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Frequency shift and mode coupling in the nonlinear dynamics of a Bose-condensed gas
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We investigate the behavior of large amplitude oscillations of a trapped Bose-condensed gas of alkali-metal
atoms at zero temperature, by solving the equations of hydrodynamics for collective modes. Due to the
atom-atom interaction, the equations of motion are nonlinear and give rise to significant frequency shift and
mode coupling. We provide analytic expressions for the frequency shift, pointing out the crucial role played by
the anisotropy of the confining potential. For special values of the anisotropy parameter the mode coupling is
particularly strong and the frequency shift becomes large, revealing a peculiar behavior of the Bose-condensed
gas. Consequences on the theory of collapse and revival of collective excitations are also discussed.
@S1050-2947~97!05012-9#
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I. INTRODUCTION

One of the most important features of an interacting qu
tum many-body system is its response to external oscilla
fields. The collective modes, which are expected to domin
the low frequency response, represent a very effective
for probing the role of interactions and testing theoreti
schemes. For this reason, measurements of collective m
in the trapped gases of alkali-metal atoms@1,2# were carried
out soon after the discovery of Bose-Einstein condensa
@3#. The remarkable agreement between measured freq
cies and theoretical predictions@4–9# is one of the first im-
portant achievements in the investigation of these new
tems. It provides also a cleana posteriori justification of the
mean-field scheme, based on the formalism of Gro
Pitaevskii theory@10#, which is the starting point of mos
calculations. This theoretical approach is expected to g
indeed an accurate description of the ground state and
excited states of such dilute interacting gases at low temp
ture. The same scheme, when the atom-atom interaction
comes dominant compared with the zero-point quant
pressure, reduces to the Thomas-Fermi approximation fo
ground state and to the equations of nondissipative hydro
namics for the excited states@5,11,12#. This is particularly
useful for discussing the relevant physical properties
means of analytic or semianalytic results, taking advant
of the simplicity and clarity of the hydrodynamic equation

The same mean-field approach, which correctly rep
duces the frequency of the normal modes of the trapped
in the linear limit ~small oscillations around the groun
state!, is suitable to investigating also the nonlinear dynam
of the systems@13–20#. The nonlinearity is included in the
equations of motion through the mean field, which is prop
tional to the condensate density. Thus measurable effec
nonlinearity could represent further clean signatures of Bo
Einstein condensation. Among them, large amplitude os
lations of the condensate can be easily produced in
trapped gases@1,2#; nonlinear effects are expected to giv
561050-2947/97/56~6!/4855~9!/$10.00
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rise to frequency shift, mode coupling, harmonic generati
and stochastic motion.

The purpose of the present work is to derive simple d
ferential equations for large amplitude oscillations within t
formalism of hydrodynamics. In particular, we will provid
analytic formulas for the frequency shift of three collecti
modes in a generic axially symmetric trap. These formu
allow us to discuss the important role played by the anis
ropy of the trap. We will show that special values of th
anisotropy parameter~the ratio of the axial and radial fre
quencies of the trap! can be associated with strong nonline
effects even for oscillations of relatively small amplitud
The same analytic results have interesting consequence
the theory of collapse and revival of the condensate.

In the next section we introduce the basic formalis
Then, in Sec. III, we discuss how the collective modes can
driven and analyzed numerically. In Sec. IV we perform
small amplitude expansion and derive analytic solutions
them50 andm52 modes and their frequency shifts. In Se
V we discuss both the numerical and the analytic results
different traps. An application to the theory of collapse a
revival of the oscillations is given in Sec. VI. The paper w
end with a short summary.

II. BASIC FORMALISM

Let us start with the hydrodynamic equations in Thom
Fermi approximation@5#:

]

]t
r1¹•~vr!50, ~1!

m
]

]t
v1¹S Vext1gr1

mv2

2 D50. ~2!

Density and velocity are related to the condens
wave function C(r ,t) through r5uCu2 and
v5\(2mir)21(C* ¹C2C¹C* ). The density is normal-
ized to the number of particles in the condensa
4855 © 1997 The American Physical Society
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4856 56F. DALFOVO, C. MINNITI, AND L. P. PITAEVSKII
N5*drr(r ). The external confining potential has the for
Vext(r )5(1/2)m( iv i

2r i
2 , wherer i[x,y,z. The trapping fre-

quencies can depend on time,v i5v i(t), in the presence o
an external driving force. Their static values,v0i5v i(0), fix
the equilibrium configuration of the system. For cylindrica
symmetric traps one can define the radial freque
v'[v0x5v0y and the asymmetry parameterl5v0z /v' .
The harmonic potential provides also the typical length sc
of the system in each direction,aHO

( i ) 5A\/(mv0i). Since the
system is dilute, the atom-atom interaction enters o
through the quantityg54p\2a/m, wherea is the s-wave
scattering length.

The equations of nondissipative hydrodynamics
equivalent to the time-dependent Gross-Pitaevskii equa
for the condensate wave function in the limitNa/aHO@1, if
the interaction is repulsive (a.0). In this case, the effects o
the zero-point kinetic energy~quantum pressure! become
negligible and the gas is dominated by the balance of
internal and external potential energies. The stationary s
tion of the hydrodynamic equations is the Thomas-Fe
ground state@5,21#:

r0
TF~r !5uC0

TF~r !u25g21@m2Vext~r !# for m>Vext~r !,
~3!

where the chemical potentialm is fixed by the normalization
of the density to the number of particlesN. The hydrody-
namic approach works in an excellent way for the low
collective modes of the sodium atoms trapped at MIT@2#,
whereN is of the order of 13106 and more. Conversely, i
provides only a semiquantitative description of the rubidiu
gas first trapped at JILA@1#, where the number of atoms wa
smaller (103–104). Even in that case, however, the measu
frequencies converge nicely to the hydrodynamic predicti
for the largest values ofN. Compared with the numerica
solution of the Gross-Pitaevskii equation, the hydrodynam
formalism has the advantage of providing analytic results
the dispersion law of the collective modes and for other u
ful quantities.

As already discussed in our previous paper@17#, exact
solutions of the hydrodynamic equations can be found in
form

r~r ,t !5ax~ t !x21ay~ t !y21az~ t !z21a0~ t !, ~4!

v5
1

2
¹@ax~ t !x21ay~ t !y21az~ t !z2#, ~5!

restricted to the region wherer>0. With this choice, Eqs.
~1! and~2! transform into a set of coupled differential equ
tions for the time-dependent coefficientsaj (t) and a j (t).
One of them is fixed by the conservation ofN:
a052(15N/8p)2/5(axayaz)

1/5. The equations for the other
can be further simplified by introducing the new variablesbi

defined byai52mv0i
2 (2gbxbybzbi

2)21. The hydrodynamic

equations then yielda i5ḃi /bi and

b̈i1v i
2bi2v0i

2 /~bibxbybz!50, ~6!

with i 5x,y,z. These equations describe the time evolut
of the widths of the atomic cloud, since the new variablesbi
y
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are directly related to the mean square radii and velocitie
the system@17#: bi

2}^r i
2& andḃi

2}^v i
2&. Different derivations

of Eqs.~6! and some applications are given in Refs.@15–17#.
A variational approach including the zero-point quantu
pressure, beyond the Thomas-Fermi approximation, has
been presented in Ref.@7#. Note again that the frequencie
v i , entering the second term of Eq.~6!, can depend on time
and, hence, these equations can be used for describing
varying traps, as well as the expansion of the gas afte
sudden switching off of the confining potential. The set
solutions defined by the scaling transformations~4! and ~5!
does not exhaust all possible motions of the trapped gas.
instance, the motion of the center of mass can be include
adding terms linear inx, y, or z and other solutions can b
found including terms of the formxy, xz, or yz. However,
they are well suited to study the collective modes of low
multipolarity and energy, namely, them50 and m52
modes, wherem is the azimuthal angular momentum in th
cylindrically symmetric trap. In the following we will apply
Eq. ~6! to these modes in the nonlinear regime.

III. OSCILLATIONS OF A DRIVEN CONDENSATE

At equilibrium one hasbi51 andḃi50. One can perturb
the system by modulating the trap frequencies for a cer
time and then let it oscillate freely. Formally, this means th
Eqs.~6! have to be solved using a time-dependent freque
of the formv i

2(t)5v0i
2 @112 f i(t)#, wheref i(t) is an appro-

priate sinusoidal function within a finite time interval, whil
the factor 2 is introduced for convenience. An example
given in Fig. 1 for the case of a trap with asymmetry para
eterl5v0z /v'5A8, as in JILA experiments. Starting from
equilibrium, an oscillation is induced by choosin
f x(t)5hsinVdt, f y52 f x , and f z50, with a driving fre-
quency Vd5A2v' . The driving force is switched off a
t520v'

21 . The three curves correspond to the widthbx(t)

FIG. 1. Evolution in time of the radial widthbx(t) in a trap with
l5A8. Time is in units ofv'

21 . The oscillation is driven by an
external force for the first 20 time units; then the condensate os
lates freely. The three curves correspond to increasing the stre
of the driving force (h50.01,0.04,0.06, see text!. In the small am-
plitude limit, the oscillation coincides with them52 normal mode.
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56 4857FREQUENCY SHIFT AND MODE COUPLING IN THE . . .
plotted for different values of the driving strengthh. The
free oscillations are undamped, since the theory is restri
to zero temperature and does not include any dissipation
the small amplitude limit,h→0, the oscillation coincides
with the m52 normal mode predicted by the linearized h
drodynamic equations@5#. It corresponds to a quadrupole
type excitation in thex-y plane. For larger amplitudes, th
response of the system is slightly shifted in frequency, as
be seen from the figure, and the oscillations are no lon
purely sinusoidal. This is associated with the occurrence
harmonic generation and mode coupling. In a similar w
one can excite them50 modes. The one at low energy co
responds to an in-phase oscillation of the width alongx and
y and out of phase alongz. The one at high energy is a
in-phase compressional mode along all directions~breathing
mode!. In all cases, one can solve numerically Eqs.~6! and
extract amplitude and frequency of the excited modes
simple way consists in doing a best fit with a sinusoid
function to the appropriate widthbi(t), after the switching
off of the driving force. One can also perform a Fouri
analysis of the signal. We used both methods, finding
same results provided the time interval contains at least t
or four complete oscillations.

In order to point out the effects of mode coupling, it
convenient to introduce suitable combinations of the wid
bi(t) as follows:

bx~ t !511j2~ t !1j1~ t !1j2~ t !, ~7!

by~ t !511j2~ t !1j1~ t !2j2~ t !, ~8!

bz~ t !511~q224!j2~ t !1~q124!j1~ t !, ~9!

with

q7521~3/2!l27~1/2!A9l4216l2116. ~10!

Inserting these combinations into Eq.~6! one obtains equa
tions for j2 , j1 , and j2. Such equations are complete
decoupled in the linear limit, that is, when the perturbatio
j2 , j1 , andj2 are much smaller than 1. Thus these fun
tions represent the normal modes of the system:j2 is the
m52 mode, having frequencyA2v' , while j2 andj1 are
the low-lying and high-lyingm50 modes, respectively
whose frequencies areAq7v' @5#. We note also thatq1

Þq2 for any value ofl.
In Fig. 2 we plot the functionsj j (t) for the oscillation of

largest amplitude already shown in Fig. 1. The driving for
is tuned on them52 mode,j2, but, due to nonlinear cou
pling, the low-lying m50 mode,j2 , is also significantly
excited, whilej1 remains very small. The coupling betwee
these modes causes the irregular oscillation ofbx , given by
Eq. ~7! and plotted in Fig. 1. These oscillations have a ve
large amplitude~about 80% of the radial width!; for smaller
oscillations the coupling withj2 tends to vanish. For the
smallest oscillation in Fig. 1 bothj2 andj1 are negligible
with respect to the driven modej2 and one has also
bx(t).11j2(t).

A strong enhancement of nonlinear effects can be
tained not only by increasing the strength of the drivi
force, but also by changing the anisotropy of the trap. In fa
ed
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for special values ofl5vz /v' , frequencies of different
modes, or of their harmonics, can coincide. An example
shown in Fig. 3, where we plot the functionsj j (t) for an
oscillation driven as in the case of the smallest oscillation
Fig. 1. The driving force is again tuned onj2 with a rela-
tively small strength, but now the oscillation exhibits
strong nonlinear behavior. The crucial parameter is the va
of l, which in Fig. 3 is chosen to beA16/7. As we will
discuss in the next sections, this special value ofl is asso-
ciated with a resonance of the two modesj2(t) and j1(t);
indeed, the figure shows an evident beating of these
modes.

At this point, before presenting further numerical resu
obtained from Eqs.~6!, we prefer to explore the first nonlin

FIG. 2. Evolution in time of the three functionsj2 ~solid line!,
j2 ~dashed line!, and j1 ~dot-dashed line! in a trap withl5A8.
Time is in units ofv'

21 . In the limit of small amplitude, these
functions coincide with them52, low-lying m50, and high-lying
m50 normal modes, respectively. The driving force is the same
for the largest oscillation in Fig. 1.

FIG. 3. Same as in Fig. 2 but for a trap havingl5A16/7. The
beating is between thej2 mode, which is excited by the externa
force, and thej1 mode, which is coupled through the second h
monic of j2. The driving force is the same as for the smalle
oscillation in Fig. 1.
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4858 56F. DALFOVO, C. MINNITI, AND L. P. PITAEVSKII
ear corrections to the uncoupled normal modes. As we
see, an expansion of Eqs.~6! at small amplitudes provide
useful analytic formulas, which contain the main physic
ideas and give accurate results.

IV. ANALYTIC EXPANSIONS AT SMALL AMPLITUDE

Equations~6!, with v i5v0i and i 5x,y,z, describe free
oscillations in the trap. They can be expanded by assum
bi(t)511dbi(t) and keeping the lowest orders in the sm
perturbationdbi . The linear terms provide the hydrody
namic spectrum of normal modes, while harmonic gene
tion is included in the higher order terms. One can also
definitions~7!–~9! in order to get three coupled equations f
the functionsj2 , j1 , andj2, up to quadratic or cubic terms
We show here an example of an explicit calculation for
m52 mode, while for them50 modes we will present only
the final results.

Let us assume them52 mode to be excited in the cylin
drically symmetric trap by some suitable driving force,
such a way thatj2(t)'Acos(A2v't). If A!1, the coupling
with the other modes is small and, hence, them50 oscilla-
tions j2 and j1 are expected to be of orderA2. Then, by
expanding Eqs.~6!–~9! up to third order inA, one gets the
following equations:

j̈21v'
2 j2@22j2q22j1q112j2

2#50, ~11!

j̈71v'
2 q7j775v'

2 l2

q6
S q624

q12q2
D j2

250. ~12!

The twom50 modes are not excited directly, but they c
be driven by them52 mode via the last term in Eq.~12!.
One can easily find conditions for resonances: the freque
of the m50 mode,Aq7v' , should be equal to the fre
quency of the second harmonic of them52 mode, 2A2v' .
This never occurs for the lowestm50 mode, sinceq2 is
always smaller than 10/3. Conversely, for the high-lyi
mode j1 , a resonance is obtained forl5A16/7. For this
value of the asymmetry parameter, a small driving for
appropriate for exciting them52 mode, gives rise to a
coupled motion of both them52 and high-lying m50
modes. This is exactly what we have already shown in Fig
by solving the hydrodynamic equations~6! for the same spe
cial value of l. This enhancement of nonlinearity, due
resonances via second harmonics, has been recently
gested also in Ref.@22#. Even though Eqs.~11! and~12! are
valid in the limit of small amplitudes, they give the corre
conditions for the occurrence of strong nonlinear effects
the exacthydrodynamic solutions.

The above equations can also be used to predict the
quency shift of the collective modes at the lowest order
the amplitudeA. In fact, Eqs.~12! can be solved explicitly,
by insertingj2 at the leading order:j2(t)5A2cos(A2v't).
One finds

j7~ t !5
6~q624!

2~q12q2!~q728!
@q7j2

2~ t !24A2
2#. ~13!

Using these solutions in Eq.~11!, one gets an equation forj2
at the next order:
ill

l
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j̈212v'
2 S 12A2

2 1625l2

1627l2D j212v'
2 S 11

1623l2

1627l2D j2
350.

~14!

This is a special case of the more general class of equat
for anharmonic oscillators:

j̈1V0
2j1g2j21g3j350. ~15!

One can easily prove that the solutionj(t) has a frequencyv
which depends on the amplitudeA through

v5V0S 12
5g2

2A2

12V0
4 1

3g3A2

8V0
2 D . ~16!

By comparing Eqs.~14! and ~15! one identifies

V0
252v'

2 S 12A2
2 1625l2

1627l2D , ~17!

g352v'
2 S 11

1623l2

1627l2D , ~18!

andg250. Inserting these definitions into Eq.~16!, one gets
finally

v5A2v'F11
~1625l2!

4~1627l2!
A2

2G , ~19!

which is the analytic expression of the frequency shift a
function of the anisotropy of the trap. Here the pathology
l5A16/7 is evident: as already said, it corresponds to
resonance induced by harmonic generation.

In a more general form, one can write

v5v0@11d~l!A2#, ~20!

wherev0 is the frequency of each normal mode in the line
regime (A2v' andAq7v' for the m52 andm50 modes,
respectively! while A is its amplitude. The coefficient for the
m52 mode is then

d2~l!5
~1625l2!

4~1627l2!
. ~21!

Expansion~20! is expected to be reliable wheneveruduA2!1
and this excludes values ofl too close to resonances. Th
coefficientsd7(l) for the m50 modes can be calculate
straightforwardly, with the same procedure used above
m52. In particular, one has to start exciting one of the tw
modes,j7 , in the form A7cos(Aq7v't); the other one is
excited to the orderA7

2 , while j2 is never excited, due to the
axial symmetry of both the equations and the initial con
tions. Expanding Eq.~6! up to terms inA7

3 , one gets two
coupled equations forj7 of the type~15!, while j2 is decou-
pled. One finally obtains



ng
de

tin
l-

f

th

in

le

ic
n
a

ef

the
uliar
ese
t
time
me

x-
the

q.

r

56 4859FREQUENCY SHIFT AND MODE COUPLING IN THE . . .
d75
5

2
l2

~q622!~q724!~q725!

~4q72q6!~q62q7!2 F211
15

4

l2

q7
2 G

2
15

16

1

~q62q7!2
@2q712l2q729l218#2

2
9

4

~q624!

q7~q72q6!
2

3

20

q723

q72q6
@210l2q7137l2

111q7254#. ~22!

Two resonances are found by exciting the low-lyingm50
mode. They occur when the frequency of the high-lyi
mode is equal to the second harmonic of the low-lying mo
this happens forl5(A1256A29)/A72 ~i.e., l'0.683 and
l'1.952). Conversely, no resonances are found by exci
the high-lyingm50 mode. As an example of numerical va
ues ofd7 , let us consider a spherical trap,l51; in this case
one hasq252, q155, d2511/12, andd1521/6. The lat-
ter value was already used in Ref.@25# to give an estimate o
the collapse time for the high-lyingm50 mode.

The main results of these analytic expansions, toge
with the numerical solutions of Eq.~6!, will be discussed in
the following section.

V. FREQUENCY SHIFT AND MODE COUPLING
FOR DIFFERENT TRAPS

So far we have developed two methods for investigat
the behavior of them50 andm52 modes in a cylindrically
symmetric trap. One is the numerical solution of the coup
differential equations~6! for the widthsbj (t), which corre-
sponds to solving exactly the equations of hydrodynam
for these collective modes. The other one is an expansio
small amplitude, which provides analytic solutions as well
simple formulas for the frequency shift.

In Figs. 4–6 we first show the three curves for the co

FIG. 4. Coefficient of the quadratic expansion~20! for the fre-
quency shift of the low-lyingm50 mode, as a function of the
anisotropy parameterl5v0z /v' . Divergences are found fo
l5(A1256A29)/A72. The values ofl for the experimental traps
of Refs.@1,2# are also indicated.
;

g

er

g

d

s
at
s

-

ficientsd2(l), d1(l), andd2(l), from Eqs.~21! and ~22!,
entering the quadratic expansion~20! of the frequency shift.
These curves can be considered the main results of
present work. The occurrence of resonances is a pec
feature of the dynamics of the condensate. Close to th
special values ofl whered(l) diverges, the frequency shif
is expected to show an anomalous enhancement and the
evolution of the widths of the condensate should beco
very irregular, due to significant mode coupling.

In order to test the accuracy of the small amplitude e
pansion, yielding the curves in Figs. 4–6, we compare
results obtained from both the numerical solution of Eq.~6!
and the quadratic law~20! for specific values ofl. In Fig. 7
we show the results for them52 and low-lyingm50 modes
at l5A8, as in JILA experiments@1#. In this case one finds
the coefficientsd2(A8)53/20 andd2(A8)51.63631023.
Solid lines are obtained from the numerical solutions of E
~6!, using definitions~7!–~9!, and performing sinusoidal fits

FIG. 5. Coefficient of the quadratic expansion~20! for the fre-
quency shift of the high-lyingm50 mode. Forl5A8 the coeffi-
cient is about 31.

FIG. 6. Coefficients of the quadratic expansion~20! for the fre-
quency shift of them52 mode. A divergence is found atl5A16/7.
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4860 56F. DALFOVO, C. MINNITI, AND L. P. PITAEVSKII
and/or Fourier analysis ofj2 andj2 . The frequency shift of
the m50 mode is smaller than the one ofm52 especially
for small amplitudes; in theA→0 limit, the agreement be
tween the numerical results and the quadratic law~dashed
lines! is very good. In them52 case it remains good eve
for large amplitudes, while higher order corrections seem
be important for them50 mode at amplitudes larger tha
0.2 ~corresponding to relative amplitudes of the order
20% in the radial width of the condensate!. In the latter case
one notices also that the coefficientd2 is very small, since
the valuel5A8 is incidentally very close to a root of th
function d2(l), as shown in Fig. 4. Thus the first nonze
contributions to the shift come from powersA3 or higher.
We note also that the abscissa in Fig. 7 is the amplitude
j2(t) and j2(t) and not of the widthbx(t), which is the
observed quantity at JILA. The reason is that the quadr
expansion~20! has analytic coefficients only for the norm
modesj j . However, sincel5A8 is relatively far from reso-
nances, the coupling between different modes in Eqs.~7! and
~8! is rather weak and the relative amplitude of the osci
tions of bx practically coincides with the amplitude of eac
normal mode, within the range of Fig. 7.

It is not easy to compare these results with the availa
data for the frequency shift in the JILA experiments@1#. The
data show no significant frequency shift for the low-lyin
m50 mode and a relatively large shift for them52 mode.
The fact that the shift is larger form52 than form50 is in
agreement with our predictions, but a quantitative comp
son should take into account at least two further effe
First, the data have been taken after switching off the tr
ping potential. As discussed in our previous work@17# ~see
also @23#!, the expansion of the gas causes an amplifica
of the relative amplitude of the observed oscillations. T
amplification is different in the three directions, dependi

FIG. 7. Frequency shift for them52 and low-lying m50
modes in the JILA trap as a function of their amplitude. Solid lin
from the numerical solution of Eq.~6!; dashed line: quadratic ex
pansion~20! with d253/20 andd251.63631023 from Eqs.~21!
and ~22!.
o

f

of

ic

-

le

i-
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n
s

on the anisotropy of the trap and on the excited modes. S
ond, the assumptionNa/aHO@1, which is at the basis of the
hydrodynamic approach, is not well satisfied by the samp
used so far at JILA. In this case, the role of the quant
pressure, beyond the Thomas-Fermi approximation could
relevant also for the dynamics of the expansion.

In Fig. 8 we plot the frequency shift of the low-lying
m50 mode for the MIT trap@2# with l50.077. Again the
solid line comes from the evolution ofj2(t), calculated nu-
merically from Eq.~6!, while the dashed line is the quadrat
approximation~20!, whose coefficient is nowd251.481.
The agreement between the two curves is good. In this t
the condensate is cigar shaped and one measures the os
tions of the axial widthbz(t). Looking at Eq.~9!, one notes
that the relative amplitude of the oscillations ofbz is about
four times the amplitude of the normal modej2 . In fact, for
such a small value ofl, the quantity q2 behaves like
(5/2)l2 and, hence, can be neglected in Eq.~9!; moreover,
the coupling with the high-lyingm50 mode is weak and
thus one can also neglectj1 at the lowest order. This mean
that the shiftd2A2 becomes (d2/16)Az

2 , if Az is the relative
amplitude of the axial widthbz . The shift in frequency is
thus very small; for instance, when the axial width oscilla
with a relative amplitude of 40%, the amplitude ofj2 is
about 0.1 and the predicted shift is less than 2%. Actua
the oscillations in Ref.@2#, which do not exhibit any fre-
quency shift, have been imaged after the free expansio
the condensate and correspond to relative amplitudes o
order of 10%, or less, forbz before the expansion. Therefor
the predicted shift is practically zero within the accuracy
the available experiments and theA2 law cannot be tested
The situation can be greatly improved by the use of non
structive imaging techniques, as in the trap of Ref.@24#.

As concerns nonlinear coupling ofm50 and m52
modes, the values ofl in the JILA and MIT traps are not o
particular interest. The curves in Figs. 4–6 suggest differ
choices, namely,l5A16/7 for the m52 mode and
l5(A1256A29)/A72 for the low-lying m50 mode. It is
also worth mentioning that the curves in Figs. 4–6 co

:

FIG. 8. Frequency shift for the low-lyingm50 mode in the
MIT trap as a function of its amplitude. Solid line: from the nume
cal solution of Eq.~6!; dashed line: quadratic expansion~20! with
d251.481 from Eq.~22!.



ic
rm

on

a

ic

-
n
lu

nd
ph
s

vi
al
a

it
a
d

ec
ci
he
o
n
ro
ta
in
f
th
te
ke
W

i
ro

o
a

er

.
th

-
ve
rm

s
to

-

-

tor
s
al.

s
r-
ure

the

nd
ew

56 4861FREQUENCY SHIFT AND MODE COUPLING IN THE . . .
from an expansion up to the third order inA, as in Eqs.~11!
and~12!, and the coupling occurs via the second harmon
When the amplitude is large, one expects higher order te
to become significant, providing other special values ofl for
mode coupling. For instance, the hydrodynamic equati
~6! predict a beating of them52 and the high-lyingm50
modes forl5A63/11. This beating can be calculated an
lytically by extending Eqs.~11! and~12! to the next order in
A; for that value ofl, one then finds that the third harmon
of j2 has the same frequency ofj1 . Finally, we remark that
other values ofl can give rise to similar effects, even with
out harmonic generation. This happens when an accide
degeneracy occurs in the spectrum of normal modes, inc
ing umu.2, as recently discussed by O¨ hberget al. @19#.

VI. APPLICATION TO THE THEORY
OF COLLAPSE AND REVIVAL

The fact that the frequency of the normal modes depe
on their amplitude has interesting consequences for the
nomenon of collapse and revival of collective excitation
The latter belongs to a class of quantum phenomena ha
no classical analog. Examples are the collapse and reviv
coherent quantum states observed in atomic Rydberg w
packets@26#, in molecular vibrations@27#, and for atoms in-
teracting with an electromagnetic field in a resonant cav
@28# ~see @29,30#, and references therein, for a theoretic
discussion!. The same concepts have been recently applie
the trapped condensate~see Refs.@25,32#, and references
therein!. In this confined Bose system, the collapse of coll
tive excitations originates from a dephasing during the os
lation. In Ref. @32# the dephasing was associated with t
fluctuations of the particle occupation number and the c
lapse time was estimated within Hartree approximation. O
of us @25# has recently developed a theory for the same p
cess, but based on the fluctuations in the number of quan
oscillation. The main idea is that a collective mode is,
general, a coherent superposition of stationary states o
oscillator and the number of quanta of oscillations is
natural quantity for classifying those states. The estima
time scale for the collapse turns out to depend, as a
ingredient, on the frequency shift of the normal modes.
will recall here the main steps of the theory and then we w
use our new results for the frequency shifts in order to p
vide a quantitative estimate of the collapse time.

As we saw in Sec. IV, the collective variablej can be
considered as solutions of the equations for anharmonic
cillators. Let us write the frequency, up to the first nonline
correction, in the form

v5v01dv5v0~11kE!, ~23!

whereE is the energy of the oscillations. We assume h
the condition of weak nonlinearity,ukuE!1, even though the
theory can be generalized to the case of large amplitude
order to provide a quantum description, one can use
semiclassical expression\v5(]En /]n), which allows one
to rewrite Eq. ~23! in the quantum form
vn5En /\5v0n1bn2/2. Here the quantityn is the number
of quanta (n@1) in a given excited state of energyEn ,
while the coefficientb is given by b5\v0

2k. The oscilla-
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tions in the experiments@1,2# were driven through a sinu
soidal force into a coherent state of the oscillator. The wa
function of such a stationary state can be written in the fo

c5(
n

cncnexp~2 ivnt !, ~24!

where

ucnu25
n̄ n

n!
exp~2 n̄ !'

1

A2p n̄
expF2

~n2 n̄ !2

2 n̄
G , ~25!

where n̄ is the average number of quanta (n̄@1) and
E5\v0 n̄ . Let us now consider the oscillator coordinatej(t)
and calculate its average over the state~24! and ~25!. If one
considers onlyn→n61 transitions, the result iŝj(t)&
}(nucnu2cos@(v01bn)t#. For small enough values oft, one
can replace the summation overn by an integral and one get
a Gaussian damping of the oscillation according

^j&;exp(2n̄b2t2/2)[exp@2(t/tc)
2#, where

tc
215~ n̄ /2!1/2ubu5v0~E\v0/2!1/2uku. ~26!

Since the amplitude of the oscillations is proportional toAn̄ ,
the resulting amplitude dependence of the collapse timetc is
the same as in the theory of Ref.@32#. The periodicity of
^j(t)& gives also the revival periodt r52p/(\v0

2uku) as in
Ref. @29#. The meaning oftc andt r is also shown schemati
cally in Fig. 9. From the expressions fortc andt r one easily

sees thattc'A(1/n̄ )t r!t r . Note that in quantum mechan
ics the measurement of an oscillator coordinatej is, gener-
ally speaking, destructive because it affects the oscilla
momentumpj . In other words, it modifies the coefficient
cn , thus preventing the observation of collapse and reviv
In order to measure properlŷj(t)&, one must repeat cycle
of observations with different replica of the system in diffe
ent instants of time. This is, however, exactly the proced
used in the available experiments@1,2,31#.

According to Eq. ~26! the collapse timetc decreases
when n̄ increases. However, one has to keep in mind that

FIG. 9. Schematic picture of collapse and revival. Both time a
^j& are in arbitrary units and the oscillations are just a pictorial vi
of the phenomenon. The two time scalestc andt r are indicated.
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theory is restricted to the weak nonlinear regimeukuE!1,
which corresponds ton̄!1/(\v0uku). Thus the collapse
time is subject to the conditiontc@tmin[1/(v0A\v0uku)
and the collapse can be observed only iftmin is shorter than
the typical time scale for the dissipative damping of the
cillations, which is always present at finite temperature.

In order to provide quantitative estimates of the collap
time for trapped Bose-condensed gases, one must calc
the energy of oscillations,E, as a function of their amplitude
This is what we have done in the previous sections. One
only to write the proper relation between the nonlinear
coefficientsk andd. To this aim, it is enough to calculate th
energyE in linear approximation, as twice the mean kine
energyE5m*drr0v2, wherer0(r ) is the equilibrium den-
sity of condensate andv(r ) is the velocity field associate
with each normal mode. Direct integration form52 gives

E5
4

7
mNA2

2 , ~27!

whereA2 is the amplitude of the mode andm is the chemical
potential of the system, calculated within the Thomas-Fe
approximation. Similarly, for them50 modes one finds

E5
1

7
@2q71~q724!~3q7210!#mNA7

2 , ~28!

where the quantitiesq7(l) are defined in Eq.~10!. The
above energies can be rewritten in a more compact form
E5emNA2, where e(l) is the appropriate coefficient fo
each normal mode in Eqs.~27! and~28!. Inserting this result
in Eq. ~23! and comparing with the quadratic law~20!, one
finds

k5
d

emN
. ~29!

The final result for the collapse time, from Eq.~26!, is then

v0tc5
A2emN

uduAE\v0

5
A2e

AuduA
mN

\v0
. ~30!

Let us estimatetc for the m52 mode, assuming typica
experimental parameters of Ref.@1#: N54500,v'/2p5132
Hz, l5A8, anda5110 Bohr radii. With these paramete
one findsAmN/\v''195. The frequency of them52 mode
in the linear limit isv05A2v' , while the coefficient of the
quadratic expansion~20! is d253/20. Equation~27! gives
e254/7. With a reasonable choice for the amplitude,A50.2,
the final result for the collapse time istc54.98 s. The au-
thors of Refs.@1,31# reported a lifetime of them52 mode of
the order of 100 ms. It means that, under the experime
conditions, the dissipative damping is too strong and the
lapse cannot be observed. It is not hopeless, howeve
discover this effect under appropriate conditions. The po
is that, according both to measurements@31# and to theoret-
ical considerations@33#, the dissipative damping decreas
-

e
ate

as

i

as

al
l-
to
t

rapidly by lowering the temperature of the gas. We belie
that experiments at lower temperature would permit us
observe the quantum collapse of collective modes in th
macroscopic objects. It is worth mentioning, in this conne
tion, the recent suggestion to cool adiabatically the gas
changing the trapping frequency@34#.

The low-lyingm50 mode, which also has been observe
exhibits a very small frequency shift and is not, for this re
son, a proper object to search for collapse, at least within
range of amplitude where the quadratic expansion~20! holds.
Conversely, the high-lyingm50 mode looks more promis
ing. For this mode, using again the parameters of the J
trap, one hasv0'4.98v' , e'198, andd1'30. The oscil-
lations are strongly anisotropic and the amplitude in thez
direction is larger than in the radial one. According to Eq.~9!
one getsAz'(q124)A1'20.8A1 . By assuming again
Az50.2, the collapse time becomestc51.4 s.

From these results, it appears evident that theresonances
described in the previous sections of this work are v
promising even for the observation of collapse and reviva
the oscillations. By a proper choice of the anisotropy para
eterl one can in fact increase significantly the coefficiend
and, consequently, lower the collapse time to an observ
scale. Obviously, for real traps, one should also take i
account possible nonlinear effects originating from triv
nonharmonic corrections to the magnetic confining potent
But the present scenario for collapse and revival seems p
sible and, in any case, the first step for its confirmat
should be the observation of the predicted amplitude dep
dence of the frequency shift.

VII. CONCLUSIONS

In this paper we have investigated the behavior of coll
tive excitations of trapped Bose gases in the limit of ze
temperature. The formalism of hydrodynamic equations
suitable for deriving both numerical and analytic resul
valid in the limit Na/aHO@1. As already shown by othe
authors, those equations describe the lowest collective e
tations in the linear regime~normal modes!, in agreement
with available experiments. They can also be used for
dynamics of the system in nonlinear regime. We have sho
here that they provide nontrivial predictions for the fr
quency shift of the normal modes. We have discussed
case ofm50 and m52 modes in a generic cylindrically
symmetric trap and we have explored the peculiar beha
of the condensate for special choices ofl5v0z /v' , the
asymmetry parameter of the trap. For those special traps
frequency of an oscillation becomes equal to the second
monic of another one. This degeneracy enhances nonli
effects, producing significant consequences in measur
quantities: for instance, the time evolution of condens
shape can show irregular patterns and the frequency shift
become rather large. The physical picture has been suppo
by simple analytic results. We have also discussed an ap
cation to the theory of collapse and revival of the collecti
oscillations.
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