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The dynamics of quasiparticles in repulsive Bose condensates in a harmonic trap is studied in the classical
limit. In isotropic traps the classical motion is integrable and separable in spherical coordinates. In anisotropic
traps the classical dynamics is found, in general, to be nonintegrable. For quasiparticle eBengieh
smaller than the chemical potentjal besides the conserved quasiparticle energy, we identify two additional
nearly conserved phase-space functions. These render the dynamics inside the cofulsesaiee dynam-
ics) integrable asymptotically foE/u— 0. However, there coexists at the same energy a dynamics confined to
the surface of the condensate, which is governed by a classical Hartree-Fock Hamiltonian. We find that also
this dynamics becomes integrable fotu— 0 because of the appearance of an adiabatic invarianEfowof
orde 1 a large portion of the phase-space supports chaotic motion, both for the Bogoliubov Hamiltonian and
its Hartree-Fock approximant. To exemplify this we exhibit Poincardace of sections for harmonic traps
with the cylindrical symmetry and anisotropy found in TOP traps.Eqt>1 the dynamics is again governed
by the Hartree-Fock Hamiltonian. In the case with cylindrical symmetry it becomes quasiintegrable because the
remaining small chaotic components in phase space are tightly confined bys8tt®b0-294{®7)06912-9

PACS numbgs): 03.75.Fi, 67.40.Db, 03.65.Sq

I. INTRODUCTION Anh2a
VOZ

4
. — m
The experimental realization of Bose condensates of at-

oms harmonically bound in magnetic trajds-3] call for a s the strength of the pseudopotential replacing the true two-
space-dependent version of Bogoliubov’s theory, or som@article potential at low energies, with teewave scattering
modification thereof. Such a theory proceeds by splitting th@engtha, which is here assumed to be positive.

field operatorf(x) and its adjoint in &C-number parify(x) For (Npa/dg)>1, wheredo= VA/mo, w=(wxwywz)1/3,
and a residual operatar(x), the solution to the Gross-Pitaevskii equation can be deter-
R R mined in the Thomas-Fermi approximatif® by neglecting
P(X)= o(X) + @(X) (1)  the kinetic-energy term
and an accompanying decomposition of the Hamiltonian in , Mu—U(X)
terms of 0, 1, 2, 3, 4 order ip, " i |ol*= O (u=U(x). ®)
1, 2, 3, ®, ¢ . The term of 1 order in Vo

@, ¢* is made to vanish by choosing,(x) to satisfy the
time-independent Gross-Pitaevskii equatiptl, which at
low temperatures takes the form

In the following we shall choose, as real and positive. The
chemical potential is determined from the normalization. The
next step is the diagonalization of that partkbfwhich is a

h? 5 ) quadratic form ing, ¢, by a Bogoliubov transformation to
- ﬁv ¢O(X)+[U(X)_M]¢O(X)+VO|l//O(X)| l//o(X):O, quasipartides
2
o(X) = () ai = V() al
with the normalizationf | o|?d®x=N,. Here ‘p(x)_zj: [Uj()a;=Vi()eg], ©)
m with
U(x)= §(w>2<X2+ 0y’ + wiz?) 3)
3 ) 2_ I\ 21_
is the generally anisotropic harmonic trap potential, J d X[|UJ(X)| |VJ(X)| 1=1 @)
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and
tl/(x,tt) _ ZO(X,:) i 8(:))65(&0% 14
[aj,ajr]=0=[a;r,a;r,], (X' ) O(X’ ) ( )
. with fd3x[ |ag(x,t)|?—|bg(x,t)]2]=1. It reduces Eq(13) to
[aj,a;,]= &) (8)  the form, to zeroth order i#,
The second-order part ¢f is diagonalized by this transfor- _— 19_5 K
mation, ifU;(x) andV;(x) satisfy the Bogoliubov equations HES ot a
[6] 25 | Lo, =0. (15
A -K EHF™ ot
Hue —KX) (u,— E( U, ) -
—KX) Ay )\ =y Here
with the Hartree-Fock Hamiltonian EHE%+U(X)—M+2Vo|<//o(x)|2- (16)

2
Huyr=— ﬁVZﬁL U (X) =+ 2Vol tho(X)|? (100 We may restrict to— E=9S/dt<0 in accordance with our
restriction onE. To first order inA we obtain

and the coupling term

% |, Ly Vs(ao + 1vsv(a°>
K(0=Vol (|2 1 it —by) T2m" | by/ [T 2m S Vb
between the two componenit§(x), V;(x) of a quasiparticle Cuct (9_8 _
wave function. Because of the different signs of thg V; i HES at a;
components on the right-hand side, they play the role of ~h oS | \ by (17)
particle and antiparticle components of the complete wave -K €HET o

function. As the equations are symmetric under the particle-
inarti i —E U —=V* V. *

antiparticle transformatiod; — —E;, Uj— V7, Vi»Uf we . (*) are the O) components of the amplitudes in Eq.

may defineE; to be non-negative without restriction of gen- 1 o . .

erality. Various numericdl7] and approximate analytic8] ~ (14). These will exist, and the expansion will be well de-

treatments of these equations are available in the literaturefined, only if the left-hand side of Eq17) is orthogonal on
In the present paper we wish to study the classical limit ofthe kernel @g) of the matrix in Eq.(15), which also appears

the center—of—mass_ motion of the quasiparticles. In order tQ, the right-hand side of E417). This condition gives rise

d_|scu§s the _dy_nam|cs rathgr than the eigenstates of the qugy the conservation law

siparticles, it is useful to introduce time-dependent wave

functions via 9 ) ) 1 , ,
ﬁ(|ao| = [bol*) + ﬁv'[(|ao| +|bo|*)VS]=0, (18)

(U(t))zz C'( J)e—iEjt/ﬁ (12) . . ) .

V(1) 7 V| which ensures that the normalization condition

with arbitrary cpefficients Cj. They satisfy the time- f d3x(|ag|2— |bo|2) =1

dependent Schdinger equation
a1 U o —K\ (U() is consistent with the classical dynamics and represents the
_( ) _| T ( ) (13)  Classical limit of the continuity equation following from Eq.
at\ — V(1) K A/ \ V(D) (18) [9]. The zeroth-order equation has a nontrivial solution

only if the determinant condition

For large energie§;, E;> u, the classical motion can be )

interpreted as the center-of-mass motion of quasiparticle ‘9_3) — 2 K2 (19)

wave packets. For small energigs, E;<u, such a straight- at HF

forward physical interpretation of the classical quasiparticle

dynamics is no longer possible. However, even in this reis satisfied, which, observing our sign convention & it,
gime, there is still a close mathematical relation between th@ives the time-dependent Hamilton-Jacobi equation
classical and the quantum dynamics, as the classical trajec-

tories are the characteristics of the quantum-mechanical IS(x1)
wave equation. This is made explicit by the derivation of the ot
classical dynamics as a limit of the ScHimger equation via

the Hamilton-Jacobi equation. The Hamilton-Jacobi equatiovith the classical Hamiltonian
corresponding to Eq.13) is obtained by the asymptotic an-

satz forh—0: H(x,p) =V eie(X,p) — K(X)2. (21)

aS
X, 5

=0 (20
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The time-independent Hamilton Jacobi equation results frondifferent chemical potential behave similarly in the classical
the separation description, if the physical quantities are scaled appropri-
ately.
S(x,t) =3S(x) — Et (22) In the isotropic case=0 the classical dynamics are com-
pletely integrable. As three independent constants of motion

and reads we can choose the enerdy, the modulus of the angular
momentum, and itg component_,. As we keep rotational
aS s . X
Hlx,—|=E. (23 symmetry around the axis in the anisotropic case# 0 the
2 L, and of course the energy are still conserved quantities,

If we can neglect the G¢) correctionsa, by in Eq. (17) we whereas the total angular momentum considered here is no
W 9 ! 101 1N EG. W longer a constant of motion. Thus, in the following we shall

obtain from the first-order equation separate conservatiopnvesti ate the classical behavior of this three degrees of
laws for the quasiparticle and anti-quasiparticle densities 9 9

freedom system depending on the two constants of mdion
9 1 andL,, and we address the question wether the dynamics are
E|a0(x,t)|2+ ﬁV-HaO(x,t)FVS]:O, integrable or chaotic.
Let us introduce the usual cylindrical coordinates
(24) p=+X?+y?, z and ¢. Because of the rotational symmetry
P 1 around thez axes the angleb is a cyclic variable. In cylin-
5|bo(X,t)|2— mv-[|b0(x,t)|2VS]=0. drical variables the Hamiltonian has merely two degrees of
freedomp andz, L, just enters as a parameter. Certain con-
gitions have to be satisfied as can be seen from the Hamil-

The classical antiparticle and particle dynamics are therefore™ ™~ | ) :
nian in the region outside the condensate. Eoru the

just the time reversal of each other, and the densities of botf?

components are separately conserved. conditionE+ u>wgl, has to be guaranteed, f&r<<u we
In the following sections we analyze the classical dynamMust haveE> (wol ;) */4u.
ics described by the Hamiltoniai21). The dynamics qf this two-dimensional system we can
visualize by Poincareuts; see Fig. 1. For different ener-
Il. CLASSICAL QUASIPARTICLE DYNAMICS gies we observe different dynamical behavior. Her

>(wol,)?/4u>pu two different kinds of trajectories can oc-
For the case of isotropic harmonic traps angular momencur typically. If the repulsive effective potential jn direc-
tum is conserved and the quasiparticle dynamics is integrablgon due to the angular momentuin is strong enough, the
and separable in spherical coordinates. This case is discussggticle cannot enter the condensate and is only moving in
in [9], where it is made the basis of a semiclassical quantithe harmonic potential of the external trap. The motion in an
zation procedure. Therefore, in the following we Concemrateanisotropic harmonic potential is completely integrable, as a

on the_analysis of the case of an_isotropic_ harmonic traps "hird constant of motion we can choose the energy inzthe
the limit where the Thomas-Fermi approximation applies. In

the present section we shall assume cylindrical symmetr O(iiegree of freedort, = p;/2m + Maw,2?/2. These trajectories,
P y y Y Qhich are not perturbed by the condensate, can be seen as the

h ,
the trap integrable tori around the fixed point of the Poincarap in
mw% M2 the center of Fig. (), which is the periodic orbit moving
U(x)zT(x2+y2)+Tzzz. (25 only in thez and ¢ directions. If the particle enters the

condensatek:, is no longer a conserved quantity. Neverthe-
less for energies large compared to the chemical potential
glso those trajectories are still quite similar to unperturbed
introduce e by €2=1—(wo/w,)?, which is the numerical motion. Typically the trajectories are confined to thin sto-

eccentricity of the Thomas-Fermi surfage=U(x), a rota- chastic Igyerg, separated by each other by integrable tori. No
tional symmetric ellipsoid. This two-dimensional surface isArmnold diffusion occurs, as usual for a system of two, not
the boundary of the condensate. three, degrees of freedom. At high energies the system be-

Our problem has a characteristic energy, namely, th&@ves quasiintegrably. The influence of the condensate can
chemical potential. Thus, the second relevant parameter &€ taken as a small perturbation to the motion in the external
the classical motion is the rat/ x. We note that measuring Potential.

the energy in units ofz, coordinates, momenta, and time in  FOr energies in the range (E/.>0.1[Fig. Ib)] we
units of typically observe a mixed phase space. The fixed point is

now inside the condensate, but does not lose its stability. The
5 detailed structure depends on the parameters chosen. Already
o=\ /_'“1 Po= m to:w(;l, (26) for small anisotropy é>=0.2) a relevant part of phase space
wj can be chaotic. This shows that for energies of the order of
the chemical potential the isotropic case with its integrable
respectively, the dimensionless Hamiltonian can be put in @ynamics is an exceptional rather than a typical situation. If

form, that depends only on the anisotropy parametérhis  E<u all trajectories move inside and outside the conden-
shows that condensates with the same anisotropy but witkate.

In the experimenfl] w,>wq, namely, @,/wy)?~8. As
the parameter denoting the anisotropy of the potential w
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FIG. 2. Trajectories in coordinate space of the Bogoliubov dy-
namics of Eq.(21) starting from the same point and in the same
direction for different energieg/ux=0.1 (dashed ling 0.01 (dot-
ted), and 10 (solid).

will be studied in detail for anisotropic traps. However, it
will turn out that in traps there exists a second low-energy
regime, which for isotropic traps is defined Byu—0 with
E—(woL)?4u<E, where the quasiparticles are single-
particle-like excitations confined to a narrow layer around
the surface of the condensate. This low-energy Hartree-Fock
regime will be discussed in detail in Sec. IV, also for aniso-
tropic traps, together with the usual high-enerdy>(u)
Hartree-Fock regime.

(©

FIG. 1. Poincaresections of the dynamics of the Bogoliubov ll. QUASIPARTICLE DYNAMICS
Hamiltonian (21) in cylindrical coordinates for the different ener- IN THE HYDRODYNAMIC REGIME
gies(from top to bottom E/u=40 (a), 1 (b), and 0.02(c). The cut
is taken atz=0 and diplayed in the variables,p, in units of
(2u/mwd)¥?, (2mu)Y?, respectively. The anisotropy is chosen as  If there exist limiting trajectories for different initial con-
w,/wy= /8, the angular momentum was fixed @glL,/E=0.2. ditions there should exist limiting dynamics described by

_ _ . some limiting Hamilton function. Inside the condensate the

For energies small compared to the chemical potentiagygoliubov Hamiltonian can be written as
E<0.1u [Fig. 1(c)] the chaotic part of phase space decreases
again and is restricted to a thin layer separating and sur- H(p,X) = Vewin(P)[ €kin(P) + 2K (X)], (27
rounding two regular islands, corresponding to two stable
fixed points separated by an unstable one. Most orbits seemheree,i,(p) = p>/2m. For small energiek (x) is much big-
to lie on integrable tori. This suggests that the system has ager thane,;, everywhere except in a small region near the
integrable regime in the limit of small energies. boundary. This suggests that the approximant of the Hamil-

This limit corresponds to the hydrodynamical regifi8]  ton function(27) can be obtained by neglecting the kinetic
investigated in several contexts. In a bulk case, when there isnergy square
no external potential(x) the lowest-lying excitations are
phonons with linear wave-number dependence. Hhyd(P,X) = V2€in(P)K(X) (28

Numerically we have found that tending with the energy
to zero, keepingu fixed the range of the classical motion for describing the motion in the hydrodynamical regime.
outside the condensate for trajectories starting inside is gefrhis approximate Hamiltonian is in accordance with the bulk
ting smaller and smaller and in the limit the motion is con-case, wherK(x) = u should be taken in Eq28) in order to
fined to the region inside of the Thomas-Fermi surface. Startebtain the linear phonon spectra from the Bogoliubov disper-
ing trajectories from the same point inside the condensatsion relation.
under the same direction and changing only the modulus of This Hamiltonian is meaningful only inside the conden-
Cartesian momentum we have found that they differ fromsate and only near the boundary of the condensate the full
each other only in a thin region near the boundary whosélamiltonian(27) differs from this approximate one. On the
width scales with the energy. Lowering the modulus of theThomas-Fermi surface the full Hamilton function gives defi-
initial momentum to zero they tend to a well-defined limiting nite values for the Cartesian momenta, whereas according to
trajectory. This can be clearly seen in Fig. 2. In the isotropicH, 4 they become infinite. Following the trajectoriestdfyq
case this is the limiE/u,woL/ u—0, keeping the ratid./E in the isotropic case the angular momentum conservation
fixed. In the following section this “hydrodynamic regime” requires that the tangential component of the momentum re-

A. Hydrodynamic Hamiltonian
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mains finite even though the absolute value of the momen-
tum diverges likeK ~Y2. Therefore each trajectory hits the
boundary orthogonally and is reflected back orthogonally
without change in the tangential component of the momen-
tum. As this local rule is independent of the global symmetry
of the trap potential it must hold also in the anisotropic case.

The Hamiltonian(28) has some further unusual features. y
The first observation is that it is not of the usual form but is
a homogeneous first-order function of the momenta. The a
strong consequence is that with the same initial value
x(t=0) and with the same direction of the initial momenta
the orbitx(t) is the same, independent of the energy. Second, 9,
a constraint follows from the canonical equations of motion, 00
namely, 00 X

%

mx-x=u—U(X), (29) FIG. 3. Coordinates for the hypocycloi{85).

relating the velocities and the coordinates. Thus one canndhe transformatiort31) is a canonical transformation. Insert-
choose the initial point and the velocity independently. Furing Eq.(31) into Eq. (30) one gets

thermore, due to this constraint one cannot express the three

velocities in terms of the momenta; i.e., one cannot do the E=H(I1,12,¢1,¢2) = woV2I4l5, (32
inverse Legendre transformation in the usual way to derive

; o - lLe. 1, andl, are the action and, and ¢, the angle coor-
the Lagrangian. From Eq29) it is clearly seen that despite I,lqinates of the Hamiltoniaf30). Similarly to the harmonic

oscillator case this Hamiltonian is a homogeneous first-order
function of the action coordinates.
The Hamilton equations in the new coordinates are

sate the velocities even tend to zero here.

B. Isotropic case

In the isotropic trap caseuy= w,= wy= ;) the Poisson i -0 g \P_Q
bracket ofH,,(p,x) [See Eq(28)] and the angular momen- 1= ¢1_E 1, v
tum vectorL is zero, which means that any components of

is a conserved quantity. Let us choose our coordinate system (33

in such a way that the axis is parallel withL. In such a ' Cwe [y
frameL,=L,=0, which shows that the motion in the phase 1,=0, ¢2=_\F=QZ'
space stays on the hypersurfacep,=0. By this choice of V2 Vi

the coordinates one can eliminate one degrees of freedo

from the Hamiltonian(28), which has then the form msmg the above transformation, it is easy to show that the

angular mumentum is

2.2
72 X“+y — _ —.
HiydPX) = \/m<p§+p§>(1— = ) (30) LT xR YRS (34
F A nice geometrical meaning fox(t) can be given. Let us

where ry denotes the radial size of the condensate, th&onsider a circle of radiub, in which a smaller circle of

Thomas-Fermi radiug-c= \/Z,ul—mwz Let us now consider radiusa rolls. The motion of a point on the perimeter of the
the transformation T 0 smaller circle in Cartesian coordinates is described by the

equations
X:l(llcowﬁ-lzcosd)z), x=(b—a)cosp,+acosp,,
(I +15) a5
=(b— i _ i ,
Y=l(llsin¢1—lzsin¢2), y=(b—a)sing, —asing,
(I +12)

where ¢, and ¢, are linear functions of the time; see Fig. 3.
31 Due to the perfect rolling condition the angular velocities are
not independent:

(I +13) . .
=-— sing, + sing,), . .
P 1 cod b, + ¢2)]( putsing2) 0=(b—a)p,—ad,. (36)
(I1+15) Comparing the parametric form of the hypocycl¢db) with
Py 1—cos ¢, + ¢2)](C°S‘f’l_c°&¥52)’ (31) it is obvious thatx(t) fulfills Egs. (35) and the con-

straint(36), if b=rg, a=rel,/(1,+15), and if ¢4, ¢, are
with positivel ; andl,. It is straightforward to check that the chosen as in Eq33).
Poisson brackets betweén,l,,$,,¢, are canonical, thus, The radial distance from the origin can be expressed by
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C. Anisotropic case with cylindrical symmetry

;
r=x2+y2= — 12112+ 21,1 ,cod 1+ ¢y).

I+, The case of a trap with axial or cylindrical symmetry is
(37)  the experimentally most relevant one. In Poinceuts of the

full dynamics we have seen regular behavior for small ener-

gies. Therefore one can expect that the classical motion

given by the approximate Hamiltonian is fully integrable. To

2 E show this let us introduce new coordinates, namely, the cy-

T = (38 lindrical elliptical coordinates,  given by

" w0 \2EZF (Lwg)?
p=0\(£+1)(1-7n°), z=0én, (42)

The Hamiltonian(30) can be written in polar coordinates
r, ¢ as well.¢ is a cyclic variable, its conjugate momentum

5=IL 'i‘ a c<7nserv§:~d qtuilntmy.' Hov:ever, the g‘%_memumwhich are orthogonal coordinates. Surfaces of consiare
Pr=(xPx+ypy)/r conjugated ta is not conserved. To ex- confocal ellipsoids with foci at a distanee in p direction,

press the HamiltoniarB0) in the action variables; ‘?ndlq’ surfaces of constany are confocal hyperboloids with the
let us use the fact that,=¢p.dr and that during one same foci. Foro, the parameter of the transformation
period of the radial motion, + ¢, changes by 2. Using we take the foci of the Thomas-Fermi ellipsoids=e(2u/

the above formulas one gets mw3) Y2 for ,> w,. For we> w, one has to chang&+ 1 to
L=min(l,15), £—1 and taker= e(2u/mw?)*2. In the following we con-
(39)  sider only the first casé42), in the second case the analysis
proceeds similarly.¢ can take any value in the range
lg=111—14l, [0,(1/e2— 1)Y2]. The limiting case&t= (1/e2— 1)¥2 describes
: the Thomas-Fermi ellipsoidy can be in the rangg—1,1].
which leads by Eq(32) to Making the point transﬁjrmcgztion from cyIindricaIgt% cyligdri-

It is obvious that it is periodic ing,+ ¢»), its period can be
calculated from 2Zr=(Q1+Q,)T,, which yields

E=Huydlr 1 y) = 0ov2(0+1 I, (40) cal elliptical coordinates the momenta transform as
yd\ o :
If one quantizes semiclassically the Hamiltoni@g) one
should take into account that in the radial direction there are 1 1 , .
two turning points, thud, should be replaced by(n+1/2), P, V(ET+ D) (1= ) (Epe—1P,),

' : o &+ 72
and by the usual procedure for spherically symmetric prob-

lems|, by A(1+1/2) (I andn are non-negative integers
The semiclassical quantization leads by the above replace- (43
ment rules to

Eni=fiwgy2n®+2ni+3n+1+1, (41) 1

P=—
which is almost that of the result of String#tiO], except the ‘o &+ 9

1 under the square root, and agrees with that of the more
elaborate semiclassical quantization in the hydrodynamical
limit [9]. The Hamiltonian(28) in cylindrical elliptical coordinates is

[(£+1) 7+ (1= 77)ép,].

1
1-7> £+1

w? [1-€2(£2+1)][1— X(1— 7p?)]
Hﬁyd:? 2+ 2 {(§2+1)p§+(1—n2)p3,+

pﬁ,l : (44)

Taking the energye and p,=L, as constants one can write down the Hamilton-Jacobi equatiog fmd », which is
separable in these coordinates. Thus the problem is fully integrable. Introducing a separation 8onétdiné two separated
Hamilton-Jacobi equations are

(£+1) dS§>2 S S
dé) g1 w0l 1=+

(45)
(1 2)(ds’7 ) L JE ! =B
Tdy) T1- 2 Wl 1-E1-4)

Combining these two equations one gets for the separation cofstiet phase-space function
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1 1 1
== 1- £+ D](E+1)pi+[1-(1- p)1(1- pP)p5+ — 2
2@ L@ DIE DR - S | 5= [Pl
0_2
=;[p§+p§+(1—ez)pi]—(xpx+ypy+zpz)2 (46)
|
in elliptical and Cartesian coordinates, respectively. This is D. Completely anisotropic case

the third independent constant of motion in addition to the 11,4 analysis of the preceding section can be generalized

energyE andL,. This can be checked directly, using the (4 the case of a completely anisotropic harmonic trap. The

equations of motion for the time derivatives Bf Similarly  t5rmulas become rather lengthy and we just indicate the es-
to the isotropic case conservation Bfand B requires that  ggntial steps.

trajectories hit the boundary orthogonally, because the mo- e trap potential is written in the form
menta there diverge. In the isotropic linsit—0 the elliptical

coordinates become singular, and therefore it is more instruc- x2 y2 72
tive to see this limit in Cartesian coordinates. In this limit UXxX)=pu St =+t (49
ol e is the Thomas-Fermi radius, aBdhas the simple mean- a® b® ¢
N9 with
oE2 a?=2u/mw? (and cyclig. (50)
B=—5+L2 (47) . o _
g We may assumea>b>c without restriction of generality.

Then new elliptic coordinates, », { are introduced via

_ The existence of thg three |.ndependent cqnstants of mo- \/(a2+§)(a2+ 7)(a2+¢)
tion E, L,, andB explains the integrable motion generated X==

by Hpyq and therefore the almost integrable situation found
numerically in the motion generated by the total Hamiltonian . .

(27) in the small energy and small angular momentum re_after which the potential reads

i
(@ b)) (al—c?) (and cyclig (51)

gion. We notice that two kinds of trajectories can occur in £l
this regime. From Eq(45 we can determine the turning UEn0)=u| 1+ 7 ) (52)
points in& and 7. In the £ direction all the trajectories reach ab?c?

the Thomas-Fermi surface and are reflected back there. If the ) ) ) )
condition The range of,#,{ is 0=¢=—c*=np=—-b*=£=—a". The

old canonical momentgp,, p,, p, are given in terms of the

new ones by
2

|3>|3*=£+|_2 (48)
2 z P

@
0.0 0.5 1.0
0.4 ‘ ‘

is satisfied, there is an inner turning point in thelirection
and » takes a rangE— 7 max, 7 maxl- These trajectories cor-
respond to the hypocycloids of the isotropic case; as an ex- Z oof
ample see Fig. @). For B<B*, however, there are further

turning points in they direction, the motion being confined

between two hyperbolas with values extending to zero, @ .
which can be seen in Fig.(d). This kind of trajectory only

occurs in the anisotropic systerB.=B* is the separatrix

between these two types of motion. As usual this separatrix

is structurally unstable against small nonintegrable perturba- Z o0}
tions of the integrable motion in the hydrodynamic limit. It
plays a crucial role for the appearance of chaos in the Bogo-
liubov Hamiltonian as the energy is increased from values ‘ ‘
very small compared tq, because it is destroyed and re- (b) 0.0 0.5 1.0
placed by a chaotic separatrix layer, which is very narrow at

first, but grows in width as the energy is increased. In Fig.

1(c) two regular islands corresponding to the two kinds of FIG. 4. Trajectory of the hydrodynamic Hamiltonid@8) for
trajectories and the chaotic separatrix layer between therB>B*(a) and for B<B*(b). z,p are plotted in units of
can be seen. (2u/mwd)*2.
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IV. THE HARTREE-FOCK DYNAMICS
@+ HE@+ @+ (DP+E)(P+E)
Px= (a2—b?)(a2—c?) [ Ps (=) (E—0) Another limiting case of the Bogoliubov description of
quasiparticleg9) consists in neglecting the hole component
+op (b?+ 7)(c*+ 7) (b'+2)(c?+Q) 53 V;(x) in the field operatok(x). The remaining component

T (=0 (n—§&) +2p; (=8(L—7) Uj(x) is then described by the Hartree-Fock Hamiltonian
(10). The interaction between particles is taken into account
(and cyclio. by the potentiaK(x), describing the mean interaction of one
particle with all the other particles. Restricting ourselves to
o o ~ T=0 all those other particles are in the condensate. In the
Then the Hamiltonian in the hydrodynamic limit can be writ- homogeneous systems this approach simply results in a shift
ten in terms of the new canonical coordinates and momentaf the dispersion relation of noninteracting particles by the
The Hamilton-Jacobi equation can be written in the nearlychemical potentiaj. For spatially homogeneous Bose con-
separated form densates and also Bose condensates in traps such a descrip-
tion can be applied for energies larger than the mean inter-
2 action energy given by.. However, in traps there is even a
2 2 2 IS i i
0=(5—0)|(@%+ &)(b%+ &)(c2+ &)| —| +—— regime for energies smaller than where the Hartree-Fock
N approximation applie§11], namely, in the case when the
+ (cyclic). (54) !<|net|c gnergyekm(p) is Iarg_e compared tc_) t_hkz)c_al mean
interaction energyK(x). This can be satisfied in a layer
around the surface of the Bose condensate wikepd is
In fact complete separation is achieved, because this equsery small.
tion is satisfied only by putting the angular brackets equal to Using the Thomas-Fermi approximation for the wave

E?m a®b?c?

A+B¢ (and cyclig, function (5) the Bogoliubov Hamiltonian and the Hartree-
Fock Hamiltonian coincide outside the condensate. Inside
2m a2b?c? the condensate_, if the kinetic energym(.p) is much Iarggr
(a2+§)(b2+§)(c2+§)p§+— = Z(A+B&) than the pote_ntlal terrK(>_<), an expansion pf the_ Bogoliu-
4p £ 4 bov Hamiltonian(27) to first order inK(x) just gives the

(55  Hartree-Fock Hamiltonian

2

. p
(and cyclig, HHFZﬁJrIU(X)—ML (58)

whereA andB are two sgparatlon constants,. which are .thewhich is therefore valid, fok,;,>K(x), inside and outside
same for all three equations related by cyclic permutation,, o .ondensate

From these three equatiodsand B can be eliminated by v now want to investigate the classical dynamics of this
multiplying the first with (7—), the second with {—£),  artree-Fock Hamiltonian. The isotropic problem is com-

the third with (€—7), gnd a‘?'d'”g them. 'Th|s, of course, pletely integrable again. As constants of motion we can take
gives back Eq(54), which definesE=Hp,q in terms of the 0 energy, the modulus, and theomponent of the angular

canonical variables. However, solving the three equationg,omentym. We immediately turn to the classical dynamics
instead forA by eliminatingB andE, and then foB elimi- ¢ the anisotropic, but axially symmetric case in the trap

natingA andE we obtain two conserved phase-space funCygienial(25) and consider it as a system with two degrees of

tions. Translated back to Cartesian coordinates these readfceqdom. The conserved angular momentum around the sym-
metry axed_, enters only as a parameter. Again we investi-

A= —I[(b%+c2)(x2— a2)+ a2(v2+ z2)1p2+ 2a2v z gate the dynamics by Poincamuts, now taken on the
e 2 Jraly P YZRPi Thomas-Fermi surfacé= (1/e—1)2 and parametrized by
+ (cyclic) (56)  the second elliptical coordinate and its conjugate momen-

tum p,. For energies much larger than the chemical poten-

tial the interaction with the condensate is only a small per-

turbation to the integrable motion in the harmonic trap and

we observe quasiregular behavior. In this limit the Bogoliu-
B=—{(x?—a?)p+ 2yzppi+ (cyclic). (57)  bov description of quasiparticles reduces to the Hartree-Fock

description, the conditior,(p)>K(x) being fulfilled for

all trajectories, and the classical motions generated by both
The conserved functioB is a simple generalization of the Hamiltonians are essentially the same. Trajectories not enter-
conservation law we already found in the case with cylindri-ing the condensate are even identical, since here the two
cal symmetry, wherea& corresponds tdLﬁ. By a straight-  descriptions fully coincide.
forward but lengthy calculation it can be checked that the For energies in the approximate range>HY x>0.1 we
Poisson bracket§Hp,q4,A}, {Hnyq,B}, {A,B} all vanish. observe a mixed phase space agaee Fig. §3)]. A regular
Therefore, the dynamics governed Ky q is still completely  island around the periodic ortit=0=p, is surrounded by a
integrable even in this completely anisotropic case. chaotic sea. FOE> u the structure in phase space is similar

and
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to the Bogoliubov dynamics, but differing in detail. From outside and inside the condensate. We look at the problem in
this we can conclude that the stochasticity observed for thelliptical coordinate$42), and choose for concreteness again
Bogoliubov Hamiltonian in Fig. 1 is not a consequence ofthe casew,>w,. The oscillations iné orthogonal to the
the coupled two component structure of the underlying semiThomas-Fermi surfacé= (1/e>— 1)*? are much faster than
classical description, but is simply caused by the anisotropyhe oscillations in» direction along the channel. This sug-
of the external potential. _ _gests to make an adiabatic approximation in which the
For energies much smaller_ than t_he chem.|cal pOte”t'agction-integrall§=(27r)‘156p§d§ over one full cycle in¢ at
E<0.1u we find regular behavior again, see Figbb Par-  fiyaq p, emerges as an adiabatic constant for the motion.

ticles are conflned to the Shafp potenﬂ_al chanr!el near th valuating this adiabatic invariant f&/u<1 we get as a
Thomas-Fermi surface. The width of this potential channe unction of 7, p,:
L 7]'

scales a€/u. Roughly the particles spend the same time

r 3/2
| = ! E 17 /‘Uopn)z_ 1 /“’OLZ)Z (59
£ 371w, I-(1- P # 1-(1-m)\ 20 ] 1-47 2u

This new adiabatically conserved quantity that emerges ifhis trajectory corresponds to the origin of Fig. 5, where

the low-energy limit of the Hartree-Fock dynamics is the motion takes place only i§ and ¢ directions. Generally the

cause of integrability in that limit. two dynamics differ in this case, unless most of the energy is
Solving this equation for the energy we get the Hamil-stored in angular motion of the cyclic variablie which is

tonian of the slown dynamics, valid for low energies. From also motion along the Thomas-Fermi surface. The maximal

Eq. (59) we see that the turning points ip are independent value ofl, for a given energy is found by neglecting both

of the energy if we keep,/E? andl/E¥? constant. In Fig.  angular motions iy and in¢ in Eq. (59), by puttingp,, L,

5(b) we compare a Poincasection in» and p, of the dy-  equal to zero there. As a condition that only a small fraction

namics of the Hartree-Fock Hamiltonian with trajectories ofof energy is stored in the motion orthogonal to the surface

the slow# dynamics for different values df.. Both curves and hence that both motions from the Bogoliubov and from

agree very well. For smaller energi€s<0.01ux no differ-  the Hartree-Fock Hamiltonian agree, we can thus state the

ence between both curves can be noticed. following:
Now we have to ask ourselves, which of the trajectories

displayed in Fig. B) are indeed good approximations to

trajectories described by the Bogoliubov Hamiltonian. Let us

look first at the isotropic case, where the motion separates in

radial and angular motion. The kinetic energy in the angular

degree of freedom is roughly?/2mr?~ (wolL)?/4u. Since

for low energies deviates only very little from the Thomas- | Fig. 6 we compare Poincaruts of the Bogoliubov dy-
Fermi radius this rotational energy is almost conserved. Th@amics with the one-degree-of-freedom motion obtained
remaining energy is stored in the radial degree of freedonyom Eq. (59), representing the integrable Hartree-Fock dy-
and only this energy can be transformed to potential energyhamics for small energies. We see that indeed both dynamics
So the condition that the Hartree-Fock dynamics and thegree well for small values df, near the boundary of the
Bogoliubov dynamics agree is in this case cut. ForL, chosen large, see Fig(#, even for values of
close to the maximal one, both dynamicszragree qualita-
) tively. However, the different behavior in the varialdleor-
_ (@ol) <E (60) thogonal to the surface can, of course, not be seen in this cut

4u ' at constant. For smaller values df ,, see Fig. &), we can

distinguish two regions. Near the boundary, for snhajlwe
see the Hartree-Fock limit of the Bogoliubov dynamics,

For the anistropic case we can formulate an analogous critgvhere both dynamics agree. The inner region corresponds to
rion: only if most of the energy is kinetic energy of the the hydrodynamic limit of the Bogoliubov dynamics and
motion parallel to the boundary, which cannot be trans-cannot be compared with the Hartree-Fock dynamics. The
formed into potential energy, does the approximation of the@wo kinds of closed tori visible here are the two kinds of
Bogoliubov dynamics by the Hartree-Fock dynamics workhydrodynamic trajectories discussed at the end of Sec. Il C.
well. Forl,=0 no motion takes place orthogonal to the sur-
face, ¢ being constant, and all the energy is stored in motion V. CONCLUSIONS
parallel to the surface. This corresponds to the outer orbit
forming the boundary of the cut in Fig. 5. The maximal value The quasiparticle excitations are the basic constituents of
of I for fixed L, is given by settingp=p,=0 in Eq.(59).  the dynamical and thermodynamical properties of Bose con-

3/2
Au ( E) . 61)

37mwg

I < | max_
§50¢ m

E
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M

P, Py
" (a)

P, P
o (b)

o ) _ FIG. 6. Poincaresections of the dynamics of the Bogoliubov
FIG. 5. Poincaresection of the dynamics of the Hartree-Fock Hamiltonian (21) in elliptical coordinates(42) for the energies
Hamiltonian (58) in elliptical coordinates(42) for the energy E/u=0.1 with (wolL,)%2uE=1 (a) and E/u=0.01 with
E/p=1 () andE/n=0.06 (b). The cut is taken on the Thomas- (w,L,)%/2uE=0.02 (b) on the Thomas-Fermi surface inp,, for

Fermi surface in the variableg,p,, for w,/wo= 8. The angular ¢ /w,=\8. Solid lines are trajectories of the Hamiltonian in
momentum is given by «oL,)%/2uE=1. Solid lines in(b) are (7.p,,) following from Eg. (59).
trajectories of the Hamiltonian inx(,p,) following from Eq. (59).

densates. In the present paper we have investigated their diilty of the classical dynamics of the quasiparticle excitations
namics for Bose condensates of atomic gases in traps in treg intermediate energids=w. This applies to both the full
classical limit. The two limiting types of excitations, collec- Bogoliubov dynamics and the limiting Hartree-Fock dynam-
tive modes, and quasiparticle excitations consisting essefies approximating it wherever the kinetic energy is large
tially of single atoms moving in a mean field correspond, incompared to thdocal mean interaction energy. Again this
the classical limit, to particles and antiparticles of zero massponintegrability has a direct consequence also for the quan-
moving “relativistically” with the speed of sound, and to tym dynamics, because it implies avoided crossings between
single atoms moving in the potential created by the trap anguasiparticle levels as functions of the dimensionless inter-
t_he Hartree-Fock potential energy of all other atoms. In spazction strengtiNya/d, with do= v%/mawy, if the energy and
tially homogeneousuntrapped condensates these two types ;; are comparable. Such avoided crossings have indeed been
of excitation strongly differ in energye, the collective geen in numerically generated pldtst].

modes occurring atE<p, the single-particle modes at oy results not only explain these avoided crossings, they
E>u. In the trapped condensates both types of excitationgiso open the door to an intriguing wider perspective, quan-

coexist, at least classically, at small enerdies ., and are  tym chaos of the quasiparticle dynamics in the Bose conden-
instead spatially separated. The collective modes live insidgates of atoms in anisotropic traps.

the condensate, the single-particle modes at small energies in
a narrow layer at the border.

One principal result we have obtained here is that the
classical dynamics of both the collective modes and the
single-particle modes become integrable in the limit This work has been supported by the project of the Hun-
E/n<1. This has important consequences for the quantungarian Academy of Sciencd&rant No. 93 and the Deut-
dynamics as well: the integrability can be used there to sepache Forschungsgemeinschaft. M.F. gratefully acknowledges
rate the Schidinger equation and to obtain not only the low- support by the German-Hungarian Scientific and Techno-
lying levels of the collective moddd2,13, but also of the logical Cooperation under Project 62. R.G. and M.F. wish to
single-particle modes. After quantization an energy gap reacknowledge support by the Deutsche Forschungsgemein-
appears separating the collective modes with typical energieschaft through the Sonderforschungsbereich 237 “Unord-
hwg and the single-particle modes whose lowest levels havaung und gr@e Fluktuationen.” Two of ugA.Cs., P.S2.
energies of the orderi(w,) 31" due to their close confine- would like to acknowledge support by the Hungarian Acad-
ment in the normal direction to the surface of the condensateemy of Sciences under Grant No. AKP 96-12/12. The work
However, this energy difference is much smaller than, andas been partially supported by the Hungarian National Sci-
has a different origin from the energy difference betweerentific Research Foundation under Grant Nos. OTKA
both types of modes in homogeneous systems. T017493 and F020094, and by the Ministry of Education of

Another principal result obtained here is thenintegra- Hungary under Grant No. FKFP0159/1997.
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