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High-order nonlinear susceptibilities of helium
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Electron and Optical Physics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
~Received 12 May 1997!

With the goal of providing critically evaluated atomic data for modeling high harmonic generation processes
in noble gases, we present calculations of frequency-dependent nonlinear susceptibilities of the ground state of
helium, within the framework of Rayleigh-Schro¨dinger perturbation theory at lowest applicable order. The
nonrelativistic, infinite-nuclear-mass, atomic Hamiltonian is decomposed in terms of Hylleraas coordinates and
spherical harmonics, and the hierarchy of inhomogeneous equations of perturbation theory is solved iteratively.
The mixed Hylleraas and Frankowski basis functions are employed to represent accurately the ground-state and
perturbed wave functions. We believe our results for nonlinear susceptibilities of helium are the most accurate
~and in many cases, the only! available to date, and they are offered as benchmark data for design of future
multiphoton experiments.@S1050-2947~97!09111-7#

PACS number~s!: 32.80.Rm, 42.65.An, 42.65.Ky, 51.70.1f
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I. INTRODUCTION

The high-order nonlinear optical response of noble ga
to intense laser radiation is of considerable experimenta
terest, but is difficult to measure or calculate accurately.
the best of our knowledge, theoretical and experimental d
on nonlinear susceptibilities of helium are available only
third and fifth order@1,2#. The theoretical description o
these processes is greatly hampered by the nonperturb
nature of the Schro¨dinger equation in the intense field limi
where nonlinear optical response is strongest, as well a
the notorious difficulty of the quantum-mechanical few-bo
problem. Moreover, it is difficult to determine reliably from
conventional theoretical approximations the thresholds
which perturbative approximations begin to fail, or to pr
dict, in general, the means by which the failures occur.

Most of the theoretical models used so far for strong-fi
laser-atom interaction employ approximations that red
the calculation to treat a single active electron. Howev
most experiments of multiphoton processes are on rare ga
which are easy to handle experimentally, and they are
ticularly suited for studying the effects of high intensities
their large ionization potentials prevent ionization at low
tensities. Due to the presence of six equivalent electron
the outer subshell of the rare gases~other than helium!, com-
prehensive theoretical treatments for rare gas atoms are
difficult except under the approximation of ‘‘the single
active-electron model’’@3–7#.

In the treatment of many-electron atoms, two-electr
systems occupy a special position, since they admit the s
plest theoretical treatment. In recent years, developmen
computational facilities have begun to allow theorists to d
with the time-dependent behavior of two-electron atoms@8–
12#, though the general case of the few-body time-depend
Schrödinger equation~TDSE! is still at the frontier of the
capabilities of modern numerical simulations.

*Present address: Rochester Theory Center for Optical Sci
and Engineering, University of Rochester, Rochester, NY 1462
561050-2947/97/56~6!/4938~8!/$10.00
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Previous works@13–15# have calculated the ac Stark co
efficients and high-order nonlinear susceptibilities of atom
hydrogen within the framework of Rayleigh-Schro¨dinger
perturbation theory at lowest applicable order. This meth
can be extended to determine the thresholds at which
perturbative approximations begin to fail@15#. In this work,
we follow a similar path for helium, to provide a basic d
scription of multiphoton processes in two-electron atoms
accurate calculations of high-order nonlinear susceptibili
within the framework of perturbation theory. With a nonre
ativistic treatment, assuming infinite nuclear mass,
atomic Hamiltonian is decomposed in term of Hylleraas c
ordinates and spherical harmonics using the formalism
Pont and Shakeshaft@16#, and the hierarchy of inhomoge
neous equations of perturbation theory is solved iterative

A combination of Hylleraas and Frankowski basis fun
tions is used@17,18#. The compact Hylleraas basis provides
highly accurate representation of the ground-state wave fu
tion, whereas the diffuse Frankowski basis functions e
ciently reproduce the correct asymptotic structure of the p
turbed orbitals. The use of this mixed basis gives ve
accurate energies for the ground-state energy and polariz
ity, and it should account for most effects of electron cor
lation. The complex rotation scheme has been applied
overcome the difficulty of the boundary condition for co
tinuum solutions.

Our results consist of frequency-dependent suscepti
tiesxq(v), for orderq up to 15, for several commonly use
laser frequencies. These values are in good agreement
the few experimental and theoretical values that have b
reported previously. We also present results for the pho
ionization cross sections of He for photon energies up to
eV. We believe these cross sections have an uncertaint
about 0.1%, based on the convergence behavior observe
the complex-coordinate method.

In the description of the method, we use the conventio
system of atomic units, in which the electron charge a
mass, and the reduced Planck constant\5h/2p, have the
numerical value of one. Our results for the nonlinear susc
ce
4938
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56 4939HIGH-ORDER NONLINEAR SUSCEPTIBILITIES OF HELIUM
tibilities xq are given in customary electrostatic units~esu! as
cm3~cm3/erg!(q21)/2.

II. METHOD OF COMPUTATION

The task is to compute the atomic nonlinear susceptib
xq(2qv;v,...,v), which is the transition amplitude for a
atom in its ground stateug& to absorbq photons of the fun-
damental frequencyv and to emit one photon of frequenc
qv. In lowest-order perturbation theory

xq~v!5 (
k

q11

(
i 1 ,...,i q

` dgiq
di qi q21

•••di 2i 1
di 1g

~v i qg2skqv!•••~v i 1g2sk1v!
, ~1!

where each indexi n runs over the complete atomic spectru
including the continuum; the indexk labels theq11 path-
ways~see Fig. 1!, that represent the distinguishable order
the absorption of incident photons and the emission of
harmonic photon;di j 52^ i uzu j & is the matrix element of the
dipole operator;v i j 5Ei2Ej is the energy difference be
tween statei and j ; and si j is a photon number index, tha
can be defined recursively as

sk15H 1 for kÞ1

2q for k51,
sk j5H sk j2111 for kÞ j

sk j212q for k5 j .
~2!

This form of nonlinear susceptibility is difficult to calcu
late, especially to higher order. There are many summat
over infinite intermediate discrete and continuous states
the number of pathways increases very rapidly with orde

The nonlinear susceptibility can be rewritten as

xq~v!5 (
k

q11

^gudufq
~k!&, ~3!

wherefq
(k) is a virtual state, described by theqth-order per-

turbed wave function. This wave function is the solution
the inhomogeneous differential equation ofqth-order pertur-
bation theory:

~Ha2Eg2skqv!ufq
~k!&5dufq21

~k! &, ~4!

with the initial conditionuf0
(k)&5ug&. Ha in Eq. ~4! is the

atomic Hamiltonian andEg is the ground state energy. He
the implicit summation of Eq.~1! is performed by solving
the hierarchy of differential equations. In a partial wave re
resentation, this system@Eq. ~4!# reduces to a finite set o
coupled ordinary differential equations.

FIG. 1. Path diagrams forx3 . Each diagram indicates a se
quence of virtual photon absorption~↑! and emission~↓!.
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When the photon number indexsi j is such that
si j v.uEgu, the general solution of Eq.~4! is no longer a
square-integrable function, and cannot in principle be rep
sented by Hylleraas and Frankowski functions. This cor
sponds to the situation in which the number of photons
sorbed is enough to ionize the atom, so the perturbed w
function is in the continuum. This difficulty can be overcom
by using the complex rotation method@14,15#. This method
has been applied to calculations of resonances and the S
effects from the 1960s@19–21#, and has been applied to th
calculation of nonlinear optical response of atomic hydrog
@15#.

The complex rotation scheme invokes the transformat

r→reiu, H~r !→H~reiu! ~5!

as applied to the composite atom-field HamiltonianH. Un-
der this transformation, all unbound-state eigenfunctions
H become resonances with complex eigenvalues. Th
complex eigenvalues have negative imaginary parts, wh
describe the exponential decay of the resonance states.
wave functions corresponding to these resonances are
so-called Siegert states, which satisfy the outgoing-w
boundary condition and become square integrable after r
tion @14,15,21#.

The resonance wave function is calculated by apply
conventional Rayleigh-Schro¨dinger perturbation theory to
the rotated Hamiltonian and expanding each order of p
turbed wave function in the combined Hylleraas a
Frankowski functions. Note that, in the casesi j v.uEgu, the
qth-order perturbed wave function will be a mixture of di
crete and outgoing-wave-continuum functions, so this wa
function becomes square integrable on complex rotation
this way, our use of anL2 basis accounts for continuum
continuum interaction to the relevant order in a consist
manner, within the framework of Rayleigh-Schro¨dinger per-
turbation theory.

III. BASIS FUNCTIONS AND DECOMPOSITION
OF HELIUM HAMILTONIAN

To obtain highly accurate representations of the init
functions and the perturbed functions, we use a combina
@17,18# of Hylleraas functions:

C~s,t,u!5snt lume2s/2, ~6!

and Frankowski functions:

C~s,t,u!5snt lume2s/23 H sinh~ct!
cosh~ct!J , ~7!

in terms of the Hylleraas variables,

s5r 11r 2 , t5r 12r 2 , u5r 12, ~8!

where the choice of sinh or cosh depends on the excha
symmetry of the wave function and upon whetherl is even
or odd, anducu<1/2. In the Frankowski basis functions th
hyperbolic factor times thee2s/2 yields a properly symme-
trized sum of products of exponentials with two differe
parameters, 1/26c, representing the two different lengt
scales on which the ‘‘inner’’ and ‘‘outer’’ electrons move i
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4940 56WEI-CHIH LIU
either the hydrogen ion or a singly excited state of heliu
The Frankowski basis functions involving cosh(ct) reduce to
the Hylleraas basis functions by settingc50.

It is important to note that these basis functions are n
orthogonal and they are nearly degenerate when the num
of basis functions is large. The solution of the ground-st
energy and the ground-state wave function of helium i
generalized eigenfunction problemHuf&5Nuf&. A
Cholesky transformation@22,23# has been used to quasio
thogonalize the basis set. This not only simplifies the gen
alized eigenfunction problem to the standard eigenfunc
problem but also substantially reduces the condition num
of the matrices. The normal matrixN is expressed as th
product

N5LLT, ~9!

whereL is a lower triangular matrix and all matricesM and
wave functionsuf& are transferred to

M̃5L21M ~LT!21, uf̃&5LTuf&. ~10!

Now the standard eigenvalue problem can be solved
the inverse iteration method@22#, since only one eigenfunc
tion is needed and the ‘‘exact’’ eigenvalue is known.

The nearly degenerate nature of the basis set limits
number of basis functions that can be used, due to roun
error. With 64-bit arithmetic we can only use up to 250 fun
tions of this type. Most of the calculations reported here
128-bit arithmetic. The computational speed of the 128
arithmetic number is about six to eight times slower than t
of 64 bits.

The nonrelativistic, infinite-nuclear-mass, energy of t
helium ground state recently obtained by Drake and Y
@24,25# is

E522.903 724 377 034 119 5 a.u. ~11!

This result was obtained using a basis of 1262 functi
and an extrapolation procedure to estimate the fully c
verged result. In the present work, using 215 Hylleraas b
functions including negative powers ofs, the ground-state
energy is22.903 724 376 5 a.u., accurate to 5310210 a.u.
Although, for the ground state of He4, the nonrelativistic
mass correction is at the order of 1024 and the relativistic
correction is at the order of 1025 @25#, very accurate nonrel
ativistic states and energies are still necessary to calcu
these corrections. In this work, since the error would incre
in each step of iteration, the very accurate ground state
energy are desirable to maintain reasonable accuracy in h
order susceptibilities.

The helium wave functionfq
(k) is expressed as

f~r1 ,r2!5( c l 1 ,l 2
L ~s,t,u!u l 1l 2L&, ~12!

where

u l 1l 2L&5(
m

^ l 1ml2~2m!u l 1l 2L0&Yl 1
m~ r̂ 1!Yl 2

2m~ r̂ 2!.

~13!
.
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For statesl 11 l 25L, the helium atomic Hamiltonian can
be decomposed to a tridiagonal form using the formalism
Pont and Shakeshaft@16#. Let

CL
M50~r1 ,r2!5 (

l 11 l 25L
r 1

l 1r 2
l 2u l 1l 2L&c l 1 ,l 2

L ~s,t,u!. ~14!

Assuming thatHa is the helium Hamiltonian, andHa
0 is

the helium Hamiltonian for wave functions of spherical sym
metry,

HaCL
M50~r1 ,r2!5 (

l 11 l 25L
r 1

l 1r 2
l 2ql 1l 2

L ~s,t,u!, ~15!

where

ql 1l 2
L 5Ha

0c l 1 ,l 2
L 2S 2~ l 11 l 2!s22~ l 12 l 2!t

s22t2

]

]s

1
2~ l 12 l 2!s22~ l 11 l 2!t

s22t2

]

]t
1

~ l 11 l 2!

u

]

]uDc l 1 ,l 2
L

1
~ l 111!

u

]c l 111,l 221
L

]u
1

~ l 211!

u

]c l 121,l 211
L

]u
. ~16!

The tridiagonal form can be solved fast and accurately by
efficient tridiagonal algorithm, which plays a vital role in th
calculation.

Beginning with the ground stateu l 150,l 250,L50&, the
process of the iterative calculation produces not o
u l 1 ,l 2 ,L& states for whichl 11 l 25L but alsou l 18l 28L& states
for which l 181 l 28.L. If including u l 18l 28L& states, the helium
atomic Hamiltonian cannot be decomposed to a tridiago
form and cannot be solved efficiently. In order to avoid th
difficulty, these u l 18l 28L& states are projected ontou l 1l 2L&
states. This can be done because in general^ l 18l 28Lu l 1l 2L&Þ0
in the Hylleraas coordinate system@26#. Although the
u l 18l 28L& states cannot be completely expanded by theu l 1l 2L&
states, such procedure allows us to include significant con
bution due to theu l 18l 28L& states. We have verified such a
proximation by comparing our results with previous theor
ical calculations~see Table III!; we find that the results are
much better than simply omitting theu l 18l 28L& states.

For matrix elements involving states of high angular m
mentum, the evaluation of angular integrals and the red
tion to radial integrals can become very laborious. The pr
lem is complicated by the fact that ifs, t, andu are regarded
as the independent variables in the radial integration, t
only one ofr̂ 1 or r̂ 2 , which are unit vectors forr 1 or r 2 , may
be treated as independent variables of angular integra
The general reduction of matrix elements to radial integr
over s, t, andu has been studied by several authors@26,27#
and their formulations are used to calculate the coupling
efficients between statesu l 1l 2L&.

IV. FREQUENCY-DEPENDENT POLARIZABILITIES
OF HELIUM

The frequency-dependent polarizabilitya~v! is an impor-
tant quantum-mechanical property which has been evalu
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56 4941HIGH-ORDER NONLINEAR SUSCEPTIBILITIES OF HELIUM
by numerous theoretical techniques. Dalgarno@28# has re-
viewed the earlier theoretical literature. In a milestone pap
Glover and Weinhold@29# gave rigorous upper and lowe
bounds of dynamic polarizabilities of two-electron atom
Recently, Bishop and Lam@30# published more accurate re
sults ~especially for lower frequencies! for the dynamic po-
larizabilities of helium.

When the field frequency goes beyond the ionizat
threshold, the atom or molecule is ionized and the pola
abilities carry an imaginary part which is related to t
photoionization cross section. Since the first calculation
the helium cross section by Wheeler@31#, helium has at-
tracted considerable attention because of its importance
testing ground for theory. In the last few years, numero
calculations of the helium photoionization cross section h
made use of a variety of sophisticated methods, many
which give cross section values within 1–4 % of each oth
Samsonet al. @32# have reviewed recent theoretical and e
perimental results and provide critically evaluated cross s
tion data with an absolute uncertainty of61% to 61.5%
from threshold to about 60 eV and of62% from 60 to 120
eV. Our calculations on the frequency-dependent polariza
ities can be compared to the experiments to test the vali
of our methods.

We calculate the frequency-dependent polarizabilities
helium as the first-order susceptibilities. In this calculatio
we use a basis set with 385 basis functions for eachu l 1l 2L&
with optimal parameterc in Frankowski basis functions.

For the dc case (v50), we obtain the polarizability
a(0)51.383 191 94 a.u. This is to be compared to the re
from Bishop and Lam, 1.383 192 a.u.@30#, and the very
accurate result from Bhatia and Drachman, 1.383 192 17
a.u. @33#. The agreement is within 231027 a.u.

For laser frequencies less than the first ionization thre
old, the results of our calculations are shown in Table I.
Fig. 2, the results of present work are compared with Glo

TABLE I. Frequency-dependent polarizabilities for the grou
state of helium~in a.u.! for frequencies up to the first excitatio
threshold.

Frequency
v

Polarizability
a~v!

0.0 1.38319194
0.05 1.38706008
0.1 1.39882036
0.15 1.41895763
0.2 1.44834178
0.25 1.48833549
0.3 1.54098157
0.35 1.6093254
0.4 1.6979853
0.45 1.8142153
0.5 1.9700396
0.55 2.1870030
0.6 2.508364
0.65 3.037843
0.7 4.11614
0.75 8.1750
r,
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and Weinhold’s rigorous bounds and Bishop and Lam’s re
sults. For frequencies up to the first excitation threshold, ou
calculations agree with Glover and Weinhold’s rigorous
bounds quite well, but for the regime between the first and
second excitation thresholds, there are some differences. A
commented in Glover and Weinhold’s paper, the Hylleraas
like formulation we used is not suitable to produce optimal
results in this regime.

For laser frequencies above the first ionization threshold
the polarizabilities are complex. The imaginary part of the
polarizability corresponds to the photoionization rate and the
photoionization cross sections is

s5~4pv/c!Im@a#. ~17!

We analyze theu trajectories of complex rotation calcu-
lations to determine the stationary values of complex polar
izabilities @20#. The typical trajectories are shown in Fig. 3.
The trajectories that pause near certain values ofu suggest
some sort of stationary property. The approximate stationar
point, easily observed in the figure, determines the position
of the complex polarizability within an uncertainty of about
1023.

Our calculations~see Table II! agree well with the experi-
mental results of Samsonet al. @32#. The results show that
the complex rotation method combined with the mixed basis
function can represent perturbative wave functions, eve
when the frequency is above the ionization threshold.

V. HIGH-ORDER SUSCEPTIBILITIES

There are few theoretical calculations and experiments o
frequency-dependent high-order susceptibilities of helium
The calculations of nonlinear susceptibilities~hyperpolariz-
abilities! for complex atoms have been limited to the first
order. Manakov and Ovsyannikov@2# have calculated up to

FIG. 2. Frequency-dependent polarizabilities of the ground stat
of helium for frequenciesv up to the first excitation threshold,
expressed relative to the mean of the rigorous upper and lowe
bounds of Glover and Weinhold’s work. Dashed lines are Glover
and Weinhold’s rigorous bounds@29#. 1 denotes the results of
present work.3 denotes the results of Bishop and Lam@30#. When
v50.75 a.u., Bishop and Lam’s result is out of the rigorous bound
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4942 56WEI-CHIH LIU
the fifth-order susceptibility of helium for the Nd:YAG
~YAG denotes yttrium aluminum garnet! laser frequency, us-
ing a model potential obtained by fitting the discrete energi
to the experimental spectrum and Green’s function tec
niques for the summations. Bishop and co-workers@30,34#
used anab initio method to calculate third-order nonlinea
optical properties of helium using the formula of Eq.~1! to
get more accurate results. A comparison of their calculatio
and this work is shown in Table III. Our result is close to tha
of Bishop and co-workers and falls within the uncertainty o
the experiments.

With Green’s function techniques or the pseudosumm
tion method, it is very difficult to go to higher order. On the
other hand, the iterative solutions can be extended to high
order. Table IV and Fig. 4 show high-order susceptibilities
various wavelengths. In this work, we use a basis set w
307 basis functions for eachu l 1l 2L&; the set includes 56
Hylleraas type functions, including negative powers ofs,
and 251 Frankowski type functions.

In the case ofl5248 nm, 5v is larger than the ionization
threshold and we must use the complex rotational scheme
calculate high-order susceptibilities. Theu trajectories ofx5
are similar to theu trajectories of the polarizabilities. The
values of complex susceptibilities arex55~2.1515.07i !
3104, x75~2.210.6i !3106, and x95~4.515i !3107 ~in
a.u.!.

The behavior of susceptibilities can be better quantified
terms of critical intensities@35#. The critical intensity for the
qth harmonic,I c(q), is defined as the intensity of the inci-
dent laser at which the intensity of the (q12)th harmonic
becomes equal to theqth. Within the perfect phase-matching

FIG. 3. u trajectories for the location of the complex polarizabil
ities for the ground state of helium. Frequency i
1.102 47 a.u.530 eV. Trajectories show behavior of complex polar
izabilities as a function of the complex scaling angleu, for four
different parametersc of the Frankowski basis functions. Each
point represents an equal-step change ofDu50.02.
s
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s
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f

-
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to

n

assumption or, equivalently, in a single-atom picture, t
critical value is

I c~q!5
c

2p

q

q12 U xq

xq12
U. ~18!

Obviously, the relative harmonic intensities decrease mo
tonically when the intensity of the incident light is lowe
than the lowestI c and increase monotonically when the i
cident laser intensity is higher than the highestI c . For inter-
mediate incident intensities, nonmonotonic relative intens
or plateau regions, will appear.

Figure 5 shows the critical intensities at various las
wavelengths. As in previous calculations on atomic hyd
gen@14,15#, when all the virtual states are below the ioniz
tion threshold,I c tends to decrease as a function of harmo
order. This trend is changed when the virtual states go ab
threshold, as in the case of wavelengthl5248 nm.

VI. EFFECTS OF ELECTRON CORRELATION

We can apply the independent-electron~IE! model @36–
38# to describe helium. Comparing the results from the
model and our calculations, which include full electron co
relation effects, we can obtain a better understanding of
effects of electron correlation.

We assume the model of the helium atom in which t
two electrons are independent. This is equivalent to the
placement of 1/r 12 in the atomic potential by some screenin
modification in the22/r potential experienced by each ele
tron, which allows the quantum description to be modeled
two independent electrons that each experience only s
effective potentialV(r ). A well-known model of a separable
helium atom is that corresponding to the single-exponen
variational ground-state wave function exp@2Z(r11r2)#, with
Z527/16. The reduction of the effective chargeZ from the

TABLE II. Polarizabilities and photoionization cross sections
helium for photon energies above the first ionization threshold.

Photon energy
~in eV!

Polarizability
~in a.u.!

Cross section
~in Mb!

present work

Cross section
~in Mb!

Samsonet al. @32#

27 20.5712.52i 6.42 6.40
30 20.75811.911i 5.410 5.38
35 20.80911.242i 4.102 4.09
40 20.73910.843i 3.182 3.16
45 20.64510.594i 2.522 2.48
50 20.55510.433i 2.043 2.02
55 20.47310.326i 1.692 1.67
58 20.42610.288i 1.576 1.58
TABLE III. Susceptibilities uxqu ~in esu! of helium at wavelengthl51064 nm ~Nd:YAG laser!. ~a!
Manakov and Ovsyannikov@2#; ~b! Bishop and Pipin@34#; ~c! Li et al. @41#; ~d! Lehmeieret al. @42#.

q This work Theory~a! Theory ~b! Expt. ~c! Expt. ~d!

3 3.7768310239 4.86310239 3.7986310239 3.7310239 3.6310239

5 2.671310252 4.97310252
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TABLE IV. Susceptibilitiesuxqu ~in esu! of helium at commonly used laser wavelengths.

q

uxqu
l'46mm

~low frequency limit!
uxqu

at 1064 nm
uxqu

at 532 nm
uxqu

at 248 nm

1 2.04968310225 2.05388310225 2.06661310225 2.13042310225

3 3.68886310239 3.7768310239 4.50293310239 1.13683310238

5 2.16175310252 2.7640310252 6.2491310252 9.43310250

7 2.2140310265 4.64310265 6.486310264 1.3310262

9 3.2299310278 1.71310277 8.51310274 1.3310275

11 5.85310291 1.33310289

13 1.193102103 2.23102101

15 2.533102116 9.33102113
h
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value of 2 is a measure of the mutual radial screening of t
electrons and so the use of this IE model includes some
the effects of the electron-electron interaction. This mod
gives a total binding energy that is within 2% of the exa
value for ground-state helium. It seems to be a reasona
first approximation to take.

Pan et al. have calculated high-order susceptibilities o
hydrogenic ions using the same perturbation theory sche
applied in this work@14#. Taking the susceptibilities of He1

at Nd:YAG laser frequencyv50.0428 a.u., we can use
these data and transfer them to high-order susceptibilities
a hydrogenic ion of effective chargeZ527/16 by the scaling
rule @14#

xq~Z,v!5~Z/Z0!2~3q11!xq@Z0 ,v~Z/Z0!22#. ~19!

In the case of He1, Z052. The frequency after scaling is
0.030 48 a.u. (l51494 nm). Multiplying the susceptibilities
of hydrogenic ion of effective chargeZ527/16 by 2 for there

FIG. 4. Susceptibilitiesuxqu ~in a.u.! of helium and hydrogen at
commonly used laser wavelengths. The data for H and He1 are
from Panet al. @14,15#.
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are two independent electrons, we obtain the susceptibili
of the IE model, shown in Fig. 6 with the nonlinear susce
tibilities of helium. The critical intensities for both cases a
shown in Fig. 7. The critical intensities have similar tende
cies but our calculations give higher values. The differen
between these two results increases with increasing harm
order. Thex1 andx3 are of the same order, but the susce
tibilities differ more with increasing harmonic order. We ca
conclude that electron correlation contributes significantly
higher-order optical processes.

VII. DISCUSSION AND CONCLUSION

Our results compared with the IE model indicate th
electron correlation plays a substantial role in high-ord
processes. Further comparison with the results from m
sophisticated single-active-electron models~for example, the
work by Kulander and co-workers@39,7,3–5#! or the models
including partial electron correlation~for example, the work
by Blodgett-Fordet al. @9#! should give more insight into
this important issue.

Kulander and co-workers@39# have calculated the har-
monic intensities for helium at 527 nm and laser intensiti
of (1 – 6)31014 Wcm22. The spectra all show that intensi
ties of the first several harmonics decrease monotonica
but the ninth harmonic is stronger than the seventh. Our c
culations at 532 nm~see Fig. 5! show I c(7) is less than
1014 Wcm22, which agrees with their results. On the othe

FIG. 5. Critical intensities of helium at commonly used las
wavelengths.
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hand, I c(5)'3.331014 Wcm22 is not consistent with their
spectra with higher laser intensities.

Xu et al. @40# have solved the TDSE for helium on
numerical grid with a model potential. The basic idea of t
model potential method is to freeze one electron in its io
ground state and to treat the motion of the second electro
the presence of the ion core by a model potential with sev
free parameters. The parameters of the model potentia
adjusted to fit the data from experiments or other we
established theoretical calculations. The harmonic spe
have been calculated for a photon energy of 5.0
~'0.1837 a.u., corresponding tol5248 nm! at the intensity
I 5631014 Wcm22. In the results of Xuet al., the fifth har-
monic is stronger than the third harmonic, the seventh h
monic is weaker than the fifth, and the ninth harmonic
weaker than the seventh. These results agree well with
calculations, I c(3),I 5631014 Wcm22,I c(5),I c(7) for
frequency equal to 248 nm~see Fig. 5!.

In this work we have calculated nonlinear susceptibilit
xq of helium at various commonly used laser frequenc
from lowest-order perturbation theory up toq515. These
results are the first accurateab initio quantum-mechanica
calculations for high-order (q.5) susceptibilities of helium.
In spite of the rapid development in the theoretical study
intense-field laser-atom interactions, perturbation theory
mains perhaps the best-established and best-understood
oretical approach. We believe that these quantitative res

FIG. 6. Susceptibilitiesuxqu ~in a.u.! of helium and of the IE
model at wavelength equal to 1494 nm.
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of perturbative studies of helium provide a solid ground f
specific identification of the onset of nonperturbative beha
ior and for the necessary development of a correspond
theory.

To have a quantitative evaluation of the limitations
perturbation theory, the next natural step is to calculate
next-lowest-order term in the perturbative expansion ofxq .
This requires a great amount of computational work. In t
case of atomic hydrogen@15#, the next-lowest-order term
helps to define an upper bound to the intensities for wh
lowest-order perturbation theory may be expected to g
reliable predictions for theqth-order process. For atomic hy
drogen at the Nd:YAG laser frequency, the results show t
for intensities as low as 1011 Wcm22, lowest-order perturba-
tion theory is no longer valid for 11th- to 29th-order pro
cesses. For helium, we expect the limit should be higher
to the higher ionization threshold. It is important to know th
location of the boundary of validity of the lowest-order pe
turbation theory for helium.
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