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Frequency shift and mode coupling in the nonlinear dynamics of a Bose-condensed gas
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We investigate the behavior of large amplitude oscillations of a trapped Bose-condensed gas of alkali-metal
atoms at zero temperature, by solving the equations of hydrodynamics for collective modes. Due to the
atom-atom interaction, the equations of motion are nonlinear and give rise to significant frequency shift and
mode coupling. We provide analytic expressions for the frequency shift, pointing out the crucial role played by
the anisotropy of the confining potential. For special values of the anisotropy parameter the mode coupling is
particularly strong and the frequency shift becomes large, revealing a peculiar behavior of the Bose-condensed
gas. Consequences on the theory of collapse and revival of collective excitations are also discussed.
[S1050-294{@7)05012-9

PACS numbegps): 03.75.Fi, 67.40.Db

I. INTRODUCTION rise to frequency shift, mode coupling, harmonic generation,
and stochastic motion.

One of the most important features of an interacting quan- The purpose of the present work is to derive simple dif-
tum many-body system is its response to external oscillatingerential equations for large amplitude oscillations within the
fields. The collective modes, which are expected to dominatéormalism of hydrodynamics. In particular, we will provide
the low frequency response, represent a very effective todhalytic formulas for the frequency shift of three collective
for probing the role of interactions and testing theoreticalModes in a generic axially symmetric trap. These formulas
schemes. For this reason, measurements of collective mod@40W Us to discuss the important role played by the anisot-
in the trapped gases of alkali-metal atofas?] were carried  'OPY Of the trap. We will show that special values of the
out soon after the discovery of Bose-Einstein condensatiofNSOroPy parameteithe ratio of the axial and radial fre-

[3]. The remarkable agreement between measured frequeﬂl—JenCies of the tra)pr;gn pe associateq with strong non'Iinear
cies and theoretical predictiofig—9] is one of the first im- effects even for _oscnlatlons of r_elatlvely small amplitude. _

_ . . o The same analytic results have interesting consequences in
portant achievements in the investigation of these new sy

: it ” | | terioriiustificati f th Yhe theory of collapse and revival of the condensate.
ems. 1 provides aiso a cleanposterionjustification ot the In the next section we introduce the basic formalism.

mean-field scheme, based on the formalism of Grossypap, i sec. 1il, we discuss how the collective modes can be
Pitaevskii theory{10], which is the starting point of Most qiven and analyzed numerically. In Sec. IV we perform a
calculations. This theoretical approach is expected t0 givgma|| amplitude expansion and derive analytic solutions for
indeed an accurate description of the ground state and them=0 andm= 2 modes and their frequency shifts. In Sec.
excited states of such dilute interacting gases at low tempergy we discuss both the numerical and the analytic results for
ture. The same scheme, when the atom-atom interaction bgifferent traps. An application to the theory of collapse and
comes dominant compared with the zero-point quantunevival of the oscillations is given in Sec. VI. The paper will
pressure, reduces to the Thomas-Fermi approximation for thend with a short summary.

ground state and to the equations of nondissipative hydrody-
namics for the excited stat¢5,11,13. This is particularly IIl. BASIC FORMALISM
useful for discussing the relevant physical properties by ) ) _ )
means of analytic or semianalytic results, taking advantage Let us start with the hydrodynamic equations in Thomas-
of the simplicity and clarity of the hydrodynamic equations. F€rmi approximatiori5]:

The same mean-field approach, which correctly repro-

17

_duces the freqt_Je_ncy of the no_rmgl modes of the trapped gas —p+V-(vp)=0, )
in the linear limit (small oscillations around the ground at
statg, is suitable to investigating also the nonlinear dynamics
of the system$13—20. The nonlinearity is included in the miv+V
equations of motion through the mean field, which is propor- ot
tional to the condensate density. Thus measurable effects of
nonlinearity could represent further clean signatures of BosePensity and velocity are related to the condensate
Einstein condensation. Among them, large amplitude oscilwave  function W(r,t)  through p=|¥|> and
lations of the condensate can be easily produced in the=#%(2mip) }(¥* V¥ —¥VW¥*). The density is normal-
trapped gasefl,2]; nonlinear effects are expected to give ized to the number of particles in the condensate,

mu?
Vexrtdp+ - =0. 2
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| }“y "! ‘ ‘ M
The equations of nondissipative hydrodynamics are
equivalent to the time-dependent Gross-Pitaevskii equatiol

for the condensate wave function in the limie/ayo>1, if 0 L ' ' ' L

the interaction is repulsiveat>0). In this case, the effects of 0 10 =0 30 40 50 60
the zero-point kinetic energyquantum pressufebecome time

negligible and the gas is dominated by the balance of the g 1. Evolution in time of the radial width,(t) in a trap with
internal and external potential energies. The stationary solus— /g, Time is in units ofw,*. The oscillation is driven by an

tion of the hydrodynamic equations is the Thomas-Fermixternal force for the first 20 time units; then the condensate oscil-

Vo) = (1/2)m2;0?r?, wherer;=x,y,z. The trapping fre-
guencies can depend on time,= w;(t), in the presence of

an external driving force. Their static values,; = w;(0), fix 15
the equilibrium configuration of the system. For cylindrically
symmetric traps one can define the radial frequency

| =woy= wgy and the asymmetry parameter wg, /o, .

ik
The harmonic potential provides also the typical length scaled’ 1 VA‘ ' " \

N=[drp(r). The external confining potential has the form 2 ' .

of the system in each directioa{l,= V%/(mwg;). Since the
system is dilute, the atom-atom interaction enters only
through the quantityy=4=#%a/m, wherea is the s-wave

: 0.5
scattering length.

ground statg5,21]: lates freely. The three curves correspond to increasing the strength
TE TE, N2 -1 of the driving force ¢7=0.01,0.04,0.06, see tgxin the small am-
po (N=[Wo (N[*=g"{u—Vedr)] for ,U«zvext(r)(vg) plitude limit, the oscillation coincides with the=2 normal mode.

where the chemical potential is fixed by the normalization are directly related to the mean square radii and velocities of

of the density to the number of particléé The hydrody- the systenil7]: be<(rf) a_”db,izoc<vi2>' Different derivations
namic approach works in an excellent way for the lowestof Eds.(6) and some applications are given in R¢f5—17.
collective modes of the sodium atoms trapped at NIZT, A variational approach including the zero-_pom.t guantum
whereN is of the order of & 10f and more. Conversely, it Pressure, beyond the Thomas-Fermi approximation, has also
provides only a semiquantitative description of the rubidiumP@en presented in Reff7]. Note again that the frequencies
gas first trapped at JILAL], where the number of atoms was @i entering the second term of E@), can depend on time
smaller (16—10"). Even in that case, however, the measureoa”dv, hence, these equations can be u_sed for describing time
frequencies converge nicely to the hydrodynamic prediction¥@rYing traps, as well as the expansion of the gas after a
for the largest values oN. Compared with the numerical sudd_en 5W|tc_h|ng off of the (_:onfmlng poten'_ual. The set of
solution of the Gross-Pitaevskii equation, the hydrodynamicolutions defined by the scaling transformati¢as and (5)
formalism has the advantage of providing analytic results fod0€s not exhaust all possible motions of the trapped gas. For
the dispersion law of the collective modes and for other uselStance, the motion of the center of mass can be included by
ful quantities. adding terms linear ixx, y, or z and other solutions can be
As already discussed in our previous pap¥], exact found including terms of the formy, xz, or yz. However,

solutions of the hydrodynamic equations can be found in théhey are well suited to study the collective modes of lowest
form multipolarity and energy, namely, then=0 and m=2

modes, wheren is the azimuthal angular momentum in the
p(r,t)zax(t)x2+ay(t)y2+az(t)22+ ap(t), (4)  cylindrically symmetric trap. In the following we will apply
Eq. (6) to these modes in the nonlinear regime.

1
v==V[ a,(t)X%+ a,(t)y2+ a(1)Z?], 5
2V Lad X ey (DY + ay(1)77] ®) IIl. OSCILLATIONS OF A DRIVEN CONDENSATE

restricted to the region where=0. With this choice, Egs. At equilibrium one ha®;=1 andb;=0. One can perturb
(1) and(2) transform into a set of coupled differential equa- the system by modulating the trap frequencies for a certain
tions for the time-dependent coefficiends(t) and «;(t).  time and then let it oscillate freely. Formally, this means that
One of them is fixed by the conservation dX: Egs.(6) have to be solved using a time-dependent frequency
ap=— (15N/8m)?%(a,aya,)"®. The equations for the others of the formw?(t) = w[ 1+ 2f;(t)], wheref (t) is an appro-
can be further simplified by introducing the new varialifes priate sinusoidal function within a finite time interval, while
defined bya,= — mw3 (29 bxbybzbiz)‘l. The hydrodynamic the factor 2 is introduced for convenience. An example is

equations then yield;=b; /b; and given in Fig. 1 for the case of a trap with asymmetry param-
eter\ = wg,/w, = /8, as in JILA experiments. Starting from
b; + w?b; — wgi/(bibxbybz)=0. (6)  equilibrium, an oscillation is induced by choosing

fy(t)=nsinQyt, f,=—"f,, and f,=0, with a driving fre-
with i =x,y,z. These equations describe the time evolutionquency Qq=+2w, . The driving force is switched off at
of the widths of the atomic cloud, since the new varialies t=20w,'. The three curves correspond to the widitf(t)
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plotted for different values of the driving strength The 1 . T . T T
free oscillations are undamped, since the theory is restricte:
to zero temperature and does not include any dissipation. I
the small amplitude limit,5—0, the oscillation coincides
with the m=2 normal mode predicted by the linearized hy-
drodynamic equationg5]. It corresponds to a quadrupole-
type excitation in thex-y plane. For larger amplitudes, the A / \ / \
response of the system is slightly shifted in frequency, as cai o i o O o O B B O O S AN R
be seen from the figure, and the oscillations are no longe
purely sinusoidal. This is associated with the occurrence of
harmonic generation and mode coupling. In a similar way,
one can excite then=0 modes. The one at low energy cor-
responds to an in-phase oscillation of the width alerend

y and out of phase along. The one at high energy is an
in-phase compressional mode along all directiirgathing -1 ' L ' L L
moda. In all cases, one can solve numerically E(.and 0 10 =0 30 40 50 60
extract amplitude and frequency of the excited modes. A time

simple way consists in doing a best fit with a sinusoidal k|G, 2. Evolution in time of the three functiorss (solid line),
function to the appropriate width;(t), after the switching &_ (dashed ling and ¢, (dot-dashed lingin a trap withA = 8.
off of the driving force. One can also perform a Fourier Time is in units ofw, . In the limit of small amplitude, these
analysis of the signal. We used both methods, finding theunctions coincide with then= 2, low-lying m=0, and high-lying
same results provided the time interval contains at least thre@=0 normal modes, respectively. The driving force is the same as
or four complete oscillations. for the largest oscillation in Fig. 1.

In order to point out the effects of mode coupling, it is
convenient to introduce suitable combinations of the widths, special values oh=w,/w, , frequencies of different

-0.5 |

bi(t) as follows: modes, or of their harmonics, can coincide. An example is
_ shown in Fig. 3, where we plot the functiogg(t) for an
by(t)=1+&-(1)+ & (1) +£2(1), @) oscillation driven as in the case of the smallest oscillation in
B Fig. 1. The driving force is again tuned @p with a rela-
by()=1+&- (1) +&. (0= £&(1), ®) tively small strength, but now the oscillation exhibits a
strong nonlinear behavior. The crucial parameter is the value
b()=1+(q- =4 (D) +(a+ —4)€-(1), O of N, which in Fig. 3 is chosen to bg16/7. As we will

discuss in the next sections, this special valua d$ asso-
ciated with a resonance of the two modgg¢t) and &, (t);
0o = 2+ (312\2T (1/2) JON*— 16n 2+ 16. (10) ::1:332(51, the figure shows an evident beating of these two
At this point, before presenting further numerical results
obtained from Eqs(6), we prefer to explore the first nonlin-

with

Inserting these combinations into E@) one obtains equa-
tions for é_, &£,., and &,. Such equations are completely
decoupled in the linear limit, that is, when the perturbations

&, &, , and§, are much smaller than 1. Thus these func- 0.15 ' ' ' ' ' '
tions represent the normal modes of the systémis the

m=2 mode, having frequency2w, , while £_ and¢, are 0.1 -

the low-lying and high-lyingm=0 modes, respectively,

whose frequencies ardq-w, [5]. We note also that, 0.05

#(q_ for any value of\.

In Fig. 2 we plot the functiong;(t) for the oscillation of = 0
largest amplitude already shown in Fig. 1. The driving force
is tuned on then=2 mode,¢,, but, due to nonlinear cou-
pling, the low-lyingm=0 mode,&_, is also significantly
excited, while¢, remains very small. The coupling between

-0.05

these modes causes the irregular oscillatiob,af given by =0.1 .
Eq. (7) and plotted in Fig. 1. These oscillations have a very

large amplitudgabout 80% of the radial widjhfor smaller —0.15 L - | ) . .
oscillations the coupling withé_ tends to vanish. For the 0 20 40 60 80 100 120 140

smallest oscillation in Fig. 1 botki_ and £, are negligible time

with respect to the driven modé, and one has also FIG. 3. Same as in Fig. 2 but for a trap having 16/7. The

by (t) =1+ &5(1). beating is between thé, mode, which is excited by the external
A strong enhancement of nonlinear effects can be obforce, and thet, mode, which is coupled through the second har-

tained not only by increasing the strength of the drivingmonic of £,. The driving force is the same as for the smallest

force, but also by changing the anisotropy of the trap. In factpscillation in Fig. 1.
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ear corrections to the uncoupled normal modes. As we will _ 16—5\2 16— 3\2

see, an expansion of Eq&) at small amplitudes provides &>+ wa(l_Agm) £r+207| 1+ W) 5=
useful analytic formulas, which contain the main physical (14)
ideas and give accurate results.

This is a special case of the more general class of equations
IV. ANALYTIC EXPANSIONS AT SMALL AMPLITUDE for anharmonic oscillators:

Equations(6), with w;=w andi=x,y,z, describe free
oscillations in the trap. They can be expanded by assuming &+ Q§§+ Y2E2+ y3E3=0. (15
b;(t)=1+ 8b;(t) and keeping the lowest orders in the small
perturbation éb; . The linear terms provide the hydrody- One can easily prove that the solutiéft) has a frequency
namic spectrum of normal modes, while harmonic generagich depends on the amplitudethrough
tion is included in the higher order terms. One can also use
definitions(7)—(9) in order to get three coupled equations for

. . \ 5y3A2  3y,A2
the functionst_ |, £, , andé,, up to quadratic or cubic terms. w=0Q¢| 1— ——7+ > (16)
We show here an example of an explicit calculation for the 1204, 804
m=2 mode, while for then=0 modes we will present only
the final results. By comparing Eqs(14) and (15) one identifies
Let us assume then=2 mode to be excited in the cylin-
drically symmetric trap by some suitable driving force, in 16— 5\2
such a way thaf,(t)~Acos(2w, t). If A<1, the coupling Q=207 1—A§m>, 17)
with the other modes is small and, hence, the 0 oscilla-
tions £_ and &, are expected to be of ordé¥®. Then, by ’
expanding Eqs(6)—(9) up to third order inA, one gets the —202 1+ 16—3A ) (18)
following equations: YaTewL 16—7\?%)"
bt wlé[2-¢.q-—£.9.+2£]=0, (1) andy,=0. Inserting these definitions into E(L6), one gets
finally
£t 02q.£.75 Zﬁ(ﬂ)gz—o (12)
FreldstsTeeng g g/ (16-5\?)
Lz):\/zwi 1+ mAg}, (19
The twom=0 modes are not excited directly, but they can ( )

be driven by them=2 mode via the last term in Eq12). o . . )

One can easily find conditions for resonances: the frequencyhich is the analytic expression of the frequency shift as a

of the m=0 mode, Jg-w, , should be equal to the fre- unction of the anisotropy of the trap. Here the pathology at

quency of the second harmonic of the=2 mode, 22w, . A=1/16/7 i§ evident: as alrea_dy said, iF corresponds to a

This never occurs for the lowest=0 mode, sinceg_ is  "eSonance induced by harmonic generation.

always smaller than 10/3. Conversely, for the high-lying " @ more general form, one can write

mode ¢, , a resonance is obtained far=+/16/7. For this

value of the asymmetry parameter, a small driving force, w=wo[ 1+ 8(\)A?], (20

appropriate for exciting then=2 mode, gives rise to a

coupled motion of both then=2 and high-lyingm=0  wherewy is the frequency of each normal mode in the linear

modes. This is exactly what we have already shown in Fig. 3egime (20, and\q-w, for them=2 andm=0 modes,

by solving the hydrodynamic equatio(® for the same spe- respectively while A is its amplitude. The coefficient for the

cial value of A. This enhancement of nonlinearity, due to m=2 mode is then

resonances via second harmonics, has been recently sug-

gested also in Ref22]. Even though Eqg11l) and(12) are (16—5\2)

valid in the limit of small amplitudes, they give the correct 6(N)= 4(16——7)\2)

conditions for the occurrence of strong nonlinear effects in

the exacthydrodynamic solutions. ) ] . )
The above equations can also be used to predict the fréXpansion20) is expected to be reliable wheneyéfA®<1

quency shift of the collective modes at the lowest order in@nd this excludes values af too close to resonances. The

the amplitudeA. In fact, Egs.(12) can be solved explicitly, coefficients §-(\) for the m=0 modes can be calculated

by inserting&, at the leading orderé,(t) =A,cos2w, t). straightforwardly, with the same procedure used above for
One finds m=2. In particular, one has to start exciting one of the two

modes, ¢ , in the form A cos(/q=w, t); the other one is
*(q+—4) excited to the ordeAZ, while &, is never excited, due to the
[9=&()—4A7]. (13 i 0 i init i
2(q+—q,)(q:—8)Lq+ 2 2] axial symmetry of both the equations and the initial condi-
tions. Expanding Eq(6) up to terms inAi, one gets two
Using these solutions in E¢L1), one gets an equation fgs  coupled equations faf of the type(15), while &, is decou-
at the next order: pled. One finally obtains

(21)

f:(t):
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FIG. 4. Coefficient of the quadratic expansi(20) for the fre-
quency shift of the low-lyingm=0 mode, as a function of the
anisotropy parameteh =w,,/w, . Divergences are found for
A= (4/125x 4/29)/\/72. The values ok for the experimental traps
of Refs.[1,2] are also indicated.
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6+(N)

FIG. 5. Coefficient of the quadratic expansi(0) for the fre-
quency shift of the high-lyingn=0 mode. For» = /8 the coeffi-
cient is about 31.

ficients 5_(\), 6.(\), and 8,(\), from Egs.(21) and(22),

entering the quadratic expansi{0) of the frequency shift.

5 z(q:_z)(q;_4)(q:_5)[ 15 \2 These curves can be considered the main results of the
5:=§)\ 4 5 {— 4 2 present work. The occurrence of resonances is a peculiar
(40 —-9+)(d=—0q<) a= feature of the dynamics of the condensate. Close to these
15 1 special values ok whered(\) diverges, the frequency shift
- [—gs+2\%q; —9\%+8]2 is expected to show an anomalous enhancement and the time
16 (g.—0q5)? evolution of the widths of the condensate should become
9 4 3 3 very irregular, due to significant mode coupling.
9 @4 3 gs— [~ 1002q. +37\2 In order to test the accuracy of the small amplitude ex-
49:(9x—0+) 200:—0 N pansion, yielding the curves in Figs. 4—-6, we compare the
+11q. — 54] 22) results obtained from both the numerical solution of ).

and the quadratic la\20) for specific values ok. In Fig. 7

Two resonances are found by exciting the low-lyimg=0 W€ Show the results for the=2 and low-lyingm=0 modes
mode. They occur when the frequency of the high-lyingatA= V8, as in JILA experimentl]. In this case one finds
mode is equal to the second harmonic of the low-lying modethe coefficientss,(18)=3/20 and 5_(\/8)=1.636x10"".
this happens foi = (y125+ 29)/\72 (i.e., \~0.683 and S0lid lines are obtained from the numerical solutions of Eq.
\~1.952). Conversely, no resonances are found by excitin®). using definitions7)—-(9), and performing sinusoidal fits
the high-lyingm=0 mode. As an example of numerical val-
ues of§-, let us consider a spherical traps1; in this case
one hagy_=2,q,=5, 6_=11/12, andd, = — 1/6. The lat-
ter value was already used in REZ5] to give an estimate of
the collapse time for the high-lyingh=0 mode.

The main results of these analytic expansions, together
with the numerical solutions of E@6), will be discussed in
the following section.

3 T T T

V. FREQUENCY SHIFT AND MODE COUPLING
FOR DIFFERENT TRAPS

So far we have developed two methods for investigating 0
the behavior of then=0 andm=2 modes in a cylindrically
symmetric trap. One is the numerical solution of the coupled
differential equationg6) for the widthsb;(t), which corre-
sponds to solving exactly the equations of hydrodynamics
for these collective modes. The other one is an expansion at
small amplitude, which provides analytic solutions as well as
simple formulas for the frequency shift. FIG. 6. Coefficients of the quadratic expansi@o) for the fre-

In Figs. 4—6 we first show the three curves for the coef-quency shift of then=2 mode. A divergence is found &t= \16/7.

62(N)
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1.04 | m=0 low
i 1.04
1.02 103
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3 <l
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1.02
1
0 0.04 0.08 0.12 0.16
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1 1 ! l

FIG. 8. Frequency shift for the low-lyingn=0 mode in the
0 0.1 0.2 ) 0.3 0.4 0.5 MIT trap as a function of its amplitude. Solid line: from the numeri-
Amplitude cal solution of Eq.(6); dashed line: quadratic expansi(20) with

5_=1.481 from Eq.(22).
FIG. 7. Frequency shift for then=2 and low-lying m=0 ) .
modes in the JILA trap as a function of their amplitude. Solid line; ON the anisotropy of the trap and on the excited modes. Sec-

from the numerical solution of Eq6); dashed line: quadratic ex- 0nd, the assumptioNa/a;>1, which is at the basis of the
pansion(20) with 8,=3/20 ands_=1.636x103 from Egs.(21)  hydrodynamic approach, is not well satisfied by the samples
and(22). used so far at JILA. In this case, the role of the quantum
pressure, beyond the Thomas-Fermi approximation could be
and/or Fourier analysis @, and¢_ . The frequency shift of relevant also for the dynamics of the expansion.
the m=0 mode is smaller than the one wf=2 especially In Fig. 8 we plot the frequency shift of the low-lying
for small amplitudes; in thé—O0 limit, the agreement be- M=0 mode for the MIT trad2] with A=0.077. Again the
tween the numerical results and the quadratic (@ashed solid line comes from the evolution &f (t), calculated nu-
lines) is very good. In then=2 case it remains good even Mmerically from Eq.(6), while the dashed line is the quadratic
for large amplitudes, while higher order corrections seem t@pproximation(20), whose coefficient is nows_=1.481.
be important for then=0 mode at amplitudes larger than The agreement between the two curves is good. In this trap,
0.2 (corresponding to relative amplitudes of the order ofthe condensate is cigar shaped and one measures the oscilla-
20% in the radial width of the condenshatkn the latter case, tions of the axial widthb,(t). Looking at Eq.(9), one notes
one notices also that the coefficiefit is very small, since that the relative amplitude of the oscillations lof is about
the valuex =8 is incidentally very close to a root of the four times the amplitude of the normal mogle . In fact, for
function 5_(\), as shown in Fig. 4. Thus the first nonzero such a small value ok, the quantityq_ behaves like
contributions to the shift come from powe#§ or higher.  (5/2)A” and, hence, can be neglected in E8); moreover,
We note also that the abscissa in Fig. 7 is the amplitude dihe coupling with the high-lyingn=0 mode is weak and
&,(t) and £_(t) and not of the widthb,(t), which is the thus one can also neglegt at the lowest order. This means
observed quantity at JILA. The reason is that the quadratithat the shifts_A? becomes §_/16)AZ, if A, is the relative
expansion(20) has analytic coefficients only for the normal amplitude of the axial widttb,. The shift in frequency is
modesé; . However, since. = J8 is relatively far from reso- thus very small; for instance, when the axial width oscillates
nances, the coupling between different modes in Efsand ~ with a relative amplitude of 40%, the amplitude éf is
(8) is rather weak and the relative amplitude of the oscilla-about 0.1 and the predicted shift is less than 2%. Actually
tions of b, practically coincides with the amplitude of each the oscillations in Ref[2], which do not exhibit any fre-
normal mode, within the range of Fig. 7. quency shift, have been imaged after the free expansion of
It is not easy to compare these results with the availabléhe condensate and correspond to relative amplitudes of the
data for the frequency shift in the JILA experimefit3. The  order of 10%, or less, fds, before the expansion. Therefore
data show no significant frequency shift for the low-lying the predicted shift is practically zero within the accuracy of
m=0 mode and a relatively large shift for tme=2 mode. the available experiments and thé law cannot be tested.
The fact that the shift is larger fan=2 than form=0 isin  The situation can be greatly improved by the use of nonde-
agreement with our predictions, but a quantitative comparistructive imaging techniques, as in the trap of R2#].
son should take into account at least two further effects. As concerns nonlinear coupling ah=0 and m=2
First, the data have been taken after switching off the trapmodes, the values of in the JILA and MIT traps are not of
ping potential. As discussed in our previous woik] (see  particular interest. The curves in Figs. 4—6 suggest different
also[23]), the expansion of the gas causes an amplificatiorthoices, namely,\=16/7 for the m=2 mode and
of the relative amplitude of the observed oscillations. This\ = (\/125+ y29)/,/72 for the low-lyingm=0 mode. It is
amplification is different in the three directions, dependingalso worth mentioning that the curves in Figs. 4—6 come
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from an expansion up to the third orderAn as in Eqs(11) = : :
and(12), and the coupling occurs via the second harmonics.
When the amplitude is large, one expects higher order terms
to become significant, providing other special values &br

mode coupling. For instance, the hydrodynamic equations

(6) predict a beating of then=2 and the high-lyingn=0
modes for\ = 63/11. This beating can be calculated ana- 2 [llilly
lytically by extending Eqs(11) and(12) to the next order in v UU

A; for that value of\, one then finds that the third harmonic
of &, has the same frequency &f . Finally, we remark that
other values ol can give rise to similar effects, even with-
out harmonic generation. This happens when an accidental
degeneracy occurs in the spectrum of normal modes, includ-
ing |m|>2, as recently discussed byhiderget al.[19]. ' '

time (arb. units)

VI. APPLICATION TO THE THEORY FIG. 9. Schematic picture of collapse and revival. Both time and
OF COLLAPSE AND REVIVAL (¢) are in arbitrary units and the oscillations are just a pictorial view

of the phenomenon. The two time scalgesand 7, are indicated.
The fact that the frequency of the normal modes depends P esand

on their amplitude has interesting consequences for the phgy s in the experimentL,2] were driven through a sinu-

nomenon of collapse and revival of collective excitations.gniqa) force into a coherent state of the oscillator. The wave

The latter belongs to a class of quantum phenomena havingnction of such a stationary state can be written in the form
no classical analog. Examples are the collapse and revival of

coherent quantum states observed in atomic Rydberg wave

packetd 26], in molecular vibration$27], and for atoms in- P=2 CothneXp(—iwpt), (24)
teracting with an electromagnetic field in a resonant cavity "

[28] (see[29,30, and references therein, for a theoretical\ypere

discussioh The same concepts have been recently applied to

the trapped condensatsee Refs[25,32, and references nn o 1 (n—n_)2
therein. In this confined Bose system, the collapse of collec- |cn|2=—|exp(— n)~ —exg ————|, (25
tive excitations originates from a dephasing during the oscil- n: 27n

lation. In Ref.[32] the dephasing was associated with the _ _

fluctuations of the particle occupation number and the colwhere n is the average number of quanta1) and
lapse time was estimated within Hartree approximation. Ong =4 w,n. Let us now consider the oscillator coording(e)
of us[25] has recently developed a theory for the same proand calculate its average over the st@4) and(25). If one
cess, but based on the fluctuations in the number of quanta @bnsiders onlyn—n=+1 transitions, the result ig£(t))
oscillation. The main idea is that a collective mode is, inocx |c,|?cog(wo+bn)t]. For small enough values af one

general, a coherent superposition of stationary states of aan replace the summation oveby an integral and one gets
oscillator and the number of quanta of oscillations is thea Gaussian damping of the oscillation according to

natural quantity for classifying those states. The estimated,, _ —nb23/2)= —(t/7)2]. wh
time scale for the collapse turns out to depend, as a ke?/g> exp(-n J=exi ~(Ur)’], where

ingredient, on the frequency shift of the normal modes. We —1_ (U2 — 12

will recall here the main steps of the theory and then we will 7o = (n/2) 7] = wo(Ehwo/2) ™ x|, 28

use our new results for the frequency shifts in order to pro—S. th litude of th ilati . i t/t;_
vide a quantitative estimate of the collapse time. Ince the ampiitude of the oscifiations IS proportionawto,

As we saw in Sec. IV, the collective variablecan be the resulting amplitude dependence of the collapse tigrie

considered as solutions of the equations for anharmonic o%be same as in the theo_ry of R.QBZE The pezriodicity _Of
cillators. Let us write the frequency, up to the first nonlinear\é(t)) gives also the revival period, = 2/(fi wg| ) as in

correction, in the form Ref. [_29]._The meaning of-. and T is also shown schem_ati—
cally in Fig. 9. From the expressions fof and 7, one easily
w=wy+ dw=wy(1+ «E), (23 sees that.~V/(1/n) 7,<7,. Note that in quantum mechan-

ics the measurement of an oscillator coordinats, gener-
whereE is the energy of the oscillations. We assume heredlly speaking, destructive because it affects the oscillator
the condition of weak nonlinearityix|E<1, even though the momentump,. In other words, it modifies the coefficients
theory can be generalized to the case of large amplitude. 160, thus preventing the observation of collapse and revival.
order to provide a quantum description, one can use th# order to measure properfy(t)), one must repeat cycles
semiclassical expressidiw=(JE,/on), which allows one Of observations with different replica of the system in differ-
to rewrite Eg. (23) in the quantum form ent instants of time. This is, however, exactly the procedure
wn=E, /i =won+bn?/2. Here the quantity is the number used in the available experimerits2,31].
of quanta 6>1) in a given excited state of enerdy,, According to Eq.(26) the collapse timer; decreases
while the coefficientb is given bybzﬁwSK. The oscilla- whenn increases. However, one has to keep in mind that the
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theory is restricted to the weak nonlinear regim¢E<1, rapidly by lowering the temperature of the gas. We believe

which corresponds ton<1/(fwo|«|). Thus the collapse that experiments at lower temperature v_vould perm@t us to
time is subject to the conditiom> 7= 1/(wo\% wo| ) observe thg quantum cpllapse of coI_Iecyve modgs in these
and the collapse can be observed only,f, is shorter than Macroscopic objects. It is worth mentioning, in this connec-

the typical time scale for the dissipative damping of the os{ion, the recent suggestion to cool adiabatically the gas by
cillations, which is always present at finite temperature. ~ changing the trapping frequen¢ga4l.

In order to provide quantitative estimates of the collapse TN€ low-lyingm=0 mode, which also has been observed,
time for trapped Bose-condensed gases, one must calculdghibits a very small frequency shift and is not, for this rea-
the energy of oscillation€, as a function of their amplitude. SON. @ proper object to search for collapse, at least within the
This is what we have done in the previous sections. One hd&nge of amplitude where the quadratic expangih holds.
only to write the proper relation between the nonlinearity Conversely, the high-lyingn=0 mode looks more promis-
coefficients« ands. To this aim, it is enough to calculate the Ing- For this mode, using again the parameters of the JILA
energyE in linear approximation, as twice the mean kinetic rap, one haso,~4.98v, , e~198, ands. ~30. The oscil-
energyE=m/drpu2, wherep(r) is the equilibrium den- Ie}tlong are strongly an_lsotroplc'and the ampll?ude in the
sity of condensate and(r) is the velocity field associated direction is larger than in the radial one. According to B3j.

with each normal mode. Direct integration for=2 gives ~ ON€ getsA,~(q,—4)A,~20.8A, . By assuming again
A,=0.2, the collapse time becomes=1.4 s.

4 ) From these results, it appears evident thatrsonances
E=ZuNAz, (27)  described in the previous sections of this work are very
promising even for the observation of collapse and revival of
whereA, is the amplitude of the mode andis the chemical the oscillations. By a proper choice of the anisotropy param-
potential of the system, calculated within the Thomas-FermgterA one can in fact increase significantly the coefficiént
approximation. Similarly, for then=0 modes one finds and, consequently, lower the collapse time to an observable
scale. Obviously, for real traps, one should also take into
account possible nonlinear effects originating from trivial
nonharmonic corrections to the magnetic confining potential.
But the present scenario for collapse and revival seems plau-
where the quantities}-(\) are defined in Eq(10). The sible and, in any case, the first step for its confirmation
above energies can be rewritten in a more compact form ashould be the observation of the predicted amplitude depen-
E=euNA?, where (M) is the appropriate coefficient for dence of the frequency shift.
each normal mode in Eq&7) and(28). Inserting this result

:(?mljisq (23) and comparing with the quadratic |ai®0), one VIl CONCLUSIONS

E=Z(20- +(a- - 4)(30- - 10JuNAZ, (28

s In this paper we have investigated the behavior of collec-
K= ) (29)  tive excitations of trapped Bose gases in the limit of zero
euN temperature. The formalism of hydrodynamic equations is
suitable for deriving both numerical and analytic results,
valid in the limit Na/ayo>1. As already shown by other

The final result for the collapse time, from E@6), is then

JZeuN e N authors, those equations describe the lowest collective exci-
= rT _NeE LM tations in the linear regiménormal modek in agreement
WoTe . (30) . . .

| 8| VEA wq Als] N fwg with available experiments. They can also be used for the

) _ _ dynamics of the system in nonlinear regime. We have shown
Let us estimater, for the m=2 mode, assuming typical here that they provide nontrivial predictions for the fre-

experimental parameters of Ret]: N=4500,w,/27=132  quency shift of the normal modes. We have discussed the
Hz, \= 8, anda=110 Bohr radii. With these parameters case ofm=0 andm=2 modes in a generic cylindrically
one findsyuN/fw, ~195. The frequency of the=2 mode  symmetric trap and we have explored the peculiar behavior
in the linear limit iswy= 2w, , while the coefficient of the of the condensate for special choices of wy,/w, , the
quadratic expansioii20) is §,=3/20. Equation(27) gives  asymmetry parameter of the trap. For those special traps, the
e,=4/7. With a reasonable choice for the amplitudes0.2,  frequency of an oscillation becomes equal to the second har-
the final result for the collapse time i§=4.98 s. The au- monic of another one. This degeneracy enhances nonlinear
thors of Refs[1,31] reported a lifetime of then=2 mode of  effects, producing significant consequences in measurable
the order of 100 ms. It means that, under the experimentajuantities: for instance, the time evolution of condensate
conditions, the dissipative damping is too strong and the colshape can show irregular patterns and the frequency shift can
lapse cannot be observed. It is not hopeless, however, teecome rather large. The physical picture has been supported
discover this effect under appropriate conditions. The poinby simple analytic results. We have also discussed an appli-
is that, according both to measuremel&$] and to theoret- cation to the theory of collapse and revival of the collective
ical consideration$33], the dissipative damping decreasesoscillations.
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