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Generalized eikonal wave function of an electron in stimulated bremsstrahlung
in the field of a strong electromagnetic wave
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An approximation in quantum theory of electron inelastic scattering on an arbitrary static potential in the
field of a strong electromagnetic wave is developed. The obtained generalized eikonal wave function of the
electron enables us to leave the framework of an ordinary eikonal approximation in stimulated bremsstrahlung,
which is not applicable at large distancES1050-294{@7)05811-3

PACS numbgs): 32.80.Rm, 33.80.Rv, 42.65k, 31.15—p

[. INTRODUCTION be noted. However, the conditions under which such an ap-

proximation is valid are not clear; it is also not clear which

Various approximations have been developed for treatingpproximation it is.

the stimulated multiphoton bremsstrahlung of electrons. The In this work we develop a generalized eikonal approxima-

main approximations are Born, low-frequency, and eikonaftion (GEA) for the electron wave function in the SB process
approximationgsee, eg[l_S]) Though the Born and low- that Simultaneously takes into account the influence of both
frequency approximations are applicable for describing freethe scattering and electromagnetic wave fields on the dynam-
free transitions in the field of high-intensity electromagneticicS Of the electron. It also allows us to describe the above-

waves, they do not take into account the mutual influence ofreshold ionization process of atoms with the help of such a

the scattering and radiation fields. The eikonal approximalVave function for the final state of the photoelectron, aban-

tion describes such an influence, but the eikonal wave func(-j.Onlng the framework of the above-mentioned approxima-

tion can not be extended beyond the interaction regibis tions.

raises difficulties when one calculates the scattering ampli- The organization of the paper is as follows. In Sec. Il we
9 P present the solution of the Schiinger equation for an elec-

tudg and seems to be inapplicable for high laser intensitiesy i, the field of strong electromagnetic radiation and a

The description of the electron eigenstates in the stimMugaic potential. In Sec. 11l we consider the conditions of
lated bremsstrahlun(SB) process particularly becomes very 4, pjicapility of the GEA wave function and its relationship
important for the process of above-threshold ionization o%g the Born and eikonal approximations. In Sec. IV we dis-

atoms in strong laser fields, which has been actively investizss the significance of the obtained wave function and sum-
gated during the past decadsse, e.g.[6—9]). In the theory  marize our conclusions.

of the above-threshold ionization process the description of
the photoelectron final state still remains as one of the main; AppROXIMATE SOLUTION OF THE SCHRO DINGER
problems. Such a wave function will describe multiphoton EQUATION FOR INELASTIC SCATTERING

free-free transitions of the photoelectron, flying out from

atom, in the fields of both atomic remainder and electromag- The above-mentioned problem is reduced to the quantum-
netic wave. So the above-threshold ionization probability esmechanical investigation of the dynamics of the SB process.
sentially depends on the photoelectron SB probability. AsThe latter can be described by the Salinger equation for
known, the Keldysh-Faisal-Rei§$0—17 ansatz for the jon- an electron in an arbitrary static potential and in the field of
ization process does not take into account the photoelectro Plane electromagnetic waviaser radiation

stimulated free-free transitions in the field of atomic remain- ) . _—
der. In order to cover this gap attempts have been made to _h iefi e"A%(1)

. X —A+— -V+ +
describe the photoelectron final state by the *“Coulomb- ZMA uC AD-V c2 uir)
Volkov” wave function[13—19, which is a product of the
Coulomb wave function of elastic scattering and the wave .7
function of a photoelectron in an electromagnetic wave. This xX¥(r.=it H\P(r't)’ @)

wave function results in the factorization of the probability

of multiphoton ionization and, as demonstrateddf], such  where U(r) is the potential energy of the electron in the

an approximation restricts both the frequendiow- static-potential field of arbitrary formge and u are the elec-

frequency approximatiofi2]) and intensity of the electro- tron charge and mass, respectivetyis the light speed in

magnetic wave. The use of another ansatz for the definitiomacuum,# is the Plank constant, aril(t) is the vector po-

of the multiphoton ionization probabiliti20] should also tential of the electromagnetic wave in the dipole approxima-
tion. The latter is valid ifA>maxX(v/c)\,a}, where\ is the
wavelength of external radiation aradis the effective di-

*FAX: (3742 151-087. Electronic address: havet@Ix2.yerphi.ammension of the scattering potentld(r). As long as for laser
and akhachat@aua.am radiation and actual atomic potentials always a, then the
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dipole approximation is applicable for nonrelativistic elec- J ik e _ _

trons @/c<1). Then the term proportional t&%(t) has [_IJFZ 2+; D—EA(T))-Q}Sl(q,t)z—U(CI),
been removed by a unitary transformation as the only time- (10)
dependent function and consequently cannot have any physi-

cal role

where U(q)=fU(r)exp(—iq-r)dr is the Fourier transfor-
) mation of the potential energy.
2

i 2N2(t7
' ft L(t)dtr We seek the solution of Eq10) in the form

‘P(r,t)z\lf’(r,t)exp( 7

% 2uc?
Sy(a,t)=f1(q.t)+f5(q), 11
We shall solve Eq(1) by assuming that the interaction @t =t(a.n+f(q) Ay
with the scattering potential is not very strong. Then we seek .
a solution in the form
i f1(q,—%)=0 (12)
‘I’/(rat):eXF{g[So(r,t)‘FSl(rvt)]}, 3 , , ,
andf,(q) is the action of the electron corresponding to the
h elastic scattering on the potentid(r) in the absence of the
where electromagnetic wavgsolution of Eq.(10) at A(t)=0]
srn=pr— 2t = [ paniar. @ 2ui U
nO=pr—o t+——| p i q
2pu pC)-= fo()=—— ——F— (13
) N 2p-q’
With the term proportional oA2(t) [according to transfor- o h
mation(2)] Sy is the classical action of an electron with the _
initial momentump in the wave field. As a result fd8,(r,t) Then, forS;(q,t) we have the expression
we obtain the equation
: ~ 2ui U
LN E( ~Sam |vlsiro Sl(q't):TM (3),
a 2u u P c ne q°+ %
VS, (r,t)]?
IS UL i - o e
2u X1 1+ —ex —|—t—|— p——A(t) dt
mce
Let the Oz axis be directed along the electron initial mo- .
mentump. Then, in accordance with the solutidB), we XJ q-A(t’)
have the initial condition —®
S|(z=—ow,t=—x0)=0 (6) th
1 ' ' X ex 'ﬂt +|— p——A(t) dt’ |dt’
corresponding to the asymptotic behavior of the scattering (14

potential atz=—oo [U(z==*%»)=0] and to adiabatically
switching on the electromagnetic wave &t —« and
switching off att= +»[A(t=*x)=0].

The above-mentioned GEA is the following. We shall as-
sume that the term proportional t§%;)? is small compared
to U(r),

We assume the electromagnetic wave to be monochromatic
and of arbitrary polarization with the vector potential

A(t) = Ay costcoswt + g,sinésinmt), (15)

(VSy)2<2u|U(r)], ) where A, is the amplitude of th.e vector_ potentiad, is _the _
frequency of the plane wave in the dipole approximation
according to which we replace the exact equatnby the  because of nonrelativistic velocities of electroes,e, are
approximate one unit vectors perpendicular to each othee;-@,=0,
|e.|=]8&,]=1), and¢ is a polarization angle.

J ik 1 e i i i
g,y _( o— —A(t)) V}Sl(r,t)z —um). ® Using the expansion by the Bessel functions
ot 2u " c

To solve Eq.(8) we make Fourier transformation over exr{—iasin(wt—so)]=n§_x Jn(@)exd —in(ot—9)],

(16)

1 [« |
Sr0= o) Suavexpianda, @

we carry out the integration ovef in expressior(14). Then

_ putting the resulting expression fgrl(q,t) into formula(9)
and obtain the equation fd,(q,t), we obtain
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i o U(q)d,(a(q)) whgre<a(q)) denotes the. integer value_e_n‘(q). This gsti—
Sy(r,t)= gZ,u > e '”“’tf 5 mation of the Bessel function can be verified by the diagrams
n=-x 24 Zﬂ_ —an—io of Jahnke and Emdg22]. Then carrying out the summation
o & of n in formula (17), we obtain
xXexpli{q-r+a(g)siMwt—e(q)]+¢e(q)n}) , -
2iu U(q)e'd” dqg

dq (17) S h P-q 2u (2m)® 2

X—, 2o A T Y i
(2m)3 q+2 7 7 N(qQw—i0

wherea(q) is the parameter of the electron interaction with . .
both scattering and electromagnetic wave fields simulta!:rorn express[onéQZ) and(7) the condition of the GEA can
be presented in a general form

neously
()= —2 5(q) 1y 2 o) L T
pew h? P-d_ 2p— (2m)3
q2+27— 7H(Q)w—i0
and the quantitieg(q) and »(q) are (23
. q-& )
¢(q)=arcta Etgf , Because of oscillations of the factel?" in the integral in
Eq. (23) the main contribution is the region wheger=1,
() =(q-&,)2co2E+ (q- &) Siree. 19 e |a|=]|ges| = 1/a, wherea is the dimension of the effec-

tive range of the scattering potentld(r). Therefore, condi-
In the denominator of the integral in expressidil) —i0 is  tion (23) can be written as
an imaginary infinitesimal, which shows how the path
around the pole in the integral should be chosen to obtain a 2u qz
certain asymptotic behavior of the wave function, i.e., the — ef
outgoing spherical wavgto determine that we pass to the h? (qz 2%_ 2_'“@)
limit of the Born approximation af\(t) =0]. Expression3) ef h h
with formula (17) defines the electron wave function in the

SUGa)<l. (24

form [with the nonessential exponentid)] The n included in formula24) is the most probable number
i oy of photons that is defined by expressid24) and (18),
W' (r,t)=exp %So(r,t)—ﬁ—'l: > einet
S - <eAOQef—>
n= n/,
MCw
" f U(@)dn(e(a) o -
2, PA 20 7= (et &)%COSE+ (Ger- &) %P, (25

e T e

) _ whereqe;=0es/Jes IS a unit vector alongje.
xexpi{g-r+ a(q)sifwt—¢(q)] Finally, the condition of applicability of the GEA7) may
be written in the form

+o(@n) (20)
n
i< - a5 29
ll. CONDITIONS OF APPLICABILITY OF THE GEA Note that this condition leads to the condition of the gen-

WAVE FUNCTION: RELATION WITH THE BORN

eralized eikonal approximation for electron elastic scattering
AND EIKONAL APPROXIMATIONS

in potential fieldg 23], whenA(t)=0 (in the nonrelativistic
Formula(20) has been obtained in the GE&). To esti-  limit).

mate the latter we evaluate the express¥d®, using formu- The wave functior(20) in the the GEA leads to the wave
las (18) and (19). Then we fixn in the denominator of ex- function of the Born approximation by the scattering poten-

pression(17) at the most probable value for the action tial if
S,(r,t). To determine that value af we use the argumen-

tation of Choudhury[21] according to which the Bessel |Sy(r, )| <A (27)
function J,(z) takes on its largest value when its indexs
roughly equal to its argument Then expanding the second term in the first exponent in

L formula (20) into the series and keeping only the terms to
n(q)=(a(q)), (21)  first order inU, we obtain
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i B U(an—p)

\Ifé(r,t)zexp{ﬁ So(r,t)} —

it —oxd | 2 < i ph
g(r,t)=ex ﬁso(r,t) T & ex _%ﬂt

27h2rn==n, h
U(9)3n(a(@)) . Paf —P i o
B g L T
q+27—7nw—|0 R R
(pnr—p) . pnr—p”
+a Sinf wt—¢
. dq h h
Xsinwt—e(q)]+e(qnh)—. (28 .
(2m) Pl —p
+o 7 ng|l. (33

Taking into account Eq22), the condition when the wave

function (28) is valid can be written from Eq27) as Here o= (p2I2ufi ) and a[(p.F—p)/A].

o[ (p,f—p)/#] are defined according to formul4$8) and
(29 (19. As seen from expressio(83), the asymptotic wave
function atn=0 [if A(t)=0], corresponding to the elastic
The obtained criterion of validity of the electron wave Scattering of the electron in the Born approximation, de-
function of the stimulated scattering in the Born approxima-Scribes the outgoing spherical wave at large distances, ac-
tion by the potential(r) includes both fast and slow par- cording to which the sign of the infinitesimed in the poles

ticle cases. Thus, for the fast particles when©f the integralg17) and(20) had been chosen. o
|p— (elc)Ag|a>7% we have To obtain the wave function in the eikonal approximation

of stimulated bremsstrahlun@] from the GEA one shall
neglect the terng? in expressior(14), which is equivalent to
: (300 ignoring the second derivatives of the wave function with
respect to the first ones. Then by integrating ogen for-
From the condition(29) for the slow particles when mula(9) and taking into account expressi¢i), we obtain
|p—(e/c)Agla< % we obtain the well-known strong crite- the corresponding actio8,(r,t) in the eikonal approxima-

rion of the Born approximation for elastic scattering tion and consequently the electron wave function according
to definition (3),

h
+—.
a

f
<_ —_—
|U] na p CAo

U<ﬁ eA
||ﬁpgo

2
t

|U|< . i i p
We(r,t)=ex %So(r,t)— %f_xu<r— ;(t—t’)

(31

a?’

Comparing the condition of applicability of the GEHA&6)
and the conditions of the Born approximatid3§) and(31), +A(t) —A(t’))dt’] , (34)
we see that for the fast particlém strong laser fieldsthe
wave function obtained in the GE®O0) describes the stimu-
lated scattering in regiorlp— (e/c)Ag|a/A>1 times larger Where
than Born’s.

Now let us find the asymptote of the electron wave func-
tion corresponding to the Born approximationratc and
justify the chosen sign at the infinitesimed to the path
around the pole in the integral27) and (20). To calculate T gbtain the condition of validity of the eikonal wave func-
the asymptote of the functiof28) we temporarily direct the  tjon (34) we use the approximate expression & which
Og; coordinate axis along and replace the integration vari- f|lows from formula(22) (the termg? is neglected and the

ableq by p’=p-+#q. Turning to spherical coordinates, we \ave is assumed to be linear polarizaion
carry out the integration over the body angle by the formula

M z
i , 2mTh 55— 4 i , ) S]_%— —ef U(p,z’)dz" (36)
exp 7P’ Hx:ip_’r (p'—r)ex 7P'r P—EAo

e [t
A(t)= EffmA(T)dT (35

, (320  where|p| is the transverse dimension of the scattering field
U(r) with respect to the electron motion. Hence the condi-
A n . , , tions of eikonal approximation for the scattering process in
wherep’,r are unit vec_tors alqngp and g respectively. the field of the electromagnetic wave afthe second one
Then we carry out the integration over in the complex follows from the condition|AS,|<2|[p—(e/c)Ao]VS,);
plane, passing above the pgié= —p, and below the pole see Eq(5))

p’=p,, wherep,=Vp?+2ufwn (this path corresponds to

the chosen sign of the infinitesimat-(0) in the denomina- 1 e \2

tor of the integrangd As a result, at —c we obtain |U|< ;( p— —AO) , Z<

- 6(f)’+?)exp( - Igp’r>

a’lh. (37)

eA
pgo
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For high intensities, wheeA,/c>p the approximation distances, particularly at asymptotic large distances».
developed is valid independent of electron momentum. Her€&or this reason the second derivatives of the wave function
it is worthy to recall that our nonrelativistic consideration have been taken into account in the current ansatz. The only
holds only ifeAy/uc?<1. Although this condition restricts approximation made in the derivation of this wave function
the wave intensity, it practically holds for all existing strong js the neglect of the nonlinear tefftiVS;)?] in the equation
laser fields. of motion[see Eq(7)]. Concerning a more accurate quanti-

tative description of stimulated multiphoton bremsstrahlung
IV. CONCLUSION by the GEA wave function, it is evident, that the obtained

The quantitative description of the scattering process of/ave function provides higher accuracy because in different
an electron on an arbitrary static potential and in the field ofMits this wave function turns into the Born approximation
a strong electromagnetic wave with achievable high accuracjy@ve function, when condition&9)—(31) are fulfilled, and
reduces to deriving a dynamic wave function that accountdto the wave function of the eikonal approximati¢d4),
for the effect of both fields. It is clear that the perturbationWhen conditiong37) are satisfied. In particular, as seen from
theory with only one of these fields is unable to describe théhe comparison of formula6), (29) and (30) for the scat-
actual picture of multiphoton bremsstrahlung. Compared tdering of fast particles, the wave function in approximation
other existing approximations for the description of such &20) is applicable for|p—(e/c)Agla/A>1 times stronger
process, the fairly good approximation is the eikonal onegscattering potentials than is allowed by the wave function in
however, as well known, this wave function has a limitedthe Born approximation. So, even in the quantum limit this
range of applicabilitysee Eq(37)] because in the derivation wave function has an essential contribution and consequently
of such a solution the second derivatives of the wave funcit should not be accepted as a reformed semiclassical wave
tion have been neglected in the equations of motion. In adfunction.
dition to neglecting quantum correctiofmnnected with the As follows from the above consideration, the cross sec-
second derivatives of the wave functjprthis reduces to tions calculated by the GEA wave function will contribute
well-known difficulties in the derivation of the cross sections different corrections to the scattering cross sections of known
even in the case of elastic scatteritepe[23]). From this  approximations, which has been shown in Héf] for the
point of view the so-called generalized eikonal approxima-elastic scattering(in the absence of an electromagnetic
tion has been developed in the present work, which takewave. The multiphoton cross sections of stimulated brems-
into account the guantum corrections in the eikonal limit andstrahlung, as well as above-threshold ionization of atoms in
allows us to apply the obtained wave function at arbitrarythe GEA, will be presented elsewhere.
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