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Simple and robust extension of the stimulated Raman adiabatic passage technique
to N-level systems
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STIRAP ~stimulated Raman adiabatic passage! has proven to be an efficient and robust technique for
transferring population in a three-level system without populating the intermediate state. Here we show that the
counterintuitive pulse sequence in STIRAP, in which the Stokes pulse precedes the pump, emerges automati-
cally from a variant of optimal control theory we have previously called ‘‘local’’ optimization. Since local
optimization is a well-defined, automated computational procedure, this opens the door to automated compu-
tation of generalized STIRAP schemes in arbitrarily complicatedN-level coupling situations. If the coupling is
sequential, a simple qualitative extension of STIRAP emerges: the Stokes pulse precedes the pump as in the
three-level system. But, in addition, spanning both the Stokes and pump pulses are pulses corresponding to the
transitions between theN22 intermediate states with intensities about an order of magnitude greater than
those of the Stokes and pump pulses. This scheme is amazingly robust, leading to almost 100% population
transfer with significantly less population transfer to theN22 intermediate states than in previously proposed
extensions of STIRAP.@S1050-2947~97!07611-7#

PACS number~s!: 33.80.Be, 42.50.Hz
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I. INTRODUCTION

In recent years, the design of laser pulse sequence
achieve efficient and robust population transfer betw
quantum states has been the subject of many theoretica
experimental studies@1–24#. This problem is relevant to
many applications, including spectroscopy, collision dyna
ics, and optical control of chemical reactions. A considera
number of studies have been devoted to the process of st
lated Raman adiabatic passage~STIRAP! in three-level@1–
7# and multilevel@11–19#. systems. Recently, the STIRA
theory has been generalized to the case in which the in
mediate state is autoionizing@21# or is described by a con
tinuum of levels@22,23#.

The STIRAP process provides the possibility of effecti
population transfer using relatively simple experimental s
ups. At the same time, it demonstrates a remarkablecounter-
intuitive mechanism at work, in which the pump pulse, dr
ing the transition between the initially populated levelu1& and
intermediate levelu2& comesafter the Stokes pulse, which
drives the transition between the initially unpopulated lev
u2& and u3& ~Fig. 1!. This ordering of pulses is both efficien
and robust in achieving complete population transfer fr
stateu1& to u3&, while maintaining the population of stateu2&
at almost zero.

The properties of the STIRAP mechanism in a three-le
system have been explored extensively, both numeric
and analytically. For the most part the analytical studies h
been performed in the adiabatic limit@1,4,9#, although nona-
diabatic effects in population transfer in three-level syste
have been considered in@7#. Complete analytic results hav
been obtained only for specific pulse shapes@2,6#. Several
extensions toN-level systems have been proposed@12,16–
19#, however, none to date appears to be definitive. Fo
review of the literature related to coherent population tra
fer in atomic and molecular systems, see@24#.
561050-2947/97/56~6!/4929~9!/$10.00
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Quite independent of the STIRAP literature, there h
been a growing literature in recent years on the use of sha
optical pulse sequences to control atomic and molecular
namics for various purposes@25–38#. These applications in-
clude laser heating@33# and cooling of molecules@34#,
preparation of specific electronic, vibrational or rotatio
states, and control of the products of chemical reacti
@25,27,30,31#. One of the main computational tools broug
to bear in these studies is optimal control theory~OCT!
@27,28,31,37#. The closest application of optimal control t
systems of the STIRAP type was a study of the design
optical pulse pairs to control the population transfer of thr
level atoms in a medium@37#. However, the connection be
tween STIRAP and the OCT literature has been elusive
explicit attempts to derive the STIRAP mechanism from o
timal control have been unsuccessful@39#. This is not par-
ticularly surprising:~1! Adiabatic passage is generally ene
getically expensive relative to a Rabi pulse sequen
typically employing integrated pulse areas many timesp.

FIG. 1. The three-levelL system. Levelu1& is coupled to level
u2&, which in turn is coupled to levelu3&. There is assumed to be
two-photon resonance between levelsu1& and u3&, although there
may not be a one-photon resonance with levelu2&. Levelsu1& andu2&
are coupled by a field with amplitudeVp ; levels u2& and u3& are
coupled by a field with amplitudeVs . D is the detuning of the
intermediate levelu2&.
4929 © 1997 The American Physical Society
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The penalty on the energy of the field that is routinely us
in OCT calculations discriminates against pulses with la
integrated areas.~2! The robustness of the STIRAP solutio
which is perhaps its principle advantage, is difficult to qua
tify. Without robustness being incorporated explicitly in
the objective functional in OCT there is no reason to exp
STIRAP-type solutions to emerge from an OCT calculatio

A second class of techniques that have been develope
control of atomic and molecular dynamics, in parallel
OCT, is called ‘‘local optimization’’ @33–36#, or tracking
@38#. In these methods, at every instant in time the con
field is chosen to achieve a monotonic increase in the des
objective. Typically in these methods two conditions a
used at each time step, one to determine the phase of the
and one to determine the amplitude. In contrast with OC
which incorporates information on later time dynami
through forward-backward iteration, these methods use o
information on the current state of the system and the yie
are in principle lower than in OCT. However, there are s
eral attractive features to the local methods.~1! Since the
increase in yield is monotonic these fields are often amen
to immediate interpretation.~2! Since these methods use i
formation on the current state of the system only, they co
in principle be adapted for laboratory implementation.~3!
Because these methods differ so radically from OCT, th
may identify different classes of solutions from OCT. A
though not necessarily optimal, these solutions may be
pealing because of other properties, e.g., their robustnes

In recent studies, we showed how a local optimizat
scheme could be used to lock population on an intermed
level or levels, while increasing the energy in another par
the system@33–36#. Specifically, we showed that the pha
of the field could be used to lock the population in a ma
fold of excited levels while the sign of the amplitude cou
be used to achieve ground-state vibrational heating. Fur
reflection on these studies suggests some parallels with
STIRAP mechanism:~1! the locking of population on the
intermediate level is the analog of avoiding population tra
fer to level u2& in STIRAP; ~2! the monotonic increase in
energy in the ground vibrational manifold is identical, in t
case of only two participating vibrational levels in th
ground state, to the monotonic transfer of population fr
level u1& to u3& in STIRAP; ~3! the role of the phase is crucia
in the local scheme, as it is in STIRAP;~4! in both schemes
e
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the specific features of the amplitude function have a gr
deal of flexibility.

The goal of this paper is, first of all, to show that there
indeed a rigorous relationship between local optimizat
methods and STIRAP in the limit of three-level systems a
long times. Once this relationship is established, a gr
many things become possible. Since local optimization i
flexible method and can be applied to arbitrarily complica
situations, e.g., to multilevel systems, to systems with det
ing and radiative decay, and for times shorter than th
required for the adiabatic limit, this raises the possibility
finding numerical solutions of the STIRAP type for all the
situations. Several extensions of STIRAP toN-level systems
have been proposed recently@12,16–19#. Generally, these
extended STIRAP schemes employ a set ofN21 pulses, one
pulse for each of the transition frequencies between
coupled states. In one proposal, the envelopes progres
reverse order from the last to the first transition@14#. In a
second proposal the envelopes are grouped into two ove
ping sets, with the even transitions coming before the o
transitions@12#. Here we find a third strategy in which th
Stokes pulse, resonant with the transitionuN21&→uN&
comes before the pump pulse, resonant with the transi
u1&→u2&; the envelopes for all the other transition freque
cies are about an order of magnitude more intense than e
the Stokes or the pump pulses and spanboth the pump and
the Stokes pulse.

In Sec. II, we present the basic description of the con
scheme by applying it to population transfer in a three-le
system. The role of detuning and decay is also explored
Sec. III, we analyze control of the population transfer
four- and five-level systems. In Sec. IV we abstract the k
features of the pulse sequences found in Sec. III and ap
them to a nine-level system. Section V is a conclusion.

II. THREE-LEVEL SYSTEM

Consider the interaction of a three-levelL system with a
pumpEp(t) and a StokesEs(t) laser pulse:

E5Ep~ t !cosvpt1Es~ t !cosvs~ t !, ~1!

whereEp(t) andEp(t) are the envelopes of the pulses. In t
interaction representation and the rotating-wave approxi
tion, the Schro¨dinger equation takes the form
S ȧ1~ t !
ȧ2~ t !
ȧ3~ t !

D 5S 0 iVp~ t !exp$ iDv21t% 0

iVp~ t !exp$2 iDv21t% 0 iVs~ t !exp$2 iDv23t%

0 iVs~ t !exp$ iDv23t% 0
D S a1~ t !

a2~ t !
a3~ t !

D , ~2!
wherea1 , a2 , anda3 are the probability amplitudes of th
states u1&, u2&, and u3&, Vp(t)5m12Ep(t)/2\ and
Vs(t)5m23Es(t)/2\ are the pump and Stokes Rabi freque
cies, respectively, andDv215vp2v21 andDv235vs2v23

are the detunings of the laser frequenciesvp,s from the tran-
sition frequenciesv21,23.

In the assumption of a Raman resonance, one can rew
-

ite

the Schro¨dinger equation in the following form:

S ȧ1~ t !
ȧ2~ t !
ȧ3~ t !

D 5S 0 iVp~ t ! 0

iVp~ t ! iD iVs~ t !

0 iVs~ t ! 0
D S a1~ t !

a2~ t !
a3~ t !

D , ~3!

whereD5Dv215Dv23.
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Our goal, as in STIRAP, is to find envelopes of the pum
and Stokes pulses that lead to complete and robust pop
tion transfer from stateu1& to the final stateu3&, while keeping
the population of the intermediate stateu2& as small as pos
sible. Here we propose to do this using our earlier lo
optimization scheme@36#, modified to suit the three-leve
configuration. Our strategy is first to find a condition on t
phase of the laser fields that keeps the population on leveu2&
locked and then to find conditions on the amplitude of
laser fields that lead to monotonic increase in the popula
in level u3&. If the population in levelu2& is locked at a small
value and if complete population transfer from levelu1& to
level u3& is achieved then the procedure has achieved
same objective as in STIRAP. In fact, as we shall now s
for the particular case of a three-level system the STIR
solution emerges automatically.

Using the Schro¨dinger equation, Eq.~3!, we can develop
expressions for the time derivative of the populations in e
of the three levels:

dua1~ t !u2

dt
52 Re$a1* ~ t !ȧ1~ t !%522Vp~ t !Im$a1* ~ t !a2~ t !%,

dua2~ t !u2

dt
52 Re$a2* ~ t !ȧ2~ t !%522@Vp~ t !Im$a2* ~ t !a1~ t !%

1Vs~ t !Im$a2* ~ t !a3~ t !%#,

dua3~ t !u2

dt
52 Re$a3* ~ t !ȧ3~ t !%522Vs~ t !Im$a3* ~ t !a2~ t !%.

~4!

Locking population in levelu2& amounts to the condition tha

dua2~ t !u2

dt
50. ~5!
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We note that this condition is satisfied if we chooseVp and
Vs as

Vp52V0~ t !Im$a3* ~ t !a2~ t !%, ~6!

Vs5V0~ t !Im$a1* ~ t !a2~ t !%, ~7!

The magnitude ofV0(t) is an arbitrary envelope function
that may be chosen on physical grounds to satisfy reason
conditions of switching on and off. The sign ofV0(t), how-
ever, is crucial: the choice of sign is used to satisfy the c
dition that

dua1~ t !u2

dt
,0. ~8!

dua3~ t !u2

dt
.0. ~9!

At first glance this looks like two conditions that must b
satisfied with only one unknown,V0 ; note, however, that if
ua2(t)u2 is locked then the decrease inua1(t)u2 guarantees the
increase inua3(t)u2. This observation generalizes toN lev-
els: if the population in theN22 intermediate levels is
locked a decrease inua1(t)u2 guarantees a decrease
uaN(t)u2. For the calculations shown below, the envelope
the locking pulses was chosen as

V0~ t !5
V0

cosh2~ t2td!
, ~10!

whereV0 is an overall amplitude factor andtd is the delay
time of the locking pulses relative to the seed pulse~see
below!. We arbitrarily chosetd56 for both the pump and
Stokes pulses, just to get a smooth shape for both the be
ning and end of the pulses.
el
es

s
te
lse
FIG. 2. Population transfer in the three-lev
L system using a sequence of two optical puls
with local optimization~see text!. ~a! The popu-
lation of u1& ~solid line! and u3& vs time ~dashed
line!. ~b! Population of the intermediate levelu2&
vs time. ~c! The sequence of two optical pulse
found using the local optimization method. No
that the counterintuitive sequence of Stokes pu
~dashed line! followed by pump pulse~solid line!
emerges automatically in the method.
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4932 56VLADIMIR S. MALINOVSKY AND DAVID J. TANNOR
One of the characteristic features of the local optimizat
method is the need for a ‘‘seed’’ pulse that puts at least so
small amount of population on all intermediate states t
will be used in the transfer process. The need for such a s
population can be seen from Eqs.~6! and ~7!, which shows
that to get nonzero fields from the algorithm the amplitud
aj (t) must be nonzero. To prepare this seed population
use two pulses, which are resonant with the transiti
u1&↔u2& and u2&↔u3&, respectively. For all the simulation
shown below the following functional form was used for t
envelope of the seed pulses:

Vseed5A0sin
pt

2ts
. ~11!

The amplitudeA0 controls the amount of the intermedia
level population prepared during the seed and is typic
much smaller thanV0 . The dimensionless pulse durationts
was taken to be 2 in all simulations.

Figure 2 displays the time evolution of the population in
three-level system. All parameters are normalized by
width of the seed pulse@Eq. ~11!#. During the seed pulse
population is exchanged freely between the states. At the
of the seed period the locking pulses are applied. Note
monotonic transfer of population from levelu1& to u3& in Fig.
2~a!. The locking of the population in the intermediate lev
u2& at a value of around 1% is shown in Fig. 2~b!. The enve-
lopes of the pulses,Vp andVs , that emerge from this pro
cedure are shown in Fig. 2~c!. Note the counterintuitive or-
dering of Stokes pulse before pump pulse, characteristi
STIRAP, emerging automatically in this calculation. To u
derstand this, note that the first factor in Eqs.~6! and ~7!,
V0(t), is identical for both pulses; the second factor is d
ferent, however, and turns on faster in Eq.~7! than in Eq.~6!,
since levelu1& is populated att50 and levelu3& is not.
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In Fig. 3, the final-state population is plotted as a functi
of time delay between pulses and as a function of effec
Rabi frequency,A@Vp

max#21@Vs
max#2, whereVp

max and Vs
max

are maximum values of the field amplitudes of the pump a
Stokes pulses. It is seen that beyond a critical value of fi
intensity and time delay, the solutions are robust with resp
to change in parameters. This behavior is a well-known f
ture of the STIRAP mechanism.

The effect of decay of the intermediate levelu2& may be
explored by adding the term2ga2(t) into the right-hand
side of the second equation of Eq.~3!. The result is illus-
trated in Fig. 4. It is seen that complete population transfe
still achieved except for the part of the population that was
the intermediate level immediately after the seed pulse. N
again the counterintuitive order of the pulses.

It is interesting to consider the effect of detuning from t
intermediate levelu2& while maintaining the two-photon reso
nance condition between levelsu1& and u2&. It may be seen
from Eq. ~4! that the detuningD does not enter into the
equations for the population changes although it does e
into the equations of motion, Eq.~3!. Thus, in the rotating
frame the solutions are identical with and without detunin
but after transforming back to the original representation
solutions are significantly different. The envelopes for t
pulses with detuning are now oscillatory and quite comp
cated, as compared with the smooth envelopes for the r
nant intermediate case.

III. CONTROL OF POPULATION TRANSFER
IN FOUR- AND FIVE-LEVEL SYSTEM

In the interaction representation and the rotating-wave
proximation, the Schro¨dinger equation for a system ofN
states with sequential coupling takes the form
S ȧ1~ t !
ȧ2~ t !
ȧ3~ t !
ȧ4~ t !
ȧ5~ t !

A
ȧN21~ t !
ȧN~ t !

D 51
0 iV1~ t ! 0 0 0 ••• 0 0

iV1~ t ! iD1 iV2~ t ! 0 0 ••• 0 0

0 iV2~ t ! iD2 iV3~ t ! 0 ••• 0 0

0 0 iV3~ t ! iD3 iV4~ t ! ••• 0 0

0 0 0 iV4~ t ! iD4 ••• 0 0

A A A A A � A A

0 0 0 0 0 ••• iDN21 iVN21~ t !

0 0 0 0 0 ••• iVN21~ t ! 0

2 S
a1~ t !
a2~ t !
a3~ t !
a4~ t !
a5~ t !

A
aN21~ t !
aN~ t !

D , ~12!
whereV j (t)( j 51,2, . . . ,N21) are the Rabi frequencies o
the first, second, andN21 transitions, respectively, andD j

are the detunings of the corresponding transitions.
For the sake of simplicity we will address the resona

case; we therefore setD j50 for all j . We again seek the
condition to lock the population on the intermediate lev
while transferring population from the initial to the fina
level. For a four-level system these conditions are
t

s

V152V0~ t !a3~ t !Im$a3* ~ t !a2~ t !%/a1~ t !,

V25V0~ t !Im$a3* ~ t !a4~ t !%, ~13!

V352V0~ t !Im$a3* ~ t !a2~ t !%.

For a five-level system we add one more equation:
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56 4933SIMPLE AND ROBUST EXTENSION OF THE . . .
V45V0~ t !a3~ t !Im$a3* ~ t !a2~ t !%/a5~ t !, ~14!

whereV0(t) is an overall amplitude factor for the contro
pulses which may be chosen the same way as in prev
section, Eq.~10!.

The results of the simulations for population transfer
the four- and five-level systems are shown in Figs. 5 and
6, respectively. Three and four seed pulses were used
spectively, with the shapes and durations of the pulses c
sen in the same way as in the three-level system, Eq.~11!.
Qualitatively, the evolution of the population in the four- an
five-level systems is similar to that in the three-level syste
there is monotonic transfer of population from the initial
the final state@Figs. 5~a! and 6~a!# with almost no population
in the intermediate levels@Figs. 5~b! and 6~b!#. Again, the
counterintuitive sequence of the pulses emerges for b
these cases@Figs. 5~c!, 5~d! and Figs. 6~c!, 6~d!#. However,
there is an interesting new twist, in that the resonant frequ
cies connecting the intermediate levels among themse
now appear, with envelopes that straddle both the Stokes
the pump pulse, and with intensities significantly higher th
that of either the Stokes or pump pulses. We will refer to t
general pattern as a ‘‘straddling’’ STIRAP sequence~S-

FIG. 3. ~a! Population in levelu3& as a function of the effective
Rabi frequency,Ve5AVs

21Vp
2. ~b! Population in levelu3& as a

function of the delay between the Stokes and pump pulses.
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STIRAP! and we show below that it is an efficient and robu
extension of STIRAP to genericN-level systems.

IV. THE STRADDLING STIRAP SEQUENCE

Stimulated by the simple, general form of the pulse
quences that emerged in the calculations described in
previous section, we conjecture that the S-STIRAP strat
is robust and that the seed pulse and local optimization c
dition can be abandoned. For anN-level system one simply
applies the counterintuitive Stokes pump pulse sequence
the uN21&→uN& andu1&→u2& transitions, respectively, an
a set of intense pulses corresponding to all intermediate t
sition frequencies with envelopes that span both the Sto
and pump pulses. Figure 7 shows that this scheme is succ
ful in transferring about 99% of the population from levelu1&
to level u9& in a nine-level system. At intermediate times, t
largest amount of population to any intermediate level is l
than 3%. We emphasize that in these calculations there
neither control conditions nor seed pulses: the simple gen
pattern of the previous section, which we call S-STIRA
was used without any attempt at optimization. The envelo
for all straddling pulses was taken as

V i~ t !5
V i

cosh2~ t2td
i !

. ~15!

An alternative generalized STIRAP scheme has been
posed recently by Oreget al. In that scheme, the steps in th
population transfer processu1&→u2&•••→uN& are alternately
classified as either odd or even, i.e., theu1&→u2& transition

FIG. 4. ~a! Population transfer in aL system in the presence o
decay from the intermediate levelu2&, using local optimization.
gt50.5. The population ofu1& ~solid line! and u3& ~dashed line!,
total population~long-dashed line!. ~b! Population of the interme-
diate levelu2& vs time.~c! The sequence of two optical pulses foun
using the local optimization method. Note that the counterintuit
sequence of Stokes pulse~dashed line! followed by pump pulse
~solid line! again emerges automatically in the method.
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FIG. 5. Population transfer in a four-level, se
quentially coupled system, using local optimiz
tion. ~a! The population ofu1& ~solid line! and u4&
~dashed line! vs time. ~b! The population of the
intermediate levelsu2& ~solid line! andu3& ~dashed
line! vs time. ~c! The sequence of optical pulse
found using the local optimization method. No
that the counterintuitive sequence of Stokes pu
~dot-dashed line! followed by pump pulse~solid
line! again emerges automatically. However, no
there is a third pulse, resonant with theu2&→u3&
transition, which envelopes both these oth
pulses, and is about 10 times more intense.~d!
Expanded trace of the Stokes and pump puls
On this scale, the seed pulse att'1 is visible
~see text!.
ar
r
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in-
se-
is odd, theu2&→u3& transition is even, theu3&→u4& transi-
tion is odd, etc. The envelopes of all odd transitions
superimposed, and delayed relative to the envelopes fo
even transitions; clearly, this is a natural generalization
the Stokes pump sequence in a three-level system. Thi
e
all
f

al-

ternating STIRAP~A-STIRAP! strategy works quite well;
Fig. 8 shows that it is successful in transferring about 99%
the population from levelu1& to level u9& in the nine-level
system. However, note that the largest population in the
termediate levels rises to almost 30% in the A-STIRAP
-
a-

ng
i-

i-

s
ore
d

FIG. 6. Population transfer in a five-level, se
quentially coupled system, using local optimiz
tion. ~a! The population ofu1& ~solid line! and u5&
~dashed line! vs time. ~b! The population of the
intermediate levelsu2& ~long-dashed line!, u3&
~dot-dashed line!, and u4& ~dashed line! vs time.
~c! The sequence of optical pulses found usi
the local optimization method. The counterintu
tive sequence of Stokes pulse~dashed line! fol-
lowed by pump pulse~solid line! again emerges
automatically. However, now there are two add
tional pulses, resonant with theu2&→u3& and
u3&→u4& transition, which envelope the Stoke
and pump pulses, and are about 10 times m
intense. ~d! Expanded trace of the Stokes an
pump pulses. Again, the seed pulse att'1 is
visible.
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FIG. 7. Population transfer in a nine-leve
system with sequential coupling, using a stra
dling, or S-STIRAP pulse sequence. The prop
ties of the S-STIRAP pulse sequence were a
stracted from the local optimization of the fou
and five-level systems:~1! the Stokes precede
the pump pulse,~2! pulses corresponding to tran
sitions between all intermediate states strad
both the Stokes and pump pulse, and are giv
about 10 times the intensity of the latter. No
that there is no longer any seed pulse or attem
at local optimization.~a! The population ofu1&
~solid line! and u9& ~dashed line! vs time.~b! The
population of the intermediate levelsu4& ~solid
line! and u8& ~dot-dashed line!, which receive the
most population at intermediate times. Note th
the population never exceeds 3% in any of t
intermediate states.~c! The sequence of optica
pulses in the S-STIRAP scheme. The inten
straddling pulse actually consists of a superpo
tion of 6 pulses with frequencies resonant wi
the intermediate transitions.
e.
n
e
s.

clu-
ng
l
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quence, as compared with 3% in the S-STIRAP sequenc
addition, the original A-STIRAP scheme works only whe
the number of levelsN is odd; modifications must be mad
for each different even value ofN on a case-by-case basi
InFor example, a recent paper by those authors dealt ex
sively with the four-level system, and found that detuni
from resonance with theu2&→u3& transition was essentia
@14#. To our knowledge, no general extension to higher v
l
-

n
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FIG. 8. Population transfer in a nine-leve
system with sequential coupling, using the A
STIRAP ~alternating STIRAP! scheme of Ref.
@12#. ~a! The population ofu1& ~solid line! and u9&
~dashed line! vs time. ~b! The population of the
intermediate levelsu3& ~solid line! and u7& ~dot-
dashed line!, which receive the most populatio
at intermediate times. Note that the population
these intermediate states approaches 30%,
times more than in the S-STIRAP scheme.~c!
The sequence of optical pulses in the A-STIRA
scheme. In the A-STIRAP sequence the puls
corresponding to all odd transition
(u1&→u2&,...,u7&→u8&) are given overlapping
envelopes and delayed relative to the pulses c
responding to all even transition
(u2&→u3&,...,uN21&→uN&). Thus, each of the
envelopes in the figure is in fact 4 superimpos
pulses.
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ues of evenN has been proposed. This underscores a sig
cant advantage of the S-STIRAP sequence, which wo
equally well for odd or evenN.

V. CONCLUSIONS

We have established a rigorous connection betw
stimulated Raman adiabatic passage~STIRAP! and local op-
timization of the time-dependent Schro¨dinger equation for 3
coupled levels. This is the first rigorous bridge between
tools being used in the growing literature of control theo
applied to quantum mechanical systems and the efficient
robust STIRAP scheme. Since the local optimization te
nique is straightforward to implement for arbitrarily comp
catedN-level systems~with radiative decay, detuning, non
nearest-neighbor couplings, nonadiabatic evolution! one now
has an automated method for computing robust STIRA
type pulse sequences for arbitrary systems. We demonst
this capability on a three-level system with radiative dec
and on a four- and five-level system. The pulse sequen
that emerge show the pump pulse is delayed relative to
Stokes pulse, but in addition, there are pulses correspon
to transitions between theN22 intermediate states, with en
velopes that span both the Stokes and pump pulse and
about an order of magnitude more intense. We call thi
‘‘straddling’’ STIRAP ~or S-STIRAP! pulse sequence. Sinc
the pattern is so general we tested it on a nine-level sys
without any optimization of parameters. Population trans
was 99%, with less than 3% in any of the intermediate sta
at any time during the process. This is about an order
n,

,
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f

magnitude less population on the intermediate states tha
a recently proposed alternating STIRAP~A-STIRAP!
scheme. Moreover, the S-STIRAP scheme works equ
well for odd or evenN, whereas the A-STIRAP works, in
general, for oddN only. Thus, it seems that the S-STIRA
method is a promising candidate for a general and rob
extension of STIRAP to sequentially coupledN-level sys-
tems.

We anticipate that there may be different generalizatio
of STIRAP that apply in more complicated situations. F
example, in anN-level system with non-nearest-neighb
couplings, or with radiative decay, detuning, or nonadiaba
evolution, qualitatively different extensions of STIRAP ma
apply. To find these alternative generalizations, if they ex
the same general methodology as used in this paper ma
followed, i.e., ~1! apply the local optimization method t
obtain a numerical solution to the problem;~2! test the ro-
bustness of the local optimization solution with respect
moderate changes in the pulse characteristics;~3! abstract the
salient features of the local optimization pulse sequence
use these features to design pulse sequencesde novo, aban-
doning any connection with the original optimization proc
dure.
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