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First and second sound in a uniform Bose gas
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We have recently derived two-fluid hydrodynamic equations for a trapped weakly interacting Bose gas. In
this paper we use these equations to discuss first and second sound in a uniform Bose gas. These results are
shown to agree with the predictions of the usual two-fluid equations of Landau when the thermodynamic
functions are evaluated for a weakly interacting gas. In a uniform gas, second sound mainly corresponds to an
oscillation of the superfluid~the condensate! and is the low-frequency continuation of the Bogoliubov-
Goldstone symmetry-breaking mode.@S1050-2947~97!00812-3#

PACS number~s!: 03.75.Fi, 67.40.Db
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I. INTRODUCTION

One of the most spectacular features@1# exhibited by su-
perfluid 4He is the existence of two hydrodynamic sou
modes, first and second sound. As first pointed out by T
@2#, the motion of a Bose condensate as a separate degr
freedom results in a two-fluid hydrodynamics describing
superfluid and normal fluid components@3#. In a classic
study, Bogoliubov@4# provided a formal derivation of the
two-fluid equations in the Landau form. This derivation
valid at all temperatures and holds equally for Bose ga
and liquids. However, the derivation is very complex a
still requires some microscopic model in order to compl
the specification of the thermodynamic quantities that
pear.

In recent work we@5# gave a simple microscopic deriva
tion of two-fluid hydrodynamic equations of motion for
trapped weakly interacting Bose-condensed gas that ha
advantage of being very transparent and, moreover, g
explicit expressions for all the coefficients in the equatio
In the present paper, we use these two-fluid equation
discuss the first and second sound modes of auniformBose-
condensed gas. In contrast to a Bose-condensed liquid
superfluid 4He, the superfluid in a gas corresponds direc
to the condensate atoms and the normal fluid correspond
the noncondensate~or excited! atoms. We find that at tem
peratures close toTBEC , first ~second! sound mainly corre-
sponds to an oscillation of the noncondensate~condensate!
atoms. We also confirm@6,7# that it is the second soun
mode in a uniform gas that is the low-frequency hydrod
namic analog of the collisionless Bogoliubov-Goldsto
mode at finite temperatures@8#.

These results for a uniform gas are of interest as a bas
comparison with the analogous hydrodynamic oscillations
the condensate and noncondensate in anonuniformtrapped
Bose gas@5,9#. In particular, Andrewset al. have very re-
cently presented results for the propagation of collisionl
sound pulses along thez axis of a cigar-shaped trap@10#.
Due to the large anisotropy in this trap, one has a hyb
situation in which the trapped gas is approximately unifo
along thez axis, but highly inhomogeneous in the radi
561050-2947/97/56~6!/4839~6!/$10.00
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direction. It is clear that the results for a homogeneous
are not directly applicable in this situation, but neverthele
the experimental data for the sound speed appears to be
sistent with the Bogoliubov phonon velocity in a uniform g
having a density equal to the peak density in the trap. A
ticipating the accessibility of the hydrodynamic regime
future experiments, one would therefore expect to see
and second sound propagation with velocities that are
proximately given by the uniform gas results of the pres
paper. The possibility of such experiments has been an
portant motivation of our work.

We recall that Ref.@5# is based on~a! a time-dependen
Hartree-Fock-Popov equation of motion for the condens
wave functionF(r ,t) and ~b! a set of hydrodynamic equa
tions for the fluctuations of the thermal cloud~nonconden-
sate! based on a kinetic equation that includes the effect
the atoms of the time-dependent self-consistent Hartree-F
field. The analysis of Zaremba, Griffin, and Nikuni@5#
~ZGN! uses the local equilibrium solution of the kinet
equation and thus does not include any hydrodynamic da
ing, such as that considered by Kirkpatrick and Dorfm
@11#. However, it should be emphasized that a local equi
rium description is crucially dependent on collisions betwe
the atoms and thus the hydrodynamic equations are o
valid for low-frequency phenomena (v!1/tc , wheretc is
the mean time between collisions of atoms in the therm
cloud!.

In Sec. II we solve the linearized hydrodynamic two-flu
equations for the coupled superfluid and normal fluid vel
ity fluctuations derived by ZGN. We exhibit the first an
second sound normal modes valid at intermediate temp
tures, defined as the temperature regime belowTBEC where
the interaction energy of an atom is much less than the t
mal kinetic energy~i.e.,gn0!kBT; heren0 is the gas density
andg54pa\2/m is the interaction parameter!. The analysis
of ZGN is built on a mean-field approximation for the equ
librium properties. As discussed in Sec. III, this simp
theory is not valid close to the superfluid transition, where
gives rise to spurious discontinuities in the condensate d
sity. In Sec. IV we discuss the relation between our two-flu
equations written in terms of velocity fluctuations and t
4839 © 1997 The American Physical Society
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4840 56A. GRIFFIN AND E. ZAREMBA
standard Landau formulation given in terms of density a
entropy fluctuations@1,3#. All previous discussions@12,8,6#
of hydrodynamic modes in a dilute Bose gas have used
latter formulation.

II. COUPLED EQUATIONS FOR SUPERFLUID
AND NORMAL FLUID VELOCITIES

When there is no trapping potential, the noncondens
density ñ0 and condensate densitync0 do not depend on
position. In this case, one can reduce the linearized two-fl
equations given by Eqs.~12!, ~15!, and~16! of ZGN to two
coupled equations for the normal and superfluid local velo
ties

m
]2dvS

]t2
5gnc0¹~¹•dvS!12g ñ0¹~¹•dvN! ~1a!

m
]2dvN

]t2
5S 5

3

P̃0

ñ0

12g ñ0D ¹~¹•dvN!12gnc0¹~¹•dvS!.

~1b!

We emphasize that these equations are only valid at fi
temperatures such thatgn0!kBT. In deriving these equa
tions, we have assumed that the contribution from the fi
term of Eq.~13! of ZGN is negligible in the long-wavelengt
limit of interest. These equations can be solved to give
low-frequency hydrodynamic normal modes of a unifo
Bose-condensed gas, as will be discussed. We defer dis
sion of the equilibrium quantities (nc0, ñ0 and the kinetic
contribution to the pressureP̃0) that appear in Eqs.~1a! and
~1b! to Sec. III.

Introducing the velocity potentialsdvS[¹fS and
dvN[¹fN , it is easy to see that Eqs.~1a! and ~1b! have
plane-wave solutionsfS,N(r ,t)5fS,Nei (k•r2vt) satisfying

Fv22
gnc0

m
k2GfS2S 2g ñ0

m
k2DfN50,

2S 2gnc0

m
k2DfS1Fv22S 5

3

P̃0

m ñ0

1
2g ñ0

m D k2GfN50.

~2!

The zeros of the secular determinant of this coupled se
equations give two phonon solutionsv1,2

2 5u1,2
2 k2, where the

velocities are the solution of

u42u2S 5

3

P̃0

m ñ0

1
2g ñ0

m
1

gnc0

m D
1

gnc0

m S 5

3

P̃0

m ñ0

2
2g ñ0

m D 50. ~3!

Expanding to second order in the explicit dependence og,
the sound velocities are given by

u1
25

5

3

P̃0

m ñ0

1
2g ñ0

m
1

gnc0

m
e, ~4a!
d
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u2
25

gnc0

m
2

gnc0

m
e, ~4b!

wheree[4g ñ0 / 5
3 ( P̃0 / ñ0)!1 is the expansion paramete

We note~see Sec. III! that the ratioP̃0 / ñ05kBT@g5/2(z0)/
g3/2(z0)] depends weakly ong.

The v1 mode in Eq. ~4a! clearly corresponds to firs
sound. Usingv5u1k in Eq. ~2!, one finds to leading order in
g that

fN

fS
.

2

e
@1. ~5!

That is to say, thev1 first sound mode corresponds to a
in-phaseoscillation in which the noncondensate velocity am
plitude is much larger than that of the condensate. Thev2
mode in Eq.~4b! is the second sound mode. Usingv5u2k
in Eq. ~2!, one finds to leading order ing that

2
fS

fN
.

2

e

ñ0

nc0
@1. ~6!

Thus, at finite temperatures where Eqs.~1a! and ~1b! are
valid, second sound in a uniform weakly interacting gas
seen to be anout-of-phaseoscillation, in which the conden
sate velocity amplitude is much larger than that of the n
condensate~a similar result was obtained many years ago
Lee and Yang@12#!.

III. EQUILIBRIUM PROPERTIES
IN THE HARTREE-FOCK APPROXIMATION

We recall that in deriving Eqs.~1a! and~1b!, the dynam-
ics of the noncondensate is described by a semiclassica
netic equation for a gas of atoms moving in the se
consistent Hartree-Fock~HF! mean field. In the context o
the thermal equilibrium properties, this treatment of the no
condensate corresponds to excitations with ene
p2/2m12gn0, which is a useful finite-temperature approx
mation @13# to the excitations in the self-consistent Hartre
Fock-Popov~HFP! theory@8#. Referring to@5#, we recall that
the equilibrium equation for the condensate yields the che
cal potential

m052g ñ01gnc0 . ~7!

Within our simple HF mean-field treatment, the nonconde
sate density is then given by the well-known formula

ñ0~T,n0!5
1

L3 g3/2~z0!, ~8!

where (n0[nc01 ñ0)

z05eb~m022gn0!5e2bgnc0 ~9!

is the equilibrium fugacity andL5A2p\2/mkBT is the ther-
mal de Broglie wavelength. The associated excited-atomki-
netic pressure is
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56 4841FIRST AND SECOND SOUND IN A UNIFORM BOSE GAS
P̃0~T,n0!5
1

bL3 g5/2~z0!. ~10!

We note that these HF results are equivalent to the sim
model studied in Ref.@14#.

Equations~8! and ~9! must be solved self-consistently t
determinenc0 and ñ0 for a given total densityn0. Conden-
sation occurs when the density reaches the critical den
ncr5g3/2(1)/L3. For n0,ncr , the condensate density
zero and Eq.~8! with ñ05n0 determines the equilibrium
fugacity. In Fig. 1 we show the equilibrium densities as
function of volume for a fixed temperature. The parame
gcr[bgncr is used to characterize the strength of the int
action. We see that the present level of approximation le
to a discontinuous change in the densities at the trans
point @15#. Moreover, below the critical volumevcr51/ncr ,
ñ0 decreases as a result of the interactions with the con
sate, in contrast to the ideal gas behavior which has the n
condensate maintaining a constant density ofncr . Figure 2
gives the total pressure defined as@5#

P5 P̃01
1

2
g~n0

212n0 ñ02 ñ0
2!, ~11!

normalized by the critical pressureP̃cr5g5/2(1)/bL3 of the
ideal gas. The second term in Eq.~11! is the explicit inter-
action contribution, but it should be noted thatP̃0 in ~10!
also depends on interactions as a result of its dependenc
z0. The discontinuous behavior of the noncondensate den
leads to an analogous discontinuity in the pressure@15#. In
Figs. 3 and 4 we show the corresponding behavior as a fu
tion of T. It is of interest to note that for a trapped Bose g
the use of these equilibrium properties in the Thomas-Fe
approximation leads to a similar discontinuous behavior
the equilibrium condensate density, but now as a function
the radial distance from the center of the trap@16#.

FIG. 1. Density vs volume per particle for a fixed temperatu
T. The long-dash–short-dashed curve corresponds to the non
densate, the solid curve to the condensate.gcr is the value of
gn0 /kBT at the critical densityncr5g3/2(1)/L3.
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It is clear that the properties of the weakly interacting g
are nonanalytic functions of the interaction strengthg at the
transition point within the mean-field approximation d
scribed by Eqs.~7!–~10!. However, one should not tak
these features in the Bose-Einstein condensation~BEC! criti-
cal region seriously. The simple HF mean-field approxim
tion ~as well as the more consistent HFP approximation! for
interactions is well known@17,18# not to be valid very close
to the transition and the predicted discontinuities exhibited
Figs. 1–4~characteristic of a first-order transition! are in-
dicative of the limitations of the present simple theory.
correct treatment of this region would require
renormalization-group analysis@19#, which is outside the
scope of the present paper.

For later purposes, we note that the kinetic pressureP̃0 in
Eq. ~10! can be calculated by expanding the fugacity
z0.12bgnc01•••, which yields @using the identity
z]gn(z)/]z5gn21(z)#

n-
FIG. 2. Pressure isotherms: the solid line is the total press

according to Eq.~11!, the long-dash–short-dashed curve isP̃0, and
the dashed curve corresponds to the usual approximation@20,21#

P. P̃cr1
1
2 g(n21ncr

2 ).

FIG. 3. Same as in Fig. 1, but as a function ofT for a fixed
densityn0. Heregcr[gn0 /kBTBEC .
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4842 56A. GRIFFIN AND E. ZAREMBA
P̃0. P̃cr2gnc0ncr , ~12!

whereP̃cr andncr are the critical pressure and density of t
ideal Bose gas introduced earlier. However, a similar per
bative expansion of the noncondensate densityñ0 in Eq. ~8!
is not possible since the derivative ofg3/2(z) diverges at
z51. Indeed, it is this nonperturbative dependence ong that
leads to the discontinuities shown in Figs. 1–4.

IV. RELATION TO STANDARD TWO-FLUID EQUATIONS

First and second sound in a uniform Bose-condensed
have been previously discussed in the literature@6,8,12#.
These earlier treatments start with the usual two-fluid eq
tions of Landau@3#. We recall that these linearized equatio
are ~see Chap.7 of Ref.@1#!

]dn

]t
52¹•d j ,

m
]dvS

]t
52¹dm,

m
]d j

]t
52¹dP,

]ds

]t
52¹•~s0dvN!, ~13!

where

dn~r ,t !5d ñ~r ,t !1dnc~r ,t !,

d j ~r ,t !5 ñ0dvN1nc0dvS . ~14!

P and s are the pressure and entropy density, respectiv
ZGN proved that the two-fluid equations that lead to E

FIG. 4. Normalized pressure as a function ofT for a fixed den-
sity n0. The solid curve corresponds to Eq.~11! and the long-dash–

short-dashed curve isP̃0. The dashed curve belowT5TBEC is the

ideal gas resultP̃0 / P̃cr5(T/TBEC)5/2.
r-

as

a-

y.
.

~1a! and~1b! are in factequivalentto the two-fluid equations
~13! when the thermodynamic functions in the latter a
evaluated for the present model of a weakly interacting B
gas. Using the thermodynamic relation @5#
n0dm5dP2s0dT to eliminate the chemical potential an
defining the entropy per unit mass bys̄[s/mn5s/r, one
can reduce Eqs.~13! to @1,3#

]2dr

]t2 5¹2dP,

]2d s̄

]t2 5
rS

rN
s̄0

2¹2dT. ~15!

Solving this closed set of equations in terms of the variab
dr andd s̄ , one finds two normal mode solutionsv2[u2k2,
whereu2 is given by the solution of the quadratic equatio
@3#

u42u2F ]P

]r U
T

1
T

c̄ v
S 1

r

]P

]TU
r
D 2

1
rS

rN

T s̄0
2

c̄ v
G1

rS

rN

T s̄0
2

c̄ v

]P

]rU
T

50 . ~16!

In this equation,c̄ v is the specific heat per unit mass an
derivatives of the pressure have been expressed in term
the independent thermodynamic variablesT andr. Although
not immediately apparent, the coefficients in Eq.~16! are in
fact consistent with those appearing in Eq.~3!.

The problem is thus reduced to evaluation of the vario
equilibrium thermodynamic functions and derivatives th
appear in Eq.~16!. For the entropy per unit mass we have t
expression@5#

r0 s̄0T5
5

2
P̃01g ñ0nc0 , ~17!

from which we obtain

r0 c̄ v5
3

2
r0 s̄01gS 3

2
ñ01nc0D ] ñ

]T
U

r

. ~18!

From the equation of state~11!, we find that

]P

]r U
T

5
gn0

m S 11
] ñ

]n
U

T
D ~19!

and

]P

]TU
r

5r0 s̄01gn0

] ñ

]T r . ~20!

These quantities have been calculated previously in the l
that the interaction parameterg is regarded as smal
@6,20,21#. In this situation,P̃0 in Eq. ~10! is approximated by
Eq. ~12!. An additional approximation is typically mad
whereby ñ0 is simply replaced by the ideal gas expressi
ncr , in which casenc05n02ncr . To the same level of ap
proximation, one finds] ñ/]nuT50 and] ñ/]Tur53ncr/2T.
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56 4843FIRST AND SECOND SOUND IN A UNIFORM BOSE GAS
With these replacements, we also note that the express
for the pressure and the entropy and energy densities g
by ZGN reduce precisely to those of Refs.@20# and @21#.

Using these results to calculate the thermodynamic qu
tities in Eq. ~16!, the first and second sound velocities a
found ~after some algebra! to be given by

u1
25

5

3

kBT

m

g5/2~1!

g3/2~1!
1

2gncr

m
2

5

3

gnc0

m
, ~21a!

u2
25

gnc0

m
, ~21b!

keeping terms to first order ing. The leading order terms in
Eqs. ~21a! and ~21b! were obtained from Eq.~16! by this
method by Popov~see the last paragraph of Ref.@8#! as well
as by Lee and Yang@12#. Precisely the same results follo
from Eq. ~4! to first order ing when Eq.~12! is again used
for the kinetic pressureP̃0 and ñ0 is replaced byncr . How-
ever, the results given by Eq.~3! are more general than thos
in Eq. ~21!, which only keep the leading-order corrections
the properties of a noninteracting gas. As we discus
above, the analysis leading to Eq.~21! ignores any interac-
tion correction to the noncondensate densityñ, which, as can
be seen from Fig. 1, becomes significant as the density
creases beyondncr .

As we emphasized at the beginning of Sec. II, the anal
of ZGN assumes thatgn0!kBT and thus our results are no
really valid at low-temperatures. To discuss the low tempe
ture region would require a generalization of our wo
which is based on a quasiparticle spectrum exhibit
phononlike behavior at long wavelengths~a kinetic equation
appropriate to this region has been derived in Ref.@11#!. The
pioneering work of Lee and Yang@12# did include an analy-
sis of both the low-temperature and high-temperature
gions. At low temperatures, they found that the first a
second sound modes avoid becoming degenerate by hy
izing and an interchange of the physical meaning of th
two modes occurs as a result of this hybridization. While
sound velocities given by Eq.~3! are not really valid at low
temperatures, Fig. 5 shows that our results do lead to
expected hybridization of first and second sound in a dil
gas.

V. CONCLUDING REMARKS

Recently, two-fluid hydrodynamic equations were deriv
@5# for a trapped, weakly interacting Bose gas. These
given in terms of coupled equations for the superfluid a
normal fluid velocity fluctuations. In order to obtain mo
physical insight into these hydrodynamic equations, we h
given in the present paper a detailed analysis for auniform
Bose gas. In this case, we proved earlier@5# that our hydro-
dynamic equations are formally equivalent to the usual L
dau two-fluid equations. As the present paper shows,
formal equivalence is somewhat hidden in explicit calcu
tions of the first and second sound velocities. However
discussed in Sec. IV, our results do reduce~to first order in
the interactiong) to those found in earlier studies@12,8,6#
based on the Landau formulation.

In superfluid 4He, one evaluates the equilibrium therm
ns
en

n-

d

n-

is

-
,
g

-
d
id-
e
e

is
e

d
re
d

e

-
is
-
s

dynamic parameters in Eq.~16! using the phonon-roton ex
citation spectrum. As is well known@1,3#, in superfluid4He,
first sound corresponds to an in-phase oscillation in wh
vN5vS . In contrast, second sound corresponds to an out
phase oscillation in whichrnvN52rSvS . The difference be-
tween second sound in a dilute Bose gas at finite temp
tures and in a liquid is a result of the dominance of t
kinetic energy over the interaction energy for atoms in a g
In both cases, however, we note that the second sound
quency goes to zero~becomes soft! at the superfluid transi-
tion. The mode doesnot exist aboveTBEC . Moreover, Eq.
~4b! shows that second sound crucially depends on the in
actiong. It would be absent if we had setg50 in Eqs.~1a!
and ~1b!.

As we have noted, second sound in a dilute gas larg
involves an oscillation of the condensate atoms~superfluid
density! and is a soft mode that vanishes in the normal pha
We recall that at finite temperatures@8#, the generalization of
theT50 Bogoliubov phonon gives a velocity formally iden
tical to the first term in Eq.~4b!. Thus we conclude that in a
weakly interacting Bose-condensed gas at finite temp
tures, second sound is the low-frequency~hydrodynamic re-
gime! continuation of the high-frequency~collisionless or
mean-field regime! Bogoliubov-Goldstone mode. This wa
suggested in Refs.@6–8#. The situation is quite different in
superfluid 4He, where the collisionless phonon spectrum
the continuation of the hydrodynamic first sound mode@7#
and there is no high-frequency analog of the second so
branch.
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FIG. 5. Squares of the first and second sound velocities~nor-
malized by the first sound velocity of the ideal gas atT5TBEC) vs
T/TBEC . The value ofgcr has been increased to more clearly reve
the anticrossing behavior at low temperatures. As discussed in
IV, the low-temperature results indicate only the qualitative beh
ior. As shown in@12#, the T50 limit of the upper branch is the
Bogoliubov sound velocity, while the lower branch has a fin
limiting value.
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