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High-order nonlinear susceptibilities of helium
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With the goal of providing critically evaluated atomic data for modeling high harmonic generation processes
in noble gases, we present calculations of frequency-dependent nonlinear susceptibilities of the ground state of
helium, within the framework of Rayleigh-Schtimger perturbation theory at lowest applicable order. The
nonrelativistic, infinite-nuclear-mass, atomic Hamiltonian is decomposed in terms of Hylleraas coordinates and
spherical harmonics, and the hierarchy of inhomogeneous equations of perturbation theory is solved iteratively.
The mixed Hylleraas and Frankowski basis functions are employed to represent accurately the ground-state and
perturbed wave functions. We believe our results for nonlinear susceptibilities of helium are the most accurate
(and in many cases, the onlgvailable to date, and they are offered as benchmark data for design of future
multiphoton experiment§S1050-294{®@7)09111-7

PACS numbeps): 32.80.Rm, 42.65.An, 42.65.Ky, 51.76

I. INTRODUCTION Previous workg13—15 have calculated the ac Stark co-
efficients and high-order nonlinear susceptibilities of atomic
The high-order nonlinear optical response of noble gaseBydrogen within the framework of Rayleigh-Schinger
to intense laser radiation is of considerable experimental inperturbation theory at lowest applicable order. This method
terest, but is difficult to measure or calculate accurately. Ta&an be extended to determine the thresholds at which the
the best of our knowledge, theoretical and experimental datperturbative approximations begin to fail5]. In this work,
on nonlinear susceptibilities of helium are available only forwe follow a similar path for helium, to provide a basic de-
third and fifth order[1,2]. The theoretical description of scription of multiphoton processes in two-electron atoms by
these processes is greatly hampered by the nonperturbatiggcurate calculations of high-order nonlinear susceptibilities
nature of the Schuinger equation in the intense field limit, \ithin the framework of perturbation theory. With a nonrel-
where nonlinear optical response is strongest, as well as bytjyistic treatment, assuming infinite nuclear mass, the
the notorious difficulty of the quantum-mechanical few-body gtomic Hamiltonian is decomposed in term of Hylleraas co-
problem. Moreover, it is difficult to determine reliably from . qinates and spherical harmonics using the formalism of
corjventional thgoretical a}ppr(.)ximation's the 'Fhresholds 3bont and Shakeshafi6], and the hierarchy of inhomoge-
which perturbative approximations begin to fail, or to pre- neous equations of perturbation theory is solved iteratively.

dict, in general, the means by which the failures occur. S : . g
Most of the theoretical models used so far for strong-field A combination of Hylleraas and Frankowski basis func

laser-atom interaction employ approximations that reduceﬁpns is used17,18. The compact Hylleraas basis provides a
the calculation to treat a single active electron. However .|ghly accurate repre;entaﬂon of the g.roun(j—state wave “”?C'
most experiments of multiphoton processes are on rare gasé9n: Whereas the diffuse Frankowski basis functions effi-
which are easy to handle experimentally, and they are pa'c_lently reprpduce the correct asymptqtlc structyre Qf the per-
ticularly suited for studying the effects of high intensities astUrbed orbitals. The use of this mixed basis gives very
their large ionization potentials prevent ionization at low in- &ccurate energies for the ground-state energy and polarizabil-
tensities. Due to the presence of six equivalent electrons iy, and it should account for most effects of electron corre-
the outer subshell of the rare gagether than heliuy com-  lation. The complex rotation scheme has been applied to
prehensive theoretical treatments for rare gas atoms are vegyercome the difficulty of the boundary condition for con-
difficult except under the approximation of “the single- tinuum solutions.
active-electron model’[3-7]. Our results consist of frequency-dependent susceptibili-
In the treatment of many-electron atoms, two-electronties x,(w), for orderq up to 15, for several commonly used
systems occupy a special position, since they admit the simaser frequencies. These values are in good agreement with
plest theoretical treatment. In recent years, developments ithe few experimental and theoretical values that have been
computational facilities have begun to allow theorists to deateported previously. We also present results for the photo-
with the time-dependent behavior of two-electron at¢Bis  ionization cross sections of He for photon energies up to 60
12], though the general case of the few-body time-dependeV. We believe these cross sections have an uncertainty of
Schralinger equationTDSE) is still at the frontier of the about 0.1%, based on the convergence behavior observed in
capabilities of modern numerical simulations. the complex-coordinate method.
In the description of the method, we use the conventional
system of atomic units, in which the electron charge and
*Present address: Rochester Theory Center for Optical Scienawass, and the reduced Planck constanth/27, have the

and Engineering, University of Rochester, Rochester, NY 14627. numerical value of one. Our results for the nonlinear suscep-
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A When the photon number indes; is such that
sijo>|E4|, the general solution of Eq4) is no longer a
square-integrable function, and cannot in principle be repre-
: | sented by Hylleraas and Frankowski functions. This corre-
¢ g i% 3 sponds to the situation in which the number of photons ab-
H ’% H

—

g
A

! sorbed is enough to ionize the atom, so the perturbed wave
é? function is in the continuum. This difficulty can be overcome
T by using the complex rotation meth¢#4,15. This method
has been applied to calculations of resonances and the Stark
) ) o effects from the 1960E19-21], and has been applied to the
FIG. 1. Path diagrams foxs. Each diagram indicates a se- cqicylation of nonlinear optical response of atomic hydrogen
guence of virtual photon absorptidf) and emissior(|). [15]

- . . . . Th mplex rotati i i
tibilities x4 are given in customary electrostatic ur(gsy as e complex rotation scheme invokes the transformation

Cm3(0m3/erg)(qil)/2. r~>rei9, H(r)HH(reie) (5)

Il. METHOD OF COMPUTATION as applied to the composite atom-field Hamiltontdn Un-
der this transformation, all unbound-state eigenfunctions of
The task is to compute the atomic nonlinear susceptibility pecome resonances with complex eigenvalues. These
Xo(—Qw;w,...,w), which is the transition amplitude for an complex eigenvalues have negative imaginary parts, which
atom in its ground statgg) to absorbg photons of the fun-  gescribe the exponential decay of the resonance states. The
damental frequency and to emit one photon of frequency wave functions corresponding to these resonances are the

qe. In lowest-order perturbation theory so-called Siegert states, which satisfy the outgoing-wave
g+l e boundary condition and become square integrable after rota-
dgi di i ,~-diidig i
(0= 3 g 'qd'a-1 2l 1) tion [14,15,21.
Xa K iyhig (wiqg—skqw)-~~(wilg—sklw)’ The resonance wave function is calculated by applying

conventional Rayleigh-Schdinger perturbation theory to
where each indek, runs over the complete atomic spectrum, the rotated Hamiltonian and expanding each order of per-
including the continuum; the indei labels theq+ 1 path- turbed wave function in the combined Hylleraas and
ways (see Fig. 1, that represent the distinguishable order of Frankowski functions. Note that, in the caggw>|Eg4|, the

the absorption of incident photons and the emission of theth-order perturbed wave function will be a mixture of dis-
harmonic photond;; = —(i|z|j) is the matrix element of the crete and outgoing-wave-continuum functions, so this wave
dipole operator,w;;=E;—E; is the energy difference be- function becomes square integrable on complex rotation. In
tween staté andj; ands;; is a photon number index, that this way, our use of am.? basis accounts for continuum-

can be defined recursively as continuum interaction to the relevant order in a consistent
_ manner, within the framework of Rayleigh-ScHinger per-
. - 1 for k#1 o Skji-1t1  for k#] turbation theory.
K7 —q for k=1, M Sj-1—q for k=j.
(2) Ill. BASIS FUNCTIONS AND DECOMPOSITION

. . S e OF HELIUM HAMILTONIAN
This form of nonlinear susceptibility is difficult to calcu-

late, especially to higher order. There are many summations TO obtain highly accurate representations of the initial
over infinite intermediate discrete and continuous states anf@inctions and the perturbed functions, we use a combination
the number of pathways increases very rapidly with order. [17,18 of Hylleraas functions:

The nonlinear susceptibility can be rewritten as

W(s,t,u)=s"t'ume %2, (6)
q+1l
Xo(®)=2> <g|d|¢gk)>, (3)  and Frankowski functions:
X
N sinh(ct)
where ¢{ is a virtual state, described by tigh-order per- W(s,t,u)=s"t'u"e SIZX[COS“C”}, 7

turbed wave function. This wave function is the solution of
the inhomogeneous differential equationgth-order pertur-  in terms of the Hylleraas variables,
bation theory:

(Ha=Eq—Siqo)|64”) =dl 6§21, @ , _
where the choice of sinh or cosh depends on the exchange

with the initial condition|${”)=|g). H, in Eq. (4) is the  symmetry of the wave function and upon whethés even
atomic Hamiltonian and, is the ground state energy. Here or odd, andc|=<1/2. In the Frankowski basis functions the
the implicit summation of Eq(1) is performed by solving hyperbolic factor times the™5? yields a properly symme-
the hierarchy of differential equations. In a partial wave rep-trized sum of products of exponentials with two different
resentation, this systefiEq. (4)] reduces to a finite set of parameters, 1/2c, representing the two different length
coupled ordinary differential equations. scales on which the “inner” and “outer” electrons move in

S=rq+ry, t=r;—ry,, U=rqy, (8)
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either the hydrogen ion or a singly excited state of helium. For stated;+1,=L, the helium atomic Hamiltonian can
The Frankowski basis functions involving cosfi(reduce to be decomposed to a tridiagonal form using the formalism of
the Hylleraas basis functions by setting O. Pont and Shakeshdft6]. Let
It is important to note that these basis functions are non-
orthogonal and they are nearly degenerate when the number = Iy, 1
g Y y e e . YY) = X iRl (stu). (14)

of basis functions is large. The solution of the ground-state I+ =L
energy and the ground-state wave function of helium is a _ _ _ o 0.
generalized eigenfunction problemH|$)=N|¢). A Assuming thatH, is the helium Hamiltonian, an#i, is

Cholesky transformatiofi22,23 has been used to quasior- the helium Hamiltonian for wave functions of spherical sym-
thogonalize the basis set. This not only simplifies the genermetry,

alized eigenfunction problem to the standard eigenfunction

problem but also substantially reduces the condition number

; . - Iyl
of the matrices. The normal matriX is expressed as the Ha v} O(fl,rz)zl HZL ffrzzq:'llz(S,t,U), (19
product e

where
N=LLT, 9

whereL is a lower triangular matrix and all matricé4 and q-, =H%b | — 2(|1+|2)2_ 22(|1_|2)t 7
wave functiong¢) are transferred to vz @7l st Js

VIS TVONE NPT 2(1,—15)s=2(I3+1)t & (I3+1,) 9

M=L"'M(L") ™%, |¢)=L"|¢). (10 + e ﬁ_l_ ' - :_1‘|2

Now the standard eigenvalue problem can be solved by L L
the inverse iteration methd@2], since only one eigenfunc- (I3+1) 9v11,-1 (I,+1) 911,41
tion is needed and the “exact” eigenvalue is known. + + :

The nearly degenerate nature of the basis set limits the
number of basis functions that can be used, due to roundoffhe tridiagonal form can be solved fast and accurately by the
error. With 64-bit arithmetic we can only use up to 250 func-efficient tridiagonal algorithm, which plays a vital role in this
tions of this type. Most of the calculations reported here usealculation.
128-bit arithmetic. The computational speed of the 128-bit Beginning with the ground staté,=0,,=0,L=0), the
arithmetic number is about six to eight times slower than thaprocess of the iterative calculation produces not only
of 64 bits. [11,l,,L) states for whicH,+1,=L but also|l;l;L) states

The nonrelativistic, infinite-nuclear-mass, energy of thefor which I;+15>L. If including |1;15L) states, the helium
helium ground state recently obtained by Drake and Yarytomic Hamiltonian cannot be decomposed to a tridiagonal
[24,29 is form and cannot be solved efficiently. In order to avoid this
difficulty, these|ljl;L) states are projected onti,l,L)
states. This can be done because in geréfHL|l,l,L)#0
This result was obtained using a basis of 1262 functionT!?,IFhe Hylleraas coordinate systefi26]. Although the

115L) states cannot be completely expanded by thigL )

and an extrapolation procedure to estimate the fully con ot h procedure allow t0 include significant contri
verged result. In the present work, using 215 Hylleraas basi% ates, such p oce,u, € allows us to Include signiticant contri-
ution due to thgljl;L) states. We have verified such ap-

functions including negative powers of the ground-state o . . .
energy is—2.903 724 376 5 a.u., accurate to<%0 20 a.u. proximation by comparing our results with previous theoret-

Although, for the ground state of Hethe nonrelativistic ical calculations(seg Table II-);.We fin(li ,that the results are
mass correction is at the order of T0and the relativistic Much better than simply omitting tHejl;L) states.

correction is at the order of 16 [25], very accurate nonrel-  FOF matrix elements involving states of high angular mo-
ativistic states and energies are still necessary to calculaf@entum, t.he_evaluatlon of angular mtegrals.and the reduc-
these corrections. In this work, since the error would increasH©n to radial integrals can become very laborious. The prob-
in each step of iteration, the very accurate ground state arf§™M IS complicated by the fact thatsf t, andu are regarded

energy are desirable to maintain reasonable accuracy in higR® the indepentjent vgriables m. the radial integration, then
order susceptibilities. only one off ; ort,, which are unit vectors far, orr,, may

be treated as independent variables of angular integration.
The general reduction of matrix elements to radial integrals
overs, t, andu has been studied by several auth@8,27|
d(ry,r)=2, ot LstulloL), (12  and their formulations are used to calculate the coupling co-
L efficients between staték;|,L).

(16)

u Ju u ou

E=-2.903724 3770341195 a.u. (17

The helium wave functions{” is expressed as

where
IV. FREQUENCY-DEPENDENT POLARIZABILITIES

OF HELIUM

_ _ m,a -mg 2
||1|2L>_§ (lamla(=m)llalLO)YI[(F) Y, (o). The frequency-dependent polarizabilitfw) is an impor-

(13) tant quantum-mechanical property which has been evaluated
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TABLE |. Frequency-dependent polarizabilities for the ground

state of helium(in a.u) for frequencies up to the first excitation 1.004 T T T T
threshold. I [;
Frequency Polarizability 1.002 | ,‘ -
w a(w) B I -

0.0 1.38319194 e b -

0.05 1.38706008 g TF % % % % % % % % X x % x 7

0.1 139882036 ) [T T T T R

0.15 1.41895763 S I N

0.2 1.44834178 0.998 |- T T

0.25 1.48833549 I |

0.3 1.54098157 L !

0.35 1.6093254 0996 Lttt 1l

0.4 1.6979853 0 0.1 02 03 04 05 06 07

0.45 1.8142153 Frequency o (in a.u.)

0.5 1.9700396

0.55 2.1870030 FIG. 2. Frequency-dependent polarizabilities of the ground state

0.6 2.508364 of helium for frequencies» up to the first excitation threshold,

0.65 3.037843 expressed relative to the mean of the rigorous upper and lower

0.7 4.11614 bounds of Glover and Weinhold’'s work. Dashed lines are Glover

0.75 8.1750 and Weinhold’s rigorous bound®9]. + denotes the results of

present workX denotes the results of Bishop and L&B®]. When
»=0.75 a.u., Bishop and Lam’s result is out of the rigorous bound.

by numerous theoretical techniques. Dalgaf@8] has re-
viewed the earlier theoretical literature. In a milestone pape
Glover and Weinhold29] gave rigorous upper and lower
bounds of dynamic polarizabilities of two-electron atoms.
Recently, Bishop and Larf80] published more accurate re-
sults (especially for lower frequencigsor the dynamic po-

nd Weinhold’s rigorous bounds and Bishop and Lam’s re-
Sults. For frequencies up to the first excitation threshold, our
calculations agree with Glover and Weinhold’s rigorous
bounds quite well, but for the regime between the first and
second excitation thresholds, there are some differences. As
commented in Glover and Weinhold's paper, the Hylleraas-

larizabilities of helium. like formulation we used is not suitable to prod timal
When the field frequency goes beyond the ionization € Tormulation we used IS not suitable to produce optima
results in this regime.

hreshold, th m or molecule is ioniz nd th lariz- .
threshold, the atom or molecule is ionized and the pola For laser frequencies above the first ionization threshold,

abilities carry an imaginary part which is related to the]the polarizabilities are complex. The imaginary part of the

photoionization cross section. Since the first calculation o o CI
the helium cross section by Wheelf81], helium has at- polarizability corresponds to the photoionization rate and the
' otoionization cross sectian is

tracted considerable attention because of its importance as”
testing ground for theory. In the last few years, numerous
calculations of the helium photoionization cross section have

made use of a variety of sophisticated methods, many of \ye analyze the trajectories of complex rotation calcu-
which give cross section values within 1—4 % of each other|ations to determine the stationary values of complex polar-
Samsoret al. [32] have reviewed recent theoretical and ex-jzapilities [20]. The typical trajectories are shown in Fig. 3.
perimental results and provide critically evaluated cross secrpe trajectories that pause near certain value stiggest
tion data with an absolute uncertainty af1% to =1.5%  gome sort of stationary property. The approximate stationary
from threshold to about 60 eV and &f2% from 60 to 120  point, easily observed in the figure, determines the position

eV. Our calculations on the frequency-dependent polarizabilpf the complex polarizability within an uncertainty of about
ities can be compared to the experiments to test the validity -3

of our methods. S Our calculationgsee Table I agree well with the experi-
We calculate the frequency-dependent polarizabilities ofynental results of Samsoet al. [32]. The results show that

helium as the first-order susceptibilities. In this calculation,ihe complex rotation method combined with the mixed basis

we use a basis set with 385 basis functions for gadhl)  function can represent perturbative wave functions, even

with optimal parametec in Frankowski basis functions.  when the frequency is above the ionization threshold.
For the dc case 4=0), we obtain the polarizability

a(0)=1.383 191 94 a.u. This is to be compared to the result
from Bishop and Lam, 1.383 192 a.[B0], and the very
accurate result from Bhatia and Drachman, 1.383 192 179 3 There are few theoretical calculations and experiments on
a.u.[33]. The agreement is within:210™ 7 a.u. frequency-dependent high-order susceptibilities of helium.
For laser frequencies less than the first ionization threshThe calculations of nonlinear susceptibilitiésyperpolariz-
old, the results of our calculations are shown in Table I. Inabilities) for complex atoms have been limited to the first
Fig. 2, the results of present work are compared with Gloveorder. Manakov and Ovsyannikd2] have calculated up to

o=(4molc)Ima]. (17)

V. HIGH-ORDER SUSCEPTIBILITIES
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TABLE II. Polarizabilities and photoionization cross sections of

19141 helium for photon energies above the first ionization threshold.
1913 4
1912 4 Cross section Cross section
Photon energy Polarizability (in Mb) (in Mb)
g U7 (in eV) (in a.u) present work Samsoret al. [32]
£ 101 27 —0.57+2.52 6.42 6.40
19091 30 —0.758+1.911  5.410 5.38
1.908 T 35 —0.809+1.2442 4.102 4.09
1.907 + 40 —0.739+0.843 3.182 3.16
+ i 45 —0.645+0.594 2.522 2.48
0755 0750 50 ~0.555+0.433  2.043 2.02
Refa] 55 —0.473+0.326 1.692 1.67
58 —0.426+0.288 1.576 1.58

FIG. 3. dtrajectories for the location of the complex polarizabil-
ites for the ground state of helium. Frequency is
1.102 47 a.u=30 eV. Trajectories show behavior of complex polar- gssumption or, equivalently, in a single-atom picture, this
izabilities as a function of the complex scaling anglefor four  ¢ritical value is
different parameters of the Frankowski basis functions. Each
point represents an equal-step changa 6f0.02. c q

Xq
Xqg+2

l(q)= . (18

27 q+2
the fifth-order susceptibility of helium for the Nd:YAG
(YAG denotes yttrium aluminum garndaser frequency, us- Obviously, the relative harmonic intensities decrease mono-
ing a model potential obtained by fitting the discrete energiesonically when the intensity of the incident light is lower
to the experimental spectrum and Green's function techthan the lowest, and increase monotonically when the in-
niques for the summations. Bishop and co-worké8,34  cident laser intensity is higher than the highkst For inter-
used anab initio method to calculate third-order nonlinear mediate incident intensities, nonmonotonic relative intensity,
optical properties of helium using the formula of Ed) to  or plateau regions, will appear.
get more accurate results. A comparison of their calculations Figure 5 shows the critical intensities at various laser
and this work is shown in Table IlI. Our result is close to thatwavelengths. As in previous calculations on atomic hydro-
of Bishop and co-workers and falls within the uncertainty ofgen[14,15, when all the virtual states are below the ioniza-
the experiments. tion threshold] . tends to decrease as a function of harmonic
With Green’s function techniques or the pseudosummaorder. This trend is changed when the virtual states go above
tion method, it is very difficult to go to higher order. On the threshold, as in the case of wavelenyti 248 nm.
other hand, the iterative solutions can be extended to higher
order. Table IV and Fig. 4 show high-order susceptibilities at
various wavelengths. In this work, we use a basis set with
307 basis functions for each,l,L); the set includes 56 We can apply the independent-electrdg) model[36—
Hylleraas type functions, including negative powersspf  38] to describe helium. Comparing the results from the IE
and 251 Frankowski type functions. model and our calculations, which include full electron cor-
In the case ol =248 nm, W is larger than the ionization relation effects, we can obtain a better understanding of the
threshold and we must use the complex rotational scheme tffects of electron correlation.
calculate high-order susceptibilities. Therajectories ofys We assume the model of the helium atom in which the
are similar to thef trajectories of the polarizabilities. The two electrons are independent. This is equivalent to the re-
values of complex susceptibilities args=(2.15+5.07) placement of X/;, in the atomic potential by some screening
x10% x,=(2.240.6)x 10, and yo=(4.5+5)x 10’ (in  modification in the—2/r potential experienced by each elec-
a.u). tron, which allows the quantum description to be modeled by
The behavior of susceptibilities can be better quantified infwo independent electrons that each experience only some
terms of critical intensitie§35]. The critical intensity for the effective potentiaM(r). A well-known model of a separable
gth harmonic,l .(q), is defined as the intensity of the inci- helium atom is that corresponding to the single-exponential
dent laser at which the intensity of thg{2)th harmonic variational ground-state wave function €xZ(r,+r,)], with
becomes equal to thegh. Within the perfect phase-matching Z=27/16. The reduction of the effective chargerom the

VI. EFFECTS OF ELECTRON CORRELATION

TABLE III. Susceptibilities|Xq| (in esy of helium at wavelengtth =1064 nm (Nd:YAG lase). (a)
Manakov and Ovsyannikop2]; (b) Bishop and Pipirf34]; (c) Li et al.[41]; (d) Lehmeieret al.[42].

q This work Theory(a) Theory (b) Expt. (c) Expt. (d)

3 3.7768<10°%° 4.86x10°%° 3.7986x 10° % 3.7x10°%° 3.6x10°%°
5 2.671x10°%? 4.97x10°%
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TABLE IV. Susceptibilities\xq| (in esy of helium at commonly used laser wavelengths.

|Xq|
N~46 um X4l X4l | Xl
q (low frequency limi} at 1064 nm at 532 nm at 248 nm

1 2.04968& 10 %° 2.05388<10° % 2.06661x10"%° 2.1304210° %
3 3.68886¢10%° 3.7768x10°%° 45029310 %° 1.13683<10 38
5 2.16175%10 %2 2.7640<10 %2 6.2491x 10 %2 9.43x10°%°
7 2.2140x10°%5 4.64x10°% 6.486x10 5 1.3x10°62
9 3.229% 10" "8 1.71x10° 77 8.51x10° 74 1.3x10° 75

11 5.85<10 ¢ 1.33x10°%°

13 1.19x10° 103 2.2x107 101

15 2.53x10 116 9.3x107 1138

value of 2 is a measure of the mutual radial screening of thare two independent electrons, we obtain the susceptibilities
electrons and so the use of this IE model includes some dff the IE model, shown in Fig. 6 with the nonlinear suscep-
the effects of the electron-electron interaction. This modetibilities of helium. The critical intensities for both cases are
gives a total binding energy that is within 2% of the exactshown in Fig. 7. The critical intensities have similar tenden-
value for ground-state helium. It seems to be a reasonableies but our calculations give higher values. The difference
first approximation to take. between these two results increases with increasing harmonic
Pan et al. have calculated high-order susceptibilities of order. They,; and y; are of the same order, but the suscep-
hydrogenic ions using the same perturbation theory schemgbilities differ more with increasing harmonic order. We can
applied in this work14]. Taking the susceptibilities of He  conclude that electron correlation contributes significantly to
at Nd:YAG laser frequencyw=0.0428 a.u., we can use higher-order optical processes.
these data and transfer them to high-order susceptibilities of

?urgﬁlrz]gemc ion of effective charge=27/16 by the scaling VIL. DISCUSSION AND CONCLUSION

Our results compared with the IE model indicate that
electron correlation plays a substantial role in high-order
processes. Further comparison with the results from more
sophisticated single-active-electron modéts example, the
work by Kulander and co-workef89,7,3—9) or the models
including partial electron correlatiofior example, the work
by Blodgett-Fordet al. [9]) should give more insight into
this important issue.

Kulander and co-workerg39] have calculated the har-
monic intensities for helium at 527 nm and laser intensities

Xq(Z,0)=(ZIZg)" BT Vx([Z0,0(ZI1Zg)?].  (19)

In the case of H&, Z,=2. The frequency after scaling is
0.030 48 a.u.X=1494 nm). Multiplying the susceptibilities
of hydrogenic ion of effective chargé=27/16 by 2 for there

= -He, low frequency limit A of (1—6)X 10" Wem 2. The spectra all show that intensi-
5T —@ -He,A=1064nm .7 ties of the first several harmonics decrease monotonically,
—® “He, A=532nm /A’ but the ninth harmonic is stronger than the seventh. Our cal-
- 0l _: 'He’fz“g“m L culations at 532 nnisee Fig. % show I4(7) is less than
3 H, A=1064nm e 10 Wem ™2, which agrees with their results. On the other
= =W -He', A=1064nm ,
£ 157 ;
5 & s 105
& / P
5] Vi —~
é 101 2 | e -I-‘//* (\:E) ,
= / /% ¥y _ - 2 10° 4
— & g - B
Ve ™ Z
20 //x7 /// e
- 5 z- ,( /& =
a7 - !
e e - 8
- . - =
A Lo -y = N
0t ey —y—— Y 1 13 —+—Low frequency limit
v ) 5 107§ —8—1064 nm
y y —¥—532
0 5 10 15 —a—248 ::
Harmonic order q + +
0 5 10 15

Harmonic order g
FIG. 4. Susceptibilitiegy,| (in a.u) of helium and hydrogen at
commonly used laser wavelengths. The data for H and Bie FIG. 5. Critical intensities of helium at commonly used laser
from Panet al.[14,15. wavelengths.
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8 /. —+—He
—@ -He, A=1494 nm , —»—1IE model
_ 71  —® -E model, A=1494 nm , —~
3 ’ &
3 61 ’ S
& d 2
Zf‘ 5 7 ‘ : 1016 T
= 7 e =
=2 =
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FIG. 7. Critical intensities of helium and of the IE model at

FIG. 6. Susceptibilitie$xq| (in a.u) of helium and of the IE
wavelength equal to 1494 nm.

model at wavelength equal to 1494 nm.

hand, 1 (5)~3.3x 10 Wem 2 is not consistent with their ©Of perturbative studies of helium provide a solid ground for
spectra with higher laser intensities. specific identification of the onset of nonperturbative behav-
Xu et al. [40] have solved the TDSE for helium on a ior and for the necessary development of a corresponding
numerical grid with a model potential. The basic idea of thetheory. o . S
model potential method is to freeze one electron in its ionic 10 have a quantitative evaluation of the limitations of
ground state and to treat the motion of the second electron iRerturbation theory, the next natural step is to calculate the
the presence of the ion core by a model potential with severdl€xt-lowest-order term in the perturbative expansioryof
free parameters. The parameters of the model potential arelis requires a great amount of computational work. In the
adjusted to fit the data from experiments or other well-case of atomic hydrogefil5], the next-lowest-order term
established theoretical calculations. The harmonic spectrdelps to define an upper bound to the intensities for which
have been calculated for a photon energy of 5.0 eviowest-order perturbation theory may be expected to give
(~0.1837 a.u., corresponding 1o=248 nn) at the intensity ~ reliable predictions for theth-order process. For atomic hy-
| =6X 10 Wcm™2. In the results of Xtet al,, the fifth har- drogen at the Nd:YAG laser frequency, the results show that
monic is stronger than the third harmonic, the seventh harfor intensities as low as t#dwem™2, lowest-order perturba-
monic is weaker than the fifth, and the ninth harmonic istion theory is no longer valid for 11th- to 29th-order pro-
weaker than the seventh. These results agree well with ofiesses. For helium, we expect the limit should be higher due
calculations, 1.(3)<1=6x10" Wem 2<1,(5),1(7) for tO thg higher ionization thresho_ld.. It is important to know the
frequency equal to 248 nifsee Fig. 5. Iocatlt_)n of the boundar_y of validity of the lowest-order per-
In this work we have calculated nonlinear susceptibilitiesturbation theory for helium.
Xq Of helium at various commonly used laser frequencies
from lowest-order perturbation theory up tp=15. These
results are the first accuratb initio quantum-mechanical
calculations for high-orderq>5) susceptibilities of helium. I would like to thank my advisor C. W. Clark for his
In spite of the rapid development in the theoretical study ofguidance and valuable discussion through this work. He pro-
intense-field laser-atom interactions, perturbation theory reposed the use of a mixed basis set to achieve high accuracy
mains perhaps the best-established and best-understood thesults. This research and computational facilities are sup-
oretical approach. We believe that these quantitative resultgorted by National Institute of Standards and Technology.
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