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Strong-field multiphoton ionization of hydrogen:
Nondipolar asymmetry and ponderomotive scattering

Yousef I. Salamin
Physics Department, Birzeit University, P.O. Box 14, Birzeit, West Bank, via Israel

~Received 19 May 1997!

We present an extension of the strong-field theory of multiphoton ionization due to Reiss aimed at retaining
the retardation effects. The time-reversedS-matrix approach and a recently proposed strong-field solution to
the Schro¨dinger equation are used in order to obtain analytic expressions for the ionization rates without
making the dipole approximation. Photoionization of the hydrogen ground state is used as an example to
demonstrate that deviation from the dipole approximation is substantial for high photon orders or, equivalently,
highly energetic photoelectrons. As a by-product, an expression is also obtained for the ponderomotive scat-
tering angle of the photoelectron, measured relative to the field propagation direction, in terms of its directed
kinetic and binding energies.@S1050-2947~97!07111-4#

PACS number~s!: 32.80.Rm, 32.90.1a, 42.50.Hz
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I. INTRODUCTION

Multiphoton ionization~MPI! of neutral atoms has bee
the subject of intense theoretical investigation employ
various techniques to date@1#, mostly treating the radiation
field in the dipole approximation~DA!. In the DA the ex-
pression exp(ik•r )511 ik•r1••• is replaced by unity when
the radiation wavelength is large compared to a dimensio
length pertinent to the system. Recent experiments@2#, how-
ever, have demonstrated that, in describing the radia
field, one may have to go beyond just the first term in
series expansion of the exponential, especially when inte
ties comparable to 1 a.u.,I 053.5131016 W/cm2, are consid-
ered.~k is the radiation field propagation vector andr is the
position vector of the electron that interacts with that fiel!
This nondipolar asymmetryhas been alluded to by man
authors@3–5#, motivated by the introduction of ever highe
~laser! field intensities for use in the related experiments.

Following ionization, a photoelectron is expected to mo
in the direction of the polarization vector of the field. How
ever, as has been shown recently in experiments@6–8#, a
photoelectron gets scattered away from that direction du
acquired longitudinal momentum, a nonzero componen
the electron momentum parallel to the field propagation
rection. This has been theoretically predicted some years
@9–12# and termedponderomotive scattering. Ponderomo-
tive scattering has also been the subject of several re
investigations@6–8,13#.

In this paper, we employ a strong-field solution to t
time-dependent Schro¨dinger equation suggested recen
@14,15# to address these two issues. The formalism leadin
closed-form analytic expressions for then-photon differen-
tial transition rates will be developed in Sec. II. Expressio
corresponding to linearly and circularly polarized fields w
be derived separately. This formalism will be applied to t
case of MPI of ground-state hydrogen in Sec. III. The no
dipolar asymmetry will be estimated by the magnitude
deviation from unity of the quantityRn(u), henceforth re-
ferred to as the theasymmetry factor, defined by

dWn

dV
5Rn~u!

dWn
DA

dV
, ~1!
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whereu gives the direction of motion of the photoelectro
relative tok, the laser propagation vector,z is an intensity
parameter to be defined below,dWn

DA/dV is the n-photon
~partial! differential transition rate per unit solid angle whe
the calculation is done in the dipole approximation, a
dWn /dV is the same quantity calculated without making t
dipole approximation.

Moreover, an exact expression will be derived for t
angle relative to the direction ofk at which the photoelectron
may be detected~the ponderomotive scattering angle!. The
angle in question may be obtained from

cosQ5
pi

p
, ~2!

wherepi is the component of the total electron momentump
parallel tok. Specific results will be presented and discuss
in Sec. IV. Finally, a brief summary will be given in Sec. V

II. THEORY

Most of the details presented in this section may be fou
elsewhere@16#. They are reproduced here in order to ma
this paper as self-contained as possible. We start by con
ering a one-electron system, a negative ion, or a hydrog
like atom, interacting with a radiation~laser! field. LetH0 be
the noninteracting~field-free! Hamiltonian of the system and
denote byHI the effect of the externally applied field. Pro
vided the field is strong enough, the electron may abs
many photons from it, using part of the absorbed energy
free itself from the binding effect of the nucleus and t
remainder as kinetic energy of oscillation and translation
the field.

Following Reiss @17–20#, the strong-field multiphoton
transition rates may be calculated from thetime-reversed S
matrix

~S21! f i52
i

\ E dt^C f uHI uF i&. ~3!
4910 © 1997 The American Physical Society
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56 4911STRONG-FIELD MULTIPHOTON IONIZATION OF . . .
In Eq. ~3!, C is a fully interacting electron state, a solution
the Schro¨dinger equation

S i\
]

]t
2H02HI DC50, ~4!

while F is a noninteracting state satisfying the equation

S i\
]

]t
2H0DF50. ~5!

Equation~5! will be assumed to possess exact solutions, a
of known stationary states of which one may typically
written as

F~r ,t !5f~r !e2 iEt/\, ~6!

whereE is the state eigenenergy. Analytic solutions for E
~4! do not exist for most practical situations. Many numeric
techniques instead have been designed@1# in order to obtain
solutions for this equation, with varying degrees of succe
It is well known that the numerical methods are compu
tionally very demanding, even for the simplest of system
and that perturbation theory breaks down when field inte
ties comparable to 1 a.u. are used.

In the present paper, the following solution to Eq.~4!
involving an interaction termHI of arbitrary strength will be
used. The solution, recently proposed by Frasca@14#, reads

C~ t !5T0~ t !H 11S 2
i

\ D E
2`

t

H08~ t1!dt1

1•••1S 2
i

\ D kE
2`

t

H08~ t1!dt1E
2`

t1
H08~ t2!dt2•••

3E
2`

tk21
H08~ tk!dtk1•••J C~0!, ~7!

where

T0~ t !5expF2
i

\ E
2`

t

HI~ t8!dt8G ~8!

and

H08~ t !5T0~ t !21H0T0~ t !. ~9!

Equation~7! looks deceptively like a Dyson series@21#;
the difference is that in Eq.~7!, in place of the interaction
piece of the Hamiltonian, we have the field-free Hamiltoni
transformed according to Eq.~9!. In other words, the field-
free HamiltonianH0 and the interaction termHI play roles
here that are the opposite of their familiar Dyson-series ro
Unfortunately, like the Dyson series, the series expresse
Eq. ~7! cannot be summed except under specialized co
tions. Furthermore, it has been shown that corrections to
zeroth-order term contain secular as well as oscillatory te
that may render the wave function unnormalizable over lo
times. The good news, though, is that one does not alw
need to consider many terms beyond zeroth order in orde
arrive at meaningful and reliable results, as will be sho
shortly.
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Let m ande be the mass and charge of the electron a
denote byA the vector potential of the radiation~laser! field.
The interaction piece of the system’s Hamiltonian may
written as

HI52
e

mc
A•P̂1

e2

2mc2 A2, ~10!

wherec is the speed of light andP̂ is the linear momentum
operator of the electron. Within the spirit of the time
reversedS-matrix approach to strong-field processes@20#,
we may now take for the initial state

F i5f i~r !e2 iEi t/\, ~11!

i.e., one of the stationary states of the bound electron,
sumed to be known exactly. On the other hand, the final s
will be taken as the zeroth-order term in Eq.~7!, namely,

C f'T0C~0!5T0~ t !@f f~r !e2 iE f t/\#. ~12!

This choice is motivated by the fact that, especially wh
very intense fields are considered, the final state of the e
tron is dominated by the radiation field and is almost fr
from the influence of the binding potential. In the followin
two subsections, transition matrix elements to describe
interaction of the single electron with linearly and circular
polarized laser fields of arbitrary strength will be obtain
according to Eq.~3! and employing the recipe expressed
Eqs.~11! and ~12!.

A. Linear polarization

A linearly polarized single-mode field of constant amp
tudea, propagation vectork, and frequencyv may be mod-
eled by the~classical! vector potential

A5 êa cos~k•r2vt !, ~13!

where ê is a polarization unit vector, perpendicular to th
field propagation direction~transverse gauge!. We now cal-
culate the various terms making up theS matrix in Eq.~3!,
beginning with

HIF i5\vE d3s

~2p\!3/2 f̃ i~s!

3@2z cosh1z cos2h1z#e2 i ~Ei t2s•r !/\, ~14!

where

z5
ea

mc\v
ê•s, z5

~ea!2

4mc2\v
, h5k•r2vt. ~15!

In order to facilitate action of the momentum operator, t
momentum representation of the stationary-state wave fu
tion has been introduced via the definition

f~r !5E d3s

~2p\!3/2 f̃~s!eis•r /\. ~16!

Note that, in arriving at Eq.~14!, use has been made of th
fact that, for any functionf (h),
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4912 56YOUSEF I. SALAMIN
ê•P̂~ f eis•r /\!5 ê•s~ f eis•r /\!, ~17!

due to the transversality conditionê•k50. The remaining
term in theS matrix will now be calculated. With the help o
Eqs. ~16! and ~17!, the zeroth-order term in the fully inter
acting state~7! becomes

C f5E d3s8

~2p\!3/2 f̃ f~s8!e2 i ~Ef t2s8•r2z\h!/\

3ei @2z8sinh1~z/2!sin2h] , ~18!

wherez8 differs from z in the obvious dependence upon t
linear momentum of the electron. We are now in a posit
to evaluate the transitionS-matrix element. Using Eqs.~14!
and ~18! in Eq. ~3! leads to

~S21! i f
~ l in !52 ivE d3s8

~2p\!3/2 f̃ f* ~s8!

3E d3s

~2p\!3/2 f̃ i~s!

3E d3r ei ~s2s82z\k!•r /\E dt ei ~Ef2Ei1z\v!t/\

3@2zcosh1zcos2h1z#

3ei @z8sinh2~z/2!sin2h#, ~19!

where the superscript (l in ) stands forlinear polarizationand
Eq. ~17! has been used again. Next we proceed to evalu
the integrals overt, r , ands, in that order for convenience
The time integration may easily be done after the followi
transformations have been made. First, the trigonome
functions in the expression between square brackets are
pressed in exponential form. This is followed by replaci
the exponential factor on the far right of Eq.~19! by a gen-
eralized Bessel function expansion@17#, according to

ei @u sinf1vsin2f#5 (
n52`

`

einfJn~u,v !. ~20!

After this has been done, Eq.~19! becomes

~S21! i f
~ l in !52 ivE d3s8

~2p\!3/2 f̃ f* ~s8!

3E d3s

~2p\!3/2 f̃ i~s!

3E d3r ei ~s2s82z\k!•r /\ (
n52`

`

JnS z8,2
z

2D
3F2

z

2
~ei ~n11!k•rI 11ei ~n21!k•rI 21!

1
z

2
~ei ~n12!k•rI 21ei ~n22!k•rI 22!1zeink•rI 0G ,

~21!

where typically
n

te

ic
ex-

I l 5E
2`

`

dtei @~Ef2Ei )/\ 2~n1l 2z!v#t

52pdS Ef2Ei

\
2~n1l 2z!v D ~22!

for l 51, 21, 2, 22, and 0, respectively. The following
steps consist of changing the summation indexn to n2l in
the respective terms of Eq.~21! and pulling out the common
d function and the resulting exponential factor ink•r . After
this has been done, theS-matrix element takes the form

~S21! i f
~ l in !52 ivE d3s8

~2p\!3/2 f̃ f* ~s8!

3E d3s

~2p\!3/2 f̃ i~s! (
n52`

`

3E d3r ei @s2s81~n2z!\k#•r /\

3H 2
z

2
~Jn211Jn11!

1
z

2
~Jn221Jn12!1zJnJ

32pdS Ef2Ei

\
2~n2z!v D . ~23!

The arguments of the generalized Bessel functions in
~23! have been suppressed, but are understood to
(z8,2 z/2). Now is a good point to carry out the integratio
over the spatial coordinates. This results in the momentu
conservingd function

E
2`

`

d3r ei @s2s81~n2z!\k#•r /\

5~2p\!3d~3!
„s2s81~n2z!\k…. ~24!

Equation~24! may next be used to calculate the integrati
over s8, resulting in the replacement ofs8 by s1(n2z)\k
everywhere. In particular, in place ofz we will have

z85
ea

mc\v
ê•@s1~n2z!\k#5

ea

mc\v
ê•s5z ~25!

due to the transversality condition. The recurrence relat
@17#

2nJn~u,v !5u$Jn21~u,v !1Jn11~u,v !%

12v$Jn22~u,v !1Jn12~u,v !% ~26!

will next be used to simplify the quantity between cur
brackets in Eq.~23!. After this series of steps has been ca
ried out, the desired matrix element takes the form

~S21! i f
~ l in !5 iv (

n52`

`

~n2z!K f̃ f„s1~n2z!\k…U
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3JnS z,2
z

2D Uf̃ i~s!L
32pdS Ef2Ei

\
2~n2z!v D . ~27!

The remaining integration is understood to be overs. Equa-
tion ~27! may then be used to calculate the transition pr
ability per unit time, as usual@21–23#, from

w~ l in !5 lim
t→`

u~S21! i f u2

t

5v2 (
n52`

`

~n2z!2ZK f̃ f~s1~n2z!\k!UJnS z,2
z

2D
3Uf̃ i~s!L Z22pdS Ef2Ei

\
2~n2z!v D . ~28!

For a particular value ofn, the energy-conservingd function
in Eq. ~28! effectively says that the transitioni→ f is accom-
panied by the absorption ofn photons of energyn\v, of
which z\v goes into the classical oscillatory motion of th
electron and the rest (n2z)\v goes into kinetic energy o
oscillation and translation in the field@3#. On the other hand
Eq. ~16! tells us that the momentum of the initial state
pi5s. Hence the final-state momentum, due to t
momentum-conservingd function of Eq.~24!, is

pf5s85pi1~n2z!\k. ~29!

This equation clearly shows that the electron absorbs
mentum in the amount (n2z)\k from the radiation field.
The absorbed momentum is all in the forward direction a
is important for high photon orders~largen!. Thus the pho-
toelectron will be ejected at some angleud relative to the
polarization direction of the field@20#. This issue will be
discussed further below.

B. Circular polarization

We consider next the case of a~left! circularly polarized,
plane-wave, monomode radiation field of polarization ve
tors êx andêy along thex andy directions. This case is wel
known to involve only ordinary rather than generaliz
Bessel functions@3#. Using notation similar to what has bee
adopted in Eq.~13! above, the vector potential of such a fie
may be written as

A5
a

&
@ êxsin~k•r2vt !2 êycos~k•r2vt !#. ~30!

The steps leading to an expression for the transition pr
ability per unit time similar to the one given in Eq.~28!
above, for the linear polarization case, are more or less
same in the present case. We shall therefore skip most o
details and give below only the most important intermedi
results. For example,

HI52\vF b

&
~ P̂xsinh2 P̂ycosh!2zG , ~31!
-

o-

d

-

b-

e
he
e

whereP̂x and P̂y are thex andy components, respectively
of the electron’s linear momentum operator a
b5ea/mc\v. Writing s in spherical polar coordinates
s5(s,us ,fs), in HI , and making use of Eqs.~16! and~17!,
the S matrix for the present case becomes

~S21! i f
cir5 ivE d3s8

~2p\!3/2 f̃ f* ~s8!E d3s

~2p\!3/2 f̃ i~s!

3E d3r ei ~s2s82z\k!•r /\

3E dt ei ~Ef2Ei1z\v!t/\

3F b

&
s sinussin~h2fs!2zG

3e2 i @~b/& !s8sinus8cos~h2fs8!#. ~32!

The exponential term on the far right of Eq.~32! will next be
expanded in terms of the ordinary Bessel functions using
Fourier-Bessel series

e2 iu cosj5 (
n52`

`

~2 i !nJn~u!einj. ~33!

When sin(h2fs) is also written in terms of exponentials, on
arrives at an equation similar to Eq.~21!, which reads

~S21! i f
~cir !5 ivE d3s8

~2p\!3/2 f̃ f* ~s8!E d3s

~2p\!3/2 f̃ i~s!

3E d3r ei ~s2s82z\k!•r /\

3 (
n52`

`

JnS b

&
s8sinus8D

3F b

2&
s sinus@~2 i !n11ei ~n11!~k•r2fs8!

3ei ~fs82fs!I 12~2 i !n11

3ei ~n21!~k•r2fs8!e2 i ~fs82fs!I 21#

1~2 i !nzein~k•r2fs8!I 0G , ~34!

with

I q5E
2`

`

dt ei @~Ef2Ei !/\2~n1q2z!v] t

52pdS Ef2Ei

\
2~n1q2z!v D ~35!

for q51, 21, and 0, respectively. Next, we letn→n2q in
Eq. ~34!, after which one should be able to evaluate the
tegration overr and get the linear momentum-conservingd
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4914 56YOUSEF I. SALAMIN
function (2p\)3d (3)
„s2s81(n2z)\k…. Then the integra-

tion overs8 is carried out, where by definition thed function
is nonzero only if

s85s1~n2z!\k. ~36!

Recall that in Eq.~30! the direction of the field propagatio
has been taken along1z, i.e., k has only az component.
Thus thex andy components of Eq.~36! yield

s8sinus8cosfs85s sinuscosfs ~37!

and

s8sinus8sinfs85s sinussinfs , ~38!

respectively. When Eqs.~37! and ~38! are solved simulta-
neously,fs85fs and s8sinus85s sinus result. We then use
these results in Eq.~34! and employ the well-known Besse
function recurrence relation

2n

u
Jn~u!5Jn21~u!1Jn11~u! ~39!

to write theS-matrix element in terms of a sum containin
only Jn . The end result is

~S21! i f
~cir !5 iv (

n52`

`

~2 i !n~n2z!K f̃ f„s1~n2z!\k…U
3e2 infsJnS b

&
s sinusD Uf̃ i~s!L

32pdS Ef2Ei

\
2~n2z!v D . ~40!

The corresponding transition probability per unit time w
finally be given by

w~cir !5v2 (
n52`

`

~n2z!2ZK f̃ f~s1~n2z!\k!

3Ue2 infsJnS b

&
s sinusD Uf̃ i~s!L Z2

32pdS Ef2Ei

\
2~n2z!v D . ~41!

Note that the expressions obtained in this work for
transition probabilities per unit time@Eqs.~28! and~41!# may
be compared with the corresponding ones obtained in
dipole approximation by Reiss@3,11#. One can arrive at the
dipole limits of Eqs.~28! and ~41! simply by lettingk→0.
Agreement is complete.

III. MULTIPHOTON IONIZATION

A. General

In a typical photoionization process, the initial state of t
electron is a bound state, assumed to be known exa
whose binding energy is given byEi52EB . A description
e

e

ly,

of the final state, however, in terms of a plane wave seem
be quite acceptable @22,24–27#. Thus we take
f f(r )5(2p\)23/2exp(ip•r /\), where p is the ~constant!
momentum of the ionized electron, with the correspond
energyEf5p2/2m. The Fourier transform of this wave func
tion is the three-dimensionald function f̃ f(s)5d (3)(p2s).
When this is used in Eq.~28! above and after the remainin
integration overs has been carried out,

w~ l in !5v2 (
n52`

`

~n2z!2uf̃ i„p2~n2z!\k…u2

3UJnS z,2
z

2D U2

2pdS p2/2m1EB

\
2~n2z!v D .

~42!

results. This expression too has the correct limit@12# when
the dipole approximation is made in the manner descri
above. For the case of circular polarization, one obtains
following transition rate without much difficulty:

w~cir !5v2 (
n52`

`

~n2z!2uf̃ i„p2~n2z!\k…u2Jn
2S b

&
p sinu D

32pdS p2/2m1EB

\
2~n2z!v D , ~43!

whereu is the angle between the direction of electron em
sion and the laser propagation direction. Note that Eqs.~42!
and~43! are almost structurally the same; the only differen
between them is in the kind of Bessel function involved. W
now transform thed function in both expressions accordin
to

dS p2/2m1EB

\
2~n2z!v D5

m\

p̄
d~p2 p̄!, ~44!

where

p̄5A2m\v~n2z2eB! ~45!

and eB5EB /\v gives the number of photons the electro
must absorb in order to break loose of the binding potent
Note that in Eq.~44! anotherd function,d(p1 p̄), has been
dropped on account of the fact that the magnitude of
free-particle momentum cannot be negative. Furtherm
Eq. ~45! replaces the lower limit on the sum in Eqs.~42! and
~43! by a thresholdvalue. According to Eq.~45!, the thresh-
old photon order is an integern0 given by

n0>z1eB . ~46!

Recall thatz may be written as the ratio of the averag
classical energy of oscillation of the~free! electron in the
radiation field, the ponderomotive potential energ
Up5(ea)2/4mc2, to the photon energy\v. In other words,z
is the number of photons absorbed whose energy goes
energy of classical oscillation in the field. This leaves t
electron with a directed kinetic energy in the magnitude

K5\v~n2z2eB!. ~47!
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Recall also that the final electron momentum, whose ma
tude is given by Eq.~45!, has a forward component given b

pi5~n2z!\k. ~48!

This value for the forward momentum may be read off of E
~29! assuming, of course, that all the initial momentum
transverse. With this assumption in mind, Eq.~2! now yields

cosQ5
~n2z!\k

A2m\v~n2z2eB!
5A K

2mc21
EB

A2mc2K
~49!

for the angle relative to the field propagation direction
which the photoelectron emerges. In arriving at the sec
line in Eq. ~49! use has been made of Eq.~47!. Note that,
apart from the dependence upon the binding energyEB , Eq.
~49! givesQ as a function of the electron kinetic energyK.
The term involving the binding energy, whose presence l
its applicability of the result only to electrons produced
photodetachment or photoionization of a specific syste
may be dropped for situations in whichK@EB . The result-
ing approximate expression is then applicable to electr
produced by any means from any atomic, ionic, or molecu
system@6–8#.

Finally, the total transition rate~to all possible final states!
may be obtained by integrating the transition rates given
Eqs.~42! and~43! over the phase space available to the f
particle. For this purpose, we use

W5E w
d3p

~2p\!3 , ~50!

where (2p\)3 is the volume in phase space of a un
quantum-mechanical cell. Thus the total transition rate
unit solid angle becomes
or

he
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rd
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,
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e
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dW

dV
5

~2m3v5!1/2

~2p!2\3/2 (
n5n0

`

~n2z!2~n2z2eB!1/2uf̃ i u2Jn
2 .

~51!

In this expression,Jn stands forJn(z,2z/2) in the case of
linear polarization and forJn„(b/& p̄ sinu… in the circular
polarization case. It should also be borne in mind that
dependence on the momentum, in the momentum-sp
wave function as well as in the arguments of the Bes
functions, ought to be throughp2(n2z)\k, with p replaced
by p̄ everywhere in accordance with thed function of Eq.
~44!. See the example below.

B. Photoionization of ground-state hydrogen

We now move on to some applications. The example
wish to take is photoionization of the hydrogen 1S state. Not
only is this example relatively simple to handle, but it h
also been studied before in the dipole approximation a
relativistically @3,11,12,17#. The binding energy of the hy
drogen ground-state electron isEB5\2/2ma0

2, wherea0 is
the Bohr radius. The ground-state wave function is

f i~r !5
1

a0
3/2Ap

e2r /a0. ~52!

For photoionization studies employing the formalism dev
oped above, one needs the Fourier transform of the bou
state wave function. Direct calculation gives

f̃ i~s!5
8Apa0

3

~2p\!3/2

1

@11~sa0 /\!2#2 . ~53!

We now calculate the photoionization rate of the hydrog
1S state by circularly polarized light. Inserting expressi
~17! into Eq. ~51! and after some simplification, we get
dW

dV
5

8

~2p\!3

v

p
eB

5/2 (
n5n0

`
~n2z2eB!1/2Jn

2
„A4z~n2z2eB!sinu…

F12
\k

m\v
A2m\v~n2z2eB! cosu1

\2k2

2m\v
~n2z!G4 . ~54!
Note at this point that, apart from the factor (2p\)23 up-
front, Eq.~54! reduces, in the dipole approximation (k→0),
exactly to the expression derived by Reiss@17# for the same
system. The absence of the factor (2p\)23 from the result
of Reiss may be traced back to the way the Fourier transf
has been defined.

The computing power available to the author at t
present time is not adequate for calculations involving
total transition rate on the basis of Eq.~54!. Thus we will not
be able to check the ascertion made by Reiss@11#, among
other things, that the retardation effects are of the same o
of magnitude as theother relativistic corrections. Some
meaningful conclusions can still be arrived at by studying
n-photon ~partial! rates of ionization. For example, we a
now in a position to obtain the following expression for t
nondipolar asymmetry factor as defined in Eq.~1!:
m

e

er

e

Rn~u!5F12
\k

m\v
A2m\v~n2z2eB!cosu

1
\2k2

2m\v
~n2z!G24

~55!

5F12
\k

m\v
A2m\v~n2n0!cosu

1
\2k2

2m\v
~n2n01eB!G24

~56!

5F12A 2K

mc2 cosu1S K1EB

2mc2 D G24

.

~57!
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Exactly the same expressions describe the asymmetry fa
in the linear polarization case. Finally, the relative error
sulting from adopting the dipole approximation in a calcu
tion of then-photon rate of ionization may be written as

D512R~u!21. ~58!

The main results obtained in this section will be the subj
of discussion in the following section.

IV. RESULTS AND DISCUSSION

In the recent experiments by Mooreet al. @6# and Meyer-
hofer et al. @7#, which reported observation of the phenom
enon of ponderomotive scattering, the electrons were p
ducedalmost at restby photoionization. Various expression
have been reported in the past for the ponderomotive sca
ing angleQ in terms of the directed kinetic energy of th
electron, some of them based on quantum-mechanical a
ments@10,11#, while others were derived classically@6,7,13#.
The experimental results of Meyerhoferet al. are consistent
with these expressions. Equation~49!, derived for the same
quantity in this paper, involves a feature not found in t
previous expressions, namely, the dependence upon the
ing energyEB . This dependence, however, is very weak
situations such thatEB!K. We plot the scattering angl
against the kinetic energy of the photoelectron in Fig. 1
electrons produced by photoionization of the hydrog
ground-state electron. The curve agrees quite well with
earlier results@6–8,13#.

The other issue we set out to investigate in this pa
concerns the need to go beyond the dipole approximatio
calculating the MPI rates when high-intensity fields are e
ployed. Note first that the intensity parameterz may be
eliminated from the expression for the asymmetry factor
favor of the quantityn2n0 , the number of photons whos
absorbed energy goes into directed kinetic energy of the p
toelectron@see Eq.~47!#. This has been done in Eqs.~56! and
~57!.

One can still push the last point even further by elimin
ing the cosu term in Eq.~57! in favor of the directed kinetic

FIG. 1. Ponderomotive scattering angleQ of an electron pro-
duced by photoionization of the hydrogen 1S state vs its directed
kinetic energyK.
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energyK, employing Eq.~49! with u replaced byQ. This
leads to the following expression forD:

D512F12
K1EB

2mc2 G4

. ~59!

One easily finds thatD has a maximum value correspon
ing to the photoelectron kinetic energyK52mc2

2EB'1 MeV. For electrons moving with this kinetic en
ergy, D51 and hence the dipole approximation is com
pletely unreliable. On the other hand, for low-energy ele
trons (K'0), the dipole approximation results in
minimum of error,D'0. In Fig. 2,D is shown against the
directed kinetic energy of the photoelectron for kinetic en
gies of up to 2 MeV.

Since Eq.~49! has been used in arriving at Eq.~59!, they
and Figs. 1 and 2 may best be read together. Equation~49!
and Fig. 1 basically tell us where to look for a photoelectr
with a particular kinetic energy. Then Eq.~59! and Fig. 2
give the error in the value of then-photon rate of ionization
calculated on the basis of the dipole approximation. Re
thatn may be calculated fromK and a knowledge ofeB and
n0 @see Eq.~47!#.

V. SUMMARY

In this paper, general expressions for the multiphoton
tachment and multiphoton ionization rates have been der
for one-electron systems based upon a recently propo
strong-field solution to the Schro¨dinger equation, without re-
sorting to the usual dipole approximation. It has been sho
that, especially in the presence of superintense fields
involve absorption of extremely large numbers of photo
the dipole approximation results in substantial errors o
when differential multiphoton ionization rates of high photo
orders are calculated. In such situations involving fa
moving photoelectrons, the dipole approximation mu
clearly be abandoned. On the other hand, the main contr
tion to the total rates comes from photons of order near

FIG. 2. Relative errorD made when the dipole approximation
employed in calculating then-photon~partial! rate of ionization of
the hydrogen ground-state electron vs the photoelectron escap
netic energyK for photoelectron kinetic energies of up to 2 MeV
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threshold numbern0 and for electrons detected in the tran
verse direction. For such circumstances, the dipole appr
mation is quite adequate.

As a by-product of the analysis presented in this pap
we have derived an expression giving the ponderomo
scattering angle of the photoelectron in terms of its direc
kinetic energy. Unlike previous derivations, the formula d
rived here involves the binding energy of the electron in
e

n,

ev

. I

tt
i-

r,
e
d
-
e

parent system~the neutral atom!. As such, our expression
should be suitable for analysis of the data of experimen
situations involving electrons produced via ionization@6–8#.

In order to be able to make an estimate of the effects
retardation on the magnitude of a typical total ionization ra
better computing power than is currently available to t
present author is needed. This particular issue, among oth
will be taken up in the future.
@1# For a review, see F. H. M. Faisal, L. Dimou, H.-J. Stiemk
and M. Nurhuda, J. Nonlinear Opt. Mater.4, 701 ~1995!.
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