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Superfluid state of atomic 6Li in a magnetic trap
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We report on a study of the superfluid state of spin-polarized atomic6Li confined in a magnetic trap.
Density profiles of this degenerate Fermi gas and the spatial distribution of the BCS order parameter are
calculated in the local-density approximation. The critical temperature is determined as a function of the
number of particles in the trap. Furthermore, we consider the mechanical stability of an interacting two-
component Fermi gas, in the case of both attractive and repulsive interatomic interactions. For spin-polarized
6Li we also calculate the decay rate of the gas and show that within the mechanically stable regime of phase
space, the lifetime is long enough to perform experiments on the gas below and above the critical temperature
if a bias magnetic field of about 5 T is applied. Moreover, we propose that a measurement of the decay rate of
the system might signal the presence of the superfluid state.@S1050-2947~97!06512-8#

PACS number~s!: 03.75.Fi. 67.40.2w, 32.80.Pj, 42.50.Vk
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I. INTRODUCTION

One of the most important objectives in the study of dilu
gases has been the achievement of Bose-Einstein cond
tion ~BEC! in bosonic systems. Indeed, decades of exp
mental research finally led two years ago to the observa
of BEC in three different systems of alkali-metal gases87Rb,
7Li, and 23Na @1–3#. This success has triggered a lar
amount of interest in the field of ultracold atomic gases.
though the study of properties of these degenerate ato
Bose gases is vigorously being pursued at the moment, t
ping and cooling of Fermi gases might also provide new a
exciting physics. Indeed, in a previous theoretical study
showed that a gas of spin-polarized atomic6Li becomes su-
perfluid at densities and temperatures comparable with th
at which the Bose-Einstein experiments are performed@4#.

This superfluid phase transition, which is similar to t
BCS transition in a superconductor, occurs at such high t
peratures due to the fact that6Li has an anomalously larg
and negative~triplet! s-wave scattering lengtha @5#. This
scattering length is a measure for the interatomic interact
and its sign implies that this interaction is effectively attra
tive, which is a first requirement for a BCS transition
occur. For other atomic species, the transition temperatu
in general very low because the scattering length is of
order of the range of the interactionr V and the diluteness o
the gas requires that the Fermi wave numberkF!1/r V . So,
for example, in the case of deuterium, it was concluded
ready some time ago that the observation of a BCS trans
is experimentally impossible@6#.

The 6Li atom has nuclear spini 51 and electron spins
51/2. Consequently, the atom has six hyperfine statesu1&–
u6&, for which the level splitting in a magnetic field is show
in Fig. 1. The upper three levelsu4&–u6& can be trapped in a
static magnetic trap, whereas the lowest three hyperfine
els prefer high magnetic fields and are expelled from
magnetic-field minimum.

The simplest way to create a degenerate Fermi gas
561050-2947/97/56~6!/4864~15!/$10.00
sa-
i-
n

-
ic
p-
d
e

se

-

s
-

is
e

l-
n

v-
a

to

trap just one low-field seeking hyperfine state, and for
sake of stability of the gas, the doubly polarized stateu6&
5ums51/2,mi51& is most suitable. However, due to th
Pauli exclusion principle, two fermions in the same hyperfi
state can interact with each other at best viap waves, and if
this interaction is effectively attractive, the onset of the fo
mation of Cooper pairs occurs at a temperature

Tc.
eF

kB
expH 2

p

2~kFuau!3J ,

whereeF5\2kF
2/2m is the Fermi energy of the atomic ga

and a the p-wave scattering length. For6Li this p-wave
scattering length of the triplet potential is approximatel
235a0, wherea0 is the Bohr radius, andkFa!1 in general.
As a result, the critical temperature for such a doubly sp
polarized6Li gas is extremely low. At present, a reasonab
number for the density of trapped atomic gases is 1012 cm23,
leading toeF /kB.600 nK andkFuau.731023. The corre-
sponding critical temperature is clearly unattainable.

FIG. 1. Energy of the six hyperfine states of6Li in units of the
hyperfine constantah f , as a function of the magnetic field.
4864 © 1997 The American Physical Society



n
ov

o
ot

th

r
, u
e

ra

r
c

th

n
-
el
ze
a

s
o
th
o
ch
in

om
fo
tw

tw

e
-
c

e
t-
ac
ot

a
o
te

in

o-
e

cay
the
we
per-

n-
me
ory
the
the

ng
tive
rt of

the

in
tro-
s
per
ent
ar-

a-

ypi-
s
has

tud-
le

l-
al
ped
uid
CS
dis-
and

per

e
dy

on
en

56 4865SUPERFLUID STATE OF ATOMIC6Li IN A MAGNETIC TRAP
In the case that more than one state is trapped, Bara
et al. @7# predicted a considerable increase in the ab
(p-wave! critical temperature as a result of the fact that tw
atoms in the same spin state can now also attract each
through the exchange of a phonon~density fluctuation! in
another hyperfine state. It was found that in this case
transition temperature

Tc.
eF

kB
expH 213S p

2kFuau D
2J ,

wherea now corresponds to thes-wave scattering length fo
collisions between the two hyperfine states. Nevertheless
ing again a density of 1012 cm23 for each spin state and th
valuea522160a0 for 6Li @5#, we find thatkFuau.0.43 and
it is easily verified that also in this case the critical tempe
ture is out of reach experimentally.

Therefore, the most promising approach is to conside
Cooper pair of two atoms in different hyperfine states sin
thens-wave pairing is allowed. In this case@8#

Tc.
eF

kB
expH 2

p

2kFuauJ ,

resulting in a much higher critical temperature than in
previous two cases. In particular, we envision to trap6Li
atoms in the statesu6& andu5&. Experimentally, this might be
achieved most easily by first trapping only one hyperfi
level and then applying anoisyrf pulse to create an incoher
ent mixture of atoms occupying these two hyperfine lev
@9#. Note that this situation has in fact already been reali
in recent experiments with87Rb atoms, although using
different technique@10#.

In a recent work Modawi and Leggett propose to trap6Li
atoms in three instead of two hyperfine states@11#. The ad-
vantage in such a system is that the effect of fluctuation
reduced somewhat, but the disadvantage of trapping m
hyperfine states is that the number of channels by which
gas can decay increases considerably. There are not
more possibilities for two-body collision processes, in whi
one or two electron spins are flipped and the correspond
atoms are expelled from the trap, but also three-body rec
bination processes are now no longer suppressed. There
at present, it seems to be most favorable to trap only
hyperfine states and the most suitable candidates are
statesu6&5ums51/2;mi51& and u5&.ums51/2;mi50& be-
cause for this combination the decay processes due to
body interactions can be suppressed most. The approxim
sign in the second expression indicates that in the stateu5&
there is formeB@ah f a small admixture with the spin stat
ums521/2;mi51&. Although this admixture can be ne
glected for most purposes, we will return to its importan
for the stability of the gas shortly.

As explained above, in a two-component spin-polariz
atomic 6Li gas, Cooper pairing will occur only between a
oms in different spin states, while there is almost no inter
tion between two atoms in the same spin states. For n
tional simplicity, we also refer to these states asu↑& and u↓&
and the densities of atoms in these two hyperfine states
denoted byn↑ andn↓ , respectively. Notice that since the tw
states are electron-spin polarized, the strength of the in
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atomic interaction is indeed characterized by thes-wave
scattering length of the triplet potentialVT(r ) and it is ex-
actly this number that is anomalously large and negative
the case of6Li.

The aim of the present paper is threefold. First, the hom
geneous calculation of Ref.@4# needs some improvement du
to the fact that the interatomic interaction potential for6Li
has recently been determined more accurately@5#. The most
up-to-date value of thes-wave scattering length isa5
22160a0, wherea0 is the Bohr radius. This change ina
affects not only the critical temperature but also the de
rates of the gas. Second, we want to take the effect of
inhomogeneity of the trapped gas into account. Third,
look for a signature that signals the presence of the su
fluid phase in the gas.

The paper is organized as follows. In Sec. II A we co
sider in some detail the decay processes limiting the lifeti
of the gas. Subsequently, we briefly summarize the the
for the homogeneous Fermi gas in Sec. II B and improve
results obtained earlier for the critical temperature, using
most up-to-date interatomic potential for6Li. In Sec. II C we
consider the mechanical stability of a weakly interacti
Fermi gas. In particular, we also consider a gas with posi
s-wave scattering length and show that in the unstable pa
the phase diagram, a spinodal decomposition can restore
stability of the gas in this case.

In future experiments the atoms are likely to be trapped
an external potential that roughly has the shape of an iso
pic harmonic oscillatorV(r )5 1

2 mv2r2 and causes the ga
cloud to be inhomogeneous. Therefore, Sec. III of this pa
is devoted to the study of an inhomogeneous two-compon
Fermi gas at and below the critical temperature and in p
ticular we will again concentrate on6Li. The numerical cal-
culations will be performed in the local-density approxim
tion, which is valid if the correlation lengthj over which the
particles influence each other is much smaller than the t
cal trap sizel 5A\/mv over which the density of the ga
changes. A similar calculation for the noninteracting case
been performed recently by Butts and Rokhsar@12#. In addi-
tion, the case of purely repulsive interactions has been s
ied by Oliva in the same way in the context of possib
experiments with spin-polarized atomic deuterium@13#. In
Sec. III A we briefly repeat the ingredients for the loca
density approximation. In Sec. III B we calculate the critic
temperature of the gas as a function of the number of trap
atoms and in Sec. III C we study the gas in the superfl
state. Density profiles for the gas as well as for the B
order parameter are presented. In Sec. IV we devote a
cussion to the issue of how to detect the superfluid phase
to distinguish it from the normal phase. We end the pa
with a summary of the main conclusions.

II. HOMOGENEOUS FERMI GAS

We first consider a homogeneous, dilute gas of~elec-
tron-!spin-polarized6Li atoms. Since the gas is dilute, th
atoms will interact with each other mainly through two-bo
collisions. These two-body collisions can be represented
the mean-field level by a local potential with a strength giv
by the two-body scattering matrixT2B54pa\2/m, wherem
is the mass of the particles anda is the scattering length@14#.
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The sign ofa determines whether the two-body interaction
effectively repulsive (a.0) or attractive (a,0).

Before going to a description of the gas in the normal a
superfluid state, we consider an aspect that is experimen
of some importance, namely, the lifetime of the gas. T
larges-wave scattering length has, on the one hand, the
vantage of having many thermalizing collisions between
particles which is required for efficient evaporative coolin
but, on the other hand, there will also be relatively ma
inelastic collisions, which can cause spin flips within t
atoms. If the electron spin of an atom is inverted, the at
will be lost from the trap and consequently these inela
processes limit the lifetime of the gas. In the next subsec
we explain in more detail which decay processes dominat
a mixture of 6Li atoms in the hyperfine statesu6& and u5&.

A. Decay rates

The electron-spin and nuclear-spin quantum numbers
the two trapped hyperfine levels formeB@ah f are given by

u6&5ums51/2;mi51&,

u5&5ums51/2;mi50&1u1ums521/2;mi51&,

whereu1.ah f/2A2meB is inversely proportional to the ap
plied magnetic fieldB, so for sufficiently strong magneti
fields the admixture ofu5& with the high-field seeking part is
small and the gas can considered to be electron-spin p
ized. For such large magnetic fields, the energies of th
two hyperfine levels are given bye65ah f/21meB and e5
.meB, respectively.

Since the two atoms in statesu5& and u6& will interact at
the low temperatures of interest solely vias-wave scattering,
implying that the spatial part of the two-body wave functi
is symmetric under the exchange of atoms, the spin par
the wave function must be antisymmetric, i.e.,

u$6,5%2&5
1

A2
@ u6&u5&2u5&u6&] 5u11;11&1u1u00;22&,

~1!

where in the last line we used the basisuSMS ;IM I& with S
5s11s2 and I5 i11 i2 the total electron and nuclear spin
the two colliding atoms andMS and MI the corresponding
magnetic quantum numbers along the direction of the m
netic field.

The decay rates for the transition from the sta
u lm,$a,b%& with orbital quantum numbersl andm to a state
u l 8m8,$a8,b8%& with quantum numbersl 8 andm8 are essen-
tially given by Fermi’s golden rule and results in the expre
sion @15#

Ga,b→a8,b8~B!52p3\2mpa8,b8

3uTl 8m8$a8,b8%,lm$a,b%~pa8,b8,0!u2 ~2!

for the zero-temperature limit of the rate constant for t
process. HereTl 8m8$a8,b8%,lm$a,b%(pa8,b8,0) is the two-body
scattering matrix at zero energy such that the incoming p
ticles have zero relative momentum and the magnitude of
relative momentum of the scattered particles ispa8,b8.
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As explained, for example, in Ref.@4#, there are basically
two ways in which collisions cause the atoms to be lost fr
the trap. First of all, the central~singlet and triplet! interac-
tion Vc5VS(r )P(S)1VT(r )P(T) induces transitions betwee
different hyperfine levels. Since this interaction cann
change the total electron- or nuclear-spin angular momen
and the hyperfine levelu5& has a small admixture
with the state ums521/2,mi51&, only transitions
u$6,5%2&→u$6,1%2&, where u1&.ums521/2,mi51&
2u1ums51/2,mi50&, are allowed. Similar to Eq.~1!, the
total spin stateu$6,1%2& is given by

u$6,1%2&5u00;22&2u1u11;11&. ~3!

Combining Eqs.~1! and~3!, we find that the spin part of the
transition matrixT00$6,1%,00$6,5%(p61,0) contributes a factoru1

times the exchange potentialVex(r )5VT(r )2VS(r ), i.e., the
difference between the triplet and singlet potentials. To c
culate the spatial part, we must use for the relative incom
and outgoing scattering wave functions with orbital quant
numbersl and m and total electron spinS the normalized
expression

C lmS
~6 !~r !5A 2

p\3

c lS
~6 !~r !

r
i lYlm~ r̂ !, ~4!

wherec lS
(6)(r ) denotes the incoming and outgoing solutio

to the radial Schro¨dinger equation with the singlet or triple
interaction. Using furthermore that the relative momentu
p61 after scattering is due to the energy differencee62e1

52meB, we find thatp615A2mmeB. Combining all expres-
sions into Eq.~2!, we obtain that the rate constant due
exchange interactions is given by

Gex52p3\2mp61~u1!2

3 z^C000
~2 !~r ,p61!uVT~r !2VS~r !uC001

~1 !~r ,0!& z2

5p3\2S m

2meB
D 3/2

ah f
2

3 z^C000
~2 !~r ,p61!uVex~r !uC001

~1 !~r ,0!& z2. ~5!

In Fig. 2 this exchange rate as a function of the magne
field is shown~curve 1!.

The second way in which collisions cause decay of
gas is due to magnetic dipolar interactionsVd. As will be
shown, of the various dipolar interactions, the contributi
due to electron-electron dipolar interactions is most imp
tant. For this dipolar interaction, we have@15#

Vd52
m0me

2

4pr 3
A4p

5 (
DMS

~21!DMSY22DMS
~ r̂ !S2,DMS

ee ,

~6!

where the tensor operatorS2,DMS

ee can be thought of as arisin

from the coupling betweens1 /\ and s2 /\, the Pauli spin
matrices describing the electron spin of the two atoms, t
tensor of rank 2. For the scattering stateu$6,5%2&.u11;11&,
the dipolar interaction can change the~total! electron spin
projectionMS of the two atoms by an amountDMS521 for
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56 4867SUPERFLUID STATE OF ATOMIC6Li IN A MAGNETIC TRAP
a one-spin-flip (1SF) or DMS522 for a two-spin-flip
(2SF) process. Therefore, the one-~two-! spin-flip dipolar
interaction couples the incoming wave function with a
proximatelyS51,MS51 to the final state havingS51,MS
50 (MS521). As a result, the outgoing wave function is
the stateu10;11& for one spin flip, and in the total spin sta
u121;11& after the two-spin-flip interaction. The Clebsc
Gordan coefficients for each process are given byA3/10 and
A3/5, i.e., the spin part of the transition matrix contributi
to the decay rate is a factor ofA2 larger for the two-spin-flip
process than for the one-spin-flip process. Moreover, the
ergy released in a one-spin-flip process is only half of
energy released in a two-spin-flip process. Therefore, we
that pa8,b8

1SF
5A2mmeB, whereaspa8,b8

2SF
5A4mmeB. We thus

arrive at the convenient relation thatG2SF(B)52G1SF(2B)
and it suffices to calculate only the one-spin-flip decay ra

Performing a similar calculation as in the case of the
change decay rates, the one-spin-flip decay rate become

G1SF(B)52p3\2mA2mmeBZm0me
2

4p
A4p

5

3K C211
~2 !(r )UY21~ r̂ !

r 3 UC001
~1 !(r )L

3^10;11uS2,21
ee u11;11&Z2

5
12

10
A2mmeB

m~m0me
2!2

p\4
(r 20)

2, ~7!

where

~r 20!
25E

0

`

dr
c21

~2 !~r !c01
~1 !~r !

r 3

is the radial electron-electron dipolar element. In Fig. 2
one-spin-flip decay rate constant is shown as curve 2.

FIG. 2. Decay rate constants due to exchange~curve 1! and
one-spin-flip processes~curve 2! as a function of the applied mag
netic bias field.
-

n-
e
d

.
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At this point it can be understood that the electro
electron dipolar interaction gives the largest contribution
the dipolar decay rates. Decay due to the electron-nucl
interaction occurs, for example, via theu$6,5%2&→u$6,4%2&
channel. However, the corresponding decay rates are sm
by a factor of (mN /me)

2.2031026 and thus completely
negligible. This also implies that a mixture ofu6& and u5&
atoms cannot achieve equilibrium in the spin degrees of fr
dom within the lifetime of the gas. This is completely anal
gous to the recent experiments with two condensates in
ferent spin states performed by Myattet al. @10#.

Figure 2 shows that the lifetime of the gas is of the ord
of 1 s for a densityn55n6.1012 cm23 and a magnetic bias
field of 5 T. Although this would provide ample time t
perform an experiment, a much shorter lifetime may be
equate. For successful experiments we have to require
only that the time between thermalizing collisions is sm
compared to the lifetime of the gas, but also that the ti
scale for formation of the Cooper pairs obeys this conditi
The latter is anticipated to be ofO(\/kBTc) and therefore in
our case much longer than the time between collisions. N
ertheless, for a densityn55n6.1012 cm23, we have that
Tc.11 nK and\/kBTc is only about 0.7 ms, where as a bia
field of 0.2 T gives a lifetime of about 1 ms@16#.

In the next subsection we consider the microscopic the
that describes the Fermi gas in the normal and the super
state. We apply only the BCS theory here. The influence
fluctuations@8# will be addressed elsewhere.

B. BCS transition

For the homogeneous case, and taking only two-body
teractions between atoms in different hyperfine states
account, the gas is described by the Hamiltonian@15#

H5 (
a5↑,↓

H E dx ca
†~x!S 2

\2¹2

2m
2maDca~x!

1
1

2E dxE dx8VT~x2x8!

3ca
†~x!c2a

† ~x8!c2a~x8!ca~x!J . ~8!

In this expression,↑ and↓ refer again to the two hyperfine
states involved. The field operatorsca(x) and ca

†(x) obey
the usual Fermi anticommutation relations and denote
annihilation and creation of a fermion at positionx in hyper-
fine stateua& with chemical potentialma . The interparticle
potential can be approximated by a local potentialVT(x
2x8).V0d(x2x8), where the constantV0 is a measure of
the strength of the interaction. We will return to the prec
value ofV0 shortly, but it is in any case negative to accou
for the effectively attractive nature of the triplet interactio
The integration overx8 in the Hamiltonian is then trivial.
The next step in a mean-field treatment of the Hamiltonian
Eq. ~8! is to develop the operator productsca

†ca andcac2a

around their mean values by substituting

ca
†ca5^ca

†ca&1dca
†ca

and

c2aca5^c2aca&1dc2aca .
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To first order in the fluctuations, we are left with the effe
tive mean-field Hamiltonian

H5E dxW H (
a5↑,↓

ca
†~x!S 2

\2¹2

2m
2ma8 Dca~x!

1D0c↑
†~x!c↓

†~x!1D0* c↓~x!c↑~x!2
uD0u2

V0

2
4pa\2

m
n↓n↑J , ~9!

where na5^ca
†(x)ca(x)& is the equilibrium value of the

density of atoms in stateua& and equivalently D0
5V0^c↓(x)c↑(x)& is the equilibrium value of the BCS orde
parameter@16#. The chemical potential of each hyperfin
state has now been renormalized toma85ma2T2Bn2a to
include, on the mean-field level, all two-body scattering p
cesses with particles in stateu2a&. The factor T2B

54pa\2/m is the two-body scattering matrix and has be
substituted forV0 to incorporate correctly all two-body pro
cesses into the calculation. Note that the same substitu
should not be performed in the expression forD0 because all
two-body interactions are already going to be included by
BCS treatment as we will see below@14#. Due to the non-
equilibrium in the spin degrees of freedom, both chemi
potentialsm↓8 and m↑8 need not be equal and therefore t
densities of atoms in the respective hyperfine level can
varied independently.

Substituting for the operatorca
† the expression

ca
†~x!5

1

AV
(

k
ak,a

† e2 ik•x, ~10!

whereak,a
† creates one particle in spin stateua& with mo-

mentum\k, the Hamiltonian in Eq.~9! becomes

H5(
k

~ak,↑
† a2k,↓!S ek2m↑8 D0

D0* 2ek1m↓8
D S ak,↑

a2k,↓
† D 2

uD0u2

V0

2n↑n↓T
2B, ~11!

whereek5\2k2/2m is the free particle energy of a partic
with momentum\k. The density of atoms in stateua& is
determined by

na5^ca
†ca&5

1

V(
k

^ak,a
† ak,a&. ~12!

Since the effective mean-field Hamiltonian in terms of t
operatorsak,a

† and ak,a is nondiagonal, one cannot direct
calculate the expectation value^ak,a

† ak,a&.
This is, as usual, resolved by first applying a Bogoliub

transformation according to@16#

ak,↑5ukbk,↑1vk* b2k,↓
† , ~13a!

a2k,↓
† 52vkbk,↑1uk* b2k,↓

† ~13b!

to diagonalize the Hamiltonian in Eq.~11!. After performing
this unitary transformation, we require that the Hamiltoni
-

on

e

l

e

in terms of the new quasiparticle operatorsbk,↑ and b2k,↓
†

has only diagonal elements and furthermore that these op
tors again obey the usual anticommutation relations for
nihilation and creation operators. This determines the val
of the yet unknown and in principle complex constantsuk
and vk . The latter constraint requires that the constantsuk
and vk must satisfy the relationsuuku21uvku251 and the
requirement of diagonality of the Hamiltonian after th
transformation leads to the conditionuuku25 1

2 (11jk /
Ajk

21uD0u2), introducingjk5ek2eF , i.e., the free particle
energy relative to the average Fermi leveleF5(m↑81m↓8)/2.

The eigenvalues corresponding to the Bogoliubov qua
particles are then given by

\vk,a52madeF1Ajk
21uD0u2, ~14!

where ma561/2 for a5↑,↓, respectively. Furthermore
deF5m↑82m↓8 is the difference in Fermi levels of the tw
hyperfine states. The dispersion relations of Eq.~14! are de-
picted in Fig. 3 for equal@Figs. 3~a! and 3~b!# and unequal
densities@Figs. 3~c! and 3~d!# with both zero@Figs. 3~a! and
3~c!# and nonzeroD0 @Figs. 3~b! and 3~d!#, respectively@19#.

Note that when the densities in both spin states are e
~corresponding todeF50), the dispersion relation reduces
the usual Bogoliubov dispersion\vk5Ajk

21uD0u2 describ-
ing particles above the Fermi level, i.e.,ek.eF , and holes
~for which the dispersion is given by minus the particle d
persion! below eF . It is clear that the Bogoliubov transfor
mation couples particles in stateua& with holes in state
u2a& @see, for example, Fig. 3~d!# and that for unequal den
sities the dispersion relations are shifted with a const
6deF/2 such that there appear two separate branches in
excitation spectrum of the Bogoliubov quasiparticles
shown in Figs. 3~c! and 3~d!. For n↑.n↓ , the negative sign
of \vk,↑ around the Fermi leveleF indicates that the energ
states are partially filled with spin-down holes beloweF and
with spin-up electrons in a small region above the Fer

FIG. 3. Bogoliubov dispersion\vk,a for ~a! n↑5n↓ and D0

50; ~b! n↑5n↓ and D0Þ0, ~c! n↑.n↓ and D050, and ~d! n↑
.n↓ andD0Þ0. The thin dashed lines indicate the particle disp
sions below the Fermi leveleF .
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level. Therefore, the lower branch isgapless when D0
,deF/2, whereas the upper one always has a gap, eve
D050. The case of unequal densities is thus analogous
gapless superconductor.

By plugging the transformation Eq.~13! into Eq. ~12!, it
is easily verified that the densities satisfy

na5
1

V(
k

$uuku2N~\vk,a!1uvku2@12N~\vk,2a!#%,

~15!

where N(\vk,a)51/(exp@b\vk,a#11)5^bk,a
† bk,a& is the

Fermi distribution for the Bogoliubov quasiparticles andb
51/kBT. For fixed na , Eq. ~15! determines the chemica
potentialsma8 of the particles in stateua&.

Subsequently, the equilibrium value of the BCS order
rameter is calculated fromD05V0^c↓(x)c↑(x)&. Substitut-
ing Eqs. ~10! and ~13! for c↑,↓(x), this leads to the BCS
‘‘gap equation’’

1

V(
k

12N~\vk,↑!2N~\vk,↓!

2Ajk
21uD0u2

52
1

V0
. ~16!

This equation has an ultraviolet divergence as a consequ
of the fact that we made the assumption that the interpar
interaction is local, i.e., momentum independent. Howev
from the Lippmann-Schwinger equation for the two-bo
scattering matrix@20#

1

T2B
5

1

V0
1

1

V(
k

1

2jk
, ~17!

we find that this divergence is canceled by a renormaliza
of 1/V0 to 1/T2B @17# and the gap equation becomes

1

V(
k

H 12N~\vk,↑!2N~\vk,↓!

2Ajk
21uD0u2

2
1

2jk
J 52

1

T2B
.

~18!

Eliminating from this equation both chemical potentialsma8
by means of Eq.~15! and equatingD0 to zero, one finds the
critical temperatureTc as a function of both hyperfine den
sities in the gas. If the hyperfine densities are taken to
equal, the critical temperature can be calculated analytic
@21#, resulting in

Tc.
8eF

kBp
eg22expH 2

p

2kFuauJ , ~19!

whereg50.5772 is Euler’s constant andkF5A2meF/\ is
again the wave vector corresponding to the Fermi energyeF .
Including fluctuations changes only the prefactor of Eq.~19!
@8#. Although this is expected to lower the critical temper
ture somewhat, the exponential dependence ofTc on the
scattering length is most important for our purposes. Si
taking fluctuations into account self-consistently is rather d
ficult, in particular in the inhomogeneous case, we will retu
to the effect of fluctuations on the transition to a superfl
state elsewhere and consider here only the mean-field the
which is also known as the many-bodyT-matrix theory.
at
a

-

ce
le
r,

n

e
ly

-

e
-

d
ry,

As mentioned previously, the densities of particles, a
hence the chemical potentials, need not be equal in b
spinstates. In Fig. 4 we plot several contour plots of
critical temperature for the homogeneous gas in then↑-n↓
plane. As can be seen from this figure, the most favora
situation is that, given a certain total density of atoms, b
hyperfine states are equally occupied because this gives
to the highest critical temperature. When the two hyperfi
states are not equally occupied, it can be shown that the
a nonzero critical temperature only when the spin ‘‘polariz
tion’’ un↑2n↓u/(n↑1n↓),3kBTc/2eF . Also, for fixed aver-
age Fermi leveleF and increasing differencedeF , the criti-
cal temperature decreases and there is no transition a
when deF*kBTc(0), with Tc(0) the critical temperature
whendeF50 @4#. This behavior is similar to what occurs i
superconductors placed in a magnetic field and can be un
stood physically from the fact that the formation of Coop
pairs spreads the occupation of energy levels only over
energy interval of orderD0.kBTc around the respective
Fermi levelsm↑8 and m↓8 . Moreover, pairing between atom
at the average Fermi energy can only take place if th
exists an overlap between the Fermi distributions of the t
spin states in this region of momentum space. This ind
shows thatdeF must be smaller than aboutkBTc(0).

The dashed line in Fig. 4 is the spinodal line, above wh
the gas becomes mechanically unstable. We will return
this issue in the next subsection.

C. Mechanical stability of a two-component Fermi gas

As already pointed out in Ref.@4#, an important require-
ment for a BCS transition to occur is that the system
mechanically stable against density fluctuations. The ne
tive s-wave scattering length induces an effectively attract
interatomic potential, so if the density of particles becom
too large, the system can collapse to a fluid or solid st
before the systems becomes superfluid in the~metastable!
gaseous phase. In general, for mechanical stability of the
at the critical temperature, we must require that the veloci
of the two sound modes in the normal state of the gas

FIG. 4. Contours of the critical temperature as a function of
hyperfine densitiesn↑ andn↓ for ~1! T50.01 nK,~2! T511 nK, ~3!
T537 nK, and~4! T51725 nK. The dashed line is the spinod
line.
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4870 56M. HOUBIERSet al.
real. These velocities can be calculated from the free-ene
densityf of the gas. Since the temperatures of interest are
low that kBT!eF , we can consider the zero-temperatu
limit, in which the free-energy density amounts to the av
age energy densityf 5^E&/V. We thus have

f 5 f 01 f int[
3

10
~6p2!2/3~n↑

5/31n↓
5/3!

\2

m
1n↑n↓T

2B,

~20!

where f 0 is the ideal gas free-energy density of the partic
in each hyperfine state atT50 and f int is the free-energy
density that arises due to interactions between particle
both spin states. The corresponding sound velocities squ
are determined by the eigenvalues of the matrix

S ]2f

]n↑]n↑

]2f

]n↑]n↓

]2f

]n↓]n↑

]2f

]n↓]n↓

D ,

leading to the condition thatn↑n↓a
6<(p/48)2. The line in

the n↑-n↓ plane, where the equality holds, is called the sp
odal line, and for the homogeneous6Li gas it is plotted as
the dashed line in Fig. 4.

Notice, however, that a spin-polarized Fermi gas becom
unstable at densities above the spinodal line, irrespectiv
the sign of the scattering lengtha. Therefore, the question
arise as to what exactly happens at densities above the
odal line and whether there is a difference in the behavior
positive or negatives-wave scattering length. First of al
notice that the matrix]2f /]na]nb has an eigenvaluel50 at
the spinodal point. The corresponding eigenvectorê0 points
in the unstable direction of the phase space. For equal
sities of the two hyperfine states, it is straightforward to c
culate that ê051/A2(71,1), where the upper and lowe
signs refer to positive and negative scattering lengthsa, re-
spectively. We therefore conclude that for a negatives-wave
scattering length, the gas collapses to a dense phase~prob-
ably a solid!, whereas for positivea it phase separates int
two dilute gaseous phases with opposite ‘‘magnetizatio
Since the second situation might be of interest for fut
experiments with other fermionic atoms than6Li, we con-
sider now for a moment also thea.0 case.

1. The a> 0 case

To analyze the stability at positivea, we notice that the
pressure of the gas at zero temperature is given byp5
2]^E&/]V. We thus find that

p5p01pint5
1

5
~6p2!2/3~n↑

5/31n↓
5/3!

\2

m
1n↑n↓T

2B.

~21!

Introducing for future convenience dimensionless variab
according tox[n↑a

3, y[n↓a
3, M ↑,↓[(2ma2/\2)m↑,↓ , P

[a3(2ma2/\2)p, and F[a3(2ma2/\2) f , it follows from
Eqs.~21! and ~20! that
gy
so

-

s

in
ed

-

s
of

in-
r

n-
l-

’’
e

s

P~x,y!5
2

5
~6p2!2/3~x5/31y5/3!18pxy, ~22!

F~x,y!5
3

5
~6p2!2/3~x5/31y5/3!18pxy, ~23!

M ↑~x,y!5~6p2!2/3x2/318py, ~24!

M ↓~x,y!5~6p2!2/3y2/318px, ~25!

where we used thatm↑,↓5] f /]n↑,↓ . Notice that these equa
tions are symmetric under the exchange of the variablex
andy or rather the indices↑ and↓.

The condition that must be fulfilled for a phase separat
is that an unstable phaseU separates into two distinct phase
S1 andS2 in the stable region of the phase space in suc
way that both the pressure and the chemical potential in
two stable phases are equal. Since in our case we are de
with a gas consisting of two constituents, we require t
both chemical potentialsm↑ andm↓ must be equal in the two
stable phases; otherwise particles would still prefer o
phase above the other and there would be no equilibrium
third condition that must hold is that the total number
particles in each spin state must be conserved. In Fig. 5
show the spinodal line in terms of the dimensionless va
ablesx,y, i.e., xy5(p/48)2. Furthermore, we plotted an un
stable pointU, which separates into pointsS15(x1 ,y1) and
S25(x2 ,y2) in the stable regime of phase space. Next
will deduce the exact position of these pointsS1 andS2 from
the above-mentioned conditions on the phase separation

From the condition on the pressure and the symmetry
Eq. ~22! it follows that PS1

5P(x1 ,y1)5PS2
5P(x2 ,y2) is

satisfied ifx15y2 andx25y1. In other words, the separatio
pointsS1 andS2 lie symmetric in then↑-n↓ plane. The con-
dition on the chemical potentials, i.e.,M ↑,↓(x1 ,y1)
5M ↑,↓(x2 ,y2), now determines the exact position of th
pointsS15(x1 ,y1) andS25(x2 ,y2). From the symmetry of

FIG. 5. Plot of the phase-separation line~dashed! as a function
of the dimensionless densitiesx5n↑a

3 andy5n↓a
3, together with

the spinodal linexy5(p/48)2, above which the gas phase separa
to the dashed line. As an example, the unstable phaseU separates to
the stable phasesS1 and S2, with volume fractionsV15hV and
V25(12h)V, respectively. Note that in the regions between t
phase-separation line and the spinodal line, the gas is metasta
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56 4871SUPERFLUID STATE OF ATOMIC6Li IN A MAGNETIC TRAP
Eqs. ~24! and ~25! we see thatM ↑(x1 ,y1)5M ↓(y1 ,x1)
5M ↓(x2 ,y2), so M ↑(xi ,yi)5M ↓(xi ,yi) in each individual
separation pointSi ,i 51,2. This shows that, in practice, w
are looking for intersections of the curvesM ↑(x,y)
5M ↓(x,y)5M . Again from symmetry, it is immediately
clear that there is always a point of intersection of the t
curves somewhere on the linex5y, but for certain values of
M there can be two additional points of intersection, wh
are plotted as the dashed line in Fig. 5. This line is the pha
separation line. As we will prove later on, it coincides wi
the spinodal line atx5y5p/48 and lies below the spinoda
line, in the stable region of phase space, elsewhere.

The third condition requiring conservation of the tot
number of particles in each spin state determines the vol
fractionsV1 /V andV2 /V of the two phases. For an unstab
homogeneous system of volumeV and with N↑5n↑

UV and
N↓5n↓

UV particles in the two hyperfine states, we have t
after the phase separation

N↑5n↑
S1V11n↑

S2V2 ,

N↓5n↓
S1V11n↓

S2V2 .

Of course, the total density is also constant so we h
ntotal5n↑

U1n↓
U5n↑

S11n↓
S15n↑

S21n↓
S2 , which means that the

points U, S1, and S2 must lie on a straight line given b
n↑1n↓5ntotal , as indicated for the pointsU, S1, andS2 by
the dotted line in Fig. 5. Defining nowbU5n↑

U/ntotal , bS

5n↓
S1/ntotal5n↑

S2/ntotal , and h5(bU2bS)/(122bS), we
find after a little algebra thatV15hV andV25(12h)V. So
the phase separation is such that for arbitrary position of
point U on the unstable part of the dotted line in Fig. 5 t
system separates into the same two stable pointsS1 andS2;
the exact position ofU determines only the volume fraction
of the stable phases. The phase pointsS1 and S2 have the
same total density but differ in ‘‘spin magnetization’’ by a
amount un↑

S12n↓
S1u. Therefore, the phase separation cor

sponds to a spin decomposition that is driven by the fact
at sufficiently high densities the loss in interaction ene
between the two species compensates for the gain in kin
energy due to the Pauli exclusion principle.

To gain even more understanding in this phase separa
and to distinguish later on the situation with negativea from
the case with positivea, we consider the dimensionless fre
energy in Eq.~23! more closely. It is clear from Fig. 5 tha
the phase separation takes place on linesx1y5const. There-
fore, we introduce new variablesn andz such that

x5n2z,

y5n1z,

i.e., then axis lies along the linex5y in Fig. 5 and thez axis
lies along the liney52x. Lines of constantx1y therefore
have a constantn ~density! and run parallel to thez axis. The
dimensionless free energyF(x,y) in terms of these new vari
ables now becomes
o

e-

e

t

e

e

-
at
y
tic

on

F~n,z!5
3

5
~6p2!3/2@~n2z!5/31~n1z!5/3#18p~n22z2!.

~26!

Note that, since the original variablesx andy must be posi-
tive, alson>0, and for givenn, we have2n<z<1n. Tak-
ing the derivative ofF(n,z) with respect toz at constantn,
it is found that

]F

]z
5~6p2!2/3@2~n2z!2/31~n1z!2/3#216pz,

which is zero atz50 for all values ofn. Hence there is
always an extremum in the free energyF(n,z) at the linez
50. To see whether this is a minimum or a maximum, w
have to analyze the second derivative

]2F

]z2 U
z50

5
2

3
~6p2!2/3F 2

n1/3G216p,

which is positive forn,nsp5p/48, zero atn5nsp , and
negative forn.nsp . So the minimum in the free energ
F(n,z) at constantn and z50 changes into a maximum a
n5nsp , which exactly coincides with the spinodal point
x5y. This behavior is shown in Fig. 6, where we pl
F(n,z) for ~a! n,nsp , ~b! n5nsp , and ~c! and ~d! n
.nsp , as a function ofz.

From Fig. 6 we see that the maximum atz50 for fixed
n.nsp is flanked by two minima in the free energy, whic
move outward in the6z directions for increasingn. More-
over, for n5nc59p/256 the minima just appear atz56n,
i.e., at they axis in y59p/128 and at thex axis in x
59p/128, respectively, in the original dimensionless dens
variablesx andy. The important point is now that these tw
minima in the free energyF(n,z) for fixed n are, after trans-
forming back tox-y coordinates, precisely the stable sepa
tion pointsS1 and S2. Because of symmetry, they obey a
conditions that we imposed on them. Furthermore, we no
that for n.nc , or total densityntotal>9p/128a3, the spin
separation is complete, i.e., one part of the volume is oc
pied with atoms only in the hyperfine levelu↑&; the rest of
the volume contains atoms only in stateu↓&. The densities of
both phases is in this case evidentlyn↑

S15n↓
S25ntotal .

2. The a< 0 case

We now consider the case where the scattering lengta
,0, as is the case for the6Li system. Introducing again
dimensionless variables according tox5n↑uau3 and y
5n↓uau3 and after the substitutionsx5n2z and y5n1z,
respectively, the dimensionless free energy is readily see
be

F~n,z!5
3

5
~6p2!3/2@~n2z!5/31~n1z!5/3#28p~n22z2!.

~27!

The first derivative ofF in the z direction is given by

]F

]z
5~6p2!3/2@2~n2z!2/31~n1z!2/3#116pz,
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FIG. 6. Plots of the dimensionless free energyF(n,z) as a function ofz5(y2x)/2, for ~a! n5p/96,nsp , ~b! n5p/485nsp , ~c! nsp

,n56p/256,nc , and~d! n59p/2565nc .
-
pa

n
e
d

rg
ion

f

,

al
r t
a

o

nd
hat
tor
t

ery
the

se
em
ace

.
ing
mi

of

er
d of

e

gas
rmi
ture
-
e
o-

and
es.
ect

cal
re-
to
which is always zero atz50. The second derivative with
respect to the variablez at z50 is given by

]2F

]z2
5

2

3
~6p2!2/3F 2

n1/3G116p,

which is for all allowed values ofn larger than zero. There
fore we conclude that there indeed can be no phase se
tion in the z direction along the linesn5const as was the
case for positivea.

Instead, the phase separation in the unstable regio
phase space above the spinodal line takes place in thn
direction. This can be shown by considering the second
rivative of F with respect ton, i.e.,

]2F

]n2
5

2

3
~6p2!2/3F 1

~n2z!1/3
1

1

~n1z!1/3G216p,

which at z50 or x5y becomes zero exactly atn5nsp
5p/48. The fact that the second derivative of the free ene
is zero at some point signals an instability in that direct
~in thea.0 case, the second derivative ofF with respect to
z just became zero atn5nsp). So we find that in the case o
negative scattering length, the unstable pointU in phase
space will separate into a phaseS1 with lower total particle
density and a phaseS2 with higher total particle density or
in other words, to a gaseous and a dense~solid! state. How-
ever, we do not have an appropriate theory that can
describe the dense phase. Therefore, we do not conside
kind of phase separation, which is very common in gases
liquids, further here.

III. INHOMOGENEOUS FERMI GAS

A. Local-density approximation

Until now we considered only a homogeneous gas
spin-polarized atomic6Li. In reality, however, experiments
ra-

of

e-

y

so
his
nd

f

with ultracold atomic gases are performed by trapping a
evaporatively cooling the gas in an external potential t
generally can be modeled by an isotropic harmonic oscilla
V(r )5 1

2 mv2r2, wherev is the trapping frequency. An exac
calculation of the~inhomogeneous! density of the gas by
calculating all eigenstates of the trapping potential is v
elaborate but has nevertheless been performed for
bosonic isotopes7Li @22,23# and 87Rb @24#. Fortunately, in
the fermionic system it is a good approximation to make u
of the local-density approximation, which treats the syst
as being locally homogeneous. This requires in the first pl
that the correlation lengthj5O(1/kF) is much shorter than
the length scalel 5A\/mv over which the densities change
This condition is equal to the condition that the level spac
\v of the trapping potential is much smaller than the Fer
energy. Second, below the critical temperature, the size
the Cooper pairs must be smaller thanl or the trapping po-
tential would influence the wave function of the Coop
pairs. This size is essentially temperature independent an
O„\vF /pD0(0)…, where D0(0) is the zero-temperatur
value of the BCS order parameter andvF5\kF /m the Fermi
velocity corresponding toeF . Of course, the local-density
approximation always breaks down at the edge of the
cloud where the density vanishes and the effective Fe
energy becomes zero, and also at the critical tempera
where the correlation lengthj diverges. So at a nonzero tem
perature belowTc there are two spatial regions where th
local-density approximation is not valid, i.e., around the p
sition where the local BCS order parameter vanishes
around the position where the local Fermi energy vanish
However, these regions are so small that we do not exp
any important changes in the functional behavior of physi
properties at the crossover from outside to inside these
gions. As a result, we believe that it is rather accurate
apply the local density approximation to calculateTc
@25,26#.
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56 4873SUPERFLUID STATE OF ATOMIC6Li IN A MAGNETIC TRAP
In this approximation, the densitiesn↑ andn↓ of the two
hyperfine states together with the gapD0 can still be calcu-
lated by means of the equations derived in Sec. II B, with
understanding that now the effective chemical potentials,
consequently the densities andD0, are spatially dependen
through

ma8 ~r !5ma2V~r !2n2a~r !T2B, ~28!

wherema is the overall~constant! bare chemical potential o
atoms in hyperfine stateua&. So, givenT, m↓ , and m↑ @or
equivalentlyT, N↓5*dr n↓(r ), andN↑5*dr n↑(r )#, one can
determine the values ofn↓(r ), n↑(r ), and D0(r ) self-
consistently for every positionr in space, as if the system
were homogeneous. This procedure will be used in the n
subsection to calculate the critical temperature of the s
polarized gas as a function of the number of particles in
trap.

B. Critical temperature

The critical temperatureTc of the gas is such that at th
center of the magnetic trap, where the density of the ga
highest, the energy gapD0(0) just becomes nonzero for
given number of particlesN↑ andN↓ . First we will consider
the case whereN↑5N↓5N. In Fig. 7 the solid line shows the
result of our calculation. The dashed line in this figure giv
the critical temperature for the Fermi gas if one does
include the effects of the mean-field interaction in Eq.~28!.
In this approximation, the number of particles in each hyp
fine state is, with a high degree of accuracy, given by
zero-temperature resultN↑,↓5(m↑,↓ /\v)3/6 and the density
in the center of the trap isn↑,↓(0)5(2mm↑,↓ /\2)3/2/6p2,
which is considerably smaller than in case that the me
field interaction is taken into account. As a result, the criti
temperature obtained in this manner is substantially lo
for an equal number of particles. From an experimental po
of view, it is therefore important to include interactions
obtain a reliable estimate for the critical temperature a
function of the number of trapped particles.

We found that, as is also the case for a Bose gas
harmonic trap@24#, the critical temperature, or rather th
dimensionless parametera/lTc

, is a universal function of

FIG. 7. Critical temperature as a function of the number
particles~solid line! when there areN particles present in both spi
states. The dashed line represents the critical temperature for
whose density distribution is not altered by mean-field interactio
e
d

xt
-
e

is

s
t

r-
e

n-
l
r
t

a

a

N1/6a/ l , with the thermal de Broglie wavelengthlT

5A2p\2/mkBT andl 5A\/mv. The solid line in Fig. 7 can
be fitted numerically very well with the expression

S a

lTc
D 2

50.037expH 21.214
l

uau
N21/612.990

uau
l

N1/6J
for the whole range of parameters shown in Fig. 7.

The fact that the critical temperature is a universal fun
tion of the parameterN1/6a/ l can be understood easily b
rewriting the gap equation~18! at the critical temperature in
the form

Ap

4

lTc

a
5E

0

`

dxAx

3
N~2deF1ux/b2eFu!1N~deF1ux/b2eFu!

2ux2beFu
,

whereN(x)51/(exp@bx#11) is the Fermi distribution. This
shows that at the critical temperature,a/lTc

is a function of

deF /kBTc andeF /kBTc only. Equivalently, from the density
for each spin state given in Eq.~15! and the fact that at the
critical temperature the densities in the center of the t
na(0) are critical, we find that

na~0!lTc

3 5FaF deF

kBTc
,

eF

kBTc
G .

So the central density of each spin state times the ther
wavelength is also a function of the dimensionless para
etersdeF /kBTc and eF /kBTc . Combining these two equa
tions, it follows thata/lTc

is directly related to the densitie
in the center of the trap, i.e.,

a

lTc

5F@n↑~0!lTc

3 ,n↓~0!lTc

3 #. ~29!

To prove now thata/lTc
is a function ofN1/6a/ l , it should

be noticed that in general in the local-density approximat
for T>Tc

na~r !lT
35 f 3/2„exp$b@ma2n2a~r !T2B2V~r !#%…, ~30!

where f 3/2„z(r )… is the Fermi function originating from inte
gration over momenta and analogous to the Bose func
g3/2(z). Applying this equation atr50 andT5Tc , we find
that both chemical potentials are functions ofa/lTc

and the
central densities of both hyperfine states and obey

ma

kBTc
5Fa8 F a

lTc

,n↑~0!lTc

3 ,n↓~0!lTc

3 G .

For a general value ofr , but still atT5Tc , we can apply the
substitution

y5A mv2

2kBTc
r ~31!

f

gas
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in Eq. ~30!, from which it follows immediately that for each
hyperfine state

na~r !lTc

3 5Fa9 F a

lTc

,n↑~0!lTc

3 ,n↓~0!lTc

3 ,y2G .

To find the total number of particles in each hyperfine lev
we then integrate this result over the spatial extent of the
cloud, resulting in

Na54pE
0

`

dr r 2na~r !5
4p

lTc

3 S 2kBTc

mv2 D 3/2

3E dyH y2Fa9 F a

lTc

,n↑~0!lTc

3 ,n↓~0!lTc

3 ,y2G J
[S l

lTc
D 6

Fa-F a

lTc

,n↑~0!lTc

3 ,n↓~0!lTc

3 G . ~32!

Multiplying Eq. ~32! on both sides by (a/ l )6 and using the
result of Eq.~29!, it is proved that at the critical temperatu

a

lTc

5FFN↑
1/6a

l
,N↓

1/6a

l G , ~33!

so that, whenm↑5m↓ the dimensionless parametera/lTc
is a

universal function ofN1/6a/ l .
The spinodal point in this case is given byN1/6a/ l

.0.66 and is not included in Fig. 7 because for6Li trapped
in a harmonic potential with frequencyn5v/2p5144 Hz,
or \v/kB.6.9 nK, corresponding to the present experime
tal conditions of the experiment of Bradleyet al. @2#, spin-
odal decomposition only occurs with as many as 5.83107

particles.
For an unequal number of particles in each hyperfi

state, we find a universal surface fora/lTc
as a function of

FIG. 8. Critical temperature as a function of the number of6Li
atoms in each hyperfine state. Curves 1–3 give the combinat
(N↑ ,N↓) corresponding to~1! Tc53 nK, ~2! Tc511 nK, and~3!
Tc537 nK. For equal number of particles in each hyperfine st
the density of particles in the center of the trap corresponds to~1!
n↑,↓(0)50.531012 cm23, ~2! 131012 cm23, and ~3! 231012

cm23, respectively.
l,
as

-

e

N↓
1/6a/ l and N↑

1/6a/ l , as Eq.~33! shows. However, since we
are in this paper mainly interested in trapping6Li atoms, we
will calculate several contours of the critical temperature
such a gas trapped in an isotropic harmonic oscillator w
n5144 Hz. The results are plotted in Fig. 8. Again we s
that given the total number of particles in the gas, the m
favorable situation is the one with equal numbers of partic
in each hyperfine state.

An important experimental question is how we could o
serve whether or not the gas is superfluid at a certain t
perature. An immediate possibility that, in view of the resu
with the BEC experiments, comes to mind is to consid
whether there is a change in the density profile at the crit
temperature. In the next subsection we will therefore conc
trate on the superfluid state of the gas and determine
density profiles and in addition the spatial dependence of
energy gapD0(r ).

C. Superfluid state

In Fig. 9 the density profilen↑(r )5n↓(r ) and the energy
gapD0(r ) are plotted for several temperatures below and
the critical temperature for a gas withN↑5N↓52.8653105

particles in both hyperfine states. The dotted line in Fig. 9~c!
shows the density distribution for a gas with the same nu
ber of particles, but witha50 instead ofa522160a0. It is
clearly visible that the effect of the interaction on the dens

ns

,

FIG. 9. Density distributionn↑(r )5n↓(r ) and energy gapD0(r )
for a 6Li atomic gas consisting of 2.8653105 atoms in each spin
state at~a! T515 nK, ~b! at T533 nK, slightly belowTc , and~c!
at T5Tc537 nK. The left scale of each plot refers to the dens
and the right scale to the energy gap. The open circles in~b! rep-
resent Eq.~34! and the dotted line in~c! shows the density distri-
bution for a gas with the same number of particles and at the s
temperature, but witha50.
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is rather large. Indeed, because of the attractive interacti
the particles are pulled to the center of the trap and the d
sity is there considerably increased, which is good from
experimental point of view because it significantly increa
the critical temperature.

Figure 10 is a similar plot, but now with unequal numb
of particles in each spin state:N↑53.083105 and N↓
52.653105, so the total number of particles is the same
in the previous case. From Fig. 10~a! it can be seen that th
presence of the order parameter tends to decrease the d
ence in densities of each hyperfine level. This can physic
be understood from the fact that the most favorable condi
for the formation of Cooper pairs is that both densities
equal.

The most important observation that we can make fr
both Figs. 9 and 10 is that there is almost no change in
density of the gas going from the normal to the superfl
phase. This also leads, as will be explained in more de
below, to the conclusion that a measurement of collec
excitations will not give a good signature for the presence
a superfluid state@27#. A second observation is that from th
BCS theory in superconductors@16#, it is known that the
order parameterD0 close to the critical temperature vanish
as

D0~T!.1.74D0~0!A12T/Tc, ~34!

FIG. 10. Density distributionn↑(r ), n↓(r ), and energy gap
D0(r ) for a 6Li atomic gas withN↑53.083105 and N↓52.65
3105 below and at the critical temperature.~a! T515 nK, ~b! at
T530 nK, slightly belowTc , and ~c! at T5Tc534 nK. The left
scale of each plot refers to the density and the right scale to
energy gap. The dotted lines in~c! represent the density profiles fo
a noninteracting gas, with the same number of particlesN↑53.08
3105 andN↓52.653105, respectively.
s,
n-
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fer-
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e

e
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whereD0(0) is the zero-temperature value ofD0, which in
turn is related to the critical temperature as

D0~0!.1.76kBTc . ~35!

For Fig. 9~a! it follows from Eq. ~19! that the critical tem-
perature corresponding to the density of the gas in the ce
of the trap is much larger than the temperature (T515 nK!
itself. Hence the value of the order parameter approaches
zero-temperature limit in this case. Using thatTc@n(0)#
.37 nK, one finds from Eq.~35! that D0(0)/kB565.1 nK.
Comparing this withD0(r50)/kB565.0 nK, we find that
there is indeed rather good agreement. Also, since the t
perature in Fig. 9~b! is only slightly below the critical tem-
perature, we can compare relation~34! with the values of
D0(r ) in this figure. At each spatial position whereD0(r )
.0, we can, from the local value of the Fermi energyeF(r ),
extract the local critical temperatureTc(r ) from Eq.
~19! and use Eq. ~35! to compare D0(T@r #)/kB

53.06Tc(r )A12T/Tc(r ) @open circles in Fig. 9~b!# with
D0(r ). Again, the agreement is very good.

Finally, we want to check that our local-density approx
mation is indeed valid under the conditions of interest. Fr
Fig. 9 one finds that atr 50, the value of 1/kFl .0.06 and,
for example, atr 50.05 mm, we find 1/kFl .0.64. Further-
more, from the zero-temperature value ofD0 in Eq. ~35! we
find that the size of the Cooper pairs relative to the trapp
parameterl is about 0.58, so the local-density approximati
starts to break down if we are far below the critical tempe
ture. In that case a more accurate approach is required
least for the relatively large trapping frequencies used he

IV. DISCUSSION AND CONCLUSION

As mentioned above, an important experimental probl
is the detection of the superfluid state. In contrast to
Bose-Einstein condensation experiments, there is no c
signature in the density distribution when the gas becom
superfluid, as shown in Sec. III C. Therefore, a measurem
of the collective excitations, or density fluctuations, will n
provide useful information on the presence of the superfl
phase as well. This can also be understood from the diss
tionless~linear! hydrodynamic equations governing the de
sity fluctuations in the system. Considering only the optim
situation of an equal number of particlesN↑5N↓ , these
equations are given, for a gas trapped in an external pote
V(r ), by

]n

]t
1“• jn50, ~36a!

] jn

]t
1

1

m
@“p1n“V~r !#50, ~36b!

]«

]t
1“• j «50, ~36c!

]vs

]t
1

1

m
“m50, ~36d!

e
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wheren5nn1ns is the total density that consists of a norm
and superfluid part,jn5nnvn1nsvs is the density curren
with vs (vn) the superfluid~normal! velocity, « is the aver-
age energy density,j «5m jn1Tsvn is the energy current, an
s is the entropy density@28,26#. Note that the same equation
in fact also describe the collective modes of a trapped Bo
condensed gas@29,30#.

To show that these hydrodynamic equations result
identical equations for the collective excitations in the n
mal and the superfluid phase, we first of all note that for
densities of interest the gas will be in the hydrodynam
limit, meaning that the time scales for the density fluctu
tions ~which are of the order of the inverse trapping fr
quency! are much slower than the time between elastic c
lisions. In this hydrodynamic regime, density fluctuatio
and temperature fluctuations influence each other with a c
pling proportional tocV2cp , wherecV (cp) is the heat ca-
pacity per particle at constant volume~pressure!. However,
for the very low temperatures of interest, one can assu
that the heat capacities of the gas satisfycV.cp . Indeed, for
a homogeneous Fermi gas, one finds in the limitT↓0 that
(cp2cV)/Cv5O„(kBT/eF)2

… and is thus very small. As a
result, the density and temperature fluctuations are ef
tively uncoupled@27#. As a consequence, Eq.~36c!, descib-
ing second sound, decouples from the other three equa
and it suffices to consider only density fluctuationsn(r ,t)
5n0(r )1dn(r ,t). Note also that if we have an unequ
number of particles, i.e.,N↑ÞN↓ , the density fluctuations
are coupled to fluctuations in the magnetizationn↑2n↓ and
we need to generalize these equations. For equal numb
particles these ‘‘spin waves’’ decouple, however, as we h
seen in Sec. II C.

In the normal phase, the Josephson relation Eq.~36d!
must be dropped. Linearizing Eq.~36b!, which is in fact just
Newton’s law, we arrive at

n0~r !
]v~r ,t !

]t
52

1

m
“S p@n0~r !#1

]p

]n
dn~r ,t ! D

2
1

m
n0~r !“V~r !2

1

m
dn~r ,t !“V~r !

52
1

m
“S ]p

]n
dn~r ,t ! D2

1

m
dn~r ,t !“V~r !,

where in the second line we used that in equilibrium

“p@n0~r !#52n0~r !“V~r ! ~37!

and furthermore that the pressurep is a function of the den-
sity only at fixed temperature. This result, together with
continuity equation~36a!, describes first sound in a trappe
Fermi gas.

In the superfluid phase, first sound hasvs5vn and Eq.
~36b! now becomes
l

e-

n
-
e
c
-

l-

u-

e

c-

ns

of
e

e

n0~r !
]vs

]t
52

1

m
“S ]p

]n
dn~r ,t ! D2

1

m
dn~r ,t !“V~r !

52
1

mS “

]p

]n
1“V~r ! D dn~r ,t !2

1

m

]p

]n
“dn~r ,t !.

~38!

However, in the superfluid phase we also have the Josep
relation~36d! for the superfluid velocity. Using that the loca
chemical potentialm5m0@n0(r )1dn(r ,t)#1V(r ), where
m0 is the homogeneous chemical potential including the
fects of interactions, and linearizing also this equation le
to

n0~r !
]vs

]t
52

n0~r !

m
“S m0@n0~r !#1

]m0

]n
dn~r ,t !1V~r ! D

52
n0~r !

m S dn~r ,t !“
]m0

]n
1

]m0

]n
“dn~r ,t ! D ~39!

because in equilibrium the chemical potential must satisf

m0@n0~r !#1V~r !5const. ~40!

Since in general

]p

]n
5n0

]m0

]n
, ~41!

the second term on the right-hand side of Eq.~39! equals the
last term on the right-hand side of Eq.~38!. Moreover, the
first term on the right-hand side of Eq.~39! can be rewritten
with Eq. ~41! as

“

]m0

]n
52

]p

]n

1

n0
2~r !

“n0~r !1
1

n0~r !
“

]p

]n

52
1

n0
2~r !

“p1
1

n0~r !
“

]p

]n

5
1

n0~r !S “

]p

]n
1“V~r ! D ,

where we used again the equilibrium condition in Eq.~37!.
We thus find that below the critical temperature, the Jose
son relation~36d! is identical to the momentum equatio
~36b!. As in the normal phase, first sound can belowTc thus
be described merely by Eqs.~36a! and~36b!. In combination
with the results that the density profiles in the normal a
superfluid phase are almost equal, we conclude that the
drodynamic equations that describe the density fluctuati
are almost identical and therefore that there will be no s
nificant difference in the collective excitation spectrum in t
superfluid and normal phase, respectively. Consequen
other means of experimental detection must be investiga
Of course, this conclusion is based on experiments
couple directly to density fluctuations such as in Re
@31,32#. If one can couple also to second sound one would
course observe an additional mode belowTc .
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Another possible way to detect the superfluid state is b
measurement of the two-body decay rate of the gas. N
that, in our case, three-body recombination processes
strongly suppressed since we are dealing with fermions
only have two different hyperfine states occupied. Above
critical temperature, the two-body rate constants are es
tially independent ofT and the magnitude is depicted as
function of the applied magnetic field in Fig. 2. In analogy
the case of a Bose gas, where the presence of a conde
decreases the decay rate due to two-body processes
factor of about 2@33–35#, we now analyze the change in th
decay rate due to the presence of Cooper pairs in the F
gas below the critical temperature.

Using the correlator method from Ref.@33#, it is found
that the decay rate constant due to two-body processe
given by

G~T!5G~Tc!K
~2!~T!, ~42!

where the correlator

K ~2!~T!5
1

n↑n↓
^c↑

†~x!c↓
†~x!c↓~x!c↑~x!& ~43!

equals 1 aboveTc , but increases due to the nonzero exp
tation valuê c↑(x)c↓(x)& below the critical temperature. In
deed, using the transformations given by Eqs.~10! and~13!,
it is found that

K ~2!~T!511
uD0u2

V0
2n↑n↓

,

whereD0 /V0 is again given by the ultraviolet-diverging ex
pression~16!. The question now arises what we should u
for V0 in this expression. Clearly, the denominatorV0 should
not be considered as the zero-momentum component o
triplet potential. Physically, this can be understood by
fact that this value ofV0 does not characterize the exa
nonlocal two-body triplet potential in any way. It does n
even reproduce the correct long-distance behavior for
scattered wave function. Therefore, a first guess would b
replaceV0 by T2B, but since thes-wave scattering length in
this case is much larger than the effective ranger V of the
interactionVT(x), it is likely that the replacement ofV0 by
T2B underestimates the effect of the presence of the su
fluid phase on the decay rates considerably.

Instead, from our procedure to remove the ultraviolet
vergence in the gap equation, we see thatV0 should be cho-
sen such that it satisfies the Lippmann-Schwinger equat

1

T2B
5

1

V0
1

1

V (
ukz<L

1

2jk
,

where a cutoffL5O(1/r V) is introduced. Solving this equa
tion for V0 and using that the Fermi energyeF!\2L2/2m,
we find that
a
te
re
d

e
n-

ate
y a

mi

is

-

e

he
e

e
to

r-

-

n

V05T2B
1

12
2aL

p

. ~44!

Applying this result, we can now make an estimate of t
effect of the presence of the superfluid phase. To simplify
calculation, we will calculate the effect atT50 for a homo-
geneous gas withn↑5n↓5n. We then have thatn
5kF

3/6p2. Moreover, from the BCS theory we know that th
zero-temperature value of the order parameterD0(0) is re-
lated to the critical temperature byD0(0)51.76kBTc . So

1

n↑n↓

uD0u2

V0
2

.
1

n2S F12
2aL

p G1.76kBTc

eF

3pn

4kFaD 2

.

From the functional behavior of the triplet potentialVT(x),
we deduce that the range of the two-body interactionr V
.100a0. Therefore, substitutingL.(100a0)21 and a5
22160a0, we find that in the case of6Li atoms V0
.0.07T2B. Note that, as expected, the Fermi wave num
kF is much smaller than the cutoff valueL: For a density
n↑5n↓51012 cm23, we haveeF.631027kB , resulting in
kF.(53103a0)21, which is indeed much smaller than th
cutoff L. Using thatTc511 nK for n51012 cm23 ~see Fig.
4!, it turns out that 122aL/p.15 and the correlator
K (2)(0).7, which is much larger than its value above t
critical temperature. Had we usedT2B instead ofV0, the
change in the correlator would have been only of the orde
3%. Even though we do not expect that the corrections to
decay rates are as large as the above crude argument
gests, we do believe that it might be of the order unity a
may be measurable. Of course, the cutoff dependence oV0
should in some way drop out of the theory eventually, but
this a better theory is needed, which takes into account
precise details of the triplet potential and does not make
of a pseudopotential to replace it. Work along these line
in progress because of the experimental importance to ha
reliable estimate of the changes in the relaxation rate c
stants. Furthermore, note that the correlatorK (2)(T) from
Eq. ~43! also appears in the expression of the average en
of the system@36#. A measurement of this quantity has be
done for the case of Bose gases@37,38# and we believe that
also in the case of fermions, a change in the average en
at the critical temperature can signal the presence of the
perfluid phase.

In summary, we considered a gas of atomic6Li occupy-
ing two hyperfine states trapped in a magnetic field. Ato
in different hyperfine levels can interact vias-wave scatter-
ing. Using the most up-to-date triplet potential, we show
that the lifetime of such a gas with a density of 1012 cm23

per hyperfine level is of the order of 1 s when a magnetic
bias field of 5 T is applied. At this density the gas becom
superfluid at a temperature of about 11 nK. We also inve
gated the mechanical stability of a two-component Fermi
and showed that if the two-particle interaction is repulsiv
the gas is unstable for spin-density fluctuations, wherea
the case where the interatomic interaction is attractive,
gas is unstable against density fluctuations above the s
odal line.
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Furthermore, we considered the superfluid state of ato
6Li, trapped in an isotropic harmonic-oscillator potential,
the local-density approximation. We showed that the criti
temperaturea/lTc

is a universal function of the quantitie

N↑
1/6a/ l and N↓

1/6a/ l . Below the critical temperature there
almost no change in the density profile of the gas clo
Therefore, we suggest that the presence of the super
state might be signaled by a change in the decay rates
change in the average energy at the critical temperature
an

et
,

n,
tt.

et,

.

y

h.

.

s.

s

th
for

o
e

s

ic

l

.
id

r a

ACKNOWLEDGMENTS

We acknowledge various useful discussions with Yv
Castin, Tony Leggett, Andrei Ruckenstein, and Peter Zol
The work in Utrecht was supported by the Stichting Fund
menteel Onderzoek der Materie~FOM!, which is financially
supported by the Nederlandse Organisatie voor Wetensc
pelijk Onderzoek~NWO!. The work at Rice was supporte
by the National Science Foundation, NASA, the Texas A
vanced Technology Program, and the Welch Foundation
-

t,

v.

A

,

E.

,
ev.

B.

.

,

E.
@1# M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wiem
and E. A. Cornell, Science269, 198 ~1995!.

@2# C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hul
Phys. Rev. Lett.75, 1687~1995!; C. C. Bradley, C. A. Sackett
and R. G. Hulet,ibid. 78, 985 ~1997!.

@3# K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Drute
D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Le
75, 3969~1995!.

@4# H. T. C. Stoof, M. Houbiers, C. A. Sackett, and R. G. Hul
Phys. Rev. Lett.76, 10 ~1996!.

@5# E. R. I. Abraham, W. I. McAlexander, J. M. Gerton, R. G
Hulet, R. Côté, and A. Dalgarno, Phys. Rev. A55, R3299
~1997!.

@6# A. J. Leggett, J. Phys.~France! IV C7, 19 ~1980!; J. M. V. A.
Koelman, Ph.D. thesis, Eindhoven University of Technolog
1984 ~unpublished!.

@7# M. A. Baranov, Yu. Kagan, and M. Yu. Kagan, Pis’ma Z
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