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Generalized eikonal wave function of an electron in stimulated bremsstrahlung
in the field of a strong electromagnetic wave

H. K. Avetissian,* A. G. Markossian, G. F. Mkrtchian, and S. V. Movsissian
Department of Theoretical Physics, Yerevan State University, 1 A. Manukian, 375049 Yerevan, Armenia

~Received 13 May 1997; revised manuscript received 30 June 1997!

An approximation in quantum theory of electron inelastic scattering on an arbitrary static potential in the
field of a strong electromagnetic wave is developed. The obtained generalized eikonal wave function of the
electron enables us to leave the framework of an ordinary eikonal approximation in stimulated bremsstrahlung,
which is not applicable at large distances.@S1050-2947~97!05811-3#

PACS number~s!: 32.80.Rm, 33.80.Rv, 42.65.2k, 31.15.2p
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I. INTRODUCTION

Various approximations have been developed for trea
the stimulated multiphoton bremsstrahlung of electrons. T
main approximations are Born, low-frequency, and eiko
approximations~see, e.g.,@1–5#!. Though the Born and low-
frequency approximations are applicable for describing fr
free transitions in the field of high-intensity electromagne
waves, they do not take into account the mutual influence
the scattering and radiation fields. The eikonal approxim
tion describes such an influence, but the eikonal wave fu
tion can not be extended beyond the interaction region~this
raises difficulties when one calculates the scattering am
tude! and seems to be inapplicable for high laser intensit

The description of the electron eigenstates in the stim
lated bremsstrahlung~SB! process particularly becomes ve
important for the process of above-threshold ionization
atoms in strong laser fields, which has been actively inve
gated during the past decades~see, e.g.,@6–9#!. In the theory
of the above-threshold ionization process the description
the photoelectron final state still remains as one of the m
problems. Such a wave function will describe multiphot
free-free transitions of the photoelectron, flying out fro
atom, in the fields of both atomic remainder and electrom
netic wave. So the above-threshold ionization probability
sentially depends on the photoelectron SB probability.
known, the Keldysh-Faisal-Reiss@10–12# ansatz for the ion-
ization process does not take into account the photoelect
stimulated free-free transitions in the field of atomic rema
der. In order to cover this gap attempts have been mad
describe the photoelectron final state by the ‘‘Coulom
Volkov’’ wave function @13–19#, which is a product of the
Coulomb wave function of elastic scattering and the wa
function of a photoelectron in an electromagnetic wave. T
wave function results in the factorization of the probabil
of multiphoton ionization and, as demonstrated in@19#, such
an approximation restricts both the frequency~low-
frequency approximation@2#! and intensity of the electro
magnetic wave. The use of another ansatz for the defini
of the multiphoton ionization probabilities@20# should also
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be noted. However, the conditions under which such an
proximation is valid are not clear; it is also not clear whi
approximation it is.

In this work we develop a generalized eikonal approxim
tion ~GEA! for the electron wave function in the SB proce
that simultaneously takes into account the influence of b
the scattering and electromagnetic wave fields on the dyn
ics of the electron. It also allows us to describe the abo
threshold ionization process of atoms with the help of suc
wave function for the final state of the photoelectron, ab
doning the framework of the above-mentioned approxim
tions.

The organization of the paper is as follows. In Sec. II w
present the solution of the Schro¨dinger equation for an elec
tron in the field of strong electromagnetic radiation and
static potential. In Sec. III we consider the conditions
applicability of the GEA wave function and its relationsh
to the Born and eikonal approximations. In Sec. IV we d
cuss the significance of the obtained wave function and s
marize our conclusions.

II. APPROXIMATE SOLUTION OF THE SCHRO ¨ DINGER
EQUATION FOR INELASTIC SCATTERING

The above-mentioned problem is reduced to the quant
mechanical investigation of the dynamics of the SB proce
The latter can be described by the Schro¨dinger equation for
an electron in an arbitrary static potential and in the field
a plane electromagnetic wave~laser radiation!

F2
\2

2m
D1

ie\

mc
A~ t !–¹1

e2A2~ t !

2mc2
1U~r !G

3C~r ,t !5 i\
]

]t
C~r ,t !, ~1!

where U(r ) is the potential energy of the electron in th
static-potential field of arbitrary form,e andm are the elec-
tron charge and mass, respectively,c is the light speed in
vacuum,\ is the Plank constant, andA(t) is the vector po-
tential of the electromagnetic wave in the dipole approxim
tion. The latter is valid ifl@max$(v/c)l,a%, wherel is the
wavelength of external radiation anda is the effective di-
mension of the scattering potentialU(r ). As long as for laser
radiation and actual atomic potentials alwaysl@a, then the
4905 © 1997 The American Physical Society
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dipole approximation is applicable for nonrelativistic ele
trons (v/c!1). Then the term proportional toA2(t) has
been removed by a unitary transformation as the only tim
dependent function and consequently cannot have any ph
cal role

C~r ,t !5C8~r ,t !expS 2
i

\E2`

t e2A2~ t8!

2mc2
dt8D . ~2!

We shall solve Eq.~1! by assuming that the interactio
with the scattering potential is not very strong. Then we s
a solution in the form

C8~r ,t !5expF i

\
@S0~r ,t !1S1~r ,t !#G , ~3!

where

S0~r ,t !5p–r2
p2

2m
t1

e

mcE2`

t

pA~ t8!dt8. ~4!

With the term proportional ofA2(t) @according to transfor-
mation ~2!# S0 is the classical action of an electron with th
initial momentump in the wave field. As a result forS1(r ,t)
we obtain the equation

F ]

]t
2

i\

2m
D1

1

mS p2
e

c
A~ t ! D¹GS1~r ,t !

52U~r !2
@¹S1~r ,t !#2

2m
. ~5!

Let theOz axis be directed along the electron initial m
mentump. Then, in accordance with the solution~3!, we
have the initial condition

S1~z52`,t52`!50, ~6!

corresponding to the asymptotic behavior of the scatte
potential atz52` @U(z56`)50# and to adiabatically
switching on the electromagnetic wave att52` and
switching off att51`@A(t56`)50#.

The above-mentioned GEA is the following. We shall a
sume that the term proportional to (¹S1)2 is small compared
to U(r ),

~“S1!2!2muU~r !u, ~7!

according to which we replace the exact equation~5! by the
approximate one

F ]

]t
2

i\

2m
D1

1

mS p2
e

c
A~ t ! D“ GS1~r ,t !52U~r !. ~8!

To solve Eq.~8! we make Fourier transformation overq,

S1~r ,t !5
1

~2p!3E S̃1~q,t !exp~ iq–r !dq, ~9!

and obtain the equation forS̃1(q,t),
-
si-

k

g

-

F ]

]t
1

i\

2m
q21

i

mS p2
e

c
A~ t ! D –qG S̃1~q,t !52Ũ~q!,

~10!

where Ũ(q)5*U(r )exp(2iq–r )dr is the Fourier transfor-
mation of the potential energy.

We seek the solution of Eq.~10! in the form

S̃1~q,t !5 f 1~q,t !1 f 2~q!, ~11!

where

f 1~q,2`!50 ~12!

and f 2(q) is the action of the electron corresponding to t
elastic scattering on the potentialU(r ) in the absence of the
electromagnetic wave@solution of Eq.~10! at A(t)50#

f 2~q!5
2m i

\

Ũ~q!

q21
2p–q

\

. ~13!

Then, forS̃1(q,t) we have the expression

S̃1~q,t !5
2m i

\

Ũ~q!

q21
2p–q

\

3H 11
ie

mc
expF2 i

\q2

2m
t2 i

q

mE S p2
e

c
A~ t ! DdtG

3E
2`

t

q–A~ t8!

3expF i
\q2

2m
t81 i

q

mE S p2
e

c
A~ t8! Ddt8Gdt8J .

~14!

We assume the electromagnetic wave to be monochrom
and of arbitrary polarization with the vector potential

A~ t !5A0~ ê1cosjcosvt1ê2sinjsinvt !, ~15!

whereA0 is the amplitude of the vector potential,v is the
frequency of the plane wave in the dipole approximati
because of nonrelativistic velocities of electrons,ê1 ,ê2 are
unit vectors perpendicular to each other (ê1•ê250,
uê1u5uê2u51), andj is a polarization angle.

Using the expansion by the Bessel functions

exp@2 iasin~vt2w!#5 (
n52`

`

Jn~a!exp@2 in~vt2w!#,

~16!

we carry out the integration overt8 in expression~14!. Then

putting the resulting expression forS̃1(q,t) into formula~9!
we obtain
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S1~r ,t !5
i

\
2m (

n52`

`

e2 invtE Ũ~q!Jn„a~q!…

q212
p–q

\
2

2m

\
nv2 i0

3exp„i $q–r1a~q!sin@vt2w~q!#1w~q!n%…

3
dq

~2p!3
, ~17!

wherea(q) is the parameter of the electron interaction w
both scattering and electromagnetic wave fields simu
neously

a~q!5
eA0

mcv
h~q! ~18!

and the quantitiesw(q) andh(q) are

w~q!5arctanS q–ê2

q–ê1
tgj D ,

h~q!5A~q•ê1!2cos2j1~q•ê2!2sin2j. ~19!

In the denominator of the integral in expression~17! 2 i0 is
an imaginary infinitesimal, which shows how the pa
around the pole in the integral should be chosen to obta
certain asymptotic behavior of the wave function, i.e.,
outgoing spherical wave@to determine that we pass to th
limit of the Born approximation atA(t)50#. Expression~3!
with formula ~17! defines the electron wave function in th
form @with the nonessential exponential~2!#

C8~r ,t !5expH i

\
S0~r ,t !2

2m
\2 (

n52`

`

e2 invt

3E Ũ~q!Jn„a~q!…

q212
p–q

\
2

2m

\
nv2 i0

3exp„i $q–r1a~q!sin@vt2w~q!#

1w~q!n%…
dq

~2p!3J . ~20!

III. CONDITIONS OF APPLICABILITY OF THE GEA
WAVE FUNCTION: RELATION WITH THE BORN

AND EIKONAL APPROXIMATIONS

Formula~20! has been obtained in the GEA~7!. To esti-
mate the latter we evaluate the expression“S1 using formu-
las ~18! and ~19!. Then we fixn in the denominator of ex-
pression ~17! at the most probable value for the actio
S1(r ,t). To determine that value ofn̄ we use the argumen
tation of Choudhury@21# according to which the Besse
function Jn(z) takes on its largest value when its indexn is
roughly equal to its argument

n̄~q!5^a~q!&, ~21!
-

a
e

where^a(q)& denotes the integer value ofa(q). This esti-
mation of the Bessel function can be verified by the diagra
of Jahnke and Emde@22#. Then carrying out the summatio
of n in formula ~17!, we obtain

S1'
2im

\ E Ũ~q!eiq–r

q212
p–q

\
2

2m

\
n̄~q!v2 i0

dq

~2p!3
. ~22!

From expressions~22! and~7! the condition of the GEA can
be presented in a general form

2m

\2U E qŨ~q!eiq–r

q212
p–q

\
2

2m

\
n̄~q!v2 i0

dq

~2p!3U 2

!uU~a!u.

~23!

Because of oscillations of the factoreiq–r in the integral in
Eq. ~23! the main contribution is the region whereq–r>1,
i.e., uqu.uqe fu51/a, wherea is the dimension of the effec
tive range of the scattering potentialU(r ). Therefore, condi-
tion ~23! can be written as

2m

\2

qe f
2

S qe f
2 12

p•qe f

\
2

2m

\
n̄v D 2 uU~a!u!1. ~24!

The n̄ included in formula~24! is the most probable numbe
of photons that is defined by expressions~21! and ~18!,

n̄5 K eA0qe f

mcv
h L ,

h5A~ q̂e f•ê1!2cos2j1~ q̂e f•ê2!2sin2j, ~25!

whereq̂e f5qe f /qe f is a unit vector alongqe f .
Finally, the condition of applicability of the GEA~7! may

be written in the form

uUu!
1

mF S p2
e

c
A0D1

\

aG2

. ~26!

Note that this condition leads to the condition of the ge
eralized eikonal approximation for electron elastic scatter
in potential fields@23#, whenA(t)[0 ~in the nonrelativistic
limit !.

The wave function~20! in the the GEA leads to the wav
function of the Born approximation by the scattering pote
tial if

uS1~r ,t !u!\. ~27!

Then expanding the second term in the first exponen
formula ~20! into the series and keeping only the terms
first order inU, we obtain
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CB8 ~r ,t !5expS i

\
S0~r ,t ! D2

2m
\2 (

n52`

`

expS 2
i

\

pn
2

2m
t D

3E Ũ~q!Jn„a~q!…

q212
p–q

\
2

2m

\
nv2 i0

exp„i $q–r1a~q!

3sin@vt2w~q!#1w~q!n%…
dq

~2p!3
. ~28!

Taking into account Eq.~22!, the condition when the wave
function ~28! is valid can be written from Eq.~27! as

uUu!
\

maUS p2
e

c
A0D1

\

aU. ~29!

The obtained criterion of validity of the electron wav
function of the stimulated scattering in the Born approxim
tion by the potentialU(r ) includes both fast and slow pa
ticle cases. Thus, for the fast particles wh
up2(e/c)A0ua@\ we have

uUu!
\

maUp2
e

c
A0U. ~30!

From the condition ~29! for the slow particles when
up2(e/c)A0uaa \ we obtain the well-known strong crite
rion of the Born approximation for elastic scattering

uUu!
\2

ma2
. ~31!

Comparing the condition of applicability of the GEA~26!
and the conditions of the Born approximations~30! and~31!,
we see that for the fast particles~in strong laser fields! the
wave function obtained in the GEA~20! describes the stimu
lated scattering in regionsup2(e/c)A0ua/\@1 times larger
than Born’s.

Now let us find the asymptote of the electron wave fun
tion corresponding to the Born approximation atr→` and
justify the chosen sign at the infinitesimali0 to the path
around the pole in the integrals~17! and ~20!. To calculate
the asymptote of the function~28! we temporarily direct the
Oqz coordinate axis alongr and replace the integration var
able q by p85p1\q. Turning to spherical coordinates, w
carry out the integration over the body angle by the form

expS i

\
p8•r D U

r→`

⇒ 2p\

ip8r
Fd~ p̂82 r̂ !expS i

\
p8r D

2d~ p̂81r̂ !expS 2
i

\
p8r D G , ~32!

where p̂8, r̂ are unit vectors alongp8 and r , respectively.
Then we carry out the integration overp8 in the complex
plane, passing above the polep852pn and below the pole
p85pn , wherepn5Ap212m\vn ~this path corresponds t
the chosen sign of the infinitesimal (2 i0) in the denomina-
tor of the integrand!. As a result, atr→` we obtain
-

-

a

CB8 ~r ,t !5expF i

\
S0~r ,t !G2

m

2p\2r
(

n52n0

`

US pnr̂2p

\
D

3JnFaS pnr̂2p

\
D GexpS i

\H pnr 2
pn

2

2m
t

1aS pnr̂2p

\
D sinFvt2wS pnr̂2p

\
D G

1wS pnr̂2p

\
D nJ D . ~33!

Here n05^p2/2m\v& and a@(pnr̂2p)/\#,
w@(pnr̂2p)/\# are defined according to formulas~18! and
~19!. As seen from expression~33!, the asymptotic wave
function at n50 @if A„t…[0#, corresponding to the elastic
scattering of the electron in the Born approximation, d
scribes the outgoing spherical wave at large distances,
cording to which the sign of the infinitesimali0 in the poles
of the integrals~17! and ~20! had been chosen.

To obtain the wave function in the eikonal approximatio
of stimulated bremsstrahlung@3# from the GEA one shall
neglect the termq2 in expression~14!, which is equivalent to
ignoring the second derivatives of the wave function w
respect to the first ones. Then by integrating overq in for-
mula ~9! and taking into account expression~14!, we obtain
the corresponding actionS1(r ,t) in the eikonal approxima-
tion and consequently the electron wave function accord
to definition ~3!,

CE8 ~r ,t !5expH i

\
S0~r ,t !2

i

\E2`

t

US r2
p

m
~ t2t8!

1L~ t !2L~ t8! Ddt8J , ~34!

where

L~ t !5
e

mcE2`

t

A„t…dt ~35!

To obtain the condition of validity of the eikonal wave func
tion ~34! we use the approximate expression forS1, which
follows from formula~22! ~the termq2 is neglected and the
wave is assumed to be linear polarization!

S1'2
m

Up2
e

c
A0U E2`

z

U~r,z8!dz8, ~36!

whereuru is the transverse dimension of the scattering fie
U(r ) with respect to the electron motion. Hence the con
tions of eikonal approximation for the scattering process
the field of the electromagnetic wave are„the second one
follows from the condition unS1u!2u@p2(e/c)A0#¹S1u;
see Eq.~5!…

uUu!
1

mS p2
e

c
A0D 2

, z!Up2
e

c
A0Ua2/\. ~37!
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For high intensities, wheneA0 /c@p the approximation
developed is valid independent of electron momentum. H
it is worthy to recall that our nonrelativistic consideratio
holds only if eA0 /mc2!1. Although this condition restricts
the wave intensity, it practically holds for all existing stron
laser fields.

IV. CONCLUSION

The quantitative description of the scattering process
an electron on an arbitrary static potential and in the field
a strong electromagnetic wave with achievable high accur
reduces to deriving a dynamic wave function that accou
for the effect of both fields. It is clear that the perturbati
theory with only one of these fields is unable to describe
actual picture of multiphoton bremsstrahlung. Compared
other existing approximations for the description of such
process, the fairly good approximation is the eikonal o
however, as well known, this wave function has a limit
range of applicability@see Eq.~37!# because in the derivatio
of such a solution the second derivatives of the wave fu
tion have been neglected in the equations of motion. In
dition to neglecting quantum corrections~connected with the
second derivatives of the wave function!, this reduces to
well-known difficulties in the derivation of the cross sectio
even in the case of elastic scattering~see@23#!. From this
point of view the so-called generalized eikonal approxim
tion has been developed in the present work, which ta
into account the quantum corrections in the eikonal limit a
allows us to apply the obtained wave function at arbitra
n

re

f
f

cy
ts

e
o
a
;

c-
d-

-
s

d
y

distances, particularly at asymptotic large distancesr→`.
For this reason the second derivatives of the wave func
have been taken into account in the current ansatz. The
approximation made in the derivation of this wave functi
is the neglect of the nonlinear term@(¹S1)2# in the equation
of motion @see Eq.~7!#. Concerning a more accurate quan
tative description of stimulated multiphoton bremsstrahlu
by the GEA wave function, it is evident, that the obtain
wave function provides higher accuracy because in differ
limits this wave function turns into the Born approximatio
wave function, when conditions~29!–~31! are fulfilled, and
into the wave function of the eikonal approximation~34!,
when conditions~37! are satisfied. In particular, as seen fro
the comparison of formulas~26!, ~29! and ~30! for the scat-
tering of fast particles, the wave function in approximati
~20! is applicable forup2(e/c)A0ua/\@1 times stronger
scattering potentials than is allowed by the wave function
the Born approximation. So, even in the quantum limit th
wave function has an essential contribution and conseque
it should not be accepted as a reformed semiclassical w
function.

As follows from the above consideration, the cross s
tions calculated by the GEA wave function will contribu
different corrections to the scattering cross sections of kno
approximations, which has been shown in Ref.@23# for the
elastic scattering~in the absence of an electromagne
wave!. The multiphoton cross sections of stimulated brem
strahlung, as well as above-threshold ionization of atoms
the GEA, will be presented elsewhere.
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