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Superfluid state of atomic °Li in a magnetic trap
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We report on a study of the superfluid state of spin-polarized atdinicconfined in a magnetic trap.
Density profiles of this degenerate Fermi gas and the spatial distribution of the BCS order parameter are
calculated in the local-density approximation. The critical temperature is determined as a function of the
number of particles in the trap. Furthermore, we consider the mechanical stability of an interacting two-
component Fermi gas, in the case of both attractive and repulsive interatomic interactions. For spin-polarized
SLi we also calculate the decay rate of the gas and show that within the mechanically stable regime of phase
space, the lifetime is long enough to perform experiments on the gas below and above the critical temperature
if a bias magnetic field of abo® T is applied. Moreover, we propose that a measurement of the decay rate of
the system might signal the presence of the superfluid $&1850-294{@7)06512-9

PACS numbe(s): 03.75.Fi. 67.40-w, 32.80.Pj, 42.50.Vk

I. INTRODUCTION trap just one low-field seeking hyperfine state, and for the
sake of stability of the gas, the doubly polarized st
One of the most important objectives in the study of dilute=|mg=1/2m;=1) is most suitable. However, due to the
gases has been the achievement of Bose-Einstein condenguli exclusion principle, two fermions in the same hyperfine
tion (BEC) in bosonic systems. Indeed, decades of experistate can interact with each other at bestpiwaves, and if
mental research finally led two years ago to the observatiothis interaction is effectively attractive, the onset of the for-
of BEC in three different systems of alkali-metal ga§&b,  mation of Cooper pairs occurs at a temperature
’Li, and %*Na [1-3]. This success has triggered a large
amount of interest in the field of ultracold atomic gases. Al- €c ™
though the study of properties of these degenerate atomic Tc=k—ex;{ B —3]
S . B 2(ke|al)
Bose gases is vigorously being pursued at the moment, trap-
ping and cooling of Fermi gases might also provide new anqyhere e =#%2k2/2m is the Fermi energy of the atomic gas
exciting physics. Indeed, in a previous theoretical study Weynq a the p-wave scattering length. FofLi this p-wave
showed that a gas of spin-polarized atorfii¢ becomes su-  scattering length of the triplet potential is approximately
perfluid at densities and temperatures comparable with those 355 wherea, is the Bohr radius, ank-a<1 in general.
at which the Bose-Einstein experiments are perforfldd  As a result, the critical temperature for such a doubly spin-
This superfluid phase transition, which is similar to the poarized®Li gas is extremely low. At present, a reasonable

BCS transition in a superconductor, occurs at such high teny;ymper for the density of trapped atomic gases i€ ¢t 3,
peratures due to the fact théti has an anomalously large leading toer /kg=600 nK andkg|a|=7x10"3. The corre-

and negative(triplet) s-wave scattering lengtia [5]. This  gponding critical temperature is clearly unattainable.
scattering length is a measure for the interatomic interactions

and its sign implies that this interaction is effectively attrac- 20 , '
tive, which is a first requirement for a BCS transition to I6)
occur. For other atomic species, the transition temperature is

in general very low because the scattering length is of the 10} Isy
order of the range of the interactiofy and the diluteness of 7

the gas requires that the Fermi wave numkeg1/r,. So,

for example, in the case of deuterium, it was concluded al-
ready some time ago that the observation of a BCS transition
is experimentally impossiblgs].

The SLi atom has nuclear spin=1 and electron spirs -1.0
=1/2. Consequently, the atom has six hyperfine stitps k)
|6), for which the level splitting in a magnetic field is shown 1)
in Fig. 1. The upper three leveld)—|6) can be trapped in a 20,0 05 o s
static magnetic trap, whereas the lowest three hyperfine lev- nB/a,
els prefer high magnetic fields and are expelled from a
magnetic-field minimum. FIG. 1. Energy of the six hyperfine states &fi in units of the

The simplest way to create a degenerate Fermi gas is teyperfine constard,;, as a function of the magnetic field.
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In the case that more than one state is trapped, Baran@atomic interaction is indeed characterized by thave
etal. [7] predicted a considerable increase in the abovescattering length of the triplet potentisk(r) and it is ex-
(p-wave critical temperature as a result of the fact that twoactly this number that is anomalously large and negative in
atoms in the same spin state can now also attract each othiére case ofPLi.

through the exchange of a phonédensity fluctuatiop in The aim of the present paper is threefold. First, the homo-
another hyperfine state. It was found that in this case thgeneous calculation of R§#] needs some improvement due
transition temperature to the fact that the interatomic interaction potential fti

has recently been determined more accurdtg)yThe most

T ziexp‘—B( ™ 2] up-to-date value of thes-wave scattering length ia=
¢ kg 2kelal) |’ — 216, whereag is the Bohr radius. This change &
affects not only the critical temperature but also the decay
wherea now corresponds to thewave scattering length for rates of the gas. Second, we want to take the effect of the
collisions between the two hyperfine states. Nevertheless, ugshomogeneity of the trapped gas into account. Third, we
ing again a density of 8 cm~2 for each spin state and the look for a signature that signals the presence of the super-
valuea= — 2160, for ®Li [5], we find thatkc|a|=0.43 and  fluid phase in the gas.
it is easily verified that also in this case the critical tempera- The paper is organized as follows. In Sec. Il A we con-
ture is out of reach experimentally. sider in some detail the decay processes limiting the lifetime
Therefore, the most promising approach is to consider af the gas. Subsequently, we briefly summarize the theory
Cooper pair of two atoms in different hyperfine states sincdor the homogeneous Fermi gas in Sec. Il B and improve the

thens-wave pairing is allowed. In this ca$8] results obtained earlier for the critical temperature, using the
most up-to-date interatomic potential féki. In Sec. Il C we
€ T consider the mechanical stability of a weakly interacting
Te= k—Bex - m ' Fermi gas. In particular, we also consider a gas with positive

s-wave scattering length and show that in the unstable part of
resulting in a much higher critical temperature than in thethe phase diagram, a spinodal decomposition can restore the
previous two cases. In particular, we envision to télp  Stability of the gas in this case.
atoms in the statg$) and|5). Experimentally, this might be ~ In future experiments the atoms are likely to be trapped in
achieved most easily by first trapping only one hyperfinean external potential that roughly has the shape of an isotro-
level and then applying aoisyrf pulse to create an incoher- Pic harmonic oscillatoN(r) = 3mw?r? and causes the gas
ent mixture of atoms occupying these two hyperfine levelsloud to be inhomogeneous. Therefore, Sec. Ill of this paper
[9]. Note that this situation has in fact already been realizeds devoted to the study of an inhomogeneous two-component
in recent experiments witlf’Rb atoms, although using a Fermi gas at and below the critical temperature and in par-
different techniqué10]. ticular we will again concentrate ofLi. The numerical cal-

In a recent work Modawi and Leggett propose to tfap  culations will be performed in the local-density approxima-
atoms in three instead of two hyperfine stdtes]. The ad-  tion, which is valid if the correlation length over which the
vantage in such a system is that the effect of fluctuations igarticles influence each other is much smaller than the typi-
reduced somewhat, but the disadvantage of trapping moreal trap sizel = y#/me over which the density of the gas
hyperfine states is that the number of channels by which thehanges. A similar calculation for the noninteracting case has
gas can decay increases considerably. There are not onlgen performed recently by Butts and RokHda. In addi-
more possibilities for two-body collision processes, in whichtion, the case of purely repulsive interactions has been stud-
one or two electron spins are flipped and the correspondingd by Oliva in the same way in the context of possible
atoms are expelled from the trap, but also three-body reconexperiments with spin-polarized atomic deuterifih]. In
bination processes are now no longer suppressed. Therefo@gc. Il A we briefly repeat the ingredients for the local-
at present, it seems to be most favorable to trap only tweélensity approximation. In Sec. Ill B we calculate the critical
hyperfine states and the most suitable candidates are titemperature of the gas as a function of the number of trapped
states|6) =|m,=1/2;m;=1) and|5)=|m,=1/2;m;=0) be- atoms and in Sec. Il C we study the gas in the superfluid
cause for this combination the decay processes due to twstate. Density profiles for the gas as well as for the BCS
body interactions can be suppressed most. The approximagsder parameter are presented. In Sec. IV we devote a dis-
sign in the second expression indicates that in the $fte cussion to the issue of how to detect the superfluid phase and
there is foru.B>a; a small admixture with the spin state to distinguish it from the normal phase. We end the paper
|mg=—1/2;m;=1). Although this admixture can be ne- With a summary of the main conclusions.
glected for most purposes, we will return to its importance
for the stability of the gas shortly.

As explained above, in a two-component spin-polarized
atomic °Li gas, Cooper pairing will occur only between at-  We first consider a homogeneous, dilute gas(efc-
oms in different spin states, while there is almost no interactron-)spin-polarized®Li atoms. Since the gas is dilute, the
tion between two atoms in the same spin states. For notatoms will interact with each other mainly through two-body
tional simplicity, we also refer to these stateg Bsand|| ) collisions. These two-body collisions can be represented on
and the densities of atoms in these two hyperfine states atbe mean-field level by a local potential with a strength given
denoted by, andn |, respectively. Notice that since the two by the two-body scattering matrik’®=4a#?/m, wherem
states are electron-spin polarized, the strength of the inteis the mass of the particles aads the scattering lengtfi4].

IIl. HOMOGENEOUS FERMI GAS
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The sign ofa determines whether the two-body interaction is  As explained, for example, in Rg#], there are basically
effectively repulsive §>0) or attractive 4<0). two ways in which collisions cause the atoms to be lost from
Before going to a description of the gas in the normal andhe trap. First of all, the centrakinglet and triplet interac-

superfluid state, we consider an aspect that is experimentaltjon V¢=V¢(r)P® +V(r)P" induces transitions between
of some importance, namely, the lifetime of the gas. Thadifferent hyperfine levels. Since this interaction cannot
large s-wave scattering length has, on the one hand, the adthange the total electron- or nuclear-spin angular momentum
vantage of having many thermalizing collisions between theand the hyperfine level|5) has a small admixture
particles which is required for efficient evaporative cooling,with the state |mg=—-1/2m;=1), only transitions
but, on the other hand, there will also be relatively many|{6,5; _)—|{6,1} ),  where |1)=|m¢=—-1/2m;=1)
inelastic collisions, which can cause spin flips within the — §"|ms=1/2m;=0), are allowed. Similar to Eq(1), the
atoms. If the electron spin of an atom is inverted, the atontotal spin state{6,1} ) is given by

will be lost from the trap and consequently these inelastic

processes limit the lifetime of the gas. In the next subsection [16,1_)=|00;22 — 6*|11;1D. 3

we explain in more detail which decay processes dominate in

a mixture of 6Li atoms in the hyperfine statég) and|5). ~ Combining Eqs(1) and(3), we find that the spin part of the
transition matrixT og6 13,006,5 (Ps1,0) contributes a factop™

times the exchange potentMf*(r)=V(r)—Vg(r), i.e., the
difference between the triplet and singlet potentials. To cal-
The electron-spin and nuclear-spin quantum numbers ofylate the spatial part, we must use for the relative incoming
the two trapped hyperfine levels fpr.B>ay¢ are given by  and outgoing scattering wave functions with orbital quantum
) numbersl and m and total electron spi® the normalized
6)=Ims=1/2;m;=1), expression

|5)=|ms=1/2;m;=0)+ 6" |ms=—1/2;m;=1), > l/ffsi)(r) A
Windr)= — i'Yim(T), 0)
n

where 8" =a,,/2./211¢B is inversely proportional to the ap- r

plied magnetic fieldB, so for sufficiently strong magnetic

fields the admixture of5) with the high-field seeking part is wherey{3(r) denotes the incoming and outgoing solutions

small and the gas can considered to be electron-spin polate the radial Schidinger equation with the singlet or triplet

ized. For such large magnetic fields, the energies of thesi@teraction. Using furthermore that the relative momentum

two hyperfine levels are given byz=a,/2+u.B andes;  Pey after scattering is due to the energy differenge- €;

= uB, respectively. =2uB, we find thatpg;= V2muB. Combining all expres-
Since the two atoms in stat¢s) and|6) will interact at ~ sions into Eq.(2), we obtain that the rate constant due to

the low temperatures of interest solely giavave scattering, exchange interactions is given by

implying that the spatial part of the two-body wave function

is symmetric under the exchange of atoms, the spin part of ~ G®*=2m°A’mpey(67)?

the wave function must be antisymmetric, i.e., _
Y X (W 5od(r,PeD | V(1) — V(N[ 55 (r,0) P

A. Decay rates

3/2

1 2
N At

{6,5 )= ﬁ[|6>l5>— 5)|6)]=111;11+ 67|00;22), = 77%2(
1

where in the last line we used the bakiMg;IM ) with S _ _ _ _
=s,+s, andl =i, +i, the total electron and nuclear spin of Ip F|g. 2 this exchange rate as a function of the magnetic
the two colliding atoms ant15 and M, the corresponding field is shown(curve 1.

magnetic quantum numbers along the direction of the mag- The second way in which collisions cause decay of the
netic field. gas is due to magnetic dipolar interactiod$. As will be

The decay rates for the transition from the stateshown, of the various dipolar interactions, the contribution
lIm,{e, B}) with orbital quantum numbetisandm to a state due to electron-electron dipolar interactions is most impor-
[I'm’ {a’,8'}) with quantum numbers andm’ are essen- tant. For this dipolar interaction, we hay/e5)]
tially given by Fermi’s golden rule and results in the expres-
sion[15]

2u.B
XKW hod(r,ped) [ VXN W51 (r,00) 2. (5)

2
Moke [4m ;

Vi= = 2T S (— 1MV, (D3 5w,
o 4qrr AMg

Ga,,B—»a’,,B’(B)_Z”T h MpPq, g ©

X|Tirmitar gt 502 (2 .
ITormar ) imtapy(Par 101" (2) where the tensor operatE@iMscan be thought of as arising

for the zero-temperature limit of the rate constant for thisfrom the coupling betwees, /% and s,/A, the Pauli spin
process. Herdl | (s g1 im{a,1(Par 57,0) IS the two-body matrices describing the electron spin of the two atoms, to a
scattering matrix at zero energy such that the incoming partensor of rank 2. For the scattering st&§6,5} )=|11;11),
ticles have zero relative momentum and the magnitude of ththe dipolar interaction can change tftetal) electron spin
relative momentum of the scattered particlepjs g . projectionM g of the two atoms by an amounatV g= — 1 for
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10° . . At this point it can be understood that the electron-
electron dipolar interaction gives the largest contribution to
the dipolar decay rates. Decay due to the electron-nucleon
interaction occurs, for example, via thgs,5 _)—[{6,4} )
channel. However, the corresponding decay rates are smaller
by a factor of (uy/ume)?=20x10 ° and thus completely
negligible. This also implies that a mixture () and|5)
atoms cannot achieve equilibrium in the spin degrees of free-
dom within the lifetime of the gas. This is completely analo-
gous to the recent experiments with two condensates in dif-
ferent spin states performed by Myattal. [10].

Figure 2 shows that the lifetime of the gas is of the order
of 1 s for a densityis=ng=10'2 cm~ 2 and a magnetic bias
10 . . field of 5 T. Although this would provide ample time to

0.1 1.0 10.0 ; O
B(T) perform an experiment, a muc_:h shorter lifetime may b_e ad-
equate. For successful experiments we have to require not

only that the time between thermalizing collisions is small
compared to the lifetime of the gas, but also that the time
scale for formation of the Cooper pairs obeys this condition.
The latter is anticipated to be &f(#/kgT.) and therefore in
our case much longer than the time between collisions. Nev-
ertheless, for a densitgs=ng=102 cm~3, we have that
T.=11 nK andh/kgT, is only about 0.7 ms, where as a bias
field of 0.2 T gives a lifetime of about 1 nj46].

In the next subsection we consider the microscopic theory
that describes the Fermi gas in the normal and the superfluid
state. We apply only the BCS theory here. The influence of
fluctuations[ 8] will be addressed elsewhere.

FIG. 2. Decay rate constants due to exchafgave 1) and
one-spin-flip processgsurve 2 as a function of the applied mag-
netic bias field.

a one-spin-flip (BF) or AMg=-2 for a two-spin-flip
(2SF) process. Therefore, the onéwo-) spin-flip dipolar
interaction couples the incoming wave function with ap-
proximatelyS=1,Mg=1 to the final state having=1Mg
=0 (Mg=—1). As a result, the outgoing wave function is in
the statg10;11) for one spin flip, and in the total spin state
|1—-1;11) after the two-spin-flip interaction. The Clebsch-
Gordan coefficients for each process are given/B§10 and
J3/5, i.e., the spin part of the transition matrix contributing B. BCS transition
to the decay rate is a factor Q& larger for the two-spin-flip
process than for the one-spin-flip process. Moreover, the eqér
ergy released in a one-spin-flip process is only half of the
energy released in a two-spin-flip process. Therefore, we find
thatpl§;,: V2mu B, WhereaspzsfFﬁ,z vdmuB. We thus #2y2

el . al, _ t
arrive at the convenient relation th@?Sf(B) =2G*SF(2B) H= 2 [f dx %(X)( ~om —Ma> a(X)
and it suffices to calculate only the one-spin-flip decay rate. o«

For the homogeneous case, and taking only two-body in-
actions between atoms in different hyperfine states into
ccount, the gas is described by the Hamiltorji&s

Performing a similar calculation as in the case of the ex- 1
change decay rates, the one-spin-flip decay rate becomes + Ef dxf dx'Vi(x—=x")
2
GSF(B)=2#%’my2mu.B M:Me\/%r X ri(x) lﬂTa(X')lﬂa(X')%(X)]- (8)
T

- In this expression] and | refer again to the two hyperfine
x( wi(r) Y2u(r) W) states involved. The field operatogs,(x) and sz(x) obey
211 r3 oo1 the usual Fermi anticommutation relations and denote the
annihilation and creation of a fermion at positioin hyper-
fine statea) with chemical potential, . The interparticle
potential can be approximated by a local potentigl(x
—x")=V,8(x—x"), where the constant, is a measure of
12 m(MoMé)z the strength of the interaction. We will return to the precise
B 2 o .
=10 ZmMeB—ﬁ (0%, (7)  value ofVy shortly, but it is in any case negative to account
™ for the effectively attractive nature of the triplet interaction.
The integration ovex’ in the Hamiltonian is then trivial.
where The next step in a mean-field treatment of the Hamiltonian in
Eq. (8) is to develop the operator produm@pa andy, ¢,
oo CO s () around their mean values by substituting
0= [ ar B O
r

Pl =Pl )+ Sy,

2
X(10;19325° 4/11;1D)

. : . . and
is the radial electron-electron dipolar element. In Fig. 2 the
one-spin-flip decay rate constant is shown as curve 2. U qbo=P_ o)+ SU_ .
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To first order in the fluctuations, we are left with the effec- =k kek,
tive mean-field Hamiltonian s | 2 |
E : z :
h2v? i |
_ " t _ o | |

H j dx[ a;,l ¢a(x)( 2m Iu’a) lﬂa(x) Wy holesT,d : particlesT,l holesT,{ ! particlesT,~L

t t * |AO|2 ___//// E k — /E k

+ Ao (X) [ (X) + AF ¢ (X) by (X) — Vo NS py |pariclesTd |

4rah?
- NN 9

where n,= (¢! (X) (X)) is the equilibrium value of the
density of atoms in statela) and equivalently A
=V (X) (X)) is the equilibrium value of the BCS order

t
)
holesd | paniclesT
T — o

. . X | = —
parameter{16]. The chemical potentlal of eaczr;3 hyperfine - particlest~y” k —pa?uclesi\?/ k
state has now been renormalized gd=u,—T°n_, to T e
include, on the mean-field level, all two-body scattering pro- ¢, *pariclesT & particlesT '

cesses with particles in state—a). The factor T?8

=4mah?/m is the two-body scattering matrix and has been FIG. 3. Bogoliubov dispersiot w . for (a) n;=n; and A,
substituted foV,, to incorporate correctly all two-body pro- =0; (b) n;=n; and A,#0, (¢) ny>n; and A,=0, and(d) n,
cesses into the calculation. Note that the same substitutiorin; andAy# 0. The thin dashed lines indicate the particle disper-
should not be performed in the expressionAgrbecause all ~ Sions below the Fermi leved .

two-body interactions are already going to be included by the

BCS treatment as we will see beld@4]. Due to the non- in terms of the new quasiparticle operatdns; andb”, |
equilibrium in the spin degrees of freedom, both chemicahas only diagonal elements and furthermore that these opera-
potentials,ui and M{ need not be equal and therefore thetqrs_ again obey the_ usual antlcomm_utatlon re_lat|ons for an-
densities of atoms in the respective hyperfine level can baihilation and creation operators. This determines the values

varied independently. of the yet unknown and in principle complex constaags
Substituting for the operatopz the expression andv,. The latter constraint requires that the constants
and v, must satisfy the relationfu,|?>+|v,|?=1 and the
R 1 R requirement of diagonality of the Hamiltonian after the
lﬂa(X):\/—vz A .l (100 transformation leads to the conditiofu,|?=2(1+ &/

VE+|Ag|?), introducing&,= e,— e¢, i.e., the free particle
H H ’ !
wherea] , creates one particle in spin stdie) with mo- ~ ENergy relative to the average Fermi level= (u; +u)/2.

mentumfik, the Hamiltonian in Eq(9) becomes The eigenvalues corresponding to the Bogoliubov quasi-
’ particles are then given by

€— M1 A a 2
HZE (al Ta,k‘l) kA*/-LT j , aTk’T - |?/0| ﬁwk,a:_ma56F+ V§i+|AO|2! (14)
k ' 0 —ET M —k, | 0
B where m,=+1/2 for «=1,]|, respectively. Furthermore,
—nn T, (12) Se=p{—p| is the difference in Fermi levels of the two

hyperfine states. The dispersion relations of @4) are de-
picted in Fig. 3 for equalFigs. 3a) and 3b)] and unequal
densitied Figs. 3c) and 3d)] with both zergFigs. 3a) and
3(c)] and nonzerd\, [Figs. 3b) and 3d)], respectively19].

1 Note that when the densities in both spin states are equal
Ne=(YL)= vz (af L8k 4)- (12 (corresponding tde-=0), the dispersion relation reduces to
“ the usual Bogoliubov dispersidhw,= \/§k2+|A0|2 describ-

Since the effective mean-field Hamiltonian in terms of theiNd particles above the Fermi level, i.&,> e, and holes

operatorsa) , anday ,, is nondiagonal, one cannot directly (for \(vhich the disper:_;ion is given by minus_the particle dis-
calculate the expectétion vaIlQal A ). persion below e . It is clear that the Bogoliubov transfor-

This is, as usual, resolved by first applying a Bogoliubovmation couples particles _in stater) with holes in state
transformation according t.6] | - a) [see, for example, Fig.(8)] and that for unequal den-
sities the dispersion relations are shifted with a constant

where e, =7%2k?/2m is the free particle energy of a particle
with momentum# k. The density of atoms in stater) is
determined by

am:Ukbk,ﬁvabik . (133 * dep/2 such that there appear two separate branches in the
' excitation spectrum of the Bogoliubov quasiparticles as
a‘[m: — by FUE btk,i (13p  shown in Figs. &) and 3d). Forn,>n,, the negative sign

of 4wy ; around the Fermi levedg indicates that the energy
to diagonalize the Hamiltonian in E¢L1). After performing  states are partially filled with spin-down holes belewand
this unitary transformation, we require that the Hamiltonianwith spin-up electrons in a small region above the Fermi
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level. Therefore, the lower branch igaplesswhen A,
< Jdeg/2, whereas the upper one always has a gap, even at
Ay=0. The case of unequal densities is thus analogous to a
gapless superconductor.

By plugging the transformation Eq13) into Eq.(12), it
is easily verified that the densities satisfy

1
no=y 2 {lul*N(tio o) + o [1-N(ho )]},

(15

where N(% wy o) = 1/(exd fhwy o]+ 1)=(b] by o) is the

Fermi distribution for the Bogoliubov quasiparticles agd

=1/kgT. For fixedn,, Eqg. (15 determines the chemical
potentialsu |, of the particles in statg).

.
12

10

L
13

10
04 (cm’3)

N
14

10

Subsequently, the equilibrium value of the BCS order pa-
rameter is calculated from o= V(4 (X) ;(X)). Substitut- FIG. 4. Contours of the critical temperature as a function of the
ing Egs.(10) and (13) for ¢, (x), this leads to the BCS hyperfine densitiea; andn for (1) T=0.01 nK,(2) T=11nK, (3)
“gap equation” ' T=37 nK, and(4) T=1725 nK. The dashed line is the spinodal
line.

1 l—N(ﬁwk’T)—N(ﬁwk,l) _

Ve 2JeZ+ a2 Vo

(16) As mentioned previously, the densities of particles, and
hence the chemical potentials, need not be equal in both
gginstates. In Fig. 4 we plot several contour plots of the
gritical temperature for the homogeneous gas inrthe,
plane. As can be seen from this figure, the most favorable
Situation is that, given a certain total density of atoms, both
hyperfine states are equally occupied because this gives rise
to the highest critical temperature. When the two hyperfine
states are not equally occupied, it can be shown that there is
a nonzero critical temperature only when the spin “polariza-
tion” [n;—n|/(n;+n)<3kgT./2er. Also, for fixed aver-
age Fermi levekr and increasing differencéer, the criti-
we find that this divergence is canceled by a renormalizatioga| temperature decreases and there is no transition at all
of 1V, to 1/T*® [17] and the gap equation becomes when Se-=kgT.(0), with T,(0) the critical temperature
when dex=0 [4]. This behavior is similar to what occurs in
superconductors placed in a magnetic field and can be under-
stood physically from the fact that the formation of Cooper
(18) pairs spreads the occupation of energy levels only over an
energy interval of orderAy=kgT. around the respective
Eliminating from this equation both chemical potential§ ~ Fermi levelsu; and u| . Moreover, pairing between atoms
by means of Eq(15) and equating\, to zero, one finds the at the average Fermi energy can only take place if there
critical temperaturdl; as a function of both hyperfine den- exists an overlap between the Fermi distributions of the two
sities in the gas. If the hyperfine densities are taken to bepin states in this region of momentum space. This indeed
equal, the critical temperature can be calculated analyticallghows thatSer must be smaller than abolkgT(0).
[21], resulting in The dashed line in Fig. 4 is the spinodal line, above which
the gas becomes mechanically unstable. We will return to
_ 86|: y—2 v 19
T ier® ¥ 2]’ 49

this issue in the next subsection.
where y=0.5772 is Euler's constant ang-= \2meg/# is
again the wave vector corresponding to the Fermi eneggy As already pointed out in Ref4], an important require-
Including fluctuations changes only the prefactor of 8d) ment for a BCS transition to occur is that the system is
[8]. Although this is expected to lower the critical tempera-mechanically stable against density fluctuations. The nega-
ture somewhat, the exponential dependencel ofon the tive s-wave scattering length induces an effectively attractive
scattering length is most important for our purposes. Sincénteratomic potential, so if the density of particles becomes
taking fluctuations into account self-consistently is rather diftoo large, the system can collapse to a fluid or solid state
ficult, in particular in the inhomogeneous case, we will returnbefore the systems becomes superfluid in timetastable
to the effect of fluctuations on the transition to a superfluidgaseous phase. In general, for mechanical stability of the gas
state elsewhere and consider here only the mean-field theorgt the critical temperature, we must require that the velocities
which is also known as the many-bodymatrix theory. of the two sound modes in the normal state of the gas are

This equation has an ultraviolet divergence as a consequen
of the fact that we made the assumption that the interparticl
interaction is local, i.e., momentum independent. However
from the Lippmann-Schwinger equation for the two-body
scattering matrix 20]

1 1 1 1

75V, TV 28 @

1o [1-N(iwg)-N(iog,) 1 1
v

K 2\E+ (A2

25) T

C. Mechanical stability of a two-component Fermi gas
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real. These velocities can be calculated from the free-energy
densityf of the gas. Since the temperatures of interest are so
low that kgT<ep, we can consider the zero-temperature

———- Phase-separation line
—— Spinodal line

R 4 i 0.2
limit, in which the free-energy density amounts to the aver- ‘\
age energy densitl=(E)/V. We thus have \\
L]
3 %2 AR
f=fot fin= E(6w2)2’3(n?’3+ ny’® —+nn 7%, - ol
(20 '

wheref is the ideal gas free-energy density of the particles

in each hyperfine state dt=0 andf;,; is the free-energy

density that arises due to interactions between particles in 0.0
both spin states. The corresponding sound velocities squared 0.0
are determined by the eigenvalues of the matrix

FIG. 5. Plot of the phase-separation lifdashed as a function

9%f 9%f of the dimensionless densities=n;a® andy=n,a?, together with
an.an; anyan, the spinodal linexy= (7/48)?, above which the gas phase separates
5 " , to the dashed line. As an example, the unstable pblaseparates to

9°f 9°f the stable phaseS; and S,, with volume fractionsV,;= »V and
anjgny  dnjdn V,=(1-7n)V, respectively. Note that in the regions between the

phase-separation line and the spinodal line, the gas is metastable.

leading to the condition thanTnlass(wMS)z. The line in
then,-n, plane, where the equality holds, is called the spin-
odal line, and for the homogeneofki gas it is plotted as
the dashed line in Fig. 4.

Notice, however, that a spin-polarized Fermi gas becomes 3 9 23 53 513
unstable at densities above the spinodal line, irrespective of F(x,y)= §(67T )T YY) + 87Xy, (23
the sign of the scattering length Therefore, the question
arise as to what exactly happens at densities above the spin- M (X,y)= (6722231 8y, (24)
odal line and whether there is a difference in the behavior for
positive or negatives-wave scattering length. First of all, M (x,y)=(672)2%2P3+ 8rx (25)
notice that the matri¥?f/dn,dn, has an eigenvalue=0 at B '

the spinodal point. The corresponding eigenveé%ppoints where we used that, | =df/dn; | . Notice that these equa-

in the unstable direction of the phase space. For equal defions are symmetric under the exchange of the variakles
sities of the two hyperfine states, it is straightforward to cal-andy or rather the indice$ and | .

culate thatéozl/\/i(: 1,1), where the upper and lower  The condition that must be fulfilled for a phase separation
signs refer to positive and negative scattering lengthee-  is that an unstable pha&kseparates into two distinct phases
spectively. We therefore conclude that for a negasweave  S; andS; in the stable region of the phase space in such a
scattering length, the gas collapses to a dense pipaeb-  Wway that both the pressure and the chemical potential in the
ably a solid, whereas for positiva it phase separates into two stable phases are equal. Since in our case we are dealing
two dilute gaseous phases with opposite “magnetization.”with a gas consisting of two constituents, we require that
Since the second situation might be of interest for futuréooth chemical potentiala; andu; must be equal in the two
experiments with other fermionic atoms th&hi, we con-  stable phases; otherwise particles would still prefer one

2
P(x,y)= §(6w2)2’3(x5/3+ y53) +8mrxy, (22)

sider now for a moment also ttee>0 case. phase above the other and there would be no equilibrium. A
third condition that must hold is that the total number of
1. The a>0 case particles in each spin state must be conserved. In Fig. 5 we

show the spinodal line in terms of the dimensionless vari-
ablesx,y, i.e.,xy=(m/48)%. Furthermore, we plotted an un-
stable pointJ, which separates into poin& = (x4,y1) and
S,=(X,,Y,) in the stable regime of phase space. Next we
L 42 will deduce the exact position of these poifsandS, from
the above-mentioned conditions on the phase separation.
P=Pot ping(ewz)ﬂs(n?/% n?s)E”LnTanZB' From the condition on the pressure aF;]d the s;)mmetry of
(21 Eqg. (22) it follows that Ps = P(x1,y1) = Ps,=P(Xz,y2) is
satisfied ifx; =y, andx,=y;. In other words, the separation
Introducing for future convenience dimensionless variablegointsS; andS, lie symmetric in then;-n; plane. The con-
according tox=n.a3, y=n a?, ME,lE(Zma@/hZ),uT'l , P dition on the chemical potentials, i.e.M; (X;,y;)
=a3(2ma?/4?)p, and F=a3(2ma?/#?)f, it follows from =M, (X,,y,), now determines the exact position of the
Egs.(21) and(20) that pointsS; = (x4,y;) andS,=(X,,y,). From the symmetry of

To analyze the stability at positive, we notice that the
pressure of the gas at zero temperature is givenpby
—(E)/oV. We thus find that
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Egs. (24) and (25 we see thatM(x;,y1)=M (y1.,X1) 3 . o3 o3 .
=M (X2,¥2), SOM(x;,y))=M (x;,y;) in each individual ~ F(n,2)=z(67) 1 (n=2)*"+(n+2)°F)+8m(n*~2%).
separation poin§; ,i=1,2. This shows that, in practice, we (26)
are looking for intersections of the curvebl,(x,y)

=M (X,y)=M. Again from symmetry, it is immediately Note that, since the original variabl&sandy must be posi-
clear that there is always a point of intersection of the twative, alson=0, and for givem, we have—n<z<+n. Tak-
curves somewhere on the lime=y, but for certain values of ing the derivative ofF(n,z) with respect taz at constant,
M there can be two additional points of intersection, whichit is found that

are plotted as the dashed line in Fig. 5. This line is the phase- -

separation line. As we will prove later on, it coincides with 4 2 23 2

thepspinodal line ax=y= /48 and lies below the spinodal E:(Emz) 1-(n=2)"*+(n+2)*"] - 1672,

line, in the stable region of phase space, elsewhere.

The third condition requiring conservation of the total which is zero atz=0 for all values ofn. Hence there is
number of particles in each spin state determines the volumalways an extremum in the free energ{n,z) at the linez
fractionsV,/V andV,/V of the two phases. For an unstable =0. To see whether this is a minimum or a maximum, we
homogeneous system of volurveand withN;=n?’V and  have to analyze the second derivative
N, = nt’V particles in the two hyperfine states, we have that

after the phase separation PF

2 2
— 2\ 2/3 _
_3(677 ) {nlm 16,

—nS ) =0

NT—nT V:I_‘f'nT V2, . . . _
which is positive forn<ng,=w/48, zero atn=ng,, and

S negative forn>ng,. So the minimum in the free energy
Nl:nllvlJr nfzvz. F(n,z) at constanh andz=0 changes into a maximum at
n=ns,, Which exactly coincides with the spinodal point at
ézy. This behavior is shown in Fig. 6, where we plot

n,z) for (@ n<ng,, (b) n=ng,, and (c) and (d) n
i ] - - ) >ng,, as a function of.
pointsU, S;, and S, must lie on a straight line given by From Fig. 6 we see that the maximumzt 0 for fixed
Ny 4N =N, as indicated for the pomgs, S&J’ ands, bg n>ns, is flanked by two minima in the free energy, which
thesdotted line in Fig. 5. Defining now™ =n¢/Niotai, B~ move outward in the-z directions for increasing. More-
= nlllntotalzn%/ntotall and n=(B"~B%)/(1-2B%, we  over, forn=n.=97/256 the minima just appear at =n,
find after a little algebra that,= »V andV,=(1—7)V. So i.e., at they axis in y=97/128 and at thex axis in x
the phase separation is such that for arbitrary position of the- 977/128, respectively, in the original dimensionless density
point U on the unstable part of the dotted line in Fig. 5 thevariablesx andy. The important point is now that these two
system separates into the same two stable p&psndS,; minima in the free energl¢(n,z) for fixed n are, after trans-
the exact position of) determines only the volume fractions forming back tox-y coordinates, precisely the stable separa-
of the stable phases. The phase pof{sand S, have the tion pointsS; and S,. Because of symmetry, they obey all
same total density but differ in “spin magnetization” by an conditions that we imposed on them. Furthermore, we notice
amount|nf1—nf1|. Therefore, the phase separation corre-that for n>n., or total densityn,o,=97/1283, the spin
sponds to a spin decomposition that is driven by the fact tha¢eparation is complete, i.e., one part of the volume is occu-
at sufficiently high densities the loss in interaction energyPied with atoms only in the hyperfine levgl); the rest of
between the two species compensates for the gain in kinetife volume contains atoms only in state. The densities of

Of course, the total density is also constant so we hav

Niotal= n%’ + nf = nf1+ nf1= nTS2+ nfz , which means that the

energy due to the Pauli exclusion principle. both phases is in this case eviderm@‘:nfz:nmta,.
To gain even more understanding in this phase separation
and to distinguish later on the situation with negatviom 2. The a<0 case

the case with positiva, we consider the dimensionless free
energy in Eq(23) more closely. It is clear from Fig. 5 that
the phase separation takes place on liney=const. There-
fore, we introduce new variablesandz such that

We now consider the case where the scattering leagth
<0, as is the case for théLi system. Introducing again
dimensionless variables according l>o=nT|a|3 and vy
=n,|al® and after the substitutions=n—z andy=n+z,
respectively, the dimensionless free energy is readily seen to
X=n-z, be

y=n-+z, F(n,2)= g(6w2)3’2[(n—z)5/3+(n+z)5’3]—877(n2—22).

(27)
i.e., then axis lies along the ling=Yy in Fig. 5 and the axis ' o _ S
lies along the liney=—x. Lines of constank+y therefore  The first derivative of in the z direction is given by
have a constant (density and run parallel to the axis. The I
dimensionless free enerdy(x,y) in terms of these new vari- = (672 — (n—2)%+(n+2)??] + 167z,
ables now becomes Jz
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FIG. 6. Plots of the dimensionless free enefgin,z) as a function oz=(y—x)/2, for (a) n=m/96<ngp, (b) n=m/48=ngy, (C) ngp
<n=6m/256<n., and(d) n=97/256=n..

which is always zero az=0. The second derivative with with ultracold atomic gases are performed by trapping and
respect to the variable atz=0 is given by evaporatively cooling the gas in an external potential that
generally can be modeled by an isotropic harmonic oscillator
V(r)=2mw?r?, wherew is the trapping frequency. An exact
calculation of the(inhomogeneoysdensity of the gas by
calculating all eigenstates of the trapping potential is very
which is for all allowed values ofi larger than zero. There- elaborate but has nevertheless been performed for the
fore we conclude that there indeed can be no phase sepatgesonic isotopesLi [22,23 and 8’Rb [24]. Fortunately, in
tion in the z direction along the linesi=const as was the the fermionic system it is a good approximation to make use
case for positive. of the local-density approximation, which treats the system
Instead, the phase separation in the unstable region ¢fs peing locally homogeneous. This requires in the first place

phase space above the spinodal line takes place imthe ihat the correlation lengti= O(1/ke) is much shorter than

direction. This can be shown by considering the second de,o length scalé= \%/mw over which the densities change.
rivative of F with respect ton, i.e.,

This condition is equal to the condition that the level spacing

hw of the trapping potential is much smaller than the Fermi
— 16, energy. Second, below the critical temperature, the size of

the Cooper pairs must be smaller thaar the trapping po-
tential would influence the wave function of the Cooper

which at z=0 or x=y becomes zero exactly at=ng, : A . )
= 1r/48. The fact that the second derivative of the free energ%a(l;; 1;:'2 S(%(;)IS 3:'; :rr:i”)z (tgmip;ertahtgrezlenrc;etp;?;j grr:tj:led of
F 0 ’ 0 -

is zero at some point signals an instability in that direction )
(in thea>0 case, the second derivative iwith respect to value of the BCS order parameter ang=7ik/m the Fermi

z just became zero at=n,,). So we find that in the case of velocity corresponding t@. Of course, the local-density
negative scattering length, the unstable pdihtin phase approximation always .breaks' down at the edge (?f the gas
space will separate into a phaSe with lower total particle cloud where the density vanishes and the_ _effect|ve Fermi
density and a phas®, with higher total particle density or, €N€ray becomes zero, and glso at the critical temperature
in other words, to a gaseous and a defssdid) state. How- Where the correlation lengihdiverges. So at a nonzero tem-
ever, we do not have an appropriate theory that can alsBerature belowT; there are two spatial regions where the
describe the dense phase. Therefore, we do not consider tHgfal-density approximation is not valid, i.e., around the po-
kind of phase separation, which is very common in gases ang@ition where the local BCS order parameter vanishes and
liquids, further here. around the position where the local Fermi energy vanishes.
However, these regions are so small that we do not expect
any important changes in the functional behavior of physical
properties at the crossover from outside to inside these re-
gions. As a result, we believe that it is rather accurate to

Until now we considered only a homogeneous gas ofipply the local density approximation to calculaie
spin-polarized atomi®Li. In reality, however, experiments [25,26.

2
E _ E 72)23

n1/3

73 ( + 16,

9°F

2
Fz 5(6’772)2/3
n

1

(n—2z

+
)1/3 (n+z)l/3

IIl. INHOMOGENEOUS FERMI GAS

A. Local-density approximation
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0.020 N€a/l, with the thermal de Broglie wavelength

=\27%%/mksT andl = y&/me. The solid line in Fig. 7 can

be fitted numerically very well with the expression

0010 |

2
a | a
( —) = 0.037ex;{ - 1.214&| N~ Y64 2.993'—| Nl’G]

)\TC

@h, )’

for the whole range of parameters shown in Fig. 7.
The fact that the critical temperature is a universal func-
tion of the parameteN®a/l can be understood easily by

0.000 . rewriting the gap equatiofiL8) at the critical temperature in
0.00 0.20 0.40 the form

- a/l)NllG

FIG. 7. Critical temperature as a function of the number of__C:J dx\/;
particles(solid line) when there aré\ particles present in botn spin 4 a 0

states. The dashed line represents the critical temperature for a gas

whose density distribution is not altered by mean-field interactions. v N(— Sex+[x/B— €g|) + N(Seg+ X/ B— egl)

2|x— Ber| '

In this approximation, the densities andn, of the two
hyperfine states together with the gap can still be calcu- whereN(x)=1/(exdBx]+1) is the Fermi distribution. This
lated by means of the equations derived in Sec. Il B, with theshows that at the critical temperatueé)\; is a function of
understanding that now the effective chemical potentials, ange_ /k,T_ andeq /kgT, only. Equivalentlyc, from the density
consequently the densities adg, are spatially dependent for each spin state given in E4L5) and the fact that at the

through critical temperature the densities in the center of the trap
1 (D)= V(1) —n_ (1) T2, 28 n,(0) are critical, we find that
. . . 13
wherep,, is the overall(constank bare chemical potential of n(O\3 =F i,i )
“ ¢ “IkgTc kT

atoms in hyperfine stater). So, givenT, u, and u, [or
equivalentlyT, N, = fdr n (r), andN;= fdr n;(r)], one can

determine the values oh,(r), ny(r), and Ao(r) self- So the central density of each spin state times the thermal

consistently for every position in space, as if the system wavelength is also a function of th.e_dimensionless param-
Y yp P y gters Sep IkgT, and e /kgT.. Combining these two equa-

were homogeneous. This procedure will be used in the net it Toll thata/ A~ is directly related to the densiti
subsection to calculate the critical temperature of the spintons: It follows thata/Ar is directly related to the densities

polarized gas as a function of the number of particles in thén the center of the trap, i.e.,
trap.
i=|:[n (0)A3 ,n (023 ] (29
B. Critical temperature At, e

The critical temperatur@ . of the gas is such that at the . . .
center of the magrrl)etic trap, where%he density of the gas is © Prove now thaa/\r_is a function oﬂ\l”éa/l, it should
highest, the energy gap,(0) just becomes nonzero for a be noticed that in general in the local-density approximation
given number of particle8l; andN | . First we will consider ~for T=Te
the case wherbl, =N, =N. In Fig. 7 the solid line shows the 3 g
result of our calculation. The dashed line in this figure gives ~ Na(NAT=fap(@X{Blpa—N-o(NT==V(r)1}), (30)
the critical temperature for the Fermi gas if one does not
include the effects of the mean-field interaction in E28).  Wherefs(z(r)) is the Fermi function originating from inte-
In this approximation, the number of particles in each hypergdration over momenta and analogous to the Bose function
fine state is, with a high degree of accuracy, given by theds(2). Applying this equation at=0andT=T,, we find
zero-temperature resu“m:(/‘m/ﬁw)sle and the density that both chemical potentials are functlonsaszf\TC and the
in the center of the trap s, (0)=(2mu,  /%?)*%6m?,  central densities of both hyperfine states and obey
which is considerably smaller than in case that the mean-
field interaction is taken into account. As a result, the critical Mo .
temperature obtained in this manner is substantially lower @:Fa
for an equal number of particles. From an experimental point
of view, it is therefore important to include interactions to
obtain a reliable estimate for the critical temperature as
function of the number of trapped particles.

We found that, as is also the case for a Bose gas in a
harmonic trap[24], the critical temperature, or rather the y=\/m—T
dimensionless parameteﬂ)\Tc, is a universal function of 2kgT,

a 3 3
X anT(O)}\TCanL(O))\TC .
TC

For a general value af, but still atT=T,., we can apply the
Qubstitution

mw2

(31)
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FIG. 8. Critical temperature as a function of the numbefIdf
atoms in each hyperfine state. Curves 1-3 give the combinations " . .
(N;,N)) corresponding tq1) T.=3 nK, (2) T,=11 nK, and(3) ~ 2x10 .
T.=37 nK. For equal number of particles in each hyperfine state, g ~~~~~~~~~~~~ T=37 nK
the density of particles in the center of the trap correspond$)to < 1x10” F .
n; 1 (00=0.5x10" cm~3, (2) 1x10" cm™3, and (3) 2x10' p
cm™3, respectively. = 0 o e
0.00 0.02 0.04 0.06
in Eq. (30), from which it follows immediately that for each ) 1 (mm)

hyperfine state
FIG. 9. Density distributiom;(r)=n,(r) and energy gapq(r)
for a SLi atomic gas consisting of 2.86510° atoms in each spin
state at(a) T=15 nK, (b) at T=33 nkK, slightly belowT, and(c)
at T=T,=37 nK. The left scale of each plot refers to the density

. . . . and the right scale to the energy gap. The open circlgb)imep-
To find the total number of particles in each hyperfine level, o Eq(34) and the dotted line iric) shows the density distri-

we then imegfat_e this result over the spatial extent of the 9388ution for a gas with the same number of particles and at the same
cloud, resulting in temperature, but wita=0.

a
3 _ 3 3
na(r))\TC—Fa{—)\T ,nT(O))\TC,nL(O)ATC,yZ]

c

32
N =47fodr r2n,(r)= 4_77( 2kBTC) N}"a/l andN}®a/l, as Eq.(33) shows. However, since we
“ 0 “ )\?-C Mw? are in this paper mainly interested in trappifig atoms, we

will calculate several contours of the critical temperature of
such a gas trapped in an isotropic harmonic oscillator with
v=144 Hz. The results are plotted in Fig. 8. Again we see
that given the total number of particles in the gas, the most
favorable situation is the one with equal numbers of particles
in each hyperfine state.

An important experimental question is how we could ob-

. : - hether or not the gas is superfluid at a certain tem-
Multiplying Eq. (32) on both sides byd/1)® and using the Serve w ; ) - I
result of Eq.(29), it is proved that at the critical temperature perature. An |mmed|z_ate possibility that, in view of the res_ults
with the BEC experiments, comes to mind is to consider

whether there is a change in the density profile at the critical
temperature. In the next subsection we will therefore concen-
trate on the superfluid state of the gas and determine the
density profiles and in addition the spatial dependence of the

energy gap\o(r).

X f dy[ y2F,,

| 6
P F/H
o -

C

a
A—,mm)xﬁ-c,m(oni.yz”
TC

a 3 3
— nT(O))\T(;nL(O))\TC . (32

)\TC’

a a
1162 \1/6<
NT y Nl

°F
B P

vy , 33

so that, whenu, = | the dimensionless parametmec isa

universal function oNa/I.

The spinodal point in this case is given by“®a/l
=0.66 and is not included in Fig. 7 because fti trapped
in a harmonic potential with frequenay= w/27=144 Hz, In Fig. 9 the density profile,(r)=n (r) and the energy
or iw/kg=6.9 nK, corresponding to the present experimen-gapAy(r) are plotted for several temperatures below and at
tal conditions of the experiment of Bradl&y al. [2], spin-  the critical temperature for a gas willh, =N, =2.865x 10°
odal decomposition only occurs with as many as>x&18’ particles in both hyperfine states. The dotted line in F{g) 9
particles. shows the density distribution for a gas with the same num-

For an unequal number of particles in each hyperfineber of particles, but witta=0 instead ofa= —216Qa,. It is
state, we find a universal surface faz/r)\TC as a function of clearly visible that the effect of the interaction on the density

C. Superfluid state



56 SUPERFLUID STATE OF ATOMICELi IN A MAGNETIC TRAP 4875

' — whereAy(0) is the zero-temperature value &f, which in

~ 2x10" 180 & turn is related to the critical temperature as
g T=15nK &
2 1x10” {0 2 Ag(0)=1.76kgT,. (35)
=}
0 . L 0 For Fig. 9a) it follows from Eq. (19) that the critical tem-
0.00 0.02 0.04 0.06 perature corresponding to the density of the gas in the center
a) r (mm) of the trap is much larger than the temperatufe=(L5 nK)
itself. Hence the value of the order parameter approaches the
~ 2x10" ds0 &> zero-temperature limit in this case. Using thB{ n(0)]
E T=30 nK } =37 nK_, one _fmds_ from Eq(35) thatAO(O)/kB=65.1 nK.
E, 1x10" 140 ; Comparing this withAy(r=0)/kg=65.0 nK, we find that
< z there is indeed rather good agreement. Also, since the tem-
ol A ; 0 perature in Fig. @) is only slightly below the critical tem-
0.00 0.02 0.04 0.06 perature, we can compare relati¢@4) with the values of
b) r (mm) Aq(r) in this figure. At each spatial position wheng)(r)

>0, we can, from the local value of the Fermi eneegyr),
extract the local critical temperaturd@ (r) from Eq.
T341K | (19 and use Eqg. (35 to compare Ay(T[r])/kg
=3.06T(r)y1—T/T.(r) [open circles in Fig. @)] with
Aq(r). Again, the agreement is very good.
o S Finally, we want to check that our local-density approxi-
%'00 002 004 006 mation is indeed valid under the conditions of interest. From
o r (mm) Fig. 9 one finds that at=0, the value of }I=0.06 and,
for example, atr =0.05 mm, we find K1=0.64. Further-
FIG. 10. Density distributionn,(r), n(r), and energy gap more, from the zero-temperature valueqf in Eq. (35) we
Ao(r) for a SLi atomic gas withN;=3.08x10° and N;=2.65 find that the size of the Cooper pairs relative to the trapping
X 10° below and at the critical temperatur@ T=15 nK, (b) at  parametet is about 0.58, so the local-density approximation
T=30 nK, slightly belowT., and(c) at T=T.=34 nK. The left  starts to break down if we are far below the critical tempera-
scale of each plot refers to the density and the right scale to thgre. |n that case a more accurate approach is required, at

energy gap. The dotted lines (o) represent the density profiles for |east for the relatively large trapping frequencies used here.
a noninteracting gas, with the same number of partibles 3.08

X 10° andN = 2.65x 10°, respectively.

ng, ng (cm’
—
=
al
=

IV. DISCUSSION AND CONCLUSION

is rather large. Indeed, because of the attractive interactions, As mentioned above, an important experimental problem
the particles are pulled to the center of the trap and the deris the detection of the superfluid state. In contrast to the
sity is there considerably increased, which is good from arBose-Einstein condensation experiments, there is no clear
experimental point of view because it significantly increasesignature in the density distribution when the gas becomes
the critical temperature. superfluid, as showr) in_Sec. Il C. Therefore, a measurement
Figure 10 is a similar plot, but now with unequal number Of the collective excitations, or density fluctuations, will not
of particles in each spin state\,=3.08< 106 and N, provide useful |nfqrmat|on on the presence of the supgrflgld
—2.65x 10°, 0 the total number of particles is the same aLsohase as well. This can also be understood from the dissipa-

in the previous case. From Fig. it can be seen that the tionless(linean hydrodynamic equations governing the den-

presence of the order parameter tends to decrease the qiffSiy fluctuations in the system. Considering only the optimal

ence in densities of each hvperfine level. This can ph S.Ca”situation of an equal number of particléé, =N, these
: i yperti vel. i physice )équations are given, for a gas trapped in an external potential
be understood from the fact that the most favorable condmorQ/(r) by

for the formation of Cooper pairs is that both densities are

equal. an

The most important observation that we can make from —+V.j"=0, (363
both Figs. 9 and 10 is that there is almost no change in the at
density of the gas going from the normal to the superfluid g1
phase. This also leads, as will be explained in more detail ) _
below, to the conclusion that a measurement of collective EJF E[Vp+nVV(r)]—O, (360)
excitations will not give a good signature for the presence of
a superfluid statf27]. A second observation is that from the Je
BCS theory in superconductofd6], it is known that the S TVit=0, (360
order parameteh , close to the critical temperature vanishes
as

Vg

1
Ag(T)=1.741o(0) yI—T/T,, (34) i M (369
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wheren=n,+ ny is the total density that consists of a normal Vs 1_(dp 1

and superfluid partj"=n.v,+nys is the density current No(r) —-=- EV(%%(M)) o Hvv(r)
with vg (v,) the superfluidlnorma) velocity, € is the aver-

age energy density® = uj"+ Tsv, is the energy current, and

s is the entropy densit}28,26. Note that the same equations
in fact also describe the collective modes of a trapped Bose- (39)
condensed ga9,30.

To show that these hydrodynamic equations result injowever, in the superfluid phase we also have the Josephson
identical equations for the collective excitations in the nor-re|ation(36d) for the superfluid velocity. Using that the local
mal and the superfluid phase, we first of all note that for theshemical potential = o[ No(r) + Sn(r,t)]+V(r), where
densities of interest the gas will be in the hydrodynamic,, is the homogeneous chemical potential including the ef-
limit, meaning that the time scales for the density fluctua-fects of interactions, and linearizing also this equation leads
tions (which are of the order of the inverse trapping fre- to
guency are much slower than the time between elastic col-

I Vap vV 1] 1apV§
- &_n+ (r) n(r,t)—aa—n n(r,t).

lisions. In this hydrodynamic regime, density fluctuations Vs Ng(r) Mo

and temperature %/Iuctugtions influgence each o%er with a cou-"0'") G =7 TV( HolNo(N)]+ W&n(r,tHV(r))
pling proportional tocy—c,, wherecy (c,) is the heat ca-

pacity per particle at constant volunggressurg However, - no(r)( sn(r t)V%JF %V sn(r t)) (39)
for the very low temperatures of interest, one can assume ' an an ’

that the heat capacities of the gas satisfy-c,, . Indeed, for ) o ) ) )
a homogeneous Fermi gas, one finds in the Iimji0 that because in equilibrium the chemical potential must satisfy
(Cp—Cy)/C,=0((kgT/er)?) and is thus very small. As a
result, the density and temperature fluctuations are effec-
tively uncoupled27]. As a consequence, E(60), descib-  gjnce in general
ing second sound, decouples from the other three equations
and it suffices to consider only density fluctuatiam@,t) ap g
=no(r)+én(r,t). Note also that if we have an unequal o0 Moo (41)
number of particles, i.elN;#N,, the density fluctuations
are coupled to fluctuations in the magnetization-n; and  the second term on the right-hand side of Bf) equals the
we need to generalize these equations. For equal number faist term on the right-hand side of E(@8). Moreover, the
particles these “spin waves” decouple, however, as we havéirst term on the right-hand side of E(B9) can be rewritten
seen in Sec. Il C. with Eq. (42) as

In the normal phase, the Josephson relation B6d
must be dropped. Linearizing E6b), which is in fact just

Mol No(r)]+V(r)=const. (40

Newton’s law, we arrive at dpo ap ap
——=————Vny(r)+ V—
an an ng(r) no(r) an

ov(r,t) 1 ap 1 1 ap
No(r) =——V(p[no(r)]+—5n(r,t)) =— + vV—
at m an n3(r) P No(r) an
() V(1) — = an(, V() P
— —ng(r ry——an(r, r _ op
" " no<r>(van +VV(”)'
1_/(dp 1 . I L
=— EV %m(r,t) - aén(r,t)VV(r), where we used again the equilibrium condition in E3j7).

We thus find that below the critical temperature, the Joseph-
son relation(36d) is identical to the momentum equation
) ) ) o (36b). As in the normal phase, first sound can belbwthus
where in the second line we used that in equilibrium be described merely by Eq86a and(36b). In combination
with the results that the density profiles in the normal and
superfluid phase are almost equal, we conclude that the hy-
Vp[no(r)]=—ne(r)VV(r) (37 drodynamic equations that describe the density fluctuations
are almost identical and therefore that there will be no sig-
nificant difference in the collective excitation spectrum in the
and furthermore that the pressyrés a function of the den- superfluid and normal phase, respectively. Consequently,
sity only at fixed temperature. This result, together with theother means of experimental detection must be investigated.
continuity equation(363), describes first sound in a trapped Of course, this conclusion is based on experiments that
Fermi gas. couple directly to density fluctuations such as in Refs.
In the superfluid phase, first sound has=v, and Eq. [31,32. If one can couple also to second sound one would of
(36b) now becomes course observe an additional mode beldw
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Another possible way to detect the superfluid state is by a 1
measurement of the two-body decay rate of the gas. Note VoZTZBm- (44)
that, in our case, three-body recombination processes are 1-—
strongly suppressed since we are dealing with fermions and m

only have two different hyperfine states occupied. Above the i ) ,

critical temperature, the two-body rate constants are essen- APPlying this result, we can now make an estimate of the
tially independent off and the magnitude is depicted as  effect of the presence of the superfluid phase. To simplify the
function of the applied magnetic field in Fig. 2. In analogy to c@lculation, we will calculate the effect @t=0 for a homo-
the case of a Bose gas, where the presence of a condens&fd120us  gas withn;=n,=n. We then have thatn
decreases the decay rate due to two-body processes by=d#/67>. Moreover, from the BCS theory we know that the
factor of about 733—35, we now analyze the change in the zero-temperature value of the order paramétg{0) is re-
decay rate due to the presence of Cooper pairs in the Ferrfited to the critical temperature lyy(0)=1.7&gT.. So

gas below the critical temperature.

Using the correlator method from R3], it is found 1 |Ag? 1( L 2aA|1.7&gT, 37n )2
that the decay rate constant due to two-body processes is m V2 2T a e 4ka
given by
From the functional behavior of the triplet potenti&}(x),
G(T)=G(THK@(T), (42)  we deduce that the range of the two-body interactign
=100a,. Therefore, substituting\=(100a,) ! and a=
where the correlator —216(,, we find that in the case ofLi atoms V,

=0.07T%8. Note that, as expected, the Fermi wave number
ke is much smaller than the cutoff valuk: For a density
2 1 o n;=n =10" cm~3, we haveer~6x10 'kg, resulting in
KM= (i (0¢ [0 ¢ () (X)) (43 ke=(5x10%,) 1, which is indeed much smaller than the
[ cutoff A. Using thatT,=11 nK forn=10'2 cm™2 (see Fig.

equals 1 abovd,, but increases due to the nonzero expec?: it turns out that 2aA/m=15 and the correlator

2 — . . .
tation value( ¢, (x) ¢, (x)) below the critical temperature. In- K()(0)=7, which is much larger than its value above the

g B .
deed, using the transformations given by Ed€) and (13), critical temperature. Had we usekf® instead ofV,, the
it is found that change in the correlator would have been only of the order of

3%. Even though we do not expect that the corrections to the
decay rates are as large as the above crude argument sug-
2 gests, we do believe that it might be of the order unity and
Ao may be measurable. Of course, the cutoff dependentg of
VSnTnl ' should in some way drop out of the theory eventually, but for
this a better theory is needed, which takes into account the

whereA,/V, is again given by the ultraviolet-diverging ex- precise details of the triplet potential and does not make use
pression(16). The question now arises what we should useof & pseudopotential to replace it. Work along these lines is
for V, in this expression. Clearly, the denominatyshould  In progress because of the experimental importance to have a
not be considered as the zero-momentum component of tH€liable estimate of the changes in the relaxation rate con-
triplet potential. Physically, this can be understood by thestants. Furthermore, note that the correla#df)(T) from

fact that this value oV, does not characterize the exact EQ.(43) also appears in the expression of the average energy
nonlocal two-body triplet potential in any way. It does not Of the systeni36]. A measurement of this quantity has been
even reproduce the correct long-distance behavior for thelone for the case of Bose ga4@¥,38 and we believe that
scattered wave function. Therefore, a first guess would be t8lso in the case of fermions, a change in the average energy
replaceV, by T?8, but since thes-wave scattering length in at the critical temperature can signal the presence of the su-
this case is much larger than the effective rangeof the  Perfluid phase.

K@(T)=1+

interactionV/r(x), it is likely that the replacement of, by ~ In summary, we considered a gas of atorfii¢ occupy-
T28 underestimates the effect of the presence of the supef?d two hyperfine states trapped in a magnetic field. Atoms
f|u|d phase on the decay rates Considerab'y_ in different hypel’fine |eVe|s can intel’act \mNaVe scatter-

Instead, from our procedure to remove the ultraviolet di-ng. Using the most up-to-date triplet potential, we showed
vergence in the gap equation, we see M@Should be cho- that the lifetime of such a gas with a denS|ty oft46m

sen such that it satisfies the Lippmann-Schwinger equationPer hyperfine level is of the orderf & s when a magnetic
bias field ¢ 5 T is applied. At this density the gas becomes

1 1 1 1 superfluid at a temperature of about 11 nK. We also investi-
-4 ; iy gated the mechanical stability of a two-component Fermi gas
T28 Vo  V|d=a 2&k and showed that if the two-particle interaction is repulsive,

the gas is unstable for spin-density fluctuations, whereas in
where a cutoffA =0O(1/ry) is introduced. Solving this equa- the case where the interatomic interaction is attractive, the
tion for V, and using that the Fermi energy<#2A?2/2m, gas is unstable against density fluctuations above the spin-
we find that odal line.
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