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The dynamics of quasiparticles in repulsive Bose condensates in a harmonic trap is studied in the classical
limit. In isotropic traps the classical motion is integrable and separable in spherical coordinates. In anisotropic
traps the classical dynamics is found, in general, to be nonintegrable. For quasiparticle energiesE much
smaller than the chemical potentialm, besides the conserved quasiparticle energy, we identify two additional
nearly conserved phase-space functions. These render the dynamics inside the condensate~collective dynam-
ics! integrable asymptotically forE/m→0. However, there coexists at the same energy a dynamics confined to
the surface of the condensate, which is governed by a classical Hartree-Fock Hamiltonian. We find that also
this dynamics becomes integrable forE/m→0 because of the appearance of an adiabatic invariant. ForE/m of
order 1 a large portion of the phase-space supports chaotic motion, both for the Bogoliubov Hamiltonian and
its Hartree-Fock approximant. To exemplify this we exhibit Poincare´ surface of sections for harmonic traps
with the cylindrical symmetry and anisotropy found in TOP traps. ForE/m@1 the dynamics is again governed
by the Hartree-Fock Hamiltonian. In the case with cylindrical symmetry it becomes quasiintegrable because the
remaining small chaotic components in phase space are tightly confined by tori.@S1050-2947~97!06912-6#

PACS number~s!: 03.75.Fi, 67.40.Db, 03.65.Sq
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I. INTRODUCTION

The experimental realization of Bose condensates of
oms harmonically bound in magnetic traps@1–3# call for a
space-dependent version of Bogoliubov’s theory, or so
modification thereof. Such a theory proceeds by splitting
field operatorĉ(x) and its adjoint in aC-number partc0(x)
and a residual operatorŵ(x),

ĉ~x!5c0~x!1ŵ~x! ~1!

and an accompanying decomposition of the Hamiltonian
terms of 0, 1, 2, 3, 4 order inŵ, ŵ1. The term of 1 order in
ŵ, ŵ1 is made to vanish by choosingc0(x) to satisfy the
time-independent Gross-Pitaevskii equation@4#, which at
low temperatures takes the form

2
\2

2m
¹2c0~x!1@U~x!2m#c0~x!1V0uc0~x!u2c0~x!50,

~2!

with the normalization* uc0u2d3x5N0. Here

U~x!5
m

2
~vx

2x21vy
2y21vz

2z2! ~3!

is the generally anisotropic harmonic trap potential,
561050-2947/97/56~6!/4879~11!/$10.00
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n

V05
4p\2a

m
~4!

is the strength of the pseudopotential replacing the true t
particle potential at low energies, with thes-wave scattering
lengtha, which is here assumed to be positive.

For (N0a/d0)@1, whered05A\/mv̄, v̄5(vxvyvz)
1/3,

the solution to the Gross-Pitaevskii equation can be de
mined in the Thomas-Fermi approximation@5# by neglecting
the kinetic-energy term

uc0u25
m2U~x!

V0
Q„m2U~x!…. ~5!

In the following we shall choosec0 as real and positive. The
chemical potential is determined from the normalization. T
next step is the diagonalization of that part ofH which is a
quadratic form inŵ, ŵ†, by a Bogoliubov transformation to
quasiparticles

ŵ~x!5(
j

@U j~x!â j2Vj* ~x!â j
†#, ~6!

with

E d3x@ uU j~x!u22uVj~x!u2#51 ~7!
4879 © 1997 The American Physical Society
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and

@a j ,a j 8#505@a j
† ,a j 8

†
#,

@a j ,a j 8
†

#5d j j 8. ~8!

The second-order part ofH is diagonalized by this transfor
mation, if U j (x) andVj (x) satisfy the Bogoliubov equation
@6#

S ĤHF 2K~x!

2K~x! ĤHF
D S U j

Vj
D 5Ej S U j

2Vj
D ~9!

with the Hartree-Fock Hamiltonian

ĤHF52
\2

2m
¹21U~x!2m12V0uc0~x!u2 ~10!

and the coupling term

K~x!5V0uc0~x!u2 ~11!

between the two componentsU j (x), Vj (x) of a quasiparticle
wave function. Because of the different signs of theU j , Vj
components on the right-hand side, they play the role
particle and antiparticle components of the complete w
function. As the equations are symmetric under the parti
antiparticle transformationEj→2Ej , U j→Vj* , Vj→U j* we
may defineEj to be non-negative without restriction of ge
erality. Various numerical@7# and approximate analytical@8#
treatments of these equations are available in the literatu

In the present paper we wish to study the classical limi
the center-of-mass motion of the quasiparticles. In orde
discuss the dynamics rather than the eigenstates of the
siparticles, it is useful to introduce time-dependent wa
functions via

S U~ t !

V~ t !
D 5(

j
cj S U j

Vj
D e2 iE j t/\ ~12!

with arbitrary coefficients cj . They satisfy the time-
dependent Schro¨dinger equation

i\
]

]tS U~ t !

2V~ t !
D 5S ĤHF 2K

2K ĤHF
D S U~ t !

V~ t !
D . ~13!

For large energiesEj , Ej@m, the classical motion can b
interpreted as the center-of-mass motion of quasipart
wave packets. For small energiesEj , Ej!m, such a straight-
forward physical interpretation of the classical quasiparti
dynamics is no longer possible. However, even in this
gime, there is still a close mathematical relation between
classical and the quantum dynamics, as the classical tra
tories are the characteristics of the quantum-mechan
wave equation. This is made explicit by the derivation of t
classical dynamics as a limit of the Schro¨dinger equation via
the Hamilton-Jacobi equation. The Hamilton-Jacobi equa
corresponding to Eq.~13! is obtained by the asymptotic an
satz for\→0:
f
e
-

.
f

to
ua-
e

le

e
-
e
c-
al
e

n

S U~x,t !

V~x,t ! D .S a0~x,t ! 1 0~\!

b0~x,t ! 1 0~\!
D eiS~x,t !/\ ~14!

with *d3x@ ua0(x,t)u22ub0(x,t)u2#51. It reduces Eq.~13! to
the form, to zeroth order in\,

S eHF1
]S

]t
2K

2K eHF2
]S

]t

D S a0

b0
D 50. ~15!

Here

eHF5
p2

2m
1U~x!2m12V0uc0~x!u2. ~16!

We may restrict to2E5]S/]t<0 in accordance with our
restriction onE. To first order in\ we obtain

]

]tS a0

2b0
D 1

1

2m
¹–F ~¹S!S a0

b0
D G1

1

2m
¹S–¹S a0

b0
D

5
i

\S eHF1
]S

]t
2K

2K eHF2
]S

]t

D S a1

b1
D . ~17!

Here (b1

a1) are the 0(\) components of the amplitudes in Eq

~14!. These will exist, and the expansion will be well d
fined, only if the left-hand side of Eq.~17! is orthogonal on
the kernel (b0

a0) of the matrix in Eq.~15!, which also appears

on the right-hand side of Eq.~17!. This condition gives rise
to the conservation law

]

]t
~ ua0u22ub0u2!1

1

2m
¹–@~ ua0u21ub0u2!¹S#50, ~18!

which ensures that the normalization condition

E d3x~ ua0u22ub0u2!51

is consistent with the classical dynamics and represents
classical limit of the continuity equation following from Eq
~18! @9#. The zeroth-order equation has a nontrivial soluti
only if the determinant condition

S ]S

]t D
2

5eHF
2 2K2 ~19!

is satisfied, which, observing our sign convention for]S/]t,
gives the time-dependent Hamilton-Jacobi equation

]S~x,t !

]t
1HS x,

]S

]xD50 ~20!

with the classical Hamiltonian

H~x,p!5AeHF
2 ~x,p!2K~x!2. ~21!
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The time-independent Hamilton Jacobi equation results fr
the separation

S~x,t !5S~x!2Et ~22!

and reads

HS x,
]S

]xD5E. ~23!

If we can neglect the 0(\) correctionsa1,b1 in Eq. ~17! we
obtain from the first-order equation separate conserva
laws for the quasiparticle and anti-quasiparticle densities

]

]t
ua0~x,t !u21

1

2m
¹–@ ua0~x,t !u2¹S#50,

~24!

]

]t
ub0~x,t !u22

1

2m
¹–@ ub0~x,t !u2¹S#50.

The classical antiparticle and particle dynamics are there
just the time reversal of each other, and the densities of b
components are separately conserved.

In the following sections we analyze the classical dyna
ics described by the Hamiltonian~21!.

II. CLASSICAL QUASIPARTICLE DYNAMICS

For the case of isotropic harmonic traps angular mom
tum is conserved and the quasiparticle dynamics is integr
and separable in spherical coordinates. This case is discu
in @9#, where it is made the basis of a semiclassical qua
zation procedure. Therefore, in the following we concentr
on the analysis of the case of anisotropic harmonic trap
the limit where the Thomas-Fermi approximation applies.
the present section we shall assume cylindrical symmetr
the trap

U~x!5
mv0

2

2
~x21y2!1

mvz
2

2
z2. ~25!

In the experiment@1# vz.v0, namely, (vz /v0)2'8. As
the parameter denoting the anisotropy of the potential
introduce e by e2512(v0 /vz)

2, which is the numerical
eccentricity of the Thomas-Fermi surfacem5U(x), a rota-
tional symmetric ellipsoid. This two-dimensional surface
the boundary of the condensate.

Our problem has a characteristic energy, namely,
chemical potential. Thus, the second relevant paramete
the classical motion is the ratioE/m. We note that measuring
the energy in units ofm, coordinates, momenta, and time
units of

r 05A 2m

mv0
2
, p05A2mm, t05v0

21 , ~26!

respectively, the dimensionless Hamiltonian can be put
form, that depends only on the anisotropy parametere. This
shows that condensates with the same anisotropy but
m
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different chemical potential behave similarly in the classi
description, if the physical quantities are scaled appro
ately.

In the isotropic casee50 the classical dynamics are com
pletely integrable. As three independent constants of mo
we can choose the energyE, the modulus of the angula
momentum, and itsz componentLz . As we keep rotational
symmetry around thez axis in the anisotropic caseeÞ0 the
Lz and of course the energy are still conserved quantit
whereas the total angular momentum considered here i
longer a constant of motion. Thus, in the following we sh
investigate the classical behavior of this three degrees
freedom system depending on the two constants of motioE
andLz , and we address the question wether the dynamics
integrable or chaotic.

Let us introduce the usual cylindrical coordinat
r5Ax21y2, z and f. Because of the rotational symmetr
around thez axes the anglef is a cyclic variable. In cylin-
drical variables the Hamiltonian has merely two degrees
freedomr andz, Lz just enters as a parameter. Certain co
ditions have to be satisfied as can be seen from the Ha
tonian in the region outside the condensate. ForE.m the
condition E1m.v0Lz has to be guaranteed, forE,m we
must haveE.(v0Lz)

2/4m.
The dynamics of this two-dimensional system we c

visualize by Poincare´ cuts; see Fig. 1. For different ene
gies we observe different dynamical behavior. ForE
.~v0Lz)

2/4m.m two different kinds of trajectories can oc
cur typically. If the repulsive effective potential inr direc-
tion due to the angular momentumLz is strong enough, the
particle cannot enter the condensate and is only moving
the harmonic potential of the external trap. The motion in
anisotropic harmonic potential is completely integrable, a
third constant of motion we can choose the energy in thz
degree of freedomEz5pz

2/2m1mvzz
2/2. These trajectories

which are not perturbed by the condensate, can be seen a
integrable tori around the fixed point of the Poincare´ map in
the center of Fig. 1~a!, which is the periodic orbit moving
only in the z and f directions. If the particle enters th
condensate,Ez is no longer a conserved quantity. Neverth
less for energies large compared to the chemical poten
also those trajectories are still quite similar to unperturb
motion. Typically the trajectories are confined to thin st
chastic layers separated by each other by integrable tori
Arnold diffusion occurs, as usual for a system of two, n
three, degrees of freedom. At high energies the system
haves quasiintegrably. The influence of the condensate
be taken as a small perturbation to the motion in the exte
potential.

For energies in the range 10.E/m.0.1 @Fig. 1~b!# we
typically observe a mixed phase space. The fixed poin
now inside the condensate, but does not lose its stability.
detailed structure depends on the parameters chosen. Alr
for small anisotropy (e250.2) a relevant part of phase spa
can be chaotic. This shows that for energies of the orde
the chemical potential the isotropic case with its integra
dynamics is an exceptional rather than a typical situation
E,m all trajectories move inside and outside the cond
sate.
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For energies small compared to the chemical poten
E,0.1m @Fig. 1~c!# the chaotic part of phase space decrea
again and is restricted to a thin layer separating and
rounding two regular islands, corresponding to two sta
fixed points separated by an unstable one. Most orbits s
to lie on integrable tori. This suggests that the system ha
integrable regime in the limit of small energies.

This limit corresponds to the hydrodynamical regime@10#
investigated in several contexts. In a bulk case, when the
no external potentialU(x) the lowest-lying excitations are
phonons with linear wave-number dependence.

Numerically we have found that tending with the ener
to zero, keepingm fixed the range of the classical motio
outside the condensate for trajectories starting inside is
ting smaller and smaller and in the limit the motion is co
fined to the region inside of the Thomas-Fermi surface. St
ing trajectories from the same point inside the condens
under the same direction and changing only the modulu
Cartesian momentum we have found that they differ fr
each other only in a thin region near the boundary wh
width scales with the energy. Lowering the modulus of t
initial momentum to zero they tend to a well-defined limitin
trajectory. This can be clearly seen in Fig. 2. In the isotro
case this is the limitE/m,v0L/m→0, keeping the ratioL/E
fixed. In the following section this ‘‘hydrodynamic regime

FIG. 1. Poincare´ sections of the dynamics of the Bogoliubo
Hamiltonian ~21! in cylindrical coordinates for the different ene
gies~from top to bottom! E/m540 ~a!, 1 ~b!, and 0.02~c!. The cut
is taken atz50 and diplayed in the variablesr,pr in units of
(2m/mv0

2)1/2, (2mm)1/2, respectively. The anisotropy is chosen
vz /v05A8, the angular momentum was fixed asv0Lz /E50.2.
al
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will be studied in detail for anisotropic traps. However,
will turn out that in traps there exists a second low-ene
regime, which for isotropic traps is defined byE/m→0 with
E2(v0L)2/4m!E, where the quasiparticles are singl
particle-like excitations confined to a narrow layer arou
the surface of the condensate. This low-energy Hartree-F
regime will be discussed in detail in Sec. IV, also for anis
tropic traps, together with the usual high-energy (E@m)
Hartree-Fock regime.

III. QUASIPARTICLE DYNAMICS
IN THE HYDRODYNAMIC REGIME

A. Hydrodynamic Hamiltonian

If there exist limiting trajectories for different initial con
ditions there should exist limiting dynamics described
some limiting Hamilton function. Inside the condensate t
Bogoliubov Hamiltonian can be written as

H~p,x!5Aekin~p!@ekin~p!12K~x!#, ~27!

whereekin(p)5p2/2m. For small energiesK(x) is much big-
ger thanekin everywhere except in a small region near t
boundary. This suggests that the approximant of the Ham
ton function ~27! can be obtained by neglecting the kinet
energy square

Hhyd~p,x!5A2ekin~p!K~x! ~28!

for describing the motion in the hydrodynamical regim
This approximate Hamiltonian is in accordance with the b
case, whenK(x)5m should be taken in Eq.~28! in order to
obtain the linear phonon spectra from the Bogoliubov disp
sion relation.

This Hamiltonian is meaningful only inside the conde
sate and only near the boundary of the condensate the
Hamiltonian~27! differs from this approximate one. On th
Thomas-Fermi surface the full Hamilton function gives de
nite values for the Cartesian momenta, whereas accordin
Hhyd they become infinite. Following the trajectories ofHhyd
in the isotropic case the angular momentum conserva
requires that the tangential component of the momentum

FIG. 2. Trajectories in coordinate space of the Bogoliubov d
namics of Eq.~21! starting from the same point and in the sam
direction for different energiesE/m50.1 ~dashed line!, 0.01 ~dot-
ted!, and 1026 ~solid!.
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mains finite even though the absolute value of the mom
tum diverges likeK21/2. Therefore each trajectory hits th
boundary orthogonally and is reflected back orthogona
without change in the tangential component of the mom
tum. As this local rule is independent of the global symme
of the trap potential it must hold also in the anisotropic ca

The Hamiltonian~28! has some further unusual feature
The first observation is that it is not of the usual form but
a homogeneous first-order function of the momenta. T
strong consequence is that with the same initial va
x(t50) and with the same direction of the initial momen
the orbitx(t) is the same, independent of the energy. Seco
a constraint follows from the canonical equations of motio
namely,

mẋ–ẋ5m2U~x!, ~29!

relating the velocities and the coordinates. Thus one can
choose the initial point and the velocity independently. F
thermore, due to this constraint one cannot express the t
velocities in terms of the momenta; i.e., one cannot do
inverse Legendre transformation in the usual way to de
the Lagrangian. From Eq.~29! it is clearly seen that despit
the divergence of momenta on the boundary of the cond
sate the velocities even tend to zero here.

B. Isotropic case

In the isotropic trap case (v05vx5vy5vz) the Poisson
bracket ofHhyd(p,x) @See Eq.~28!# and the angular momen
tum vectorL is zero, which means that any components oL
is a conserved quantity. Let us choose our coordinate sys
in such a way that thez axis is parallel withL. In such a
frameLx5Ly50, which shows that the motion in the pha
space stays on the hypersurfacez5pz50. By this choice of
the coordinates one can eliminate one degrees of free
from the Hamiltonian~28!, which has then the form

Hhyd~p,x!5Am

m
~px

21py
2!S 12

x21y2

r TF
2 D , ~30!

where r TF denotes the radial size of the condensate,
Thomas-Fermi radiusr TF5A2m/mv0

2. Let us now consider
the transformation

x5
r TF

~ I 11I 2!
~ I 1cosf11I 2cosf2!,

y5
r TF

~ I 11I 2!
~ I 1sinf12I 2sinf2!,

~31!

px52
~ I 11I 2!

r TF@12cos~f11f2!#
~sinf11sinf2!,

py5
~ I 11I 2!

r TF@12cos~f11f2!#
~cosf12cosf2!,

with positiveI 1 andI 2. It is straightforward to check that th
Poisson brackets betweenI 1 ,I 2 ,f1 ,f2 are canonical, thus
n-

y
-

y
.

.

e
e

d,
,

ot
-
ee
e
e

n-

m

m

e

the transformation~31! is a canonical transformation. Inser
ing Eq. ~31! into Eq. ~30! one gets

E5H~ I 1 ,I 2 ,f1 ,f2!5v0A2I 1I 2, ~32!

i.e., I 1 and I 2 are the action andf1 andf2 the angle coor-
dinates of the Hamiltonian~30!. Similarly to the harmonic
oscillator case this Hamiltonian is a homogeneous first-or
function of the action coordinates.

The Hamilton equations in the new coordinates are

İ 150, ḟ15
v0

A2
AI 2

I 1
5V1 ,

~33!

İ 250, ḟ25
v0

A2
AI 1

I 2
5V2 .

Using the above transformation, it is easy to show that
angular mumentum is

Lz5xpy2ypx5I 12I 2 . ~34!

A nice geometrical meaning forx(t) can be given. Let us
consider a circle of radiusb, in which a smaller circle of
radiusa rolls. The motion of a point on the perimeter of th
smaller circle in Cartesian coordinates is described by
equations

x5~b2a!cosf11a cosf2 ,
~35!

y5~b2a!sinf12a sinf2 ,

wheref1 andf2 are linear functions of the time; see Fig.
Due to the perfect rolling condition the angular velocities a
not independent:

05~b2a!ḟ12aḟ2. ~36!

Comparing the parametric form of the hypocycloid~35! with
~31! it is obvious thatx(t) fulfills Eqs. ~35! and the con-
straint~36!, if b5r TF , a5r TFI 2 /(I 11I 2), and if ḟ1, ḟ2 are
chosen as in Eq.~33!.

The radial distance from the origin can be expressed

FIG. 3. Coordinates for the hypocycloid~35!.
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r 5Ax21y25
r TF

I 11I 2
AI 1

21I 2
212I 1I 2cos~f11f2!.

~37!

It is obvious that it is periodic in (f11f2), its period can be
calculated from 2p5(V11V2)Tr , which yields

Tr5
2p

v0

E

A2E21~Lzv0!2
. ~38!

The Hamiltonian~30! can be written in polar coordinate
r , f as well.f is a cyclic variable, its conjugate momentu
I f5uLzu is a conserved quantity. However, the moment
pr5(xpx1ypy)/r conjugated tor is not conserved. To ex
press the Hamiltonian~30! in the action variablesI r and I f
let us use the fact that 2pI r5rprdr and that during one
period of the radial motionf11f2 changes by 2p. Using
the above formulas one gets

I r5min~ I 1 ,I 2!,
~39!

I f5uI 12I 2u,

which leads by Eq.~32! to

E5Hhyd~ I r ,I f!5v0A2~ I r1I f!I r . ~40!

If one quantizes semiclassically the Hamiltonian~40! one
should take into account that in the radial direction there
two turning points, thus,I r should be replaced by\(n11/2),
and by the usual procedure for spherically symmetric pr
lems I f by \( l 11/2) (l and n are non-negative integers!.
The semiclassical quantization leads by the above repl
ment rules to

En,l5\v0A2n212nl13n1 l 11, ~41!

which is almost that of the result of Stringari@10#, except the
1 under the square root, and agrees with that of the m
elaborate semiclassical quantization in the hydrodynam
limit @9#.
e

-

e-

re
al

C. Anisotropic case with cylindrical symmetry

The case of a trap with axial or cylindrical symmetry
the experimentally most relevant one. In Poincare´ cuts of the
full dynamics we have seen regular behavior for small en
gies. Therefore one can expect that the classical mo
given by the approximate Hamiltonian is fully integrable. T
show this let us introduce new coordinates, namely, the
lindrical elliptical coordinatesj,h given by

r5sA~j211!~12h2!, z5sjh, ~42!

which are orthogonal coordinates. Surfaces of constantj are
confocal ellipsoids with foci at a distances in r direction,
surfaces of constanth are confocal hyperboloids with th
same foci. Fors, the parameter of the transformatio
we take the foci of the Thomas-Fermi ellipsoid,s5e~2m/
mv0

2)1/2 for vz.v0. Forv0.vz one has to changej211 to
j221 and takes5e(2m/mvz

2)1/2. In the following we con-
sider only the first case~42!, in the second case the analys
proceeds similarly.j can take any value in the rang
@0,(1/e221)1/2#. The limiting casej5(1/e221)1/2 describes
the Thomas-Fermi ellipsoid.h can be in the range@21,1#.
Making the point transformation from cylindrical to cylindr
cal elliptical coordinates the momenta transform as

pr5
1

s

1

j21h2
A~j211!~12h2!~jpj2hph!,

~43!

pz5
1

s

1

j21h2
@~j211!hpj1~12h2!jph#.

The Hamiltonian~28! in cylindrical elliptical coordinates is
Hhyd
2 5

vz
2

2e2

@12e2~j211!#@12e2~12h2!#

j21h2 F ~j211!pj
21~12h2!ph

21S 1

12h2
2

1

j211
D pf

2 G . ~44!

Taking the energyE and pf5Lz as constants one can write down the Hamilton-Jacobi equation forj and h, which is
separable in these coordinates. Thus the problem is fully integrable. Introducing a separation constantB.0 the two separated
Hamilton-Jacobi equations are

~j211!S dSj

dj D 2

2
Lz

2

j211
2

2E2

vz
2

1

12e2~j211!
52B,

~45!

~12h2!S dSh

dh D 2

1
Lz

2

12h2
1

2E2

vz
2

1

12e2~12h2!
5B.

Combining these two equations one gets for the separation constantB the phase-space function
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B5
1

e2

1

j21h2F @12e2~j211!#~j211!pj
21@12e2~12h2!#~12h2!ph

21S 1

12h2
2

1

j211
D pf

2 G
5

s2

e2
@px

21py
21~12e2!pz

2#2~xpx1ypy1zpz!
2 ~46!
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in elliptical and Cartesian coordinates, respectively. This
the third independent constant of motion in addition to
energyE and Lz . This can be checked directly, using th
equations of motion for the time derivatives ofB. Similarly
to the isotropic case conservation ofE and B requires that
trajectories hit the boundary orthogonally, because the
menta there diverge. In the isotropic limits→0 the elliptical
coordinates become singular, and therefore it is more inst
tive to see this limit in Cartesian coordinates. In this lim
s/e is the Thomas-Fermi radius, andB has the simple mean
ing

B5
2E2

v0
2 1L2. ~47!

The existence of the three independent constants of
tion E, Lz , andB explains the integrable motion generat
by Hhyd and therefore the almost integrable situation fou
numerically in the motion generated by the total Hamilton
~27! in the small energy and small angular momentum
gion. We notice that two kinds of trajectories can occur
this regime. From Eq.~45! we can determine the turnin
points inj andh. In thej direction all the trajectories reac
the Thomas-Fermi surface and are reflected back there. I
condition

B.B* 5
2E2

v0
2 1Lz

2 ~48!

is satisfied, there is an inner turning point in thej direction
andh takes a range@2h max,h max#. These trajectories cor
respond to the hypocycloids of the isotropic case; as an
ample see Fig. 4~a!. For B,B* , however, there are furthe
turning points in theh direction, the motion being confine
between two hyperbolas withj values extending to zero
which can be seen in Fig. 4~b!. This kind of trajectory only
occurs in the anisotropic system.B5B* is the separatrix
between these two types of motion. As usual this separa
is structurally unstable against small nonintegrable pertu
tions of the integrable motion in the hydrodynamic limit.
plays a crucial role for the appearance of chaos in the Bo
liubov Hamiltonian as the energy is increased from valu
very small compared tom, because it is destroyed and r
placed by a chaotic separatrix layer, which is very narrow
first, but grows in width as the energy is increased. In F
1~c! two regular islands corresponding to the two kinds
trajectories and the chaotic separatrix layer between th
can be seen.
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D. Completely anisotropic case

The analysis of the preceding section can be general
to the case of a completely anisotropic harmonic trap. T
formulas become rather lengthy and we just indicate the
sential steps.

The trap potential is written in the form

U~x!5mS x2

a2
1

y2

b2
1

z2

c2D ~49!

with

a252m/mvx
2 ~and cyclic!. ~50!

We may assumea.b.c without restriction of generality.
Then new elliptic coordinatesj, h, z are introduced via

x56A~a21j!~a21h!~a21z!

~a22b2!~a22c2!
~and cyclic! ~51!

after which the potential reads

U~j,h,z!5mS 11
jhz

a2b2c2D . ~52!

The range ofj,h,z is 0>j>2c2>h>2b2>j>2a2. The
old canonical momentapx , py , pz are given in terms of the
new ones by

FIG. 4. Trajectory of the hydrodynamic Hamiltonian~28! for
B.B* ~a! and for B,B* ~b!. z,r are plotted in units of
(2m/mv0

2)1/2.
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px5A~a21j!~a21h!~a21z!

~a22b2!~a22c2!
F2pj

~b21j!~c21j!

~j2h!~j2z!

12ph

~b21h!~c21h!

~h2z!~h2j!
12pz

~bI1z!~c21z!

~z2j!~z2h! G ~53!

~and cyclic!.

Then the Hamiltonian in the hydrodynamic limit can be wr
ten in terms of the new canonical coordinates and mome
The Hamilton-Jacobi equation can be written in the nea
separated form

05~h2z!F ~a21j!~b21j!~c21j!S ]S

]j D 2

1
E2m

4m

a2b2c2

j G
1 ~cyclic!. ~54!

In fact complete separation is achieved, because this e
tion is satisfied only by putting the angular brackets equa
A1Bj ~and cyclic!,

F ~a21j!~b21j!~c21j!pj
21

E2m

4m

a2b2c2

j G5
1

4
~A1Bj!

~55!

~and cyclic!,

whereA and B are two separation constants, which are
same for all three equations related by cyclic permutati
From these three equationsA and B can be eliminated by
multiplying the first with (h2z), the second with (z2j),
the third with (j2h), and adding them. This, of cours
gives back Eq.~54!, which definesE5Hhyd in terms of the
canonical variables. However, solving the three equati
instead forA by eliminatingB andE, and then forB elimi-
natingA andE we obtain two conserved phase-space fu
tions. Translated back to Cartesian coordinates these re

A52$@~b21c2!~x22a2!1a2~y21z2!#px
212a2yzpypz%

1 ~cyclic) ~56!

and

B52$~x22a2!px
212yzpypz%1 ~cyclic). ~57!

The conserved functionB is a simple generalization of th
conservation law we already found in the case with cylind
cal symmetry, whereasA corresponds toLz

2 . By a straight-
forward but lengthy calculation it can be checked that
Poisson brackets$Hhyd,A%, $Hhyd,B%, $A,B% all vanish.
Therefore, the dynamics governed byHhyd is still completely
integrable even in this completely anisotropic case.
ta.
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IV. THE HARTREE-FOCK DYNAMICS

Another limiting case of the Bogoliubov description o
quasiparticles~9! consists in neglecting the hole compone
Vj (x) in the field operatorŵ(x). The remaining componen
U j (x) is then described by the Hartree-Fock Hamiltoni
~10!. The interaction between particles is taken into acco
by the potentialK(x), describing the mean interaction of on
particle with all the other particles. Restricting ourselves
T50 all those other particles are in the condensate. In
homogeneous systems this approach simply results in a
of the dispersion relation of noninteracting particles by t
chemical potentialm. For spatially homogeneous Bose co
densates and also Bose condensates in traps such a de
tion can be applied for energies larger than the mean in
action energy given bym. However, in traps there is even
regime for energies smaller thanm where the Hartree-Fock
approximation applies@11#, namely, in the case when th
kinetic energyekin(p) is large compared to thelocal mean
interaction energyK(x). This can be satisfied in a laye
around the surface of the Bose condensate whereK(x) is
very small.

Using the Thomas-Fermi approximation for the wa
function ~5! the Bogoliubov Hamiltonian and the Hartree
Fock Hamiltonian coincide outside the condensate. Ins
the condensate, if the kinetic energyekin(p) is much larger
than the potential termK(x), an expansion of the Bogoliu
bov Hamiltonian~27! to first order inK(x) just gives the
Hartree-Fock Hamiltonian

HHF5
p2

2m
1uU~x!2mu, ~58!

which is therefore valid, forekin@K(x), inside and outside
the condensate.

We now want to investigate the classical dynamics of t
Hartree-Fock Hamiltonian. The isotropic problem is com
pletely integrable again. As constants of motion we can t
the energy, the modulus, and thez component of the angula
momentum. We immediately turn to the classical dynam
of the anisotropic, but axially symmetric case in the tr
potential~25! and consider it as a system with two degrees
freedom. The conserved angular momentum around the s
metry axesLz enters only as a parameter. Again we inves
gate the dynamics by Poincare´ cuts, now taken on the
Thomas-Fermi surfacej5(1/e221)1/2 and parametrized by
the second elliptical coordinateh and its conjugate momen
tum ph . For energies much larger than the chemical pot
tial the interaction with the condensate is only a small p
turbation to the integrable motion in the harmonic trap a
we observe quasiregular behavior. In this limit the Bogol
bov description of quasiparticles reduces to the Hartree-F
description, the conditionekin(p)@K(x) being fulfilled for
all trajectories, and the classical motions generated by b
Hamiltonians are essentially the same. Trajectories not en
ing the condensate are even identical, since here the
descriptions fully coincide.

For energies in the approximate range 10.E/m.0.1 we
observe a mixed phase space again@see Fig. 5~a!#. A regular
island around the periodic orbitz505pz is surrounded by a
chaotic sea. ForE.m the structure in phase space is simil



m
th
o
m
op

ti

th
ne

e

in
in

-
the

on.

56 4887CLASSICAL QUASIPARTICLE DYNAMICS IN TRAPPED . . .
to the Bogoliubov dynamics, but differing in detail. Fro
this we can conclude that the stochasticity observed for
Bogoliubov Hamiltonian in Fig. 1 is not a consequence
the coupled two component structure of the underlying se
classical description, but is simply caused by the anisotr
of the external potential.

For energies much smaller than the chemical poten
E,0.1m we find regular behavior again, see Fig. 5~b!. Par-
ticles are confined to the sharp potential channel near
Thomas-Fermi surface. The width of this potential chan
scales asE/m. Roughly the particles spend the same tim
he
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outside and inside the condensate. We look at the problem
elliptical coordinates~42!, and choose for concreteness aga
the casevz.v0. The oscillations inj orthogonal to the
Thomas-Fermi surfacej5(1/e221)1/2 are much faster than
the oscillations inh direction along the channel. This sug
gests to make an adiabatic approximation in which
action-integralI j5(2p)21rpjdj over one full cycle inj at
fixed h, ph emerges as an adiabatic constant for the moti
Evaluating this adiabatic invariant forE/m!1 we get as a
function of h, ph:
I j5
4m

3pvz

1

A12e2~12h2!
F E

m
2

12h2

12e2~12h2!
S v0ph

2m D 2

2
1

12h2S v0Lz

2m D 2G 3/2

. ~59!
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This new adiabatically conserved quantity that emerges
the low-energy limit of the Hartree-Fock dynamics is t
cause of integrability in that limit.

Solving this equation for the energy we get the Ham
tonian of the slowh dynamics, valid for low energies. From
Eq. ~59! we see that the turning points inh are independen
of the energy if we keepLz /E2 andI j /E3/2 constant. In Fig.
5~b! we compare a Poincare´ section inh and ph of the dy-
namics of the Hartree-Fock Hamiltonian with trajectories
the slowh dynamics for different values ofI j . Both curves
agree very well. For smaller energiesE<0.01m no differ-
ence between both curves can be noticed.

Now we have to ask ourselves, which of the trajector
displayed in Fig. 5~b! are indeed good approximations
trajectories described by the Bogoliubov Hamiltonian. Let
look first at the isotropic case, where the motion separate
radial and angular motion. The kinetic energy in the angu
degree of freedom is roughlyL2/2mr2'(v0L)2/4m. Since
for low energiesr deviates only very little from the Thomas
Fermi radius this rotational energy is almost conserved.
remaining energy is stored in the radial degree of freed
and only this energy can be transformed to potential ene
So the condition that the Hartree-Fock dynamics and
Bogoliubov dynamics agree is in this case

E2
~v0L !2

4m
!E. ~60!

For the anistropic case we can formulate an analogous c
rion: only if most of the energy is kinetic energy of th
motion parallel to the boundary, which cannot be tra
formed into potential energy, does the approximation of
Bogoliubov dynamics by the Hartree-Fock dynamics wo
well. For I j50 no motion takes place orthogonal to the s
face,j being constant, and all the energy is stored in mot
parallel to the surface. This corresponds to the outer o
forming the boundary of the cut in Fig. 5. The maximal val
of I j for fixed Lz is given by settingh5ph50 in Eq. ~59!.
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This trajectory corresponds to the origin of Fig. 5, whe
motion takes place only inj andf directions. Generally the
two dynamics differ in this case, unless most of the energ
stored in angular motion of the cyclic variablef, which is
also motion along the Thomas-Fermi surface. The maxim
value of I j for a given energy is found by neglecting bo
angular motions inh and inf in Eq. ~59!, by puttingph ,Lz
equal to zero there. As a condition that only a small fract
of energy is stored in the motion orthogonal to the surfa
and hence that both motions from the Bogoliubov and fr
the Hartree-Fock Hamiltonian agree, we can thus state
following:

I j!I j
max5

4m

3pv0
S E

m D 3/2

. ~61!

In Fig. 6 we compare Poincare´ cuts of the Bogoliubov dy-
namics with the one-degree-of-freedom motion obtain
from Eq. ~59!, representing the integrable Hartree-Fock d
namics for small energies. We see that indeed both dynam
agree well for small values ofI j near the boundary of the
cut. ForLz chosen large, see Fig. 6~a!, even for values ofI j

close to the maximal one, both dynamics inh agree qualita-
tively. However, the different behavior in the variablej or-
thogonal to the surface can, of course, not be seen in this
at constantj. For smaller values ofLz , see Fig. 6~b!, we can
distinguish two regions. Near the boundary, for smallI j , we
see the Hartree-Fock limit of the Bogoliubov dynamic
where both dynamics agree. The inner region correspond
the hydrodynamic limit of the Bogoliubov dynamics an
cannot be compared with the Hartree-Fock dynamics. T
two kinds of closed tori visible here are the two kinds
hydrodynamic trajectories discussed at the end of Sec. II

V. CONCLUSIONS

The quasiparticle excitations are the basic constituent
the dynamical and thermodynamical properties of Bose c
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densates. In the present paper we have investigated thei
namics for Bose condensates of atomic gases in traps in
classical limit. The two limiting types of excitations, colle
tive modes, and quasiparticle excitations consisting es
tially of single atoms moving in a mean field correspond,
the classical limit, to particles and antiparticles of zero ma
moving ‘‘relativistically’’ with the speed of sound, and t
single atoms moving in the potential created by the trap
the Hartree-Fock potential energy of all other atoms. In s
tially homogeneous~untrapped! condensates these two typ
of excitation strongly differ in energyE, the collective
modes occurring atE!m, the single-particle modes a
E@m. In the trapped condensates both types of excitati
coexist, at least classically, at small energiesE!m, and are
instead spatially separated. The collective modes live ins
the condensate, the single-particle modes at small energi
a narrow layer at the border.

One principal result we have obtained here is that
classical dynamics of both the collective modes and
single-particle modes become integrable in the lim
E/m!1. This has important consequences for the quan
dynamics as well: the integrability can be used there to se
rate the Schro¨dinger equation and to obtain not only the low
lying levels of the collective modes@12,13#, but also of the
single-particle modes. After quantization an energy gap
appears separating the collective modes with typical ener
\v0 and the single-particle modes whose lowest levels h
energies of the order (\v0)2/3m1/3 due to their close confine
ment in the normal direction to the surface of the condens
However, this energy difference is much smaller than, a
has a different origin from the energy difference betwe
both types of modes in homogeneous systems.

Another principal result obtained here is thenonintegra-

FIG. 5. Poincare´ section of the dynamics of the Hartree-Fo
Hamiltonian ~58! in elliptical coordinates~42! for the energy
E/m51 ~a! and E/m50.06 ~b!. The cut is taken on the Thomas
Fermi surface in the variablesh,ph for vz /v05A8. The angular
momentum is given by (v0Lz)

2/2mE51. Solid lines in ~b! are
trajectories of the Hamiltonian in (h,ph) following from Eq. ~59!.
dy-
he
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bilty of the classical dynamics of the quasiparticle excitatio
at intermediate energiesE.m. This applies to both the full
Bogoliubov dynamics and the limiting Hartree-Fock dyna
ics approximating it wherever the kinetic energy is lar
compared to thelocal mean interaction energy. Again thi
nonintegrability has a direct consequence also for the qu
tum dynamics, because it implies avoided crossings betw
quasiparticle levels as functions of the dimensionless in
action strengthN0a/d0 with d05A\/mv0, if the energy and
m are comparable. Such avoided crossings have indeed
seen in numerically generated plots@14#.

Our results not only explain these avoided crossings, t
also open the door to an intriguing wider perspective, qu
tum chaos of the quasiparticle dynamics in the Bose cond
sates of atoms in anisotropic traps.
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FIG. 6. Poincare´ sections of the dynamics of the Bogoliubo
Hamiltonian ~21! in elliptical coordinates~42! for the energies
E/m50.1 with (v0Lz)

2/2mE51 ~a! and E/m50.01 with
(v0Lz)

2/2mE50.02 ~b! on the Thomas-Fermi surface inh,ph for
vz /v05A8. Solid lines are trajectories of the Hamiltonian
(h,ph) following from Eq. ~59!.
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