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First and second sound in a uniform Bose gas
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We have recently derived two-fluid hydrodynamic equations for a trapped weakly interacting Bose gas. In
this paper we use these equations to discuss first and second sound in a uniform Bose gas. These results are
shown to agree with the predictions of the usual two-fluid equations of Landau when the thermodynamic
functions are evaluated for a weakly interacting gas. In a uniform gas, second sound mainly corresponds to an
oscillation of the superfluidthe condensajeand is the low-frequency continuation of the Bogoliubov-
Goldstone symmetry-breaking mod&1050-294@7)00812-3

PACS numbgs): 03.75.Fi, 67.40.Db

[. INTRODUCTION direction. It is clear that the results for a homogeneous gas
are not directly applicable in this situation, but nevertheless,

One of the most spectacular featufé$ exhibited by su- the experimental data for the sound speed appears to be con-
perfluid *He is the existence of two hydrodynamic soundsistent with the Bogoliubov phonon velocity in a uniform gas
modes, first and second sound. As first pointed out by Tiszhaving a density equal to the peak density in the trap. An-
[2], the motion of a Bose condensate as a separate degreetafipating the accessibility of the hydrodynamic regime in
freedom results in a two-fluid hydrodynamics describing thefuture experiments, one would therefore expect to see first
superfluid and normal fluid componenf8]. In a classic and second sound propagation with velocities that are ap-
study, Bogoliubov{4] provided a formal derivation of the proximately given by the uniform gas results of the present
two-fluid equations in the Landau form. This derivation is paper. The possibility of such experiments has been an im-
valid at all temperatures and holds equally for Bose gaseportant motivation of our work.
and liguids. However, the derivation is very complex and We recall that Ref[5] is based on(a) a time-dependent
still requires some microscopic model in order to completeHartree-Fock-Popov equation of motion for the condensate
the specification of the thermodynamic quantities that apwave function®(r,t) and(b) a set of hydrodynamic equa-
pear. tions for the fluctuations of the thermal cloydonconden-

In recent work weg[5] gave a simple microscopic deriva- satg based on a kinetic equation that includes the effect on
tion of two-fluid hydrodynamic equations of motion for a the atoms of the time-dependent self-consistent Hartree-Fock
trapped weakly interacting Bose-condensed gas that has tlield. The analysis of Zaremba, Griffin, and Nikuf]
advantage of being very transparent and, moreover, giveZGN) uses the local equilibrium solution of the kinetic
explicit expressions for all the coefficients in the equationsequation and thus does not include any hydrodynamic damp-
In the present paper, we use these two-fluid equations tmg, such as that considered by Kirkpatrick and Dorfman
discuss the first and second sound modeswfiformBose- [11]. However, it should be emphasized that a local equilib-
condensed gas. In contrast to a Bose-condensed liquid likéum description is crucially dependent on collisions between
superfluid “He, the superfluid in a gas corresponds directlythe atoms and thus the hydrodynamic equations are only
to the condensate atoms and the normal fluid corresponds talid for low-frequency phenomenav&1/7., wherer; is
the noncondensat@r excited atoms. We find that at tem- the mean time between collisions of atoms in the thermal
peratures close tdgec, first (second sound mainly corre- cloud).
sponds to an oscillation of the noncondens@@ndensate In Sec. Il we solve the linearized hydrodynamic two-fluid
atoms. We also confirmi6,7] that it is the second sound equations for the coupled superfluid and normal fluid veloc-
mode in a uniform gas that is the low-frequency hydrody-ity fluctuations derived by ZGN. We exhibit the first and
namic analog of the collisionless Bogoliubov-Goldstonesecond sound normal modes valid at intermediate tempera-
mode at finite temperaturé8]. tures, defined as the temperature regime belgw: where

These results for a uniform gas are of interest as a basis diie interaction energy of an atom is much less than the ther-
comparison with the analogous hydrodynamic oscillations ofnal kinetic energyi.e.,gny<kgT; heren is the gas density
the condensate and noncondensate imoauniformtrapped  andg=4ma#?/m is the interaction paramedeThe analysis
Bose gad5,9]. In particular, Andrewset al. have very re- of ZGN is built on a mean-field approximation for the equi-
cently presented results for the propagation of collisionles$ibrium properties. As discussed in Sec. lll, this simple
sound pulses along the axis of a cigar-shaped trafl0].  theory is not valid close to the superfluid transition, where it
Due to the large anisotropy in this trap, one has a hybridjives rise to spurious discontinuities in the condensate den-
situation in which the trapped gas is approximately uniformsity. In Sec. IV we discuss the relation between our two-fluid
along thez axis, but highly inhomogeneous in the radial equations written in terms of velocity fluctuations and the
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standard Landau formulation given in terms of density and »_9N0 9N

entropy fluctuationg1,3]. All previous discussion§12,8,6 =" el (4b)

of hydrodynamic modes in a dilute Bose gas have used the
latter formulation. ~ 5=~ _ .
where e=4gny/3(Pg/ ng) <1 is the expansion parameter.
Il. COUPLED EQUATIONS FOR SUPERFLUID We nOte(See Sec. |D| that the ratiopol n0=kBT[g5/2(ZO)/

AND NORMAL FLUID VELOCITIES 93/2(Z0)] depends weakly og.
The w; mode in Eq.(4a clearly corresponds to first

When there is no trapping potential, the noncondensatgound. Using»= u;k in Eq. (2), one finds to leading order in
density ny and condensate density,; do not depend on g that
position. In this case, one can reduce the linearized two-fluid

equations given by Eq$12), (15), and(16) of ZGN to two dn 2
coupled equations for the normal and superfluid local veloci- ¢_Sz ;>1- ®)
ties
25y That is to say, thav; first sound mode corresponds to an
J°0Vs ~ in-phaseoscillation in which the noncondensate velocity am-
ot2 =0gNeV(V- 8V +2g NoV(V-dvy) - (13 plitude is much larger than that of the condensate. @he
mode in Eq.(4b) is the second sound mode. Using= u,k
Povy (5B, _ in Eq. (2), one finds to leading order ig that
m——= ( s=+2¢9 no) V(V-évy) +2gn,gV(V- dvs).
ot 3 Ng ¢S 2 T‘O
(1b) - —=——>1. 6
on €N ©

We emphasize that these equations are only valid at finite

temperatures such thamn,<kgT. In deriving these equa- Thus, at finite temperatures where E¢$a and (1b) are
tions, we have assumed that the contribution from the firsvalid, second sound in a uniform weakly interacting gas is
term of Eq.(13) of ZGN is negligible in the long-wavelength Seen to be awout-of-phaseoscillation, in which the conden-
limit of interest. These equations can be solved to give th&ate velocity amplitude is much larger than that of the non-
low-frequency hydrodynamic normal modes of a uniformcondensatga similar result was obtained many years ago by
Bose-condensed gas, as will be discussed. We defer discusee and Yand12]).

sion of the equilibrium quantitiesn{,, N, and the kinetic

contribution to the pressur,) that appear in Eqgla and IIl. EQUILIBRIUM PROPERTIES
(1b) to Sec. IlI, IN THE HARTREE-FOCK APPROXIMATION
In_troducin_g_ the velocity potentialsévs=Vés and We recall that in deriving Eqgl1a and(1b), the dynam-
oW=Véy, it is easy to see that Ei‘%&ﬁ)w%”d (1b) have icq of the noncondensate is described by a semiclassical ki-
plane-wave solutiongs (r,t) = ¢sne satisfying netic equation for a gas of atoms moving in the self-
_ consistent Hartree-FoclHF) mean field. In the context of
2 9Nc0 k2| o 29 ng k2| =0 the thermal equilibrium properties, this treatment of the non-
m S N condensate corresponds to excitations with energy

p2/2m+ 2gn,, which is a useful finite-temperature approxi-
mation[13] to the excitations in the self-consistent Hartree-
kzl én=0. Fock-PopoWHFP) theory[8]. Referring td 5], we recall that
the equilibrium equation for the condensate yields the chemi-
2) cal potential

29neo , [ Py 29
(3] (3 29

The zeros of the secular determinant of this coupled set of ~
equations give two phonon solutiong ,=uZ k2, where the Mo=29 No+gneo- @)

velocities are the solution of " ) !
Within our simple HF mean-field treatment, the nonconden-

. |5 Py 29T, gnco) sate density is then given by the well-known formula
ut—uf| 5 —+ +
3 m ng m m _ 1
~ ~ No(T.No) = 139314 Z0), ®
gnco/ S5 Po  2gng
+ 5= =0 ©)
m \3 m ng m

where ip=n¢+ No)

Expanding to second order in the explicit dependenceg,on

L . — @Brp—29ng) — o= BINc
the sound velocities are given by Z0=¢€ € ‘ ©)

= is the equilibrium fugacity and = 2742/ mkgT is the ther-
€, (48  mal de Broglie wavelength. The associated excited-gtbm
netic pressure is

, 5 Po 29Ny gng
uj=o —+ +
3 m ng m m
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FIG. 1. Density vs volume per particle for a fixed temperature  FIG. 2. Pressure isotherms: the solid line is the total pressure
T. The long-dash—short-dashed curve corresponds to the noncoBccording to Eq(11), the long-dash—short-dashed curvéjgs and

densate, the solid curve to the condensatg. is the value of the dashed curve corresponds to the usual approximg2ioRd]
gno/kgT at the critical densityng,=gq(1)/A°. P=B, + lg(n2+n2)
cr cr/-

_ 1 It is clear that the properties of the weakly interacting gas
Po(T,ng)= —Agg5/2(20). (10 are nonanalytic functions of the interaction strengtht the
B transition point within the mean-field approximation de-
] _ scribed by Egs.(7)—(10). However, one should not take
We note that these HF results are equ|Valent to the S|mp|g']ese features in the Bose-Einstein Condensam) criti-
model studied in Ref.14]. cal region seriously. The simple HF mean-field approxima-
Equations(8) and(9) must be solved self-consistently to tion (as well as the more consistent HFP approximation
determinen,, and n, for a given total density,. Conden-  interactions is well know17,18 not to be valid very close
sation occurs when the density reaches the critical densitip the transition and the predicted discontinuities exhibited in
Ner=0a(1)/A%. For ng<n.,, the condensate density is Figs. 1—4(characteristic of a first-order transitipare in-
zero and Eq.(8) with Ty=n, determines the equilibrium dicative of the limitations o_f the present simple the_ory. A
fugacity. In Fig. 1 we show the equilibrium densities as acorrect treatment of this region would require a
function of volume for a fixed temperature. The parametef€normalization-group analysigl9], which is outside the
Yor=Bgn., is used to characterize the strength of the inter-SCOP€ of the present paper. N
action. We see that the present level of approximation leads For later purposes, we note that the kinetic pres&yren
to a discontinuous change in the densities at the transitiokq. (10) can be calculated by expanding the fugacity as
point[15]. Moreover, below the critical volume,,= 1/n,, zo=1-pBgn,+---, which vyields [using the identity
T, decreases as a result of the interactions with the conded?9n(2)/92=0n-1(2)]
sate, in contrast to the ideal gas behavior which has the non-
condensate maintaining a constant densityhwgf. Figure 2
gives the total pressure defined[&$ Yer = 0.1

S E 2 ~ ~3 )
P—P0+Zg(n0+2n0n0 ng), (11

normalized by the critical pressuR., = gs,(1)/BA° of the
ideal gas. The second term in E@.1) is the explicit inter-

action contribution, but it should be noted tﬁé@ in (10

also depends on interactions as a result of its dependence on

Zo. The discontinuous behavior of the noncondensate density 0
leads to an analogous discontinuity in the pres$agg. In

Figs. 3 and 4 we show the corresponding behavior as a func- 0.0 0.5 1.0 1.5

tion of T. It is of interest to note that for a trapped Bose gas,

the use of these equilibrium properties in the Thomas-Fermi T/TBE‘C

approximation leads to a similar discontinuous behavior of

the equilibrium condensate density, but now as a function of FIG. 3. Same as in Fig. 1, but as a functionoffor a fixed
the radial distance from the center of the tfagl. densityny. Here y,,=gny/kgTgec-
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3 (1a and(1b) are in factequivalentto the two-fluid equations
(13) when the thermodynamic functions in the latter are
evaluated for the present model of a weakly interacting Bose
gas. Using the thermodynamic  relation [5]
Ngdu= 6P —s,6T to eliminate the chemical potential and

defining the entropy per unit mass @ES/mI’I:S/p, one
can reduce Eqg13) to [1,3]

36p
_y2
12 V<P,

(9255 ps—z 2
et 2v2,T. (15)

Solving this closed set of equations in terms of the variables

Sp and 8's, one finds two normal mode solutiong=u2k?,
whereu? is given by the solution of the quadratic equation

FIG. 4. Normalized pressure as a functionTofor a fixed den- (3]
sity ng. The solid curve corresponds to EG1) and the long-dash—

short-dashed curve B,. The dashed curve beloW=Tgec is the
ideal gas resulPy /P =(T/Tgea)*>

a_y %P

u
&pT

b TsOaP\

T(laP
u
PN C, P‘

2+PSTSO
p oT

PN C,

I30_ cr— 9NcoNer (12) 0. (16)
~ . . In thi ion is th ific h r unit m n
whereP, andn,, are the critical pressure and density of the dertlv:;?tl\(jglsJ ac;fothg prZsEsL?resﬁzc\:/eCbe:r?te?(%reis;d |{r;'l1stseram;j of
ideal Bose gas introduced earlier. However, a similar pertur;

the independent thermodynamic variableandp. Although
bative expansion of the noncondensate denagyn Eq.(8)  not immediately apparent, the coefficients in Etf) are in
is not possible since the derivative gk(z) diverges at  fact consistent with those appearing in E§).

z=1. Indeed, it is this nonperturbative dependence that The problem is thus reduced to evaluation of the various
leads to the discontinuities shown in Figs. 1-4. equilibrium thermodynamic functions and derivatives that

appear in Eq(16). For the entropy per unit mass we have the
IV. RELATION TO STANDARD TWO-FLUID EQUATIONS expressior{S]

First and second sound in a uniform Bose-condensed gas __  5_ _
have been previously discussed in the literat[6g3,12. PoSoT= §P0+g NoN¢o s 17)
These earlier treatments start with the usual two-fluid equa-
tions of Landay3]. We recall that these linearized equations., which we obtain
are (see Chap.7 of Refl])

a6n — 3 — [3< an
=V, PoCy=5P0SoT 9| 5 N0t Neo | o= (18
at p
I8V From the equation of statd 1), we find that
m— = —Véu, _
at P gng an
—| =— 1+&— (19
3dj dply M Ny
m——=—V4P,
ot and
a8s oP _ an
T__V'(SO‘SVN)’ (13 77| TPoSoT9NoT,- (20)

p

where These quantities have been calculated previously in the limit

that the interaction parametey is regarded as small

[6,20,21. In this situationP in Eq. (10) is approximated by
Eq. (12). An additional approximation is typically made

whereby n, is simply replaced by the ideal gas expression

P ands are the pressure and entropy density, respectivelyler. in Which casengg=ng—nc,. To the same level of ap-
ZGN proved that the two-fluid equations that lead to Egsproximation, one findg n/an|r=0 andd n/(?T|p 3n.,/2T.

sn(r,t)=8n(r,t)+ny(r,t),

8j(r,t)="NgdVy+ NodVs. (14)
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With these replacements, we also note that the expressions 3
for the pressure and the entropy and energy densities given
by ZGN reduce precisely to those of Reff20] and[21].

Using these results to calculate the thermodynamic quan- YVep = 0.2
tities in Eq. (16), the first and second sound velocities are 2 °er
found (after some algebjao be given by N

ZZEkB_TQS/Z(l) Zgncr_EgnCO
'3 magg(l) m 3 m

, (213

FIRST SOUND

2_ gNco
U= (21b

SECOND SOUND

keeping terms to first order ig. The leading order terms in 0 ' I

Egs. (218 and (21b were obtained from Eq(16) by this 0.0 0.5 1.0 1.5
method by Popovsee the last paragraph of RE8)]) as well

as by Lee and Yan{l2]. Precisely the same results follow T/TBE'C

from Eq. (4) to first order ing when Eq.(12) is again used _ _
FIG. 5. Squares of the first and second sound velocities-

for the kinetic pres_suré’o and ng is replaced byne; . HOw- 51564 by the first sound velocity of the ideal gasTat Tgec) Vs
ever, the results given by E(B) are more general than those 1/1___ The value ofy,, has been increased to more clearly reveal
in Eq. (21), which only keep the leading-order corrections t0 e anticrossing behavior at low temperatures. As discussed in Sec.
the properties of a noninteracting gas. As we discussefl;, the low-temperature results indicate only the qualitative behav-
above, the analysis leading to E@1) ignores any interac- jor., As shown in[12], the T=0 limit of the upper branch is the
tion correction to the noncondensate dengityvhich, as can Bogoliubov sound velocity, while the lower branch has a finite
be seen from Fig. 1, becomes significant as the density infimiting value.
creases beyond,, .
As we emphasized at the beginning of Sec. II, the analysigynamic parameters in E¢L6) using the phonon-roton ex-
of ZGN assumes thagny<kgT and thus our results are not Citation spectrum. As is well knowfd,3], in superfluid*He,
really valid at low-temperatures. To discuss the low temperafirst sound corresponds to an in-phase oscillation in which
ture region would require a generalization of our work,Vn="Vs. In contrast, second sound corresponds to an out-of-
which is based on a quasiparticle spectrum exhibitingohase oscillation in whicp,vy= — pgvs. The difference be-
phononlike behavior at long wavelengtfzskinetic equation tween second sound in a dilute Bose gas at finite tempera-
appropriate to this region has been derived in REf]). The tures and in a liquid is a result of the dominance of the
pioneering work of Lee and Yar{d 2] did include an analy- kinetic energy over the interaction energy for atoms in a gas.
sis of both the low-temperature and high-temperature reln both cases, however, we note that the second sound fre-
gions. At low temperatures, they found that the first andquency goes to zer@becomes softat the superfluid transi-
second sound modes avoid becoming degenerate by hybrition. The mode doesot exist aboveTgec. Moreover, Eq.
izing and an interchange of the physical meaning of thes€4b) shows that second sound crucially depends on the inter-
two modes occurs as a result of this hybridization. While theactiong. It would be absent if we had sgt=0 in Egs.(18
sound velocities given by E¢3) are not really valid at low and(1b).
temperatures, Fig. 5 shows that our results do lead to this As we have noted, second sound in a dilute gas largely
expected hybridization of first and second sound in a diluténvolves an oscillation of the condensate atofssperfluid
gas. density and is a soft mode that vanishes in the normal phase.
We recall that at finite temperaturfg, the generalization of
V. CONCLUDING REMARKS the T=0 Bogoliubov phonon gives a velocity formally iden-
tical to the first term in Eq(4b). Thus we conclude that in a
Recently, two-fluid hydrodynamic equations were derivedweakly interacting Bose-condensed gas at finite tempera-
[5] for a trapped, weakly interacting Bose gas. These aréures, second sound is the low-frequeribydrodynamic re-
given in terms of coupled equations for the superfluid andyime) continuation of the high-frequencgcollisionless or
normal fluid velocity fluctuations. In order to obtain more mean-field regimeBogoliubov-Goldstone mode. This was
physical insight into these hydrodynamic equations, we haveuggested in Ref§6—8|. The situation is quite different in
given in the present paper a detailed analysis fandorm  superfluid “He, where the collisionless phonon spectrum is
Bose gas. In this case, we proved earfgfrthat our hydro-  the continuation of the hydrodynamic first sound méadg
dynamic equations are formally equivalent to the usual Lanand there is no high-frequency analog of the second sound
dau two-fluid equations. As the present paper shows, thisranch.
formal equivalence is somewhat hidden in explicit calcula-
tions of the first and second sound velocities. However, as
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