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Non-ground-state Bose-Einstein condensates of trapped atoms
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The possibility of creating a Bose condensate of trapped atoms in a non-ground-state is suggested. Such a
nonequilibrium Bose condensate can be formed if one first obtains the conventional Bose condensate in the
ground state and then transfers the condensed atoms to a non-ground-state by means of a resonance pumping.
The properties of ground and non-ground-states are compared and plausible applications of such nonequilib-
rium condensates are discussed.@S1050-2947~97!03912-7#
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I. INTRODUCTION

The recent realization of Bose-Einstein condensation
dilute atomic gases in magnetic traps@1–3# has opened a
rapidly expanding field of studies of condensate propert
There has been a splash of both experimental and theore
activity on this subject~see Refs.@4,5#!.

Atoms trapped in a confining potential possess the
crete spectrum of states. At high temperatures these state
occupied, according to the quantum Bose-Einstein distri
tion, so that no state is occupied macroscopically. Under
macroscopic occupation of a state one implies that the n
ber of atoms in this state is proportional to the total num
of atoms in the system. An important consequence of qu
tum statistics is that when the system is cooled down be
some critical temperature, bosons pile up in the lowe
energy state of a confining potential. The macroscopic po
lation of the quantum-mechanical ground state of a confin
potential is the characteristic feature of Bose-Einstein c
densation.

A natural question that can be raised is: Is it possible
realize the macroscopic population of some other quant
mechanical state rather than the ground state or in additio
the latter? That is, can one produce a Bose condensate
non-ground-state? The answer to this question is interes
in itself. Also, if that is possible, several important applic
tions can be suggested.

For example, recently two overlapping87Rb condensates
in two different ground-state hyperfine levels were crea
@6#. However, for other atoms the simultaneous creation
two condensates in different ground-state hyperfine lev
may be difficult or not feasible@7#. Then the alternative
could be the creation of two condensates, one in the gro
state and the other in a non-ground-state level.

Realizing the macroscopic population of a non-groun
state of a confining potential could be a way to produ
various spatial distributions in the system of coherent ato
This may find application for atom lasers for which the c
ation of coherent atomic beams with different spatial mo
may be required.

One more possibility of employing such a non-groun
state condensate could be to study relaxation processes i
quantum degenerate regime. The macroscopic occupatio
561050-2947/97/56~6!/4845~10!/$10.00
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an excited state would clearly result in a nonequilibriu
sample. When external forces supporting this state
switched off, the system will relax, returning to the equili
rium by repopulating the discrete levels of the potential. T
observation of this process of relaxation in the quantum
generate regime can provide useful information about
form of quantum matter. Finally, when a system with u
usual features is explored, there is always the chance of fi
ing something completely unexpected. In this paper we
scribe a possible way of transferring the macroscopic num
of atoms from the conventional ground-state condensate
non-ground-state level of the confining potential, thus cre
ing a non-ground-state condensate.

II. RESONANCE PUMPING

Assume that the Bose gas of neutral atoms has b
cooled down so that all atoms are in a coherent conden
state. The latter is described by the nonlinear Schro¨dinger
equation, which is often called the Gross-Ginzbur
Pitaevskii equation@8–12#. This equation is written

i\
]w

]t
5Ĥw, ~1!

where the nonlinear Hamiltonian

Ĥ5H~w!1Vp ~2!

contains the nonlinear part

H~w!52
\2

2m
¹21Uc~rW !1Auwu2 ~3!

and, in general, a time-dependent partVp related to external
fields. The atom-atom interaction is modeled by thes-wave
scattering interaction with the amplitude

A5~N21!4p\2
a

m
, ~4!

in which N is the number of atoms in the system,a is the
s-wave scattering length, andm is the atomic mass. The term
4845 © 1997 The American Physical Society
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Uc is a confining potential. The wave function is normalize
to unity: (w,w)51. Assume that at the initial timet50, all
atoms are in the ground state

w~rW,0!5w0~rW ! ~5!

corresponding to the minimal energy level of the eigenva
problem

H~wn!wn5Enwn , ~6!

in which n is a multi-index enumerating quantum state. T
chemical potential is incorporated into the notation of t
energy levelsEn . Temperature is assumed to be much low
than the condensation temperature, since only then it is p
sible to condensate almost all atoms in the ground state. N
that the nonlinear Schro¨dinger equation~1! describes coher-
ent states@13#.

Since the atoms are assumed to be initially condense
the ground state, to transfer them to higher levels one ne
to apply an external pumping field that we take in the for

Vp5V~rW !cosvt. ~7!

Such a field can be realized by a special modulation of
magnetic field producing the trap. As far as our aim is
populate a separate energy level, say a particular levelp with
the energyEp , we have to choose the frequency of th
pumping field~7! satisfying some resonance conditions.

Denote the transition frequenciesvmn by the relation

\vmn[Em2En ~8!

and the detuning from the chosen particular transition f
quencyvp0 as

Dv[v2vp0 . ~9!

The first evident resonance condition is that the detun
must be small compared to the transition frequencyvp0 cor-
responding to the transition from the ground state, with
energyE0, to the chosen particular state with the energyEp ,

UDv

vp0
U!1. ~10!

In addition, it is necessary that the pumping would not infl
ence the neighboring states, that is, the detuning must sa
the inequalities

U Dv

vp11,p
U!1, U Dv

vp,p21
U!1. ~11!

The resonance conditions~10! and~11! are necessary bu
not yet sufficient if we intend to populate only one particul
level. This goal can be reached only when the pumping d
not force transitions between other states, which can be
pressed as the inequality

U Dv

v2vmn
U!1 ~mÞp, nÞ0!. ~12!
e
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The conditions~10! and~11! are easy to accomplish, mak
ing the detuning sufficiently small. The resonance condit
~12! is more restrictive, requiring that the spectrum$En%,
defined by the eigenproblem~6!, would not be equidistant, a
it happens for a simple harmonic oscillator. In fact, if th
were the case, then the pumping of atoms from the gro
state to the chosen particular state would, at the same t
induce transitions from the latter to another equidistant s
and from the latter to higher equidistant states, and so on
such a case, all atoms will be dispersed over a numbe
states making it impossible to get a macroscopic popula
of any of them. Fortunately, because of the nonlinearity, r
resenting atomic interactions, in the Hamiltonian~3!, the
spectrum$En% is not equidistant even when the confinin
potential Uc is harmonic. In addition, we may include th
confining potential anharmonic terms and regulate its sp
tral characteristics by varying anharmonicity paramet
@14–16#. Moreover, as we shall show in Sec. III, the spect
properties of the nonlinear Hamiltonian~3! may be essen-
tially modified by varying the intensity of interactions~4!,
for which it is sufficient to change the number of atomsN.
Therefore, it is always possible to prepare the system
which condition~12! holds true. The situation here is simila
to the problem of inducing resonant electron transitions in
atom. The latter also contains many electron levels, but,
cause these are not equidistant, it is practically always p
sible to induce a resonant transition between a chosen pa
them @17#. The principal difference between the resona
electronic transitions in an atom and atomic transitions i
confining potential is that electronic levels are not equid
tant because of the hydrogen-type potential, while the in
actions between electrons do not play essential role. In s
a case, the resonant electronic transitions can be treated
linear approximation. Concerning the atoms in a confin
potential, if the latter is harmonic, then the main role
making the energy levels nonequidistant is played by
atomic interactions. This makes the problem principally no
linear and forces one to deal with complicated nonline
equations.

To describe the time evolution of the system, we have
consider the time-dependent nonlinear Schro¨dinger equation
~1!. We present its solution as an expansion

w~rW,t !5(
n

cn~ t !wn~rW !expS 2
i

\
Ent D ~13!

in the basis of the stationary states of the eigenproblem~6!.
Substituting Eq.~13! into Eq.~1! and taking into account tha
in the double sum

(
k,l

ck* cl~wmwk ,w lwn!exp~ ivklt !,

the main contribution comes from the term

(
k

ucku2~wmwk ,wkwn!

because other terms containing the oscillating factors, be
summed up, on average cancel each other. Then, from
~1! and ~13! we have
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i\
dcn

dt
5(

m
S Vnmcosvt1 (

k~Þn!
Ankmucku2D cmeivnmt,

~14!

with the matrix elements

Vmn[„wm ,V~rW !wn…, Amkn[A~wmwk ,wkwn!.

The solution of Eq.~14! must satisfy the normalization

(
n

ucn~ t !u251.

Equation ~14! is a set of equations for the function
cn5cn(t) enumerated by a multi-indexn. Let us separate
this set into the equation for the ground-state functionc0, the
equation forcp representing a chosen state withn5p, and
the equations for all otherck with kÞ0,p. We introduce the
notion for the population probability

nj5nj~ t ![ucj~ t !u2, ~15!

where the index is eitherj 50, j 5p, or j 5kÞ0,p. Also, we
define the parameters

a[
1

\
A0p05

A

\E uw0~rW !u2uwp~rW !u2drW ~16!

and

b[
1

\
V0p5

1

\E w0* ~rW !V~rW !wp~rW !drW. ~17!

The solution to Eq.~14! can be presented as the sum o
guiding center plus a small oscillating ripple around the l
ter. The equation for the guiding center is obtained from
~14! by averaging its right-hand side over time according
the rule (1/t)*0

tF(t)dt, with t→`. During this averaging
the exponentialeiDvt is treated as a constant since it is
slowly varying factor. Actually, at pure resonance, wh
Dv→0, this exponentialeiDvt→1 is exactly one.

After realizing the described procedures, we obtain fr
Eq. ~14! the system of equations

dc0

dt
52 ianpc02

i

2
beiDvtcp , ~18a!

dcp

dt
52 ian0cp2

i

2
b* e2 iDvtc0 , ~18b!

dck

dt
50 ~kÞ0,p!. ~18c!

Since the functionscj are complex, the system of equatio
~18! must be completed by another system either for
complex conjugate functionscj* or for the amplitudes
nj5ucj u2. The equations for the latter are

dn0

dt
5Im~beiDvtc0* cp!,
-
.

e

dnp

dt
5Im~b* e2 iDvtcp* c0!, ~19!

and dnk /dt50 when kÞ0,p. As the initial conditions we
have

c0~0!51, cp~0!50, ck~0!50. ~20!

From Eq.~18c!, together with the initial conditions~20!, it
follows that ck(t)50 for kÞ0,p. Therefore, the normaliza
tion condition reads

n0~ t !1np~ t !51, ~21!

which demonstrates that the atoms are concentrated in
ground state andp level, preferentially.

Equations~18! and ~19! form a system of complicated
nonlinear differential equations. This system could be solv
by perturbation theory in two limiting cases: eitherua/bu!1
or ub/au!1. In the intermediate regime, whenua/bu;1,
perturbation theory is not applicable. A general solutio
valid for arbitrary relation between the parametersa andb,
can be obtained by employing the method of scale separa
@18–20#. This can be done by noticing that the functionsc0
and cp contain time-dependent imaginary factors absent
n0[uc0u2 andnp[ucpu2, that is, the time variation ofc0 and
cp is faster than that ofn0 andnp . Consequently,c0 andcp
can be classified as fast functions compared to the slo
functionsn0 andnp . Then the system~18! of equations for
the fast functions can be approximately solved by keep
the slow functionsn0 and np as quasi-integrals of motion
From Eq.~18! we get the equations

d2c0

dt2
1 i ~a2Dv!

dc0

dt
1F ubu2

4
2anp~an02Dv!Gc050,

d2cp

dt2
1 i ~a1Dv!

dcp

dt
1F ubu2

4
2an0~anp1Dv!Gcp50,

~22!

with the initial conditions~20! and

ċ0~0!52 ianp , ċp~0!52
i

2
b* , ~23!

where the overdot means a time derivative. The solution
Eqs.~22!, with n0 andnp kept fixed, is written

c05Fcos
Vt

2
1 i

a~n02np!2Dv

V
sin

Vt

2 G
3expH 2

i

2
~a2Dv!tJ ,

cp52 i
b*

V
sin

Vt

2
expH 2

i

2
~a1Dv!tJ , ~24!

with the effective Rabi frequency given by the expression

V25@a~n02np!2Dv#21ubu2. ~25!

Then for the slow functions we obtain
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n0512
ubu2

V2
sin2

Vt

2
, np5

ubu2

V2
sin2

Vt

2
. ~26!

The functions in Eqs.~26! describe the time evolution for th
population of the ground state and of the chosen exc
state. The form of these functions is similar to that enco
tered in considering the Rabi oscillations@17#. However, it is
worth emphasizing that, contrary to the linear case, wh
can be recovered by settinga50, expressions~26! are actu-
ally the equations forn0 and np since the effective Rab
frequency~25! itself depends on these populations. Beca
of this, the solution of Eqs.~26! will not result in simple
sinusoidal oscillations.

Consider, for example, the case when the detuning is s
that it satisfies the relation

a1Dv50. ~27!

Then Eq.~25! gives

V5A4a2n0
21ubu2. ~28!

In that case Eq.~26! shows that the ground-state level b
comes empty, while the upper resonant level is comple
populated, i.e.,

n0~ tk!50, np~ tk!51,

at the moments of time

tk5
p

ubu ~112k! ~k50,1,2, . . . !. ~29!

As far asn0→0, when t→tk , then the effective Rabi fre
quency~28! softens,V→ubu, and the motion aroundt5tk
slows down. Hence the system spends more time on the
per level than in the ground state. Furthermore, if at
momentt5tk we switch off the pumping field~7!, then we
shall get an inverted system with all atoms being in the n
ground-state. Another way of obtaining an inverted syst
could be by adiabatically varying the detuning, as in t
regime of adiabatic passage@17#, until we reach the compen
sation condition~27!. The latter certainly makes sense on
when the detuning continues to obey the resonance co
tions ~10!–~12!.

If the compensation condition~27! cannot be satisfied
then it is impossible to transfer all atoms from the grou
state to the chosen excited state. However, it is always
sible to populate these states equally. In fact, consider
resonance case whenDv50. Then at the moments

tk* 5
p

2ubu ~118k! ~k50,1,2, . . . ! ~30!

we have

n0~ tk* !5np~ tk* !5
1

2
,

that is, both states are equally populated.
It is worth paying attention to the following. The chara

teristic frequency of solutions~24! and ~26! is the Rabi fre-
d
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e

ch
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quency~25!. Looking back at Eq.~14!, we see that, in gen
eral, there should exist as well solutions with ext
frequencies being combinations of basic frequencies ente
Eq. ~14!. One may ask the question: ‘‘When could such ex
frequencies appear?’’

Recall that solutions~24! and~26! correspond to the guid
ing centers that constitute the main approximation in
method of averaging@21# and in the guiding-center approac
@22#. The general form of the population amplitudescn is
defined by Eq.~14!. Denoting the general solution to th
latter equation bycn

gen, we may present it as a sum

cn
gen5cn1sn ,

in which cn is given by the guiding centers in Eq.~24! and
sn is an additional ripple oscillating around the guiding ce
ters. The characteristic frequency of the latter is the R
frequency~25!. The ripple solutionsn can in turn be written
as a sum of terms with characteristic frequencies that
essentially higher than the Rabi frequency. In this way,
guiding centercn represents the main harmonic, while th
ripple solution sn represents a sum of higher harmonic
Averaging the general solutioncn

gen over the largest charac
teristic period corresponding to the higher harmonics gi
the guiding centercn . Therefore, being interested in the a
erage behavior of solutions, one accepts the guiding cente
the main approximation. Moreover, not only does the rip
termsn oscillate much faster than the guiding center but
amplitude of the former is smaller than that of the latter.

In order to concretize what is said above, let us substit
the general solutioncn

gen5cn1sn into Eq. ~14!. We intro-
duce the notation

am jn[
Am jn

\
, bmn[

Vmn

\
.

Using Eqs.~18! for the guiding centers, we obtain the equ
tion

dsn

dt
52 i(

m
H bnmsmcosvt1 (

j ~Þn!
an jm@ ucj u2sm1~cj* sm

1cjsm* !~cm1sm!#J eivnmt

for the ripple term. Herecn are the guiding centers define
by Eqs. ~18! and ~24!. As is evident, the equation for th
ripple term contains various higher harmonics, as a resu
which the ripple solutionsn oscillates faster than the guidin
center.

Now let us explain why the amplitude of the ripple term
smaller than that of the guiding center. Introducing the no
tion «[max$a,b%, we see from Eq.~25! that the Rabi fre-
quencyV;«. Taking this into account and looking at Eq
~24!, we conclude that the amplitude of the guiding centercn
is of order unity,cn;«/V;1.

The ripple solutionsn can be presented as a sum of ha
monics with amplitudes of order«/Vn , whereVn is a char-
acteristic frequency of an harmonic. Among these charac
teristic frequencies there are various combinations ofv and
vmn6v. Remember that, according to the quasiresona
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condition~10!, we havev;vp0;«. Consequently, the char
acteristic frequencies of harmonics are of orderVn;n«,
with n52,3, . . . .Thus the corresponding amplitudes are
order«/Vn;1/n. Hence the amplitudes of higher harmoni
diminish as 1/n with increasingn52,3, . . . .

In this way, we see that the guiding centers in Eq.~24!
really constitute the main approximation to Eq.~14!. In this
approximation, the ripple solution, which oscillates fas
and has smaller amplitude, can be neglected. If needed
higher-order harmonics can be taken into account by me
of perturbation theory. Such a situation is common for
method of averaging and the guiding-center appro
@21,22#.

The space-time distribution of atoms is given by the d
sity

r~rW,t !5r0~rW,t !1rp~rW,t !,

in which

r j~rW,t !5Nnj~ t !uw~rW !u2

is a partial density forj 50,p. These densities are normalize
to the total number of atoms

N5E r~rW,t !drW

and, respectively, to the number of atoms

Nj5E r j~rW,t !drW5Nnj~ t !

in the corresponding states. Since the spatial dependen
the wave functions for different states is different, we m
get condensates with different space distributions. In gene
such condensates will coexist, though, if the compensa
condition is achieved, a pure non-ground-state conden
can be realized.

In our consideration we have assumed that the syste
initially cooled down so that all atoms are condensed in
ground state. The possible admixture of noncondensed t
mally excited atoms has been neglected. Such a picture,
known, is admissible for sufficiently low temperatures belo
the condensation point. If the temperature is kept low dur
the process of the resonant pumping, we may continue
regarding thermal excitations. Their role becomes import
only after we switch off the pumping field. Since during th
pumping the system has acquired additional energy, the la
can be redistributed among the energy levels through s
relaxation mechanism. The role of such a mechanism wil
played by the interactions between condensed and non
densed atoms. The thermally excited atoms will form a k
of a heat bath providing the possibility of relaxation to eq
librium.

III. STATIONARY STATES

Stationary states for the nonlinear Hamiltonian~3! are de-
fined by the eigenvalue problem~6!. The confining potential,
typical of magnetic traps, is well described by the anisotro
harmonic potential
f

r
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te
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e
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d
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c

Uc~rW !5
m

2
~vx

2x21vy
2y21vz

2z2!. ~31!

It is convenient to pass to dimensionless quantities m
sured in units of the characteristic oscillator frequencyv0
and lengthl 0 given by the expressions

v0[~vxvyvz!
1/3, l 0[A \

mv0
. ~32!

The anisotropy of potential~31! is characterized by the an
isotropy parameters

l1[
vx

v0
, l2[

vy

v0
, l3[

vz

v0
. ~33!

We define the dimensionless coordinates

x1[
x

l 0
, x2[

y

l 0
, x3[

z

l 0
~34!

forming the vectorxW5$x1 ,x2 ,x3%. The dimensionless inter
action parameter is

g[
mA

\2l 0

54p~N21!
a

l 0
. ~35!

Introducing the dimensionless Hamiltonian and wave fu
tion, respectively,

H[
H~w!

\v0
, c~xW ![ l 0

3/2w~rW !, ~36!

we obtain

H5
1

2(i 51

3 S 2
]2

]xi
2

1l i
2x2D 1gucu2. ~37!

Even when the scattering lengtha is much less than the
oscillator lengthl 0, the interaction parameter~35! can be
very large because of the great number of particlesN. This
situation is similar to that existing for large clusters@23#.
Actually, a group of atoms trapped in a confining potent
also forms a kind of a cluster. With a large interaction p
rameter, one cannot apply the standard perturbation theo
powers ofg for calculating the eigenvalues of the Ham
tonian~37!. Nevertheless, one may employ the renormaliz
perturbation theory@24–30#, which, as has been shown by
number of examples@14–16,24–31#, successfully works for
arbitrary values of the coupling parameter, as well as for
energy levels, providing good accuracy with the maxim
error around 1%. The first step of this approach is to cho
an initial approximation containing trial parameters that,
the following steps, will be turned into control functions co
trolling the convergence of the procedure@24#. These control
functions are to be defined from the fixed-point and stabi
conditions@29,30#. One of the simplest forms of the fixed
point condition is the minimal-sensitivity condition@28#,
which, for the first-order approximation, is equivalent to t
variational condition for an energy functional@27–32#.

As an initial approximation, we may take the Hamiltonia
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H05
1

2(i 51

3 S 2
]2

]xi
2

1ui
2xi

2D , ~38!

in which the effective frequenciesui , with i 51,2,3, will be
control functions. The eigenfunctions of the Hamiltoni
~38! are the oscillator wave functions

cn~xW !5)
i 51

3

cni
~xi !, n[$n1 ,n2 ,n3%,

where ni50,1,2, . . . . Correspondingly, the eigenvalues
H0 are given by

En
~0!5(

i 51

3

ui S ni1
1

2D . ~39!

Perturbation theory is to be constructed with respect to
perturbationDH[H2H0, which is

DH5
1

2(i 51

3

~l i
22ui

2!xi
21gucu2.

The eigenvalues, in the first-order approximation, are

En
~1!~l,g,u!5En

~0!1DEn , ~40!

where, for compactness, the notationsl[$l1 ,l2 ,l3% and
u[$u1 ,u2 ,u3% are accepted and

DEn5~cn ,DHcn!.

The control functionsui5ui(l,g,n) can be found from
the variational condition

]

]ui
En

~1!~l,g,u!50, ~41!

which is a simple form of the fixed-point condition. Subs
tuting the foundui into Eq. ~40!, we have

en~l,g![En
~1!

„l,g,u~l,g,n!…. ~42!

For what follows, it is useful to introduce the notation

gn[gJn , Jn[)
i 51

3

Jni
, ~43!

in which

Jni
5

~ ucni
u2,ucni

u2!

Aui~n!
5

1

p~2nini ! !2E2`

1`

Hni

4 ~x!exp~22x2!dx,

where Hni
(x) is a Hermite polynomial andui(n)

[ui(l,g,n). Equation~40!, with the notation in Eq.~43!,
can be written as

En
~1!~l,g,u!5

1

2(i 51

3 S ni1
1

2D S ui1
l i

2

ui
D 1Au1u2u3gn .

~44!

Condition ~41! results in the equation
e

S ni1
1

2D ~ui
22l i

2!1uiAu1u2u3gn50. ~45!

Using Eqs.~44! and ~45!, for the spectrum in Eq.~42! we
have

en~l,g!5
1

6(i 51

3 S ni1
1

2D S ui15
l i

2

ui
D , ~46!

whereui5ui(l,g,n) are defined by Eq.~45!.
To understand better the properties of the spectrum~46!,

let us consider the weak- and strong-coupling limits. In t
weak-coupling limit, whengn→0, the solution to Eq.~45! is
written

ui.l i2
Al1l2l3

2S ni1
1

2D gn15 l i

(
j 51

3 S nj1
1

2Dl j2S ni1
1

2Dl i

8)
j 51

3 S nj1
1

2D

1
l1l2l3

4S ni1
1

2D 2

l i6 gn
2 . ~47!

Substituting this into Eq.~46!, we get

en~l,g!.(
i 51

3 S ni1
1

2Dl i1Al1l2l3gn

2
1

8(i 51

3
l1l2l3

S ni1
1

2Dl i

gn
2 , ~48!

as gn→0. In the strong-coupling limit, whengn→`, the
solution to Eq.~45! reads

ui.
S ni1

1

2Dl i
2

F)
j 51

3 S nj1
1

2Dl j
2G1/5gn

22/5. ~49!

For the spectrum~46! we obtain

en~l,g!.
5

2F)
j 51

3 S nj1
1

2Dl j
2G1/5

gn
2/5 ~50!

asgn→`.

IV. GROUND STATE

The ground state plays a special role for the phenome
of Bose condensation. Therefore, we pay a little more att
tion to the case ofni50. SinceJ05(2p)21/2, the effective
interaction strength~43! becomes

g05
g

~2p!3/2
. ~51!
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Equation~46!, defining control functions, simplifies to

ui
212g0uiAu1u2u32l i

250 ~52!

and the spectrum~46! reduces to

e0~l,g!5
1

12(i 51

3 S ui15
l i

2

ui
D . ~53!

In the weak-coupling limit, wheng0→0, Eq. ~52! yields

ui.l i2Al1l2l3g01Fl i

2 S (
j 51

3

l j2l i D 1
l1l2l3

l i
Gg0

2 .

~54!

For the spectrum~53!, we have

e0~l,g!.
1

2
~l11l21l3!1Al1l2l3g02

1

16
~l1l21l2l3

1l3l1!g0
2 ~55!

asg0→0. In the strong-coupling limit, wheng0→`, for the
control functions we get

ui.
l i

2

~2l1l2l3!2/5
g0

22/5, ~56!

and, respectively, for the spectrum we find

e0~l,g!.
5

4
~2l1l2l3!2/5g0

2/5. ~57!

For an axially symmetric potential, withl15l2Þl3, the
strong-coupling limit~57! reduces to that found by Baym
and Pethick@33#.

For an isotropic potential, for whichl i51, there is only
one control function given by the equation

u212g0u5/22150. ~58!

Then the ground-state energy~53! becomes

e0~g!5
1

4S u1
5

uD . ~59!

In the weak-coupling limit, wheng0→0, Eq. ~58! gives

u.12g012g0
2 ~60!

and the spectrum~59! is

e0~g!.
3

2
1g02

3

4
g0

2 ~61!

asg0→0. In the strong-coupling limit, asg0→`, we have

u.~2g0!22/5 ~62!

and, respectively,

e0~g!.
5

4
~2g0!2/5. ~63!
For the atoms with negative scattering lengths, as in
case of7Li or 85Rb, the interaction parameter~35! is nega-
tive. All weak-coupling expansions, such as Eqs.~48!, ~55!,
and ~61!, are the same for the negativeg→20. When g
increases, the real solution for the spectrum exists until so
critical valuegc after which it becomes complex. Thus, fo
the isotropic potential, the stable ground state is defined
g0

c,g0,0, with

g0
c52

2

55/4
520.267 496. ~64!

From here, the critical interaction parameter is

gc5~2p!3/2g0
c524.212 960. ~65!

This, according to notation in Eq.~35!, defines the critical
number of atoms

Nc511
gcl 0

4pa
~66!

that can condense in a stable state. Afterg,gc , the spec-
trum becomes complex. The latter means that the co
sponding states are no longer stationary, but quasistation
The lifetime of a quasistationary state is defined@34,35# as

tn~g!5
1

2v0uImen~g!u
. ~67!

The complex spectrum of quasistationary states is defin
as earlier, by Eq.~46!, with ui from Eq. ~45!. These equa-
tions, in the case of negativeg,0, have several complex
solutions, of which we must choose that continuou
branching, atg5gc , from a solution that is real atg→20.
Solving these equations for the isotropic ground state,
find

Reu.0.705 470g22/513.850 396g26/5112.402 511g22,

Imu.2.171 212g22/512.797 476g26/5 ~68!

for g@1. For the real and imaginary parts of the energy
obtain

Ree0~g!.0.169 198g2/510.529 102g22/511.443 899g26/5

131.006 277g22,

Ime0~g!.20.520 739g2/511.628 409g22/5

11.049 054g26/5. ~69!

Therefore, for the lifetime~67! we have

t0~g!.
0.960 174

v0g2/5
. ~70!

If the number of atoms with a negative scattering leng
exceeds the critical number given by Eq.~66!, then onlyNc
atoms can form a stable Bose condensate, excessive a
being expelled out of the condensate during the time~70!.
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V. EXCITED STATES

The energy of any excited state is defined by Eq.~46!. In
order to illustrate the relative behaviors of these states, le
write explicitly the corresponding formulas for the first fe
levels. Consider, for the isotropic case, the energy lev
e100(g), e110(g) ande200(g). For these levels, the integra
Jni

entering the notation in Eq.~43! are

J05
1

A2p
, J15

3

4A2p
, J25

41

64A2p
.

In the weak-coupling limit, the energies of the first thr
excited states, compared to that of the ground state, be
as

e0~g!.
3

2
10.063 494g, e100~g!.

5

2
10.047 620g,

e110~g!.
7

2
10.035 715g, e200~g!.

7

2
10.040 676g

~71!

wheng→0. In the strong-coupling limit, we get

e0~g!.0.547 538g2/5, e100~g.0.607 943g2/5,

e200~g!.0.632 193g2/5, e110~g!.0.675 012g2/5 ~72!

as g→`. Notice an interesting and important fact that t
energy levelse110(g) ande200(g) cross each other asg var-
ies. In fact, from Eq.~71! it follows thate110(g),e200(g) at
small g, while Eq.~72! shows thate110(g).e200(g) at large
g. This crossing of levels demonstrates that the latter can
be classified being based on the harmonic-oscillator sp
trum. To classify the levels correctly, one has to calcul
their energies for each given interaction strengthg. At the
same time, the strong distortion of the harmonic-oscilla
spectrum plays a positive role for our purpose, making
spectrum of interacting atoms nonequidistant, which is n
essary for the possibility of transferring the ground-st
Bose condensate to a non-ground-state, as explained in
II.

The transition frequency, measured in units ofv0, is
given by the difference

vn~g![en~g!2e0~g!. ~73!

For the low-lying excited states this leads to

v100.120.015 874g, v110.220.027 779g,

v200.220.022 818g ~74!

in the weak-coupling limitg→0 and to

v100~g!.0.060 405g2/5, v200~g!.0.084 655g2/5,

v110~g!.0.127 474g2/5 ~75!

in the strong-coupling limit asg→`. Equations~71!–~75!
show that a sufficiently strong interaction parameterg makes
us

ls

ve

ot
c-
e

r
e
c-
e
ec.

the spectrum nonequidistant, which favors the possibility
the resonance pumping of atoms from the ground state to
excited level.

The shape of the atomic cloud in a given state can
characterized by the aspect ratio

R13[S ^x1
2&

^x3
2&
D 1/2

, ~76!

in which ^x1
2& is a mean-square deviation in thex direction

and^x3
2& is a mean-square deviation in thez direction. Simi-

larly, we may define the aspect ratioR23. In the case of
cylindrical symmetry,R135R23.

The aspect ratio~76! can be written as

R135F S n11
1

2Du3

S n31
1

2Du1

G 1/2

. ~77!

In the weak-coupling limit this yields

R13.S S n11
1

2Dl3

S n31
1

2Dl1

D 1/2

H 11
Al1l2l3

4~2p!3/2F 1

S n11
1

2Dl1

2
1

S n31
1

2Dl3
GgJ ~78!

wheng→0. For example, for the ground state, Eq.~78! re-
duces to

R13
0 .Al3

l1
H 11

Al1l2l3

2~2p!3/2S 1

l1
2

1

l3
DgJ . ~79!

In the strong-coupling limit, Eq.~77! gives

R13.
l3

l1
~g→`! ~80!

for all energy levels.
For the ground state, our results agree with the asp

ratio found by other authors@33,36,37#. For excited states
we predict that the aspect ratio in the strong-coupling lim
becomes asymptotically, asg→`, independent of level
numbers, according to Eq.~80!.

VI. INTERACTION AMPLITUDE

An important quantity defining whether it is possible
transfer all atoms from the ground state to an upper level
only half of them, is the interaction amplitude~16!. For con-
venience, let us define the dimensionless amplitude

an~g![
a

v0
, ~81!

which may be presented as
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an~g!5Au1~0!u2~0!u3~0!I ng,

whereui(n)[ui(l,g,n) and

I n[)
i 51

3

I ni
, n[$n1 ,n2 ,n3%,

I ni
[

~ uc0u2,ucni
u2!

Aui~0!
5

1

p2nini !
E

2`

1`

Hni

2 ~x!

3expH 2
ui~0!1ui~n!

ui~n!
x2J dx.

The last integral can be expressed as

I ni
5

~21!niGS ni1
1

2D
pni ! z i

ni
A2z i21

2z i
FS 2ni ,2ni ;

1

2
2ni ;z i D

through the gamma functionG( ) and the hypergeometri
function F( ), with

z i[
ui~0!1ui~n!

2ui~0!
.

In the weak-coupling limit, using the equality

FS 2ni ,2ni ;
1

2
2ni ;1D5~21!ni,

we find

an~g!.
A2l1l2l3

4p3
F)

i 51

3 GS ni1
1

2D
ni !

Gg ~82!

asg→0. In the strong-coupling limit we obtain

an~g!.~l1l2l3!2/5S 64

p7D 3/10F)
i 51

3
~21!ni

ni !
GS ni1

1

2D
3A2z i21

2z i
FS 2ni ,2ni ;

1

2
2ni ;z i D Gg2/5, ~83!

whereg→` and

z i5
1

2
1

ni1
1

2

2pF8)
i 51

3 S ni1
1

2D Jni

2 G1/5.

To compare the interaction amplitudes for the first seve
levels with the corresponding energies and transition
quencies studied in Sec. V, let us take the isotropic ca
Then, in the weak-coupling limit Eq.~82! yields

a000~g!.0.063 49g, a100~g!.0.031 75g,

a110~g!.0.015 87g, a200~g!.0.023 81g ~84!
l
-
e.

asg→0. In the strong-coupling limit, from Eq.~83! we de-
rive

a000~g!.0.219 02g2/5, a100~g!.0.183 04g2/5,

a110~g!.0.147 59g2/5, a200~g!.0.175 59g2/5 ~85!

asg→`.
Comparing the interaction amplitudes~84! and ~85! with

the transition frequencies~74! and~75!, we see that the com
pensation condition~27! could be accomplished in the weak
coupling limit or in the intermediate region ofg, where
an(g)!vn(g). In the strong-coupling limit,an(g) becomes
of the order ofvn(g) and condition~27! cannot be satisfied
sinceuDvu!vn(g). This means that, with increasingg, that
is, with increasing the number of atoms in the ground-st
condensate, it becomes more difficult to transfer all th
atoms to an upper level. For large atomic clouds, only hal
the condensed atoms can be pumped up to an upper lev

VII. DISCUSSION

We suggested a mechanism for creating nonequilibri
Bose condensates in nonground states. The possibility
transferring either all atoms or only some of them to a no
ground-state depends on the parameters of the system
principle, these parameters are changeable and we think
it is possible to adjust them to effectively realize the mec
nism suggested. For concreteness, let us look at the pa
eters typical of magnetic traps used now for condensing
oms in the ground state.

In the JILA trap@1,38# the atoms of87Rb, with the mass
m51.445310222 g and scattering lengtha5631027 cm,
were condensed. The characteristic frequencies of
confining potential are vx5vy52p3132 Hz and
vz52p3373 Hz, their geometric mean, defined in Eq.~32!,
beingv052p3187 Hz. The anisotropy parameters~33! are
l15l251/A2 and l352. The oscillator length
l 050.78831024 cm. Therefore, the interaction paramet
~35! is

g59.565~N21!31022.

For the number of atomsN;103, one hasg;100, which
corresponds to the strong-coupling limit.

In the MIT trap @3,39# a condensate of23Na, with
m50.382310222 g anda5531027 cm, was realized. The
characteristic frequencies arevx5vy52p3320 Hz and
vz52p318 Hz, so that their geometric mean
v052p3123 Hz. The anisotropy parameters a
l15l252.610 and l350.147. The oscillator length is
l 051.89031024 cm. Thus the interaction parameter~35! is

g53.324~N21!31022.

For N;(53105)2(53106), this givesg;1042105, which
certainly is in the strong-coupling limit.

In the RQI trap @2,40# the atoms of 7Li, having
m50.116310222 g and negative scattering lengt
a521.531027 cm, were cooled down to the Bose conde
sation regime. With the characteristic frequenc
vx52p3150.6 Hz, vy52p3152.6 Hz, and
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vz52p3131.5 Hz, the geometric mean frequency
v052p3145 Hz. The anisotropy parameters~33! are
l151.039,l251.052, andl350.907. The oscillator length
l 053.16031024 cm. The interaction parameter~35! be-
comes

g520.597~N21!31022.

Since the confining potential is almost isotrop
(l1'l2'l3) we may take the value~65! for the critical
interaction strength allowing yet a stable condensate. T
the critical number~66! of atoms allowed in the condensa
is Nc5707, which is in agreement with the estimates
other authors@33,37# giving Nc;103.

In this way, the trapped clouds of87Rb and 23Na corre-
spond to the strong-coupling limit and that of7Li to an in-
termediate regime, withg<4. Therefore, if the number o
condensed atoms in a cloud isN>103, it would be difficult
to transfer all of them to an upper level. However, as d
an

et

n,
tt.

ra
C.
es

d

.

y

n

n

f

-

cussed in Sec. II, it is always possible to transfer half of
ground-state atoms to a non-ground-state level, thus crea
two coexisting condensates of the same species in two
ferent quantum states. In addition, it is probably possible
construct specially designed traps allowing all atoms fr
the ground state to be pumped up to another level, formin
pure non-ground-state Bose condensate. In any case,
these possibilities being realized would produce a differ
kind of quantum ultracold matter, which may reveal intere
ing and unexpected properties.
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