ t !.2
3

4Sv1
2F 1

~ t2t0!2
1

g3

28
~ t2t0!4G . ~54!

The general behavior ofz1(t) is as follows. If S.0, then,
starting fromz0, the value ofz1(t) increases tozm from Eq.
~47!, after which it decreases, diverging to2` as t→t0. If
S,0, then z1(t) decreases to its minimal valuezm , after
which it turns to the positive direction, increasing to1` as
t→t0.

Substituting solution~52! into the first of Eqs.~42!, we
have the equation
,
e
s

is

d2x1

dt2
5

3

4
P~ t2t0!x1 ~55!

for the radial motion. This is a Lame´ equation of degree
n51/2, which is defined by the relationn(n11)53/4. The
solution to the Lame´ equation is given by combinations o
Lamé functions of different kinds@49#. In the present case
the solution to Eq.~55! is

x1~ t !5Fc1PS t2t0

2 D1c2GE3
21/2S t2t0

2 D . ~56!

Here

E3~ t ![
d

dt
P~ t !

is a Laméfunction of degree 3, of the first kind. The inte
gration constantsc1 andc2 are defined by the initial condi
tions in Eq.~43!.

The solution ~56! diverges together with Eq.~52!, as
t→t0, by the law

x1~ t !.c1S t2t0

2 D 21/2

1c2S t2t0

2 D 3/2

. ~57!

Comparing Eqs.~57! and ~54!, we see that the divergenc
along the axial direction is faster than in the radial one,
aspect ratio being

Ax1
2~ t !

z1
2~ t !

;ut2t0u3/2. ~58!

This ratio tends to zero, ast→t0. Therefore a cloud of atoms
acquires an ellipsoidal shape stretched in the axial direct

The behavior ofx1(t) andz1(t) shows that the atoms with
an initial polarizationS.0 are confined from the sidez.0
but are not confined from the sidez,0. Vice versa, the
atoms with an initial polarizationS,0 are confined from the
sidez,0 but are not confined from thatz.0. Thus an en-
semble of atoms, with a given polarization, loaded into a t
would move predominantly in one direction either toz,0 or
to z.0 depending on whether the initial polarization isS.0
or S,0, respectively. Such a regime is exactly that semic
fining regime we have been looking for.

However, we need yet to find the solutions of nonhom
geneous equations in Eq.~44!. To this end, we have to con
cretize the variablej originating from the averaged pair in
teractions. For a rarefied system these interactions can
treated as random pair collisions. The system is said to
rarefied if the average atomic densityr and the scattering
lengtha satisfy the inequalityra3!1. This is just the case
of experiments@5–11# with alkali-metal atoms. Therefore w
can considerj as a random variable. More accurately,j(t)
can be modeled by a stochastic field. The latter may
specified as white Gaussian noise@50# with the stochastic
averages

^^j~ t !&&50, ^^j~ t !j~ t8!&&52Dd~ t2t8!, ~59!
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where D is a diffusion rate, and the meaning of doub
brackets is explained in the Appendix. Then the nonhom
geneous equations in Eq.~44! become stochastic differentia
equations. An explicit way of treating the random variablej
is presented in the Appendix.

When solving the nonhomogeneous equations, it is us
to invoke again the idea of scale separation. The time va
tion of solutions to stochastic differential equations refle
the properties of the given stochastic fields. Since in our c
the stochastic fieldj(t) is modeled by white noise, which i
characterized by sharp time jumps@50#, then the related
functional variablesx2 and z2 can be treated as fast com
pared tox1 and z1 satisfying the equations not containin
such random fields. Hence for the stochastic differen
equations in Eq.~44!, the slow variablesx1 and z1 can be
kept as quasi-integrals of motion@36,37#. Then using the
method of Laplace transforms, we obtain

x2~ t !5E
0

t

Gx~ t2t!@gj~t!2Sv1
2x1z2~t!#dt ~60!

and

z2~ t !5E
0

t

Gz~ t2t!gj~t!dt, ~61!

where the initial conditions in Eq.~45! have been taken into
account, and the transfer functions are

Gx~ t !5
sin~«t !

«
, Gz~ t !5

sin~4«t !

4«
,

with the effective frequency

«[ASz1v1 .

Employing condition~59!, we may find the moments o
solutions~60! and ~61!. For instance,

^^x2~ t !&&50, ^^z2~ t !&&50. ~62!

Calculating the second moments, we get the mean-sq
deviations for the radial random variable,

^^x2
2~ t !&&5

g2Dt

«2 F12
sin~2«t !

2«t G1
g2Dtx1

2

3600«2z1
2

3H 12cos~«t !cos~4«t !1
sin~4«t !

4«t

3@cos~«t !2cos~4«t !216«t sin~«t !#J , ~63!

and for the axial random variable,

^^z2
2~ t !&&5

g2Dt

16«2 F12
sin~8«t !

8«t G . ~64!

Note that the collision rateg enters here asg2, thence the
behavior of the random variables~63! and~64! does not de-
pend on whether the interatomic interactions are repulsiv
attractive.
-

ul
a-
s
se

l

re

or

When the variablesx1 andz1 diverge as in Eqs.~56! and
~54!, then for the random variables in Eqs.~63! and~64! we
obtain

^^x2
2~ t !&&5}ut2t0u6expS 4A3t

ut2t0u D ,

^^z2
2~ t !&&5}ut2t0u3expS 4A3t

ut2t0u D , ~65!

as t→t0. Since this expansion is governed by the same
ponentials, it is practically isotropic, with only a slight an
isotropy due to different preexponential factors.

Remember that the general solutions to Eqs.~39! and~40!
have the form of the sums in Eq.~41! containing both the
regular termsx1 andz1 and the random termsx2 andz2. The
relative contribution of these terms is regulated by the re
tion between the parametersg,D, andv1. If g2D!v1

3, then
the influence of the random termsx2 and z2 is negligibly
small, and the atomic motion is characterized by the regu
terms x1 and z1. In this case we have the semiconfinin
regime. An ensemble of atoms would form an ellipsoid
cloud moving in one of the directions along thez axis. If
g2D@v1

3, then the motion of atoms is governed by the ra
dom termsx2 andz2. In such a case, an ensemble of ato
would form an almost isotropic exponentially expandi
cloud.

Assuming, as usual, that the diffusion rateD is propor-
tional to temperatureT, we come to the conclusion that th
realization of either the regime of the fast exponential exp
sion or the regime of the slow semiconfined motion depe
on temperature. At high temperatures the former regime
be realized while at low temperatures, the latter. A crosso
temperatureTc related to the equalityg2D5v1

3 would cor-
respond to the effective boundary between these two
gimes.

VI. NUMERICAL ESTIMATES

In order to impart to the whole consideration a complet
realistic flavor and to show the reasonableness of all
equalities assumed for employing the method of scale se
ration, let us adduce numerical estimates basing on the c
acteristic quantities typical of the experiments@5–7# with
87Rb in dynamical quadrupole traps.

The mass of a rubidium atom ism51.45310222 g and
the magnetic moment ism50.45310220 erg/G. The gradient
of the quadrupole field isB185120 G/cm, and the amplitude
of the rotating bias field isB2510 G, the rotation frequency
of the latter beingv'53104 s21. The nonuniformity length
~15! is L;0.1 cm. The characteristic frequency of atom
motion and the Larmor frequency of spins from Eq.~17! are
v1;102 s21 and v2;53107 s21, respectively. The colli-
sion rate in Eq.~18! can be estimated asg;\ra/m, which,
with the average densityr'331012 cm23 and the scatter-
ing lengtha;1026 cm, givesg;10 s21. Thus the follow-
ing inequalities hold true:

g!v1!v!v2 .
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Hence the classification of atomic variables as slow and
spin variables as fast, based on the inequalities in Eq.~21!, is
correct.

To estimate the lifetimet0 of the semiconfined motion
described in Sec. V, we have to return to Eq.~50!. Integrat-
ing this over time betweent50 and somet, we have

E
P~ t0!

P~ t2t0! dP
A4P32g2P2g3

5t.

From here, taking into account thatg250 andP(t2t0)→`,
as t→t0, we get

t05E
P~ t0!

` dP
A4P32g3

. ~66!

Comparing Eqs.~51! and ~53!, we find for the Weierstrass
invariant

g354S zm

z0
D 3

P3~ t0!.

Then Eq.~66! can be rewritten as

t05t0E
2`

z0 dz

Azm
3 2z3

, ~67!

where we assume thatS.0 and

t0[
1

4v1
A3

S
.

The value ofzm is given by Eq.~47!. The average kinetic
energy 1/2m(v0

z)2L2 can be expressed through temperat
as 1/2kBT. Therefore Eq.~47! acquires the form

zm
3 5z0

31z, ~68!

in which

z[
3T

16T0
, T0[

mSv1
2L2

kB
.

Finally, for the lifetime~67! we obtain

t05t0E
2z0

` dz

Az31z0
31z

. ~69!

For the quantities considered, we havet0'1022s and
T0'1024 K. The parameterz depends on temperature. I
the interval of temperatures between 1 nK and 1 mK
changes from 1026 to 1. The quantityz0, according to Eq.
~43!, is the initial coordinatez1(0). It is clear that a cloud of
trapped atoms should have a distribution ofz0 which de-
pends on the temperature and shape of the confining po
tial. The average value ofz0 can be interpreted as the initia
location of the center of an atomic cloud. This value can
different for different experiments. Keeping this in mind, w
consider below several values ofz0. The integral~69! was
calculated numerically for different initial positionsz0. The
results are presented in Table I. As is seen, for the temp
f

e

it

n-

e

a-

turesT'1025 K the timet0 becomes of order 0.1 s, and fo
T'1 nK it reachest0'0.3 s. Moreover, making the tem
perature lower, it is possible to maket0 arbitrarily large,
sincet0→` whenz→0. Notice that the lifetimet0 does not
change much when varyingz0 in the interval20.1<z0<0.1.

It is possible to pose the question: how well does
lifetime t0 characterize the real escape time of an atom fr
a trap? Looking at Eq.~54!, we see thatz1(t) diverges as
t→t0, while, according to condition~16!, the actual escape
of an atom from a trap occurs at the timet1, whenz(t1);1.
The relation between the timest0 andt1, as follows from Eq.
~54!, is t12t0;v1

21. This, with the givenv1;102 s21,
makest12t0;1022 s. So, if t0>0.1 s, thent1;t0. There-
fore the timet0 really plays the role of the average lifetim
of atoms in a trap during the regime of semiconfined moti

If we are not satisfied by the simple estimates for t
characteristic timet1, we can calculate itexactly from the
equation of motion. The procedure is the same as that
calculatingt0. The results of this calculation confirm thatt1
is very close to the timet0, being smaller by about 0.02 s
Because of the mutual closeness of these times, we do
repeat fort1 the whole table as fort0 but, for cogency, we
present in Table II the values oft1 for the particles with the
initial location at the center of the trap. These values
found from the formula

t15t0E
0

1 dz

Az31z
. ~70!

Similarly to t0, the time t1 also becomes arbitrarily large
t1→`, asz→0, i.e., when temperature decreases.

Treating the interactions of atoms as random pair co
sions is admissible if the atomic system is rarefied, so t
ra3!1. For the case considered,r;1012 cm23 and
a;1026 cm, yielding ra3;1026. Thus the assumed in
equality is well satisfied.

As is argued at the end of Sec. V, at high temperatu
there exists a regime of fast exponential expansion of
almost isotropic cloud. At low temperatures, the regim

TABLE I. The characteristic timet0, in seconds, for severa
parametersz and different initial conditions.

z 1026 1025 1024 1023 1022 1021 1
z0

20.1 0.08 0.07 0.07 0.06 0.05 0.04 0.03
20.01 0.20 0.16 0.12 0.09 0.06 0.04 0.0
20.001 0.27 0.19 0.13 0.09 0.06 0.04 0.0

0 0.28 0.19 0.13 0.09 0.06 0.04 0.03
0.001 0.29 0.19 0.13 0.09 0.06 0.04 0.0
0.01 0.33 0.22 0.14 0.09 0.06 0.04 0.0
0.1 0.13 0.13 0.12 0.10 0.07 0.04 0.03

TABLE II. The characteristic timet1, in seconds, for the atom
initially located at the center of the trap and for different paramet
z.

z 1026 1025 1024 1023 1022 1021 1

t1 0.26 0.17 0.11 0.07 0.04 0.02 0.01
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changes to the semiconfined motion of a slowly moving
lipsoidal cloud. The crossover temperatureTc can be defined
by the equalityg2D5v1

3. The latter, with the diffusion rate
D;kBT/\, gives

Tc;
\v1

3

kBg2
.

Substituting herev1;102 s21 and g;10 s21, we have
Tc;1027 K, which is close to the temperature of the Bo
condensation observed in experiments@6,7#. Consequently,
the semiconfined regime can also be realized under sim
conditions.

Keeping in mind the future possibility of applying stati
tical methods to describe an ensemble of atoms in the s
confining regime, we have to understand whether the lo
equilibrium can be established in this case. The time of lo
equilibrium is related to the collision rate ast loc;g21.
Hence forg;10 s21, we havet loc;0.1 s. The local equi-
librium develops if the lifetime of the cloud,t0, is longer
than the local-equilibrium time. Ift0;0.3 s, then the loca
equilibrium can be achieved. Of course, the global equi
rium for a semiconfined motion cannot exist. Recall that
corresponding force~36! is not confining for a semiaxis ofz,
and furthermore it is not potential. But the possibility of loc
equilibrium implies that a statistical description for such
regime can be done, e.g., with the help of hydrodynam
equations. If the local equilibrium is absent, one has to
kinetic equations.

VII. CONCLUSION

The method of scale separation is applied to the dynam
of neutral atoms in nonuniform magnetic fields typical
quadrupole magnetic traps. We concentrate our attention
the case of a dynamic quadrupole trap with a rotating b
field, as in experiments@5–7#. For the initial spin polariza-
tion S0

x,0, the motion of atoms is confined and well d
scribed by the adiabatic approximation.

For the atoms whose spins are initially polarized along
z axis a novel unusual regime appears where the motio
confined in a half space: whenS0

z.0, the motion is confined
from the sidez.0, and ifS0

z,0, it is confined from the side
z,0. This semiconfined motion is nonadiabatic and non
tential. An ensemble of atoms in a semiconfining regi
forms an ellipsoidal cloud stretched in the axial direction a
slowly moving along thez axis to the nonconfining side.

The semiconfining regime can be used for studying m
tures with a relative motion of components. For examp
one component can have initial spin polarizationS0

x,0, thus,
being confined, while another component, with initial sp
polarization along thez axis, can be semiconfined, movin
through the first. Or one can load into a trap two compone
both being polarized along thez axis, but one withS0

z.0
while another withS0

z,0. Then both such species will be i
the semiconfining regime but moving in opposite directio
one to the negativez and another to positivez direction. The
variant with three components, one of which is confined w
the two others semiconfined moving in opposite directio
could also be realized. Mixtures with the relative motion
l-
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components can display a number of interesting featu
e.g., the effect of conical stratification@33#.

The semiconfining regime can also be employed for se
rating the species with different initial polarizations. For i
stance, if one loads into a trap a mixture of two compone
one having the spin polarization up and another down, t
the trap will act as a separator moving the first compon
down and the second one up, thus separating them.

One more application of the semiconfining regime cou
be for realizing atom lasers, for which a directed motion
atoms is necessary.
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APPENDIX: RANDOM VARIABLES

The variablej(t) describing random pair collisions o
atoms has been treated as a stochastic variable. Co
quently, Eqs.~44! are stochastic differential equations. T
find their solution, it was necessary to define the stocha
averages~59!. The explicit definition of the random variabl
j(t) and of the corresponding stochastic averages can
done in the following way.

Assume that there is a set$wn(t)% of functionswn(t) enu-
merated by a multi-indexn. Let this set be complete an
orthonormal,

(
n

wn* ~ t !wn~ t8!5d~ t2t8!, E wm* ~ t !wn~ t !dt5dmn .

Then a functionj(t) can be represented as an expansion

j~ t !5(
n

jnwn~ t !.

Each coefficientjn is considered as a random variable with
probability distribution p(jn). For concreteness, we ma
think of pn(jn) as a Gaussian distribution.

The stochastic averaging for a functionF„j(t)… of the
stochastic variablej(t) is defined as the functional integra

^^F„j~ t !…&&5E F„j~ t !…)
n

pn~jn!djn .

If the random coefficient jn is complex, then
djn[d(Rejn)d(Imjn). Whenjn is centered at zero, then

^^jn&&5E jnpn~jn!djn50.

The dispersionsn of a distributionpn(jn) is given by the
equation

sn
2[^^ujnu2&&5E ujnu2pn~jn!djn .
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With these definitions, for the stochastic correlation fun
tion we have

^^j* ~ t !j~ t8!&&5(
n

sn
2wn* ~ t !wn~ t8!.

In the case of white noise, all dispersionssn are equal to
each other, so that we may writesn

252D. Thence the sto-
chastic correlation function becomes
N.

tt

ell

an

E

et

n,
tt.

n,

n,
ev

C

ta

,

-
^^j~ t !j~ t8!&&52D(

n
wn* ~ t !wn~ t8!,

where it is taken into account thatj(t) is real. From here,
because of the completeness of the basis$wn(t)%, we obtain
Eq. ~59! which was used in calculating expressions~62!–
~65!.
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