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Non-ground-state Bose-Einstein condensates of trapped atoms
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The possibility of creating a Bose condensate of trapped atoms in a non-ground-state is suggested. Such a
nonequilibrium Bose condensate can be formed if one first obtains the conventional Bose condensate in the
ground state and then transfers the condensed atoms to a non-ground-state by means of a resonance pumping.
The properties of ground and non-ground-states are compared and plausible applications of such nonequilib-
rium condensates are discussgstL050-294{@7)03912-7

PACS numbd(s): 03.75.Fi

I. INTRODUCTION an excited state would clearly result in a nonequilibrium
sample. When external forces supporting this state are
The recent realization of Bose-Einstein condensation ofwitched off, the system will relax, returning to the equilib-
dilute atomic gases in magnetic trafls-3] has opened a rium by repopulating the discrete levels of the potential. The
rapidly expanding field of studies of condensate propertiesobservation of this process of relaxation in the quantum de-
There has been a splash of both experimental and theoreticg@nerate regime can provide useful information about this
activity on this subjectsee Refs[4,5]). form of quantum matter. Finally, when a system with un-
Atoms trapped in a Conﬁning potentia| possess the disUSU&' features is explored, there is always the chance of find-
crete spectrum of states. At high temperatures these states 4@ something completely unexpected. In this paper we de-
occupied, according to the quantum Bose-Einstein distribuscribe a possible way of transferring the macroscopic number
tion, so that no state is occupied macroscopically. Under thef atoms from the conventional ground-state condensate to a
macroscopic occupation of a state one implies that the nunfion-ground-state level of the confining potential, thus creat-
ber of atoms in this state is proportional to the total numbefng & non-ground-state condensate.
of atoms in the system. An important consequence of quan-
tum statistics is that when the system is cooled down below Il. RESONANCE PUMPING
some critical temperature, bosons pile up in the lowest-
energy state of a confining potential. The macroscopic popu- ASSume that the Bose gas of neutral atoms has been

lation of the quantum-mechanical ground state of a confining!ed down so that all atoms are in a coherent condensate

potential is the characteristic feature of Bose-Einstein conState- The latter is described by the nonlinear Simger

densation. equation, which is often called the Gross-Ginzburg-

A natural question that can be raised is: Is it possible td”it@evskii equation8—12]. This equation is written

realize the macroscopic population of some other quantum- 3

mechanical state rather than the ground state or in addition to i % _n o, (1)
the latter? That is, can one produce a Bose condensate in a at

non-ground-state? The answer to this question is interesting ) o

in itself. Also, if that is possible, several important applica-Where the nonlinear Hamiltonian

tions can be suggested. A

For example, recently two overlappirijRb condensates H=H(¢)+V, @

in two different ground-state hyperfine levels were created . .

[6]. However, for other atoms the simultaneous creation of°Nntains the nonlinear part

two condensates in different ground-state hyperfine levels 52

may be difficult or not feasibl¢7]. Then the alternative H(g)=— =—V2+U(r)+A|p|? 3)
could be the creation of two condensates, one in the ground 2m

state and the other in a non-ground-state level.

Rea“zing the macroscopic popu]ation of a non_ground_and, in genel’al, a time-dependent mtrelatEd to external
state of a confining potential could be a way to producefields. The atom-atom interaction is modeled by thwave
various spatial distributions in the system of coherent atomsscattering interaction with the amplitude
This may find application for atom lasers for which the cre-
ation of cohe_rent atomic beams with different spatial modes A=(N— 1)47_%23, )
may be required. m

One more possibility of employing such a non-ground-
state condensate could be to study relaxation processes in ttrewhich N is the number of atoms in the system|s the
guantum degenerate regime. The macroscopic occupation efwave scattering length, amd is the atomic mass. The term
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U. is a confining potential. The wave function is normalized The conditiong10) and(11) are easy to accomplish, mak-

to unity: (¢,¢)=1. Assume that at the initial time=0, all  ing the detuning sufficiently small. The resonance condition
atoms are in the ground state (12) is more restrictive, requiring that the spectryfs,},
defined by the eigenproble(8), would not be equidistant, as
gD(F,())Z(,,,O(F) (5) it happens for a simple harmonic oscillator. In fact, if that

were the case, then the pumping of atoms from the ground
corresponding to the minimal energy level of the eigenvaluestate to the chosen particular state would, at the same time,
problem induce transitions from the latter to another equidistant state
and from the latter to higher equidistant states, and so on. In
H(en) en=Enen, (6)  such a case, all atoms will be dispersed over a number of
states making it impossible to get a macroscopic population
in which n is a multi-index enumerating quantum state. Theof any of them. Fortunately, because of the nonlinearity, rep-
chemical potential is incorporated into the notation of theresenting atomic interactions, in the Hamiltoni&d), the
energy level€,, . Temperature is assumed to be much lowerspectrum{E,} is not equidistant even when the confining
than the condensation temperature, since only then it is pogotential U, is harmonic. In addition, we may include the
sible to condensate almost all atoms in the ground state. Nogonfining potential anharmonic terms and regulate its spec-
that the nonlinear Schdinger equatior(1) describes coher- tral characteristics by varying anharmonicity parameters
ent state$13]. [14-16. Moreover, as we shall show in Sec. lll, the spectral
Since the atoms are assumed to be initially condensed iproperties of the nonlinear HamiltoniagB) may be essen-
the ground state, to transfer them to higher levels one neediglly modified by varying the intensity of interactiorid),
to apply an external pumping field that we take in the form for which it is sufficient to change the number of atohs
Therefore, it is always possible to prepare the system for
V,=V( r)cosmt. (7 which condition(12) holds true. The situation here is similar
to the problem of inducing resonant electron transitions in an
Such a field can be realized by a special modulation of th@tom. The latter also contains many electron levels, but, be-
magnetic field producing the trap. As far as our aim is toc@use these are not equidistant, it is practically always pos-
populate a separate energy level, say a particular jevéth  Sible to induce a resonant transition between a chosen pair of
the energyE,, we have to choose the frequency of thethem [17]. The principal difference between the resonant
pumping field(7) satisfying some resonance conditions. electronic transitions in an atom and atomic transitions in a

Denote the transition frequencies,, by the relation confining potential is that electronic levels are not equidis-
" tant because of the hydrogen-type potential, while the inter-
hom=Emn—E, (8)  actions between electrons do not play essential role. In such

a case, the resonant electronic transitions can be treated in a
and the detuning from the chosen particular transition frelinéar approximation. Concerning the atoms in a confining
quencyw, as potential, if the latter is harmonic, then the main role of

making the energy levels nonequidistant is played by the

Aw=w—wy. (99  atomic interactions. This makes the problem principally non-
linear and forces one to deal with complicated nonlinear
The first evident resonance condition is that the detuningduations. . _
must be small compared to the transition frequeagy cor- To describe the time evolution of the system, we have to
responding to the transition from the ground state, with thefonsider the time-dependent nonlinear Sdimger equation
energyE,, to the chosen particular state with the enefigy ~ (1)- We present its solution as an expansion

Aw

(,()po

<1. (10) P(r)=2 cn(t)<pn(F)eXp< - ;L—Ent) (13

in the basis of the stationary states of the eigenprod@m
bstituting Eq(13) into Eq.(1) and taking into account that
In the double sum

In addition, it is necessary that the pumping would not influ-
ence the neighboring states, that is, the detuning must satis
the inequalities

Aw

<1. (1D ; C’kccl((Pm(Pkv‘PIQDn)quiwklt)a
@Wp+1p '

<1,

Wp,p-1
The resonance conditiori0) and(11) are necessary but the main contribution comes from the term
not yet sufficient if we intend to populate only one particular
level. This goal can be reached only when the pumping does E lck 2(@mek » ©k@n)
not force transitions between other states, which can be ex- k

ressed as the inequalit - _— .
P a y because other terms containing the oscillating factors, being

summed up, on average cancel each other. Then, from Egs.
<1 (m#p, n#0). (12) (1) and(13) we have
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dc : d
ih—— =2 | VomCOSt+ > ApendCil?| el @nn, =Im(B*e '4eckcy), (19)
dt m k(#n)
14 - o
and dn,/dt=0 whenk+#0,p. As the initial conditions we
with the matrix elements have

mn— (@DmaV(F)(Pn)v Anki=A(@m®k , PkPn) - Co(0)=1, Cp(O)ZO' ¢(0)=0. (20

From Eq.(180), together with the initial condition&0), it
follows thatc,(t)=0 for k#0,p. Therefore, the normaliza-
tion condition reads

The solution of Eq(14) must satisfy the normalization

2:
2 fen(h]?=1. No(t) +np(t) =1, (21)

Equation (14) is a set of equations for the functions which demonstrates that the atoms are concentrated in the
c,=C,(t) enumerated by a multi-inder. Let us separate ground state ang level, preferentially.
this set into the equation for the ground-state functigrthe Equations(18) and (19) form a system of complicated
equation forc, representing a chosen state witkp, and nonlinear dif_ferential equation_s. _T_his system c_:ould be solved
the equations for all other, with k#0,p. We introduce the by perturbation theory in two limiting cases: eithes 8| <1

notion for the population probability or |Bla|<1. In the intermediate regime, whew/g|~
perturbation theory is not applicable. A general solution,
n,:nj(t)zlcj(t)|2, (15 valid for arbitrary relation between the parametarand 3,

can be obtained by employing the method of scale separation
where the index is eithgr=0, j=p, or j=k#0,p. Also, we  [18—2(. This can be done by noticing that the functians
define the parameters and c, contain time-dependent imaginary factors absent in
no=|col? andn,=|c,|?, that is, the time variation af, and
Cp is faster than that ofi; andn,. Consequently¢, andc,
can be classified as fast functions compared to the slower
functionsny andn,,. Then the systenil8) of equations for
and the fast functions can be approximately solved by keeping
the slow functionsn, and n, as quasi-integrals of motion.

1 A - 5 N
a= Ano=7 | leoDlesDIGi (19

B= %VOp 2J %(r)v(r)%(r)dr 17) From Eq.(18) we get the equations
d’cy deo [1BI?
The solution to Eq(14) can be presented as the sum of a F“(O‘_ "’)WJF T_anp(“no Aw)|co=0,
guiding center plus a small oscillating ripple around the lat-
ter. The equation for the guiding center is obtained from Eq. , 9
(14) by averaging its right-hand side over time according to d_c+|( +Aw ) |'8| —ang(an,+Aw)|c,=0
the rule (1£)f§F(t)dt, with 7—oo. During this averaging dt? 4 P P

the exponentlals'A‘"t is treated as a constant since it is a (22)
slowly varying factor. Actually, at pure resonance, when
Aw—0, this exponentiaé'*“'—1 is exactly one.

After realizing the described procedures, we obtain from

with the initial conditions(20) and

. . i
Eq. (14) the system of equations Co(0)=—ian,, c,(0)=— 5,8*, (23
% |anpco——Be'A“" , (18 where the overdot means a time derivative. The solution of
dt Egs.(22), with ny andn, kept fixed, is written
dc, i x g-ibot B Ot a(ng—ny)—Aw Ot
dt |anocp——,8 Co, (18b) Co= c037+|Tsm7
i
C (e
55=0 (k#0p). (189 Xexp[ 5 (@ A“’)t)'
. . . BF Ot i
Since the functiong; are complex, the system of equations C,= —i —sin—exp — =(a+Aw)t}, (24)
(18 must be completed by another system either for the P Q2 2

complex conjugate functions:}* or for the amplitudes

_ |c,-|2. The equations for the latter are with the effective Rabi frequency given by the expression

dng O%=[a(ng—ny) —Aw]?+|B|% (25)
iAot

dt =Im(Becocp), Then for the slow functions we obtain
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B2 Ot B2 .ot guency(25). Looking back at Eq(14), we see that, in gen-
no=1— —Zsin27, Ny —zsin27. (26)  eral, there should exist as well solutions with extra
Q Q frequencies being combinations of basic frequencies entering
Eqg. (14). One may ask the question: “When could such extra

The fun_ctions in Eqs(26) describe the time evolution for thg gequencies appear?”
population of the ground statle and O.f t.he chosen excite Recall that solution§24) and(26) correspond to the guid-
state. The form of these functions is similar to that encoun-

: L : o s ing centers that constitute the main approximation in the
tered in considering the Rabi oscillatioris/]. However, it is _method of averaginf1] and in the guiding-center approach
r[22]. The general form of the population amplitudes is
defined by Eq.(14). Denoting the general solution to the

éatter equation by?®", we may present it as a sum

can be recovered by setting=0, expression$26) are actu-
ally the equations fom, and n, since the effective Rabi
frequency(25) itself depends on these populations. Becaus
of this, the solution of Eqs(26) will not result in simple
sinusoidal oscillations.

Consider, for example, the case when the detuning is sugh which c, is given by the guiding centers in E(4) and
that it satisfies the relation o, is an additional ripple oscillating around the guiding cen-

ters. The characteristic frequency of the latter is the Rabi

gen__
Ch =Cptoy,

atho=0. @n frequency(25). The ripple solutionr,, can in turn be written
Then Eq.(25) gives as a sum of terms with characteristic frequencies that are
essentially higher than the Rabi frequency. In this way, the
Q= ~/4a2n07+|/3|2. (28) guiding centerc,, represents the main harmonic, while the

ripple solution o, represents a sum of higher harmonics.
In that case Eq(26) shows that the ground-state level be- Averaging the general soluticcf®" over the largest charac-
comes empty, while the upper resonant level is completelyeristic period corresponding to the higher harmonics gives
populated, i.e., the guiding centec,,. Therefore, being interested in the av-
erage behavior of solutions, one accepts the guiding center as
No(t) =0, ny(t)=1, the main approximation. Moreover, not only does the ripple
term o, oscillate much faster than the guiding center but the
amplitude of the former is smaller than that of the latter.
In order to concretize what is said above, let us substitute
tye=—=(1+2k) (k=0,1,2...). (290  the general solutiom?®"=c,+ o, into Eq. (14). We intro-
|8l duce the notation

at the moments of time

™

As far asny,—0, whent—t,, then the effective Rabi fre-
quency(28) softens,Q)—|B|, and the motion arount=t,
slows down. Hence the system spends more time on the up-
%egrri(;\r/l?tl :?vaemS\tA?ifchggof??ﬁ e S;itribilsgr}‘ir;?cg?rtié: v?/l; theL_Jsing Eqgs.(18) for the guiding centers, we obtain the equa-
shall get an inverted system with all atoms being in the nono"
ground-state. Another way of obtaining an inverted system d
could be by adiabatically varying the detuning, as in the T {ﬁnmgmcog,,t+_2 anjm[|cj|2(;m+(c]*gm
regime of adiabatic passafE7], until we reach the compen- m i(#=n)
sation condition(27). The latter certainly makes sense only
v_vhen the detuning continues to obey the resonance condi- +ng*m)(cm+gm)]]eiwnmt
tions (10)—(12).

If the compensation conditiof27) cannot be satisfied, ] o ]
then it is impossible to transfer all atoms from the groundfor the ripple term. Here, are the guiding centers defined
state to the chosen excited state. However, it is always pody EGs.(18) and (24). As is evident, the equation for the
sible to populate these states equally. In fact, consider thBPPI€ term contains various higher harmonics, as a result of

:Amjn =an
Amijn= P Bmn= P

resonance case whevw=0. Then at the moments which the ripple solutionr,, oscillates faster than the guiding
center.
. T Now let us explain why the amplitude of the ripple termis
ty :m(lﬂLSk) (k=0,1,2...) (300 smaller than that of the guiding center. Introducing the nota-
tion e=maxa,B}, we see from Eq(25) that the Rabi fre-
we have quency(Q ~e¢. Taking this into account and looking at Eq.

(24), we conclude that the amplitude of the guiding cewter
is of order unity,c,~e/Q~1.

*\ *\ —
No(ti ) =np(tc)= 27 The ripple solutionos, can be presented as a sum of har-
monics with amplitudes of ordet/(),,, where(},, is a char-
that is, both states are equally populated. acteristic frequency of & harmonic. Among these charac-

It is worth paying attention to the following. The charac- teristic frequencies there are various combinations @nd
teristic frequency of solution€4) and(26) is the Rabi fre- wn,= . Remember that, according to the quasiresonance



56 NON-GROUND-STATE BOSE-EINSTEIN CONDENSATE. . . 4849
condition(10), we havew~ wpo~ €. Consequently, the char- .omo,
acteristic frequencies of harmonics are of ordgp~ ve, Ue(r) = 5 (@ix +wly?+ w3iz?). (39

with »=2,3, ... .Thus the corresponding amplitudes are of
ordere/Q,~1/v. Hence the amplitudes of higher harmonics
diminish as 1# with increasingv=2,3, ... .

In this way, we see that the guiding centers in E2f) and lengthl, given by the expressions
really constitute the main approximation to E4). In this
approximation, the ripple solution, which oscillates faster _ U3 _ h
and has smaller amplitude, can be neglected. If needed, the wo=(wywyw,)™, o= V My
higher-order harmonics can be taken into account by means
of perturbation theory. Such a situation is common for theThe anisotropy of potentid31) is characterized by the an-
method of averaging and the guiding-center approaclisotropy parameters

It is convenient to pass to dimensionless quantities mea-
sured in units of the characteristic oscillator frequermgy

(32

[21,22.
i . . . . _ w w (O]
Sit);I'he space-time distribution of atoms is given by the den A= w_X Ao=—2, Ag=— (33
0 0 w
(1 )=po(r, 1) +py(r,1), We define the dimensionless coordinates
: : X y z
in which XM= XS Xae= (34)
0 0 0

pi(r,H)=Nn;(t)] ¢(r)|? _ . o _
forming the vectorx={x,,X,,X3}. The dimensionless inter-
is a partial density fojf=0,p. These densities are normalized action parameter is
to the total number of atoms

=477(N—1)|3. (35)
0

=f p(r,Hydr

Introducing the dimensionless Hamiltonian and wave func-

and, respectively, to the number of atoms tion, respectively,

]
in the corresponding states. Since the spatial dependence \%e obtain
the wave functions for different states is different, we may
get condensates with different space distributions. In general, 13 72
such condensates will coexist, though, if the compensation H==> ( — — AP | +g|yl2 (37)
condition is achieved, a pure non-ground-state condensate 2= axi2

can be realized.

In our consideration we have assumed that the system is Even when the scattering lengthis much less than the
initially cooled down so that all atoms are condensed in thedscillator lengthl,, the interaction paramete5) can be
ground state. The possible admixture of noncondensed thevery large because of the great number of partileshis
mally excited atoms has been neglected. Such a picture, as$§uation is similar to that existing for large cluste23].
known, is admissible for sufficiently low temperatures belowActually, a group of atoms trapped in a confining potential
the condensation point. If the temperature is kept low duringflso forms a kind of a cluster. With a large interaction pa-
the process of the resonant pumping, we may continue digameter, one cannot apply the standard perturbation theory in
regarding thermal excitations. Their role becomes importanpowers ofg for calculating the eigenvalues of the Hamil-
only after we switch off the pumping field. Since during this tonian(37). Nevertheless, one may employ the renormalized
pumping the system has acquired additional energy, the latt@€rturbation theory24—30Q, which, as has been shown by a
can be redistributed among the energy levels through someumber of examplefl4-16,24-3}, successfully works for
relaxation mechanism. The role of such a mechanism will b@rbitrary values of the coupling parameter, as well as for all
played by the interactions between condensed and noncognergy levels, providing good accuracy with the maximal
densed atoms. The thermally excited atoms will form a kingerror around 1%. The first step of this approach is to choose
of a heat bath providing the possibility of relaxation to equi-an initial approximation containing trial parameters that, in
librium. the following steps, will be turned into control functions con-
trolling the convergence of the proced(igel]. These control
functions are to be defined from the fixed-point and stability

I1l. STATIONARY STATES . . .
conditions[29,3(. One of the simplest forms of the fixed-

Stationary states for the nonlinear Hamiltoni@p are de-
fined by the eigenvalue proble(6). The confining potential,

point condition is the minimal-sensitivity conditiof28],
which, for the first-order approximation, is equivalent to the

typical of magnetic traps, is well described by the anisotropicvariational condition for an energy function@7-332.

harmonic potential

As an initial approximation, we may take the Hamiltonian
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3 2 1
1 J
Ho= (__2+ui2xi2), (39) n;+ E)(uiz—)\iz)+ui\/ulu2u3gnzo. (45)

Z =1 IX;

1
Using Egs.(44) and (45), for the spectrum in Eq@42) we

in which the effective frequenciag, with i=1,2,3, will be ave

control functions. The eigenfunctions of the Hamiltonian
(38) are the oscillator wave functions 13

1 2
en()\lg)zgizl (nl+§

5 46
U+ U_| , (46)

3
ya(0)=I1 ¥ (x), n={n;,nz.ng},
=1 whereu;=u;(\,g,n) are defined by Eq45).
To understand better the properties of the spectfdis
let us consider the weak- and strong-coupling limits. In the
weak-coupling limit, wherg,,— 0, the solution to Eq(45) is

wheren;=0,1,2 ... . Correspondingly, the eigenvalues of
H, are given by

3 1 written
(0) — An+=
E, 2:1 u;| n 2). (39 23: L 1)
N+ S Nj— | Nit 5|\
Perturbation theory is to be constructed with respect to theu_z)\__ VA1AoAg AN =2 s 2
perturbatiorAH=H —H, which is b 1) 9 : 1
2 n; + E SH nj + =
1 3 j=1 2
AH=32, (\f—uf)x;+glyl®
=1
The eigenvalues, in the first-order approximation, are Aihokg 2
1 2 gn' (47)
EV(Ng,u)=EY+AE,, (40) HAnit 3N
where, for compactness, the notations{\1,A,,\3} and . .
u={u; ,u,,us} are accepted and Substituting this into Eq(46), we get
3
AEq= (¢, AH ). 1
"= (Un AR ehg)=3 |ni+ E)xiwxlxzxsgn
The control functionay;=u;(\,g,n) can be found from
the variational condition 13 N1AoA3
2
—gx T 9 (48)
J 81 + l Y
—CEFOLgw=0, (41) TN
i

as g,—0. In the strong-coupling limit, wheg,— o, the

which is a simple form of the fixed-point condition. Substi- solution to Eq.(45) reads

tuting the foundu; into Eq. (40), we have
1

e\, @) =E"(\,g,u(x,g,n)). (42) ni+ 5|\
U= g—2/5 (49)
For what follows, it is useful to introduce the notation ' 3 75%n -
3 =1 2!
=gJ,, J.,= Jn, (43
Un=0+n n .1;[1 M For the spectruni46) we obtain
in which 5[ 1\ L™ e

3 _(|¢ni|2v|¢ni|2)_ 1 f+w
() m(2hing)?

where Hni(x) is a Hermite polynomial andu;(n) IV. GROUND STATE

=u;(\,g,n). Equation(40), with the notation in Eq(43),
can be written as

4 _ 2
Hni(x)exp( 2x°)dx, asg, .

— o0

The ground state plays a special role for the phenomenon
of Bose condensation. Therefore, we pay a little more atten-

1.3 1 A2 tion to the case of;=0. Sinceldy=(2m) 2 the effective
Eﬁ,l)()\,g,u) = 52 n;+ 5 uj+ u_' + Uy U,Usg, . interaction strengtii43) becomes
= i
(44) g
9o (51

Condition (41) results in the equation C(2m)¥?
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Equation(46), defining control functions, simplifies to

U2+ 2gou; VusUpuz—A2=0 (52)
and the spectrun¥6) reduces to
13 2
eo()\,g)zl—zz,l ui+5u—'i . (53

In the weak-coupling limit, whelgy— 0, Eq. (52) yields

j=1

ANoA3
A

2
0-

(59

A
2

Ui=Ni— VA1Aoh3got

For the spectruni53), we have

1 1
€(\,g)= 5(7\1+ Aot Ag)+ \/7\1)\2)\390_E()\17\2+ Aoh3
+X\3h1)05 (55)

asgy—0. In the strong-coupling limit, whegy,— o, for the
control functions we get

N
—_ v 425
_(2)\1}\2)\3)2/590 ’ (56)

Uj

and, respectively, for the spectrum we find
° 2/52/5

€o(N,9)=7 (2N 2N3)""g0 " (57

For an axially symmetric potential, with,=N,# \3, the

strong-coupling limit(57) reduces to that found by Baym

and PethicK33].
For an isotropic potential, for which;=1, there is only
one control function given by the equation

u?+2gyu®?—1=0. (58

Then the ground-state ener¢fy3) becomes
= L + > 59
€(9)=Zlut /- (59

In the weak-coupling limit, whegy,— 0, Eq. (58) gives
u=1-go+29; (60)

and the spectrunb9) is

3 3,
eo(g)2§+go_ 290 (61)

asgo—0. In the strong-coupling limit, agy—, we have

u=(2gp) " (62

and, respectively,

5
€o(g)= 2(290)2/5- (63

4851

For the atoms with negative scattering lengths, as in the
case of 'Li or ®Rb, the interaction parametés5) is nega-
tive. All weak-coupling expansions, such as E@), (55),
and (61), are the same for the negatige—~—0. Wheng
increases, the real solution for the spectrum exists until some
critical valueg. after which it becomes complex. Thus, for
the isotropic potential, the stable ground state is defined for
95<00<0, with

2
9= — —=—0.267 496.

- 55/4 (64)
From here, the critical interaction parameter is
gc=(2m)%%g5=—4.212 960. (65)

This, according to notation in Eq35), defines the critical
number of atoms

gclo
47ra

N.=1+ (66)

that can condense in a stable state. Aflerg., the spec-
trum becomes complex. The latter means that the corre-
sponding states are no longer stationary, but quasistationary.
The lifetime of a quasistationary state is definéd,35 as

To(9)= (67)

2wo|Imey(g)]”

The complex spectrum of quasistationary states is defined,
as earlier, by Eq(46), with u; from Eg. (45). These equa-
tions, in the case of negativg<0, have several complex
solutions, of which we must choose that continuously
branching, ag=g., from a solution that is real a— —0.
Solving these equations for the isotropic ground state, we
find

Reu=0.705 47@ %5+ 3.850 39¢ %5+ 12.402 5182,

Imu=2.171 218~ 25+2.797 47¢ %> (68)

for g>1. For the real and imaginary parts of the energy we
obtain

Reey(g)=0.169 19§2°+0.529 109~ 25+ 1.443 899 *°
+31.006 279 2,

Imeq(g) = —0.520 739+ 1.628 409 *°

+1.049 054 %" (69
Therefore, for the lifetimé67) we have
0.960 174
7o(9)= Tong® (70

If the number of atoms with a negative scattering length
exceeds the critical number given by E6), then onlyN.
atoms can form a stable Bose condensate, excessive atoms
being expelled out of the condensate during the t{if®.
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V. EXCITED STATES the spectrum nonequidistant, which favors the possibility of

The energy of any excited state is defined by &®). In t&iiﬁzﬂgigfe pumping of atoms from the ground state to an

T 0 et e el behaviors o st stes 1 e shape of the atomic cloud in 2 gven st can be
plicitly P 9 characterized by the aspect ratio
levels. Consider, for the isotropic case, the energy levels

e100(9). e11o(g) andeygfQg). For these levels, the integrals <x2> 12
Jn, entering the notation in Eq43) are RBE(_;) , (76)
(X3)
1 3 41 . . 2 o N
Jom=——, =, Jpm———. in which (x7) is a mean-square deviation in thedirection
V2m 42m 64y2m and(x3) is a mean-square deviation in thelirection. Simi-

o . ) larly, we may define the aspect rati®,5. In the case of
In the weak-coupling limit, the energies of the first three ., |iyqrical symmetryRys= Rys.

excited states, compared to that of the ground state, behavé o aspect rati¢76) can be written as

as
1 1/2
(9) 3 0.06349 ) > 0,047 62 ¥ 3]l
eo(g)==+0. , € =—-40. ,
o9 2 g 10({9 2 @ R13: I (77)
n;+ = |u
7 7 P2
e11dg)==+0.03571%, eyog)==+0.04067§
2 2 71 In the weak-coupling limit this yields
1 1/2
wheng—0. In the strong-coupling limit, we get =
g— g-coupling g - Nit5/Ns . m[ 1
€0(9)=0.547 53§25, e,099=0.607 94875, 13~ 1 T a2m® 1
n3+ z )\1 n1+ E )\1
€,009)=0.632 198%5, e;,4/9)=0.675018%° (72
1
asg—. Notice an interesting and important fact that the 1 g (78
energy levele;(g) andeyyg) cross each other agvar- (n3+ =I5
ies. In fact, from Eq(71) it follows thate;;o(g) <e,og) at 2

smallg, while Eq.(72) shows that;,(g)>esg) at large
g. This crossing of levels demonstrates that the latter cann

be classified being based on the harmonic-oscillator spe

heng—0. For example, for the ground state, EG8) re-
Cr‘cy!/uces to

trum. To classify the levels correctly, one has to calculate —
their energies for each given interaction strengthAt the RO~ As 1+M<i_ i)g . (79
same time, the strong distortion of the harmonic-oscillator A 2(2m)%2\ N A3

spectrum plays a positive role for our purpose, making the o _
spectrum of interacting atoms nonequidistant, which is necln the strong-coupling limit, Eq(77) gives
essary for the possibility of transferring the ground-state

ﬁ:ose condensate to a non-ground-state, as explained in Sec. Rls:)):_j (g—) (80)
The transition frequency, measured in units ©f, is
given by the difference for all energy levels. _
For the ground state, our results agree with the aspect
wn(g)=en(g)—ey(g). (73 ratio found by other authorf33,36,37. For excited states,
we predict that the aspect ratio in the strong-coupling limit
For the low-lying excited states this leads to becomes asymptotically, ag—, independent of level

numbers, according to EG80).
w10=1—-0.015 874, w;,=2—0.027779,

VI. INTERACTION AMPLITUDE

woo=2—0.022 81§ (74)
An important quantity defining whether it is possible to
in the weak-coupling limig—0 and to transfer all atoms from the ground state to an upper level, or
only half of them, is the interaction amplitud&6). For con-
w100 9)=0.060 405%°, w0 g)=0.084 655", venience, let us define the dimensionless amplitude
— 2/5 o
w110(9)=0.127 474 (75 an(g)= o (81)

in the strong-coupling limit ag—cc. Equations(71)—(75)
show that a sufficiently strong interaction parametenakes  which may be presented as
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an(g)=u(0)ux(0)us(0)1 g,

whereu;(n)=u;(\,g,n) and

3
lnEiljl Inil nE{nlanZ!nC’:}'

[

— o

el 1
" Ju(0)

X exp[ - sz] dx.

ui(n)

772”ini!

The last integral can be expressed as

| 1
| R N \/mc
" 2¢

-1 .
—Ni =N 5 =N

through the gamma functioh'() and the hypergeometric

function F(), with

~ Ui (0)+ui(n)
T 2u(0)

In the weak-coupling limit, using the equality

1
F _ni7_ni;§_ni;1):(_l)ni7

we find
i i L
N e W A R
an(9)= — [l ———¢ (82)
A L i=1 n;:

asg—0. In the strong-coupling limit we obtain
3

31 n;
an<g>=(x1xzx3>2’5< E;) TH cy
o

=1 n!

2{i—1 .1_ . 2/
X \/2—&F<_ni1_nia§ niyﬁi”g °, (83

whereg—o and

1
ni+§

r

1
ni+§

1
§i:§+ 5.

27 3

3 1
8] 1 (ni+—
=1 2
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asg—0. In the strong-coupling limit, from Eq83) we de-
rive

oo 9)=0.219 02%%, a1y 9)=0.183 042%,

@11009)=0.147 59?5 a0 9)=0.17559° (85)

asg— .
Comparing the interaction amplitudé®4) and (85) with

the transition frequencig§4) and(75), we see that the com-

pensation conditio27) could be accomplished in the weak-

coupling limit or in the intermediate region af, where

an(9)<<wy(g). In the strong-coupling limite,(g) becomes

of the order ofw,(g) and condition(27) cannot be satisfied

since|A w|<w,(g). This means that, with increasimg that

is, with increasing the number of atoms in the ground-state

condensate, it becomes more difficult to transfer all these

atoms to an upper level. For large atomic clouds, only half of

the condensed atoms can be pumped up to an upper level.

VIl. DISCUSSION

We suggested a mechanism for creating nonequilibrium
Bose condensates in nonground states. The possibility of
transferring either all atoms or only some of them to a non-
ground-state depends on the parameters of the system. In
principle, these parameters are changeable and we think that
it is possible to adjust them to effectively realize the mecha-
nism suggested. For concreteness, let us look at the param-
eters typical of magnetic traps used now for condensing at-
oms in the ground state.

In the JILA trap[1,38] the atoms of®’Rb, with the mass
m=1.445<10 %? g and scattering length=6x10"" cm,
were condensed. The characteristic frequencies of the
confining potential are w,=w,=27X132 Hz and
w,= 21X 373 Hz, their geometric mean, defined in E3pR),
being wy=27X 187 Hz. The anisotropy parametéBs) are
A=N»,=1/\2 and N3z=2. The oscillator length
1,b=0.788<10"% cm. Therefore, the interaction parameter
(39 is

g=9.56GN—1)x10 2.

For the number of atomsl~10°, one hasg~ 100, which
corresponds to the strong-coupling limit.

In the MIT trap [3,39] a condensate of*Na, with
m=0.382< 10 %? g anda=5x10"" cm, was realized. The
characteristic frequencies am®@,=w,=27X320 Hz and
w,=27X18 Hz, so that their geometric mean is
wp=27X123 Hz. The anisotropy parameters are
N1=A,=2.610 and A3=0.147. The oscillator length is
lo=1.890< 104 cm. Thus the interaction paramei&5) is

g=3.324N—1)x10 2.

To compare the interaction amplitudes for the first several o .
levels with the corresponding energies and transition freFor N~(5X 10°) - (5x 10°), this givesg~10*—10°, which
quencies studied in Sec. V, let us take the isotropic casé&ertainly is in the strong-coupling limit.

Then, in the weak-coupling limit Eq82) yields

@0od9)=0.063 49, ;00 9)=0.031 7%,

a11d9)=0.015 8T, @fg)=0.0238Y (84

In the RQI trap [2,40 the atoms of ‘Li, having
m=0.116x10 %> g and negative scattering length
a=—1.5x10 ' cm, were cooled down to the Bose conden-
sation regime. With the characteristic frequencies
w,=2mX150.6 Hz, w,=2m7x152.6 Hz, and
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w,=27X131.5 Hz, the geometric mean frequency iscussed in Sec. Il it is always possible to transfer half of the
wp=2mwX145 Hz. The anisotropy parametef83) are ground-state atoms to a non-ground-state level, thus creating
A1=1.039,\,=1.052, and\3=0.907. The oscillator length two coexisting condensates of the same species in two dif-
l,b=3.160x10"% cm. The interaction parametdB5) be- ferent quantum states. In addition, it is probably possible to
comes construct specially designed traps allowing all atoms from
the ground state to be pumped up to another level, forming a
g=-0.59TN—-1)x 10" pure non-ground-state Bose condensate. In any case, both
these possibilities being realized would produce a different
kind of quantum ultracold matter, which may reveal interest-
irr]1g and unexpected properties.

Since the confining potential is almost isotropic
(N~N\o=~\3) we may take the valu¢65) for the critical
interaction strength allowing yet a stable condensate. The
the critical numbel66) of atoms allowed in the condensate
is N.=707, which is in agreement with the estimates of
other author$33,37] giving N~ 10°.

In this way, the trapped clouds &fRb and >*Na corre- We are grateful to B.W. Shore for very useful discussions.
spond to the strong-coupling limit and that &fi to an in-  Financial support from the National Science and Technology
termediate regime, witly<4. Therefore, if the number of Development Council of Brazil and from the GRaulo State
condensed atoms in a cloude= 10 it would be difficult ~Research Foundation is appreciated. V.S.B. also acknowl-
to transfer all of them to an upper level. However, as dis-edges support from the program PRONEX.
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