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Strong-field multiphoton ionization of hydrogen:
Nondipolar asymmetry and ponderomotive scattering
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We present an extension of the strong-field theory of multiphoton ionization due to Reiss aimed at retaining
the retardation effects. The time-reversgthatrix approach and a recently proposed strong-field solution to
the Schrdinger equation are used in order to obtain analytic expressions for the ionization rates without
making the dipole approximation. Photoionization of the hydrogen ground state is used as an example to
demonstrate that deviation from the dipole approximation is substantial for high photon orders or, equivalently,
highly energetic photoelectrons. As a by-product, an expression is also obtained for the ponderomotive scat-
tering angle of the photoelectron, measured relative to the field propagation direction, in terms of its directed
kinetic and binding energie§S1050-294{@7)07111-4

PACS numbe(s): 32.80.Rm, 32.96-a, 42.50.Hz

I. INTRODUCTION where 6 gives the direction of motion of the photoelectron
relative tok, the laser propagation vectar,is an intensity
Multiphoton ionization(MPI) of neutral atoms has been parameter to be defined belo@\\2*/dQ) is the n-photon
the subject of intense theoretical investigation employingpartial) differential transition rate per unit solid angle when
various techniques to dafé], mostly treating the radiation the calculation is done in the dipole approximation, and
field in the dipole approximatioiDA). In the DA the ex- g, /d() is the same quantity calculated without making the
pression expk-r)=1+ik-r+--- is replaced by unity when dipole approximation.
the radiatio_n wavelength is large compared to a dimension of Moreover, an exact expression will be derived for the
length pertinent to the system. Recent experimgZifshow- 516 rejative to the direction &fat which the photoelectron

ever, have demonstrated that, in describing the radiatio - ;
field, one may have to go beyond just the first term in theany be detectedthe ponderomotive scattering angldhe

; A : . . angle in question may be obtained from

series expansion of the exponential, especially when intensi-

ties comparable to 1 a.Uy=3.51x 10 W/cn?, are consid-

ered.(k is the radiation field propagation vector ands the Py

position vector of the electron that interacts with that field. cod) = D’ @

This nondipolar asymmetnhas been alluded to by many

authors[3-5], motivated by the introduction of ever higher i

(lase) field intensities for use in the related experiments. Wherep; is the component of the total electron momentm
Following ionization, a photoelectron is expected to mo\,e_parallel tok. Specnﬁc re_sults will be prgsenteq anq discussed

in the direction of the polarization vector of the field. How- in Sec. IV. Finally, a brief summary will be given in Sec. V.

ever, as has been shown recently in experimgétsg], a

photoelectron gets scattered away from that direction due to

acquired longitudinal momentum, a nonzero component of

the electron momentum parallel to the field propagation di- Most of the details presented in this section may be found

rection. This has been theoretlc_ally predlct_ed some years ag9sewherd 16]. They are reproduced here in order to make

[9-12 and termedponderomotive scattering®onderomo-  thjs paper as self-contained as possible. We start by consid-

fuve s_catt_enng has also been the subject of several recegting a one-electron system, a negative ion, or a hydrogen-

investigationg6-8,13. . . like atom, interacting with a radiatioftase) field. LetH, be

_ In this paper, we employ a strong-field solution to thethe noninteractingfield-free Hamiltonian of the system and

time-dependent Schdinger equation suggested recently genote byH, the effect of the externally applied field. Pro-

[14,19 to address these two issues. The formalism leading t9iged the field is strong enough, the electron may absorb

closed-form analytic expressions for thephoton differen-  jany photons from it, using part of the absorbed energy to

tial transition rates will be developed in Sec. Il. Expressionsyee ‘jtself from the binding effect of the nucleus and the

corresponding to linearly and circularly polarized fields will remainder as kinetic energy of oscillation and translation in

be derived separately. This formalism will be applied to theihe field.

case of MPI of ground-state hydrogen in Sec. Ill. The non-  pojiowing Reiss[17-20, the strong-field multiphoton

dipolar asymmetry will be estimated by the magnitude ofyansition rates may be calculated from tiree-reversed S
deviation from unity of the quantityR,(6), henceforth re-  5¢rix

ferred to as the thasymmetry factgordefined by

dw, dwi? i
4q ~ R0 —q (1) (S—Dsi=—7 f d(W¢[H,|D;). 3)

Il. THEORY
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In Eq. (3), ¥ is a fully interacting electron state, a solutionto  Let m ande be the mass and charge of the electron and

the Schrdinger equation denote byA the vector potential of the radiatiqfasey field.
The interaction piece of the system’s Hamiltonian may be
(9 .
(iﬁﬁ_Ho_W w—o. (@ Witen as
e . e
while @ is a noninteracting state satisfying the equation Hi=—= oA P oA (10
iﬁﬁ—H d=0 (5) wherec is the speed of light an@ is the linear momentum
a0 ' operator of the electron. Within the spirit of the time-

) . ) reversedS-matrix approach to strong-field procesd@é],
Equation(5) will be assumed to possess exact solutions, a S&fje may now take for the initial state

of known stationary states of which one may typically be _
written as @, = ¢ (r)e Et/h (11)

D(r,t)=g(r)e 'EV", (6) i.e., one of the stationary states of the bound electron, as-

i i _ ) sumed to be known exactly. On the other hand, the final state
wherekE is the state eigenenergy. .Ana!yt|c solutions for Eq-will be taken as the zeroth-order term in E@), namely,
(4) do not exist for most practical situations. Many numerical

technigues instead have been desigiigdn order to obtain W~ ToW O =To(t)[ ¢4(r)e E/A], (12)
solutions for this equation, with varying degrees of success.
It is well known that the numerical methods are computa-This choice is motivated by the fact that, especially when
tionally very demanding, even for the simplest of systemsyery intense fields are considered, the final state of the elec-
and that perturbation theory breaks down when field intensitron is dominated by the radiation field and is almost free
ties comparable to 1 a.u. are used. from the influence of the binding potential. In the following
In the present paper, the following solution to BE4)  two subsections, transition matrix elements to describe the
involving an interaction terni, of arbitrary strength will be interaction of the single electron with linearly and circularly
used. The solution, recently proposed by Frddel, reads  polarized laser fields of arbitrary strength will be obtained
according to Eq(3) and employing the recipe expressed in

AN Eqs.(11) and(12).
V(1) =To(t) 1+( - f_ H(t)dty gs.(11) and(12)
VK . A. Linear polarization
1
+eoe | = %> f H()(tl)dtlf Ho(to)dty: - A linearly polarized single-mode field of constant ampli-
- o tudea, propagation vectok, and frequencys may be mod-
te_q eled by the(classical vector potential
Xf Hé(tk)dtk+}\y(o), (7) A
— A=e€a codk-r— wt), (13
where where € is a polarization unit vector, perpendicular to the
- field propagation directioftransverse gaugeWe now cal-
_ _ Nt culate the various terms making up tBematrix in Eq. (3),
To() exr{ h JlaoH'(t )t } ® beginning with
and d’s ~
H|‘1>i=ﬁwf (20 ®i(s)
Ho(t)=To(t) *HoTo(t). 9

X[—¢ cosp+z cos2y+z]e 'EtTSOR (14)
Equation(7) looks deceptively like a Dyson seri¢21];

the difference is that in Eq7), in place of the interaction where
piece of the Hamiltonian, we have the field-free Hamiltonian
transformed according to E@9). In other words, the field- _ea | . (ea)?
free HamiltonianH, and the interaction terrdl, play roles CCmdie € T Imdhe
here that are the opposite of their familiar Dyson-series roles.
Unfortunately, like the Dyson series, the series expressed by order to facilitate action of the momentum operator, the
Eg. (7) cannot be summed except under specialized condimomentum representation of the stationary-state wave func-
tions. Furthermore, it has been shown that corrections to théon has been introduced via the definition
zeroth-order term contain secular as well as oscillatory terms
that may render the wave function unnormalizable over long
times. The good news, though, is that one does not always
need to consider many terms beyond zeroth order in order to
arrive at meaningful and reliable results, as will be shownNote that, in arriving at Eq(14), use has been made of the
shortly. fact that, for any functiorf(#),

n=k-r—owt. (15

_ d’s  ~ is-rif
¢(f)—f W(ﬁ(s)e : (16)
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e P(fe's"h)=e gfelsTh), 17 | = Jx dtel(E—EIh —(n+/~wlt

due to the transversality conditio& k=0. The remaining -

term in theS matrix will now be calculated. With the help of E:—E;

Egs. (16) and (17), the zeroth-order term in the fully inter- =2m8| ——-(n+/-2o (22)
acting statg7) becomes

a3’ for /=1, —1, 2, —2, and 0, respectively. The following
) :j ———n (s')e (Et=s" -r=zhin)lh steps consist of changing the summation indew n— /" in

' (2mh)¥2 " the respective terms of ER1) and pulling out the common
6 function and the resulting exponential factorkinr. After

i[—¢'sinp+(2/2)sin27] X K
Xe ' (18) this has been done, tf@matrix element takes the form

where(' differs from ¢ in the obvious dependence upon the 3.
linear momentum of the electron. We are now in a positiorys—1)(in) = _in Wg*(g)
to evaluate the transitioB-matrix element. Using Eqg14) " (2mh)™
and(18) in Eq. (3) leads to 3 w
ds ~

; dss, ~ Xf (277%)372 (ﬁi(S)n:Zoo
(S-1)if"= —in S b7 (8)

(27h)

4 Xf d3r eils=s +(n—2)%k]-r/h

S —~
Xf (2ah)" #i(s)

{
Xy = E(‘Jn*l+‘]n+1)

XJ d3r ei(s—s’—zhk)-r/ﬁf dt e (Er—Ei+zha)th

Z
X [ — {cosp+ zcos2p+Z] +5Gn-2tdni2) +2d

X ei[{'sinnf(Z/Z)sinb]]’ (19) E;—E,

><27T5( 7 —(n—Z)a)). (23

where the superscriptifi) stands fotinear polarizationand
Eq. (17) has been used again. Next we proceed to evaluaighe arguments of the generalized Bessel functions in Eq.

the integrals ovet, r, ands, in that order for convenience. (23) have been suppressed, but are understood to be

The time integration may easily be done after the following ¢',— 2I2). Now is a good point to carry out the integration

transformations have been made. First, the trigonometriger the spatial coordinates. This results in the momentum-
functions in the expression between square brackets are €¥onservings function

pressed in exponential form. This is followed by replacing
the exponential factor on the far right of E{.9) by a gen- o o
eralized Bessel function expansipt7], according to f d3r ells—s T(n=2)ik]-1/h

ei[u sing+vsin2¢] — 2 ei”"’Jn(u,v). (20) :(Zﬂﬁ)35(3)(S—S’+(n—2)ﬁk). (24)
n=—w=
_ Equation(24) may next be used to calculate the integration
After this has been done, E(L9) becomes overs’, resulting in the replacement sf by s+ (n—2)Ak
everywhere. In particular, in place ¢gfwe will have

lin : d’s’ -~
(S-Dff ):—wa i@ 41 ()

€ [st(n—2)hk]=

ea .
s &= mchw mchw es={ (25
X f >3 $i(9)

(2mh)¥2 7 due to the transversality condition. The recurrence relation
[17]

oo, ” .z
< j d3r el(s—s zhK) r/hn:E_Oc Jn(g ’_E)

szn(ulv)zu{‘]n—l(ulv)+Jn+l(uvv)}

+20{Jn_2(u,v)+Jn+2(u,v)} (26)

I .
X _E(e|(n+l)k~r|1+e|(n—1)k~r|_1)

will next be used to simplify the quantity between curly
brackets in Eq(23). After this series of steps has been car-

z . . .
Z(ai(n+2)k-r i(n—2)k-r nk-r . . .
+5(e lot+e |_p)+z€ '0}1 ried out, the desired matrix element takes the form

(21)

. (S-DifV=iw > <n—z><5f(s+<n—z>hk>‘
where typically n=2e
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Z\|~ where ﬁ’x and ﬁ’y are thex andy components, respectively,
S $i(s) of the electron’s linear momentum operator and
B=ea/mchiw. Writing s in spherical polar coordinates,
Ei—E; s=(s,0s,¢s), in H,, and making use of Eq$16) and(17),
X2mé| — _(n_z)“’>' (27 the's matrix for the present case becomes

The remaining integration is understood to be osgEqua- ir s’ ~ d’s  ~
tion (27) may then be used to calculate the transition prob- (S—1)it ="UJ (2ah) S )J 2ah) ?i(9)
ability per unit time, as usugR1-23, from

3 i(s—s —zhk)-rih
m [(S—1)i¢]? XJ dre '

(lin) _ 1;
wi =i
t

t—oo

Xf dt e(Er—Eit+zha)th

=0? 2 (n—2)? <Zsf(s+(n—z)ﬁk) Jn(g,—g)
B > ) (Ef—Ei X %s sindsin( 77— ¢S)—z]
X|pi(s) )| 276 7 —(n—z)w). (28
X efi[(ﬁlﬁ)s’sinﬁsrcos{ n— ¢s’)]_ (32)

For a particular value afi, the energy-conservingfunction ) ] )
in Eq. (28) effectively says that the transition- f is accom-  1he exponential term on the far right of EG2) will next be
panied by the absorption of photons of energy/iw, of expanded in terms'of the ordinary Bessel functions using the
which zw goes into the classical oscillatory motion of the Fourier-Bessel series

electron and the resin(-z)A w goes into kinetic energy of
oscillation and translation in the fie|[@]. On the other hand,

[

—iu cost _ _i\n ing
Eqg. (16) tells us that the momentum of the initial state is € n;m (=) Jn(u)e™=, (33
pi=s. Hence the final-state momentum, due to the
momentum-conserving function of Eq.(24), is When sinf;— ¢ is also written in terms of exponentials, one

D=8 = p + (N—2)fik. 29 arrives at an equation similar to E@1), which reads

. . . d’s’  ~ d®s ~
This equation clearly shows that the electron absorbs mo- (g_ 1)(cin_; J * (gl f (s
mentum in the amountn—z)%k from the radiation field. ( i “) 2wk $1(s) (27h)3? Hi(s
The absorbed momentum is all in the forward direction and

is important for high photon ordef$argen). Thus the pho- Xf d3r ei(s=s —zik)-r/k

toelectron will be ejected at some angdlg relative to the

polarization direction of the field20]. This issue will be o

discussed further below. X D Jn<_s’sings,>
n=—o

B. Circular polarization

_ , , B : i _
We consider next the case of(left) circularly polarized, X| ——s singg (—i)" el Dk r=ds)
plane-wave, monomode radiation field of polarization vec- 2v2
tors € and €, along thex andy directions. This case is well X @l (9589 | — (—j)n+1
known to involve only ordinary rather than generalized _ _
Bessel function$3]. Using notation similar to what has been x gl (=D r=¢s)g=ilds = ds)| _ ]
adopted in Eq(13) above, the vector potential of such a field
may be written as . -
y +(_|)nzén(k~r—¢sr)|01, (34
A= [&sink-r—ot)~geosk-r—wt)].  (30)
= —[ gsin(k-r— wt) — e,cogk-r—wt)].
V2o Y with
The steps leading to an expression for the transition prob- o (B~ B/ (n+ g—2elt
ability per unit time similar to the one given in E¢28) Iq:J_ dt == e

above, for the linear polarization case, are more or less the

same in the present case. We shall therefore skip most of the Ei—E;

details and give below only the most important intermediate = 2775( 7 —(n+q—z)w) (35
results. For example,

for q=1, —1, and 0, respectively. Next, we lat-n—q in
H=—%o E(ﬁxsinn— ﬁ’ycosn)—z , (31  Eq.(34), after which one should be able to evaluate the in-
V2 tegration over and get the linear momentum-conserviéig
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function (27%)38%)(s—s' +(n—2)%k). Then the integra- Of the final state, however, in terms of a plane wave seems to

tion overs’ is carried out, where by definition th#function =~ be quite acceptable [22,24-27. Thus we take

is nonzero only if ¢¢(r)=(2mh) ~¥%exp(p-r/#), where p is the (constant

momentum of the ionized electron, with the corresponding

s'=s+(n—2)hk. (36)  energyE;=p?/2m. The Fourier transform of this wave func-

tion is the three-dimensional function ¢¢(s)= 6®)(p—s).

When this is used in Eq28) above and after the remaining

integration overs has been carried out,

Recall that in Eq(30) the direction of the field propagation
has been taken along z, i.e., k has only az component.
Thus thex andy components of Eq.36) yield

s’sinfg CoSps =S SINGCOSH (37 wilim= g2 > (n_z)zggi(p_ (n—2)%k)|?
n=—oo
and
z\|? p2/2m+Eg
S'sindy singg =S sinfsings, (38 Xdn| &= 5| 270 7 —(n=2o|.
respectively. When Eqg37) and (38) are solved simulta- (42

neously, ¢y = ¢ and s’sinfy =s sind, result. We then use
these results in Eq34) and employ the well-known Bessel
function recurrence relation

results. This expression too has the correct lifai2] when
the dipole approximation is made in the manner described
above. For the case of circular polarization, one obtains the
2n following transition rate without much difficulty:
7 In(W=Jn-2(W)+Jp(U) (39

. o ~ B
WD = 2 n—2)?|¢;(p— (n—2z)%k)|232| —p sinb
to write the S-matrix element in terms of a sum containing © an—oo ( Vi K I V2 P
only J,. The end result is
p2/l2m+Eg
X2mw8 T—(n—z)w , (43

(S-Dff"=i0 > <—i>“(n—z><¢f(s+<n—z)hk)
= where 6 is the angle between the direction of electron emis-
sion and the laser propagation direction. Note that E4@®.
5i(5)> and(43) are almost structurally the same; the only difference
between them is in the kind of Bessel function involved. We
now transform thes function in both expressions according

xei“"’an(%s sines)

E;—E;
><2775< fﬁ ' —(n—z)w). (40 to
p%/2m+ Eg mh _
The corresponding transition probability per unit time will 7 (o= T—é(p—p). (44)
finally be given by
- where
W(Cir)=w2n:2_m (n—2)2 < bi(s+(n—2)k) = V2mhe(n—2—<5) (45
2 and eg=Eg/hw gives the number of photons the electron

X must absorb in order to break loose of the binding potential.

Note that in Eq(44) anothers function, (p+ p), has been
dropped on account of the fact that the magnitude of the

—(n—z)w)_ (41  free-particle momentum cannot be negative. Furthermore,
Eq. (45) replaces the lower limit on the sum in E¢42) and

Note that the expressions obtained in this work for the(43) by athresholdvalue. According to Eg(45), the thresh-

transition probabilities per unit timé=qgs.(28) and(41)] may old photon order is an intege¥, given by
be compared with the corresponding ones obtained in the

e““"’SJn(Es sin03>
V2

Ei(5)>

Ei—E;
fi

X27T5(

. . . . A HOB Z+ €R. (46)
dipole approximation by Reig®8,11]. One can arrive at the
dipole limits of Eqs.(28) and (41) simply by lettingk—0. Recall thatz may be written as the ratio of the average
Agreement is complete. classical energy of oscillation of thdree) electron in the
radiation field, the ponderomotive potential energy
IIl. MULTIPHOTON IONIZATION U,=(ea)?/4mc?, to the photon energfw. In other wordsz

is the number of photons absorbed whose energy goes into

energy of classical oscillation in the field. This leaves the
In a typical photoionization process, the initial state of theelectron with a directed kinetic energy in the magnitude

electron is a bound state, assumed to be known exactly,

whose binding energy is given ;= —Eg. A description K=fhw(n—z— €p). 47

A. General
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Recall also that the final electron momentum, whose magni- gy (2m3,%)¥2 ~ _
tude is given by Eq(45), has a forward component given by 40" 2mi > (n—2)2(n—z—eg) VY |22,

n=nq

This value for the forward momentum may be read off of Eq.In this expressionJ, stands forJ,({,—2/2) in the case of
(29) assuming, of course, that all the initial momentum islinear polarization and fod,((5/v2p sind) in the circular

transverse. With this assumption in mind, E2). now yields ~ polarization case. It should also be borne in mind that the
dependence on the momentum, in the momentum-space

(n—2)hk K Eg wave function as well as in the arguments of the Bessel
co = =1\ + functions, ought to be through- (n—2z) %k, with p replaced
— & cli 9
y p everywhere in accordance with thefunction of Eq.
V2mhw(n—z— eg) V2mc2K w9 b here i q it thisfunction of E
(44). See the example below.
for the angle relative to the field propagation direction at B. Photoionization of ground-state hydrogen
which the photoelectron emerges. In arriving at the second L
line in Eq. (49) use has been made of E@7). Note that, We now move on to some applications. The example we

wish to take is photoionization of the hydroge8B 4tate. Not
only is this example relatively simple to handle, but it has
The term involving the binding energy, whose presence lim&/S0 been studied before in the dipole approximation and
its applicability of the result only to electrons produced by'elativistically [3,11,12,17. The b'”d“;g energy of the hy-
photodetachment or photoionization of a specific systemdregen ground-state electron iy =1%/2mag, wherea, is
may be dropped for situations in whi¢ts>Eg. The result- the Bohr radius. The ground-state wave function is
ing approximate expression is then applicable to electrons
produced by any means from any atomic, ionic, or molecular bi(r)= 1
system[6—8]. ! ERENE

Finally, the total transition ratéo all possible final states
may be obtained by integrating the transition rates given byror photoionization studies employing the formalism devel-
Egs.(42) and(43) over the phase space available to the freeoped above, one needs the Fourier transform of the bound-

apart from the dependence upon the binding en&rgy Eq.
(49) givesO as a function of the electron kinetic enerlgy

e ao, (52)

particle. For this purpose, we use state wave function. Direct calculation gives
W‘f d*p 50 ~ 8 mag 1
~ ] Ve = 2t [T+ (sagl8) 72 ®3

where (27%)° is the volume in phase space of a unit We now calculate the photoionization rate of the hydrogen
guantum-mechanical cell. Thus the total transition rate peflS state by circularly polarized light. Inserting expression
unit solid angle becomes (17) into Eq. (51) and after some simplification, we get

dw 8 0 e (n—z— eg)Y212(\4z(n—z— €g)sink)
A0~ (2nh)3 7B > 2.2 7- (54
wh)> n=ng
1-—— V2mhw(n—z— eg) cOH+ T z)}
|
Note at this point that, apart from the factor#£&) 3 up- hk
front, Eq.(54) reduces, in the dipole approximatiok-¢0), Rn(é’):[l— o V2mfiw(n—2z— eg)cosd
exactly to the expression derived by R€i§g] for the same
system. The absence of the factora(2) ~3 from the result #.2K2 —4
of Reiss may be traced back to the way the Fourier transform + i (n—=2) (55
. w
has been defined.
The computing power available to the author at the Ak
present time is not adequate for calculations involving the :{1_ —— \2mAw(n—ny)cosd
total transition rate on the basis of E§4). Thus we will not mh o
be able to check the ascertion made by R¢isq, among 72K2 -4
other things, that the retardation effects are of the same order + ——(nN—ng+e€p) (56)
of magnitude as theother relativistic corrections. Some 2mh o

meaningful conclusions can still be arrived at by studying the 4
- i ionizati 2K K+E

n-photon (partia) rates of ionization. For example, we are —l1- cos+ B

now in a position to obtain the following expression for the mc 2mc? '

nondipolar asymmetry factor as defined in Eb): (57)
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FIG. 1. Ponderomotive scattering andgleof an electron pro- FIG. 2. Relative errodA made when the dipole approximation is
duced by photoionization of the hydrogei$ $tate vs its directed employed in calculating the-photon(partia)) rate of ionization of
kinetic energyK. the hydrogen ground-state electron vs the photoelectron escape ki-

netic energyK for photoelectron kinetic energies of up to 2 MeV.

Exactly the same expressions describe the asymmetry factor . . .
in the linear polarization case. Finally, the relative error re-€nergyk, employing Eq.(49) with 6 replaced by®. This

sulting from adopting the dipole approximation in a calcula-1€ads to the following expression fa.

tion of then-photon rate of ionization may be written as

K+Egl*

A=1-R(6) L. (58) A=L{1 T

(59

The main results obtained in this section will be the subject

of discussion in the following section. One easily finds thak has a maximum value correspond-

ing to the photoelectron kinetic energyK=2mc?
IV. RESULTS AND DISCUSSION —Eg~1 MeV. For electrons moving with this kinetic en-
ergy, A=1 and hence the dipole approximation is com-

h fln thte rlec7ent eﬁgpﬁnmentts gy ll\)/looee ?l'[m fa?hd Mﬁyer- pletely unreliable. On the other hand, for low-energy elec-
oferet al. [7], whic reported observation ot the phenom- ., K=~0), the dipole approximation results in a
enon of ponderomotive scattering, the electrons were pro-

ducedal t at resby photoionization. Vari . minimum of error,A=~0. In Fig. 2,A is shown against the
ucedaimost at resby pnotolonization. various EXpressions ;.o o ginetic energy of the photoelectron for kinetic ener-

have been reported in the past for the ponderomotive Scatteé'ies of up to 2 MeV

ing angle® in terms of the directed kinetic energy_of the Since Eq.(49) has. been used in arriving at EG9), they

electron, some of them based on quantum-mechanical argy 4 Figs 1land 2 may best be read together qu’J@ﬁg)’\

me”ts[lo’iﬂ* while others were derived classma[&?zlii. and Fig. 1 basically tell us where to look for a photoelectron

The experimental results of Meyerhofer al. are consistent

. ; ; . with a particular kinetic energy. Then E¢9 and Fig. 2
with these expressions. Equatiofd), derived for the same . . LY
quantity in thiF; paper inv?nlves a)feature not found in thed1Ve the error in the value of the-photon rate of ionization

. . -“calculated on the basis of the dipole approximation. Recall
previous expressions, namely, the dependence upon the bin

; ) . thatn may be calculated frofK and a knowledge oég and
ing energyEg . This dependence, however, is very weak forn [see Eq(47)]
situations such thaEg<K. We plot the scattering angle ° a '
against the kinetic energy of the photoelectron in Fig. 1 for
electrons produced by photoionization of the hydrogen
ground-state electron. The curve agrees quite well with the In this paper, general expressions for the multiphoton de-
earlier result§6-8,13. tachment and multiphoton ionization rates have been derived
The other issue we set out to investigate in this papefor one-electron systems based upon a recently proposed
concerns the need to go beyond the dipole approximation igtrong-field solution to the Schdinger equation, without re-
calculating the MPI rates when high-intensity fields are em-sorting to the usual dipole approximation. It has been shown
ployed. Note first that the intensity parametermay be that, especially in the presence of superintense fields that
eliminated from the expression for the asymmetry factor ininvolve absorption of extremely large numbers of photons,
favor of the quantityn—ng, the number of photons whose the dipole approximation results in substantial errors only
absorbed energy goes into directed kinetic energy of the phavhen differential multiphoton ionization rates of high photon
toelectron see Eq(47)]. This has been done in Eq§6) and  orders are calculated. In such situations involving fast-
(57). moving photoelectrons, the dipole approximation must
One can still push the last point even further by eliminat-clearly be abandoned. On the other hand, the main contribu-
ing the co® term in Eq.(57) in favor of the directed kinetic tion to the total rates comes from photons of order near the

V. SUMMARY



56 STRONG-FIELD MULTIPHOTON IONIZATION CF . .. 4917

threshold numben, and for electrons detected in the trans- parent systemrithe neutral atom As such, our expression
verse direction. For such circumstances, the dipole approxshould be suitable for analysis of the data of experimental
mation is quite adequate. situations involving electrons produced via ionizat[&n-8].

As a by-product of the analysis presented in this paper, In order to be able to make an estimate of the effects of
we have derived an expression giving the ponderomotiveetardation on the magnitude of a typical total ionization rate,
scattering angle of the photoelectron in terms of its directedbetter computing power than is currently available to the
kinetic energy. Unlike previous derivations, the formula de-present author is needed. This particular issue, among others,
rived here involves the binding energy of the electron in thewill be taken up in the future.
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