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Incoherent dynamics in neutron-matter interaction
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Coherent and incoherent neutron-matter interaction is studied inside a recently introduced approach to
subdynamics of a macrosystem. The equation describing the interaction is of the Lindblad type and, using the
Fermi pseudopotential, we show that the commutator term is an optical potential leading to well-known
relations in neutron optics. The other terms, usually ignored in optical descriptions and linked to the dynamic
structure function of the medium, give an incoherent contribution to the dynamics, which keeps diffuse
scattering and attenuation of the coherent beam into account, thus warranting fulfillment of the optical theorem.
The relevance of this analysis to experiments in neutron interferometry is briefly discussed.
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[. INTRODUCTION the microsystem and the apparatus and showing typical par-
ticlelike features, should not be neglected. This attitude is
In recent years there has been a rapidly growing interestxemplified in neutron optics by the use of the “coherent
in the field of particle optics, especially neutron and atomwave” formalism, instead of a reduced density-matrix de-
optics (for a recent review see Refl—5] and[6], respec-  scription, as usually adopted in quantum optics.
tively, and references quoted thereidue to a spectacular ~ In this paper we want to address the question of how to
improvement of the experimental techniques, connected téescribe both regimes consistently, applying a recently de-
the introduction of the single-crystal interferometer in theveloped approach to the description of irreversible subdy-
first case, and to progress in microfabrication technology anfiamics in quantum mechani¢g—9] to the specific case of
development of intense tunable lasers in the second on&eutron-matter interaction. In this approach the use of an
Such new achievements provide very important tests verifyeffective T matrix describing the local interactions as practi-
ing the validity of quantum mechanics, especially in that itcal starting point leads to the introduction of a time scale and
predicts wavelike behaviors even for single microsystems. in the particular case of particle-matter interaction to a dy-
At the same time a new challenge arises, linked to théamical semigroup, whose generator has the typical Lind-
accuracy required in the description of the interaction beblad form[10]. The expressions appearing in the generator
tween the microsystem and the apparatus acting as opticale linked to particle-particle interactions, like the Fermi
device. The question of the description of the dynamics of @seudopotential, and to properties of the macroscopic sys-
microsystem interacting with a system having many degreetem, like the dynamic structure function, first introduced by
of freedom(e.g., matter seen as an optical medium characvan Hove[11]. The first part of the generator accounts for
terized by an index of refractiorhas been extensively stud- the description of the coherent interaction in terms of optical
ied, and contains some typical quantum-mechanical featurepotential and index of refraction well known in neutron op-
such as quantum correlations between the two systems, Bigs [3,12,13. The remaining part is shown to be related to
which a reduced description of the microsystem’s degrees dhe dynamic structure function or, equivalently, to the den-
freedom can arise only by suitable approximations. ThisSity correlation function, and leads in a straightforward way
subtle point is particularly important in the case of particleto results obtained in the so-called “rigorous theory of dis-
optics, where the main interest is devoted to the cohererférsion” [3].
wavelike behavior of particles, as can be justified on the The paper is organized as follows: in Sec. Il we give an
basis of the similarity between a ScHinger equation with ~account of the formalism; in Sec. Il it is applied to neutron
an optical potential and the Helmholtz wave equafidré]. optics; in Sec. IV we consider diffuse scattering, the connec-
The very existence of such an optical description of the inion to the dynamic structure function, and fulfillment of the
teraction is far from trivial, and depends strongly on the ex-optical theorem; in Sec. V we evaluate possible experimental
perimental conditions. Attention has been mostly devoted t¢onsequences; in Sec. VI we comment on our results indi-
exploiting the optical analogies, while little has been saidcating potential future developments.
about the borderline between the optical regime, in which
coher_en_t effects are pr_edominant and a classical wavglike Il INTRODUCTION OE THE FORMALISM
description plays a major role, and an incoherent regime,
where incoherent effects, caused by the interaction between In this section we briefly introduce the formal scheme,
restricted to a description of a microsystem following Ref.
[7], to which we refer the reader for further details. We in-
*Electronic address: lanz@mi.infn.it dicate byH() the Hilbert space in which the microsystem is
"Electronic address: vacchini@mi.infn.it to be described; its energy eigenvalues Bye with energy
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eigenstatesi;, spanning<*). Both systems will be consid- o o o
ered confined, e.g., in a box. We shall adopt the second H :%[H"]’ HO:Z[H°+H"‘"]’ 14 :%[V"]'
quantization formalism, setting, for the Hamiltonidinof the (2.9
system,

Making use of these mappings we evalua’FéT(aﬁak) with

the aid of the following integral representation:
H=HotHntV, Ho=> Eqlar, [a;,al]s=d, g integral rep
T

+ic+y dz
_ , _ eH'Tasz’ —e”(z—H') ta,,
where a; is the destruction operator for the microsystem, —icty 27

either a Fermi or a Bose particle, in the state andH,, is

the Hamilton operator for the sole macrosystem e’ "(ala) =(e""al) (e "ay).

([Hm,a;]=0). Indicating byHg the whole Fock space, and

by HE its subspace in WhicHN=Ehaﬁah, the number of Let us stress at this point the relevance of the formalism of

microsystems, is equal to zero, we will denote with the ~ Second quantization. The operator quantities of interest can
basis of eigenstates dfl,, spanningH2, H|\)=E,|\), be expressed in terms of proqluc_ts of creation and destruction
andN[\)=0. V represents the interaction potential betweenOPerators. The study of their time evolution may thus be
the two systems. Having it in mind to describe situations inreconducted to evaluate field operators of the fain’a;
which only one particle is observed in each experimentabonnecting, in Fock space, subspaces witandn+1 par-

run, or equivalently a collection of noninteracting particles inticles (and similarly foreH'Tak, connecting subspaces with
each run, we assume for the statistical operator the expref-andn—1 particle3. Thus, even recovering at the end the
sion usual one-particle guantum mechanics, the Fock space struc-
ture plays a central role, and accounts for the similarities
between this simple case and the description of macroscopic
systemd8,9]. For the mappings defined in E.1), identi-

ties hold that are reminiscent of the usual ones in scattering
wherep™ is a statistical operator in the subspalﬁf%, rep- theory:

resenting the macrosystem, and, therefore

e=§ ajo™ag0gs,

(z=H') " t=(z=Hp) [1+V'(z=H') "]

m_ mT:
are™=0 ¢Ma;=0 VI, =[1+(z-H")"V'1z-Hy " (22

while p is a statistical operator in the subsp&té of Hg, in
which N=1. The coefficientspy build a positive, trace-1
matrix, which can be considered as the representative of a T2)=V +V (z—H')" V', 2.3
statistical operatoé in ). Being interested in the subdy- oo

namics of the microsystem we shall exploit the following S&tisfying

r ion formula, valid for an rator of the form _ N b N

In particular, we can introduce the superoperdafm),

and

TrHF(AQ):;g Anggf:TrH(1>(Ag)- 7—(2):VI+V7(Z_H6)717-(Z), (24)

We wish to determine the equation driving the time evolu-corresponding to the Lippman-Schwinger equation forfthe
tion of the statistical operator on a time scalmuch longer ~Matrix. Taking into account the fact theitf, N]=0 one can
than the typical duration of microphysical interactions for thesee that the restriction thf of the operatorZ(z)a, has the
macrosystem, and therefore we shall approxintitgs/dt  simple general form

by

ATng(t)
T

L iﬁﬂz)akmé:; T(ifiz)ay, (2.5
= T [ng(t+ T)— ng(t)]
whereT§(z)is an operator in the subspa#& . This restric-
—ilh Hr : tion is the only part of interest to us, since we are considering
-7 [TrHF(a:age " HTe(D)e M —eg(D)]. a single microsystem. Our formalism points to this matrix,
whose entries are operators on the Hilbert space of the mac-
To proceed further, we will exploit the cyclicity of the trace rosystem, as the basic mathematical tool to describe the
operation, shifting the time evolution on the destruction andPhysics of the microsystem: we will show that it yields all
creation operators, thus working in the Heisenberg picturefélevant quantities and, in our opinion, could be a sound
In this way, no simplifying assumption is made on the struc-starting point for phenomenological assumptioﬁ'éﬁ(z)
ture of ™. We now introduce the following superoperators, bears a connection to scattering theory, as it is clear from Eq.
that is to say mappings acting on the algebra generated Wy.4); it is also related to the thermodynamics of the macro-
creation and destruction operators: system, being an operator Gﬁﬁ. To help clarify this con-
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nection, we consider a simple case in whiEf(z) can be with & a positive constant and(7) a complete system of
explicitly calculated. Let the macrosystem be composed ogigenvectors ofe™(7) with e|genvalue377§(7) If we now

free particles introduce inH(™® the operator$dy, Q, L, andp,
H _2 E,b; WPy V= ; éaqb 2Vpean (9lHolf)=E¢dqs, (alQIf)=Qyqt,
1- . . . . . ~ A
whereb, is the creation operator of a particle in an eigen- <g||_}\§|f>:(|_>\§)gf, <g|Q|f>:ng,

statev,, with energyE,, (either a Bose or a Fermi partigle
Recalling that we are descnbmg a single particle and exploiteq, (2.7) becomes
ing the superoperators introduced in E¢R.1), (2.2), and
(2.3, we can calculaté'h(z) as defined by Eq2.5). To do

this we bring to normal order the creation and destruction dQ(T) : [H +A Q (r)]— {F Q(T)}
operators associated with the macrosystem, and restrict our- dr 0 efl
selves to a one-mode dynamics, in which, apart from statis- 1
tical corrections, only one creation and one destruction op- = Lxgé(T) ng:
erator of the typeb appear: that is to say, we neglect three- hEx
particle collisions. Then one obtains
where

TH(E+ie)=2 bi(k,¢V? .- .

& i _Q+ Q' P Q- Q

1 eff— 2 ’ 2

+V(2) VL|f177>b7]1

Ec+Extie—(HP+V)) o , .
Verification of the conservation of the trace of the statistical

wheree is a positive quantity and the following relationships operator within the adopted approximations leads to the fol-
hold: lowing relationship:

(K EHP |, )= (Ef+E,) 88, -
%g Ly L, (2.9
(k&L m)=(1+Dblby) (k& VP|f,7)
=(1=blby) Vgt (2.6)  and therefore to

here the superscrif2) denotes operators in the two-particle

: = . M dé(f) i . .
Hilbert space, and statistical corrections for scattering inthe =~ _ _ _ [ +H r LNY 't r
medium are taken into account in the potential tevin, ar  nl o 0(7)] - h Zgz rebae-@(7)
implicitly defined by Eq.(2.6) and by the usual resolvent 1
series(the + and — signs stand for Bose and Fermi statistics, +=> Exgé(T) Elg- (2.10
respectively. The connection to the familiar matrix is evi- hEx
dent.

We now come to the master equation describing the irreThis master equation is a typical result of the formalism re-
versible time evolution of the statistical operator on the chostricted to the case of a single microsystem; for the general

sen time scale: structure, see Ref§8,9].
do i i i Before applying Eq{(2.10 to a concrete physical situa-
kh _ tion, it can be useful to gain some further insight into the
—=Kh_ E.—E __ +— * ) g g
dr 7 (B EnCm—7 2 Quemt i 2 2 structure of the operators appearing in it. As already stated,

1 the quantity that the formalism suggests as a natural candi-
- * date for where to place suitable phenomenological expres-
th (Loki@rg(brelhg: @ sions is the operatdF¥(z), an operator whose trace over the
M Fock space for the macrosystem calculated githgives the
from which we can read off the structure of the generator ofvalue of theT matrix for scattering from state; to stateuy
the semigroup driving the time evolution. The quantities ap-averaged over the state of the macroscopic system. A quite
pearing in Eq(2.7) are defined in the following ways: general phenomenological expression may be obtained in the
following way. Suppose thaf(z) has the form
Qui=Try [T{(Ext+is)e™(n)],

i
- = — i . = T T
Qty=Tr [T (Ep+ie)e™(7)], T2)= [V(ih2). ], V@)= 2 Vian(2ablab,,
k .
(Ly )= 2e s (MTF(Extie)| (D) 2.8 with b™ andb the creation and destruction operators in Fock
ATkt CEy+E\—E(—E,—ie’ ' space for the macrosystem. We thus have
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Such an ansatz amounts to introducing an effective potential
ifﬂ(Z)ak:)\f Viaru(ihiz)blash, 2 Ti(ihiz)ay, which should, in the Born approximation, give the full scat-
# tering amplitude. As a result the potential term in E210
and, supposing translation invariance in the interaction keris linked to the scattering amplitude, as we shall see in the
nel, next paragraph, while the incoherent contribution is gener-
ally connected to the scattering cross section. To realize this

let us consider the last term of E@..7), taking the proposed
T‘F(z):; bIVkAfM(Z)bu:j dsxj dy ' ()uE (y) ansatz into account:
y23
Xtz X=y)u(y) (x). (2.11

t(E, +
2 > Jd3XJ d3y ug (y) E 'éfXEy) —ug(Y)(N[ T () (X)|\)

x, NG f.0 Ek+ E)\N
)\/I

t*(Eptie, X' —y)
XM N )ergtm) [ @ [ @y 01w O wx U ) Eh+Ekj_Esg_Ej+i8uh<y'>, (212

and let us specialize to the case of a diagonal matrix elemenbver all possible initial configurations and summed over all
Supposing the statistical operator for the microsystem is quapossible final states for the macrosystem; that is to say, con-
sidiagonal and the macrosystem is at equilibrium, so thatributions from both coherent and diffuse scattering are in-
e™M\)=e}|\), we exploit the usual representation for #he cluded. It might be instructive to show in a different way the
function, thus obtaining: connection between the last term of Eg.7) and the total
scattering cross section, referring to a famous paper by van
f 4 f &3y u* (y) Hove[11]. Taking for concreteness the Fermi pseudopoten-
y Yy tial (see next paragraphwhose Fourier transform is simply
the constanV = (27%2/m) b, we evaluate the diagonal ele-
ment of Eq.(2.12, assuming thau; are given by plane
waves(the indexed, g, h, andk becoming momenjathus

P _ T .
In this formula one has the typical transition probability be-0PtaININGIN(X) =" (X) (X) ]:
tween an initial statef,\’ and a final statk,\, averaged

2
> > — S(E+E,—E(—E,)
o fi

XN OOt (E+ie, x—y) (X ewemr)

28 ~ d3q . (NIN(X)|N) -
—_ 3 3y~ (i) {k=[P+(a/2)]}-x 1
Ek-l-E)\r—% P+§q —E\—ie
(A[N(Y)|\") )k [P—(a2)]}-
~ )M e"(7)IA) s Ml (P-(@2 )y,
Ek+E}‘,_ﬁ(P_§q) —E)\-i—is

and supposin@ such that the energies in the denominators may be considered approximately equal, introducing the Wigner
function for the neutron,

d3q . -
fw(x,p)=f a2 & Xt zdelp—za),
one easily has

2_7T 1 4|T/|2J’ d3PJ dtJ d3r e*(i/fi)[(PZ/Zm)*Ek]tJr(i/ﬁ)(P*k)-rJ d3xf (X P) N X_L N X+£ t
h \2mh WA 2 2’

>, (2.13
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where(---)= TrH (---e™), andN(x,t) denotes the operator operator of form(3.2), that is to say, a sum over one-particle

in the He|senberg picture. We have thus recovered the typioPerators, is expressed in second quantization by
cal factorized structure appearing in the expression for the 2 52
scattering cross section of a neutron off a macroscopic sys- 77 f 3
tem: the square modulus of the Fourier transform of the in- 2 b | d™ v L) FE=X) o), (33
teraction potential times the dynamic structure function de-
pending on transferred momentum and energy, with thavhere ,(X) is the field operator, acting in the Fock space of
refinement that it is here weighted according to the positiorthe macrosystem, corresponding to particles of typé-or
and momentum distribution of the incoming particle. For thethe sake of simplicity, from now on we will consider one
nondiagonal matrix element one can expect to obtain analdkind of particle, thus dropping the subscript Furthermore
gous results if the quantities appearing in E2)12 are suf- we will assume thab is a real quantity, since we are not
ficiently slowly varying functions of their arguments, so that, going to deal with absorption phenomena. As we shall see in
in the continuous limit, an interpolation formula of the form Sec. IV, we concentrate on the non-Hermiticity of the poten-
tial connected with incoherent processes and not with net
f d¢ 9(é) f dé g(&)8(B+¢) absorption. A phenomenological description as given by Eq.
(a+&é+ie)(B+Eé—ie ) (3.3 falls within the class of effective potentials considered
in the previous paragraph, and corresponds to the following

%wJ dé g(&)d(a+é), |a—pBl<e interaction kernel:

with g(§) a suitably smooth function, may be used. The t(zx—y)=
failure of such an approximation and thus the relevance of

the actual value of the parameterin the final expression .

might be traced back to the breakdown of the approximationgeacJllng to

that have led to the Markovian evolution generated by the 2mh?2
master equatiofi2.7). THE+ie)=

-y), (3.9

d | ddy ¢T(x)uf (y)

lll. OPTICAL BEHAVIOR X 6\3(x—y)uf(y) P(X).

We now devote our attention to the interaction of neu- . .
trons with matter. This field is well suited to test our formal- Equation(3.1) thus becomes, in operator form,
ism, both because of the very refined experiments that have

been carried out in neutron interferomefry,14], and be- de(r) 05

cause of the very well-studied description of neutron optics dt %[ 0.2(7)]

phenomena, as developed, for example, in the book by Sears g2

[3] that we will take as basic reference. As a first step we _lem 30/t s a2
want to consider the coherent interaction of neutrons with h b | PX(4T () 9()),8(x-x)e(7)

matter, and therefore in EQR.7) we neglect the last contri-
bution, linked to incoherent processes. As we will see later,
this term implies indeed a smaller correction in the case of
neutron scattering. We are left with

(1 (X) (X)) 0 (7) 3(X—x),
(3.5)

_%(Ek_Eh)Qkh_;/L_Z QkachF;IL_E ngQﬁg, where X is the position operator for the neutron and
f ] (A),=Tr;_(™(7)A). If we consider only pure states and
(3D assume the macrosystem to be at equilibrium

and we need a suitable expression for the operator ((-+-),={---)), Eq. (3.5 is equivalent to the following sta-
tionary Schrdinger equation:
Qui=Try [T(Ectie)e™(7)].

koh:
dr

7?2 2ah?
Following Sears, we adopt the Fermi pseudopotential to de- - 2m Axt P(x)) [ p(X)=ES(x),
scribe the neutron nucleus interaction in impulse approxima- (3.6
tion; let us recall the form of th& matrix in the context of
the elementary theory of dispersion, which, remembering that the average particle density
, (Elrée(x—Ri» is given in second quantization by
27rh P (X) (X)), is exactly the equation used by Sears to de-
E baE S*(x-Ry), 3.2 <scribe all c>oherent neutron optical phenomena, here recov-

ered in a straightforward, alternative way, though in a very
whereX is the position operator for the neutrdR, the posi-  different framework. The term
tion operator for theith nucleus of typea, b, the bound )
scattering length, depending on isotope and spin orientation, 2mh
m the neutron mass$\, the number of nuclei of type. An

——b(y () p(x)
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is called the optical potential, and assumes different expregnedium, showing the interest of similar descriptions also for
sions according to the structure of the system. If the mediunatom optics. In the case of thermal neutrons the scattering
can be considered homogeneous, with density Eq. (3.6) amplitude is isotropic within a very good approximation and
describes propagation of matter waves with an index of reis given in terms of the scattering length by the simple for-

fraction given by mula f=—b, which reduces Eq3.9) to Eq.(3.7).
5 12 ) So fr_:lr we have shown how, starting from E8.7) an_d
n— ( 1— 2mh bn ) _1_ AT bn 37 neglecting the incoherent term, we can recover some impor-
mE ~ ° 27 ' tant results obtained within the framework of multiple-

scattering theory and used to describe the coherent interac-
as first obtained by Goldberger and S¢t3] in the absence tion of neutrons with matter. Our formalism puts into
of absorption. This is the formula currently used to calculatesvidence the statistical operator of the macrosystem Tthe
phase shifts in neutron interferometry experimeits matrix and the scattering amplitude, so that phenomenologi-
cal inputs are rather direct. Further improvements of the for-
mulas obtained are allowed by the presenceo®{r) and
depend on its evaluation. The correction factothat Lax
includes in Eq.(3.9) to obtain the index of refraction

ei)(:ei(n—l)(ZW/)\)D:e—inob)\D' (38)
whereD is the thickness of the sample.

In a similar way, from Eq(3.1) we can obtain a more
general formula for the refractive index introduced for the A2
first time by Lax[12]. Starting from the general expression n=1+— n,cf(0,E,),
(2.12), the potential term in Eq3.1) becomes 2m

is connected to fulfillment of the optical theorem, which, in
2 Quen(n=2 Ty, J d3XJ By ¢ (Ui (y) our formalism, as we will see in Sec. IV, is related to the
f f presence of the incoherent contribution.

Xt(Ext+ie,x=y)ue(y) ¢(x)0™(7) Qn( 7).

Following Lax, we suppose that the system is homogeneous,

IV. INCOHERENT CONTRIBUTION

so that We now come to the main statement of this paper, the
connection between the contributions other than the commu-
TrHF[:,bT(x) y(x)e™(7)]=n,. tator in Eqg.(2.10 and the dynamic structure function, to-
gether with the relevance of this relationship to the optical
We have theorem. As observed by Sears, an expression of the form

(3.7) or (3.9 for the refractive indexdoes not include the
> —n,S | d¥ t(Eti contribution to the attenuation of the coherent wave in the
2 Quiem(7)=No X U(Etiex) medium due to diffuse scattering and, hence, violates the

“optical theorem” of scattering theory5,3,18. To over-

< | gy u* come this difficulty, he refrained from ad hoc assumptions as
y Uk (Y)ur(y)@n(7) in Ref.[19], which amount to introducing a suitable imagi-
nary contribution to the potential, and considers a rigorous
=n, | d3 t(E+ie,x , theory of dispersion. In this more accurate treatment, Eq.
Of (Bctiex) el (3.2 is replaced by

where we have exploited the orthogonality between the 2h2
states{u;s}, thus obtaining the matrix element of tieop- T=

erator for forward scattering, averaged over the possible
states of the macrosystem. Taking the relation betweefi the
operator and scattering amplitude into account, we come t

NLY
2 fa2, SRRy,

m

demdfa has the general expressiéhis the incident neutron

momentum
hZ
-n f(O,E . i
0 (0EWen(7) fa=—ba+%kbi+0(k2),
Inserted in the Schainger equation, this term is equivalent . ]
to an index of refraction of the form where the second term had been previously omitted because
of its smallness, since typically (1) kb<10 “. Further-
2 12 A2 more, the scattering amplitude is to be multiplied by a con-
n={1+ mE Nof(0.EK) | =1+ 5— nof(0.E), stantc which should take local-field corrections into account

(3.9 and whose value depends only on the temperature, density,
and chemical composition of the medium. Sears obtained an
simply linked to the forward scattering amplitude. An analo-estimate for this constant in terms of the structure function of
gous result holds for electromagnetic waves propagating in the macroscopic scatterer in the case of an homogeneous
material with low density15]. A similar treatment has been medium, applying a multiple wave formalism to solve the
proposed 16] and adoptedsee, for example, Refl17]) in  scattering problem, and drawing strong analogies to the usual
the description of the propagation of atoms through a dilutedescriptions of propagation of electromagnetic waves. In this
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way he recovered a correspondence between the attenuatithgether with the following expression for the density num-
of the coherent wave in the medium and diffuse scattering. liber operator in terms of creation and destruction operators
the following we shall sef ,=f Va and consider only real Wwith specified momentum:

b, in order to concentrate upon diffuse scattering, neglecting 1

absorption. By diffuse scattering we intend all scattering that _ ot - —(ilh) i xp T

is not coherent in the absolute sense, that is, elastic and co- NCO=¢ ()9 (0=y ;» € D5 (a2 P2
herent(for the distinction between absolute and relative in-
coherence see for exampl8,12]). To compare with these
more refined results we have to consider all contributions in i 1 -

Eqg. (2.10. Let us stress from the very beginning some gen- Lxg:g ‘/2877‘;t v 2 j dr e (sf)r
eral features of this expression, thanks to which it can de- xP JO

scribe more general physical situations than those arising in

we obtain

an evolution driven by a Schdinger-like equation. The last xf daf d3x"e™ (#Mogm iRyl (5 x"—X)
two terms 0
Loy o] 1 . Xe(i/ﬁ)l:lore—(i/h)x‘x”<)\|e—(i/h)Hmr
IS Lot = D Lol (4.1) -
h [ ? [ MRS ] h EX MR X b;rhr(K/Z)bP—(K/z)e('/h)HmT| §>,

allow for the presence of a non-self-adjoint potential whichwhereV is the volume of the region in which the system is
is nevertheless not linked to real absorption. This is the casg4PPosed to be confined. Indicating biE, «) the Fourier
for the present treatment, in which the imaginary part of thgfansform of the potential with respect to space

optical potential is to be traced back to the existence of dif-

fuse scattering, as opposed to the coherent wavelike behav- T(E"‘):f d3x t(E,x)e” (i1mex

ior. Attenuation of the “coherent wave” is due to the pres-

ence of the anticommutator term, responsible for thQand after some Simp|e manipu|ations one comes to
imaginary potential, balanced by the last contribution, typi-

cally incoherent in that it leads from a pure state to a mix- N [ 1 o B —~

ture. This last term is given by a sum over subcollections, ~ Lae=7 V2eTe KEP fo dr e “ME(Hy+ie, k)
formally similar to the expression that we would obtain for '

the statistical operator after the measurement of a given ob- ¢ @i/m) (12m) m (i1 (se- pIm) 7

servableg(see Ref[7]). The subcollections are denoted by the i

indexes\¢, which specify a change of the state of the mac- x g~ (IM)mex

roscopic system, caused by interaction with the microsystem, (Mt (H T
thus making this contribution to the dynamics incoherent. In X(\|e "Dpt (xi2)PP— (x12)€ "1é),

fact, we will see in the case of neutron-matter interaction tha{0 be inserted into Eq4.1). Before doing this let us intro-
the trace of this term gives all the contributions to incoherenyy e the useful notatiéﬁ |

scattering, that is, the total diffusion cross section. The bal-

ance between the two terms of E@.1) accounts for the ) _ )

fulfiment of the optical theorem. e (MHmAgIMHmT= > o= (AL A)
To see this let us now consider E@.1) in more detail. A

Starting from Egs(2.8) and (2.11), introducing a Laplace

transform for the energy dependence of the effeclivea- (A)A:; |E+AYE+A|AIENE],

trix

(A)f=(AT)_,.

t(E,X)=J do e(i/ﬁ)EUFU,X),
0 We have

1 A Aaa 2e * ) . A i e A
g L)\§QLI§: W E E dr e*(s/ﬁ)Te(l/ﬁ)(Kz/Zm)Te(I/ﬁ)(K-p/m)Tt(Ho+i87K)e7(I/ﬁ)K~XQe(I/h)K Xt T(H0+|8,K’)
3y P prJo

> f dr'e (M7 o= (i) (k' 22m) 7’ o —(ifh)(x - pim) 7/
0

—(ilh)A T T VNE
X 2 e (/M TTrHF[(bp+(K/2)bP—(K/2))AQm(bpr_(Kf/z)bP'Jr(K'/Z))—A']e' T,
AA
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and similarly for the anticommutator part. An important sim- where
plification takes place if one can use symmetry under time

and space translations. Time translation invariance occurs if,

at least with reference to the interaction with the microsys-

tem, matter can be considered at equilibrium; then

oV (k,A)=Try_

+
; bP+(K/2)bP(K/2))

A

Try (As@™B_a1)=6xar Try (A@™B_y). xeo™ . (42

+
; bP—(K/Z)bP+(K/2>)

—A
Similarly, space translation invariance implies o
) ; or, equivalently, introducing the, p-dependent amplitude
TrHF[(bm(K/z)bp—<K/2))AQm(bpr,(Kr/g)bpr+(K'/2))—A'] A A ) R ) .
) t(Hotie, i) =" *t(Hy+ie,r)e (1)ex
=050 O ! TrHF[(bP+(K/2)bP—(K/2))AQm

N in the form
X(bP’f(K/Z)bP"F(K/Z))*A];
1 ~ ey A R e
such a symmetry can be implemented at equilibrium in the- V2 E o tT(Hotie, k,X) 5 2 5
thermodynamic limit, and can be practically assumed for a A (K_p_ — A +g2
microsystem interacting with a homogeneous portion of a m  2m
macrosystem. Then one has, also the’ integrals perform- . .
ing, Xt(Hot+ie,,,X)—2se” M (Hy+ie, k,X)
1 AL A~ 1 A 1 - 1
_ )t T Z T X — ~
7 {2% Lyebae @ +ﬁ g LyeoLy xp . (% P _
’ ’ ————-A+ie ————-A-ie
1 m 2m m 2m
:_iz Qe(llﬁ)KX el A . R
V2 & ’ Kp K _ X1t (Hg+ie,se,x)ell/MeXoM (e A). 4.3
F'f’ Z——A—IS
A . Introducing this explicit representation in E&.10), one ob-
X T (Ho+ie,w)t(Hot+ie, k) tains the typical master equation of Brownian motion, that
can be further simplified in the assumption of small momen-
% 1 o (i) tum transfer, i.e., expanding the expression with respect to
Kp K _ x-X and k- p. Exploiting the fact thatp™(0,A) contains a
m T ﬁ‘A*"S da o factor, one can immediately see by inspection that the
x=0 contributions cancel each other, provided the effective
1 ~ . < T matrix is a slow function of energy,
252 TP +is, ke 1M o
m Tam At (Kl 0| FT(E,OJT T(Er,0~(K|e|f)3[ t "(E}.0/t(E,,0)
TP ot Phe 1 Tt = :
Xge(llﬁ)K.xtT(Ho‘i‘iS,K) Kf) K2 +t (Efvo)t(Eflo)]y
o TATle on the other hand, for a homogeneous medium #ke0
contributions are equal to those obtained by writing the cor-
xoM(k,A), relation function as a factorized product

T T
Try, (EP: bp+<K/z>bP<K/2>) Qm(; bp—<,</z>bP+<K/2>)
A

—A

— TrHF TI’HF

( 2 bL(K/z)bPHK/z)) o™
P —A

+
2 bP+(K/2)bP—(K/2)) o™
P A

provided we assume the condition of “normal density fluctuationgN?%) — (N)?)/V2<n2. Instead of restricting the sum to

the «#0 contributions, we can therefore subtract from the correlation function its factorized part. After straightforward

manipulations, using

. dt .
S b b o= | X WO0U0CTE T [(A),07(B) 1= [ 5o e UBAD),

we come to
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TI’HF - TI’HF

Qm(; b;—(K/z)bPHK/Z) (Epl bL+(K/2)bP(K/2)) e™

A

+
EF; bP+(K/2)bP7(K/2>

A —-A

X TrHF

+
2 bp(Klz)bP+<K/2)> o™
P —A

dt ,
=f _277ﬁ ef(llh)Atf d3xf d3y e(llﬁ)K'(Xfy)<5N(y) 5N(X,t)>,

where

(N(X))=Try [N(x)e™],  SN(x)=N(x)—(N(x)),

and, finally,

SN 1 o e o ) 1 o )
2 ! T = 1h) e + o~ _
_[552 L)\§L}\§ve +%§ L)\gel—)uf—_hvz = Q,e(| ) XK.EJ '(2 . t (HO+|81K)t(H0+|8,K)
mtom AT
1 _ o
= e (ilh) _2 - t(HO+|8,K)
m 2 € m 2 e
x e~ (I35 ST g, se) — 1
Kkp K
—+t-=—A-ie
m  2m
dt _
XJ oai® f d f dy e1M% X SN(y) SN(x+Y.1)). 4.4

Thanks to the last term of E@2.10), it is possible to take into account collisions that modify the state of the macroscopic

system(see Ref[7]). The probability per unit time of such collisions is given by the trace ﬁ)fﬁémﬁkfé IA_Ig, as seen in Sec.
II. In the case considered this trace may be written as

2
i’ZT = ﬁ)“ f d3kf d3K<K|Q|K>r(Ek,K—k)|2J dtJ d3xe~ (i1#)[ (#12m) — (K212m) Tt + (i/7) (k= K) - xJ d3 —(5N y) SN(X+Yy,1)),

(4.9

thus again recovering the van Hove structure for the scattering cross dectiopare Eq(2.13)], with the difference that now

the system is considered to be homogeneous, so that only the momentum distribution of the incoming microsystem is of
relevance. Let us observe that subtraction of the uncorrelated part of the response function accounts for the fact that only
diffuse scattering, that is, scattering that does not leave the macroscopic system un¢Bangmuributes to this term. We

now specialize to the case of neutrons, adopting the Fermi pseudopotential given 8ydEo that Eq(4.5 becomes

o

1 b?
7 Mo = fdskf d3K<K|Q|K>S( [r—K], ﬁ[Zm om (4.6)

where, denoting by andq energy and momentum transfer, respectively,

S(q,w)= dtf d3x e 1(@t=a%) f d3y( SN(y) SN(x+y,t)). 4.7
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If the momentum distribution of the incoming particle is suit- whereq denotes as usual the momentum transfer. Neglecting
ably peaked aroung, with respect to the momentum depen- diffuse scattering we would hawé= (27%2/m)n,b, simply

dence ofS., we have, from Eq(4.6), ac number giving the usual refractive index; the remaining
b? 1 part is, in a sense, induced by the optical theorem. To com-
Mo 3 J 3 p ( ) pare with the results derived by Sears we have to consider
k —[po—k -
hm? J d drxfe] S, h [Po= K], wp, ~ @ the expression obtained for the static lit9) applied to a

plane wave of momenturp,, which gives an idealized de-

nob? f (1 ) L ; : : ;
_ a3k S. | = [po—K], e, — , scription of the preparation of the incoming microsystem,
fim? o | 7 [P0 Kl wp,~ o thus leading to

in particular, in the static limit, expressida.6) becomes 27h2

~ b2
0=""" nglb—i —— 20
m

=2 dnqsaq)}; @10

10?22 [ d0sia=n,2a,,
m q m . . . : .
this expression agrees with the results obtained relying on
where the idea of local-field correctiontsee Ref.[3], Chap. 4
however, here Eq4.9) is a direct consequence of the equa-
1 s iax [ 3 tion driving the dynamics and of ansd.11). The analysis

S(@=5 f dx €' f dy(SN(y) SN(x+Y)), that we put forward relies on the assumption that the main
contribution to the dynamics is given by the commutator

and we have denoted lsythe momentum transfer and by,  termin Eq.(2.10, while the terms in Eqi4.1) may, as a first

the total diffusion cross section per particle. This is the resulg@pproximation, be neglected. This leads to an optical de-
derived by Sears for the attenuation of the coherent bearpcription, as for the case of neutrons, in which, considering
due to incoherent scattering, which he obtained by an evalthe dimensionless parameter #£2°/mE)nyb, the terms
ation of the local-field effects, neglected in the equation giv-other than the commutator are of second order. The opposite
ing the optical neutron dynami¢8.6) (see Refs[3,5,19). In situation takes place if the interaction is such that the main
our approach, however, the incoherent contribution is alcontribution is given by Eq4.1), while the commutator may
ready present in the equation giving the dynamics of thd€ neglected. This happens when dissipative effects are pre-
microsystem, being connected to the thermodynamic propedominant, as in the case of Brownian motion mentioned be-
ties of the macrosystem through the response functiodW Eg. (4.3), where incoherent interactions through colli-
S.(g,w). This new feature is obtained by means of the moresions involving energy and momentum transfer play the
general formalism adopted, leading to a master equation dhain role, a case we intend to deal with in a future paper.
the Lindblad type for the statistical operator, in which due to

the optical theorem a close correlation exists between the V. EXPERIMENTAL IMPLICATIONS

incoherent contribution and the imaginary part of the optical ) ) )
potential which is not connected to absorption. To see this We now address our attention to potential experimental

correction to the optical potential let us exploit the simpleimplications of the above-introduced description of neutron-
relation matter interaction. Of course possible new features in the
dynamics are linked to the presence of the last two terms on
A=A'!  B=B the right-hand-side of E¢2.10, as given by Eq(4.4), and
such corrections will be generally small, being of second
order in (2rA2/mE)n,b [typically (27A2/mE)n,b<10"°
at thermal neutron energipdn this respect interferometric
and write the commutator and anticommutator term of EqEXPeriments, in which the experimental setup is conceived in
N order to enhance the coherent behavior, should be particu-

(210 in the form —(i/k)(Ue — U"). The calculation ofJ Cﬁrly relevant; think, for example, of the beautiful experi-
is essentially given by the anticommutator on the right-hanq, ants realized by the Rauch group in Wien exploiting the
side of Eq.(4.4) and the commutator in E@3.5. In the case perfect crystal neutron interferometdr,2,14.
of the Fermi pseudopotential, using Eg.7), one has Now consider Eq(2.10: the map on the right-hand side
is affine and trace preserving, and therefore clearly predicts
f d3k|k)(K]| neutron conservation. Nevertheless the last contribution
which offsets the anticommutator term is linked to diffuse
K 1 172 K scattering: one has neutron conservation if diffuse particles
X f d“"‘f dQ, — sc(— [k—K], — [—— —}” also contribute to the experimental observation. This is not
h h fil2m  2m so for interferometric experiments. In such cases only the
(4.9 wavelike behavior affects the observed dynamics, and thus
only the commutator part of the evolution map is of rel-

U=A+iB = Ug—oU'=[A,0]+i{B,0}

b2
b—i E

-~ 27h?
U= e N,

or, in the static limit, evance: the net result is an imaginary correction to the co-
) ) herent scattering length as in E@.10, that is to say a

O 27h 0l p—i b_ f o3| k)<k|5 J' 40, S.(q) reduction of the neutron flux responsible for the interference

m ° 41 h ave ' pattern. This fact is usually taken into account by adding an

(4.9 imaginary part proportional to the total scattering cross sec-
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tion o, to the phase shift calculated as in E&.8), thus 0, r<a
including both absorption and diffuse scatterifspe Refs. g(r)= 1, r>a.
[2,20]) according to the formulas
The quantity of interest for us igl in its dependence from
the maximal angular acceptangedetermined by the experi-
mental apparatus, multiplied by the time the neutron takes to
go through the sample. Supposing the momentum distribu-
. ] tion of the incoming particle is sufficiently well peaked
exp(|X)=exr( ~inebAD—ne01 5 |. aroundp,, we rewrite A introducing the expression given by
Eqg. (5.1) and multiplying by the time interval, thus coming
In the absence of absorption this correction is consideretP
negligible, and the relevant incident flux is often evaluated
simply closing one of the two beam paths. This attitude is, .
however, at least in principle incorrect, as it appears taking @ . 2mnya
the whole dynamics as given by E@.10 into account. In A(g) =2moh’D fo df singy 1- (1-cos6)
fact, when one closes the path without the sample, diffuse
neutrons, which are lost for the interference pattern, having

D
x=x tix"= —nob)\D‘HnoO'tE,

i 2

apo

their path “labeled” by scattering with the sample, may also [a

contribute to the transmitted intensity. The experimental de- Sln(% V2(1-cos)
vice no longer acts as an interferometer, and therefore cannot X

select only those neutrons that have undergone coherent in- aPo 2(1— cosh)
teractions. This additional contribution to the transmitted fi

neutron flux is given by the trace of the last term of Eq.

(2.10, that is to say by Eq(4.6). In calculating the ampli-

tude of the interference pattern one should therefore rely not _ ap, —————
simply on the measured transmitted flux, but on this quantity cos( h 2(1~cos) '
minus the additional incoherent contribution given by Eq.

(4.6), thus obtaining a reduction of this amplitude: the purely

“optical” treatment leads in principle to an overestimate of where cog=(p,- k)/pg. The primitive of this integral can be
the V|S|b|l|ty of the interference pattern. This is norma“y not Straightforward'y evaluated by a Change of Variab'esl and

the case in real experiments, since the angle of acceptance é))]ZpIoiting the fact that in our mode,(0)=1— % wa®n,,
diffuse neutrons is very small, as for the perfect crystal neu- h licit tat £ dliff tteri ¢
tron interferometer. Let us give some quantitative estimatef’® av_e an explicit representation ot difiuse scattering at any
of the aforementioned effect. angleg:

In order to evaluate Eq4.6) we have to make a definite

choice for the structure functid®.(g, ), in fact Eq.(4.6) is
given by A(@)=2mn,b?D{ (1—cosp)+3[1—S.(0)]

1 A
A=—Tr L, oLl
7 H(l)g 2@Lhyg

2 sin(% \/2(1—co&p))

_nob” fd3kf Bk (x| k) X - -1 ;
=—— a a
fim Po % J2(1—cosp)
1 1/ K
XS % [re—k], Zl2m 2ml/)’ considering in particular smad, the expression may be ap-

proximated as
where the quantity4 takes diffusion at any angle into ac-
count. In the static approximation, for a homogeneous and
isotropic medium, such as a liquid or a gas, one l&s

1 apo\?
%[1—5(:(0)](7)

A(p)= Wnosz{ ®2S,(0) + ¢*

Se(0 @) =S(a) 8(w), —%ZSC(O) +O(¢6)]-
B 3 igr Let us now consider the experiments performed using the
SC(Q)_1+n0f d°r e [g(r)—1], (5.1 perfect crystal interferometer. The angular acceptance is very
small, only a few microradians for thermal neutrdrX].
where g(r) is the pair-correlation function. A possible Taking, for instance, a gaseous sample, an order-of-
choice forg(r), allowing S;(q) to be evaluated analitically, magnitude estimate gived(¢)=10 14 that is to say an
is the following, valid for a dilute hard sphere gas with extremely small quantity, in agreement with the accuracy
atomic diametea: obtained using this interferometer based on Bragg diffrac-
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tion. An interferometer based on a different physical prin-from Eq.(2.7) we obtain, neglecting the incoherent contribu-
ciple could possibly lead to a higher angular acceptance, thu#on, the equation used by Sears to describe all neutron opti-
enhancing this effect connected to diffusion. In view of thecal phenomena, as well as known expressions for the index
next equation5.2), a completely different situation arises if of refraction. The incoherent contribution is necessary to ful-
one considers systems with abnormally large density fluctudill the optical theorem and take diffuse scattering, that at-
tions, as would be the case near a first-order phase-transitiolghuates the coherent beam, into account. We have also
Another point of interest is the linear dependence onShown how it may be connected to properties of the macro-
S.(0) of the leading term inA(¢). The quantityS,(0) is  SyStém, as expressed by the dynamic structure function. Fur-
particularly relevant from the physical point of view, being thermore possible experimental implications were discussed

connected to the isothermal compressibility and to the in Sec. V.

. ) . ) . Even though it introduces a smaller correction the inco-
fluctuations in the number of particles in the samaie]. herent contribution is very important from the theoretical

W point of view. We expect that it will help in studying the
Se(0)=n kg Tx7= (5.2)  tricky borderline between a pure optical wavelike behavior
N and the fully incoherent particlelike one, based on a diffusion

, equation: in fact, Eq(2.10 leads in a direct way to the
The actual value of5,(0) cannot be measured experimen- theory of Brownian motion, as stressed under Eg3): a

tally from scattering experiments, and has to be obtained byomewhat similar treatment, in the case of an ideal gas, was
an analytical continuation. The analysis we propose couldjiven in Ref.[23]. It is not surprising that the incoherent
provide an independent way to meas8geatq=0. Infactin  contribution to the dynamics has grown out of a thoroughly
the static approximation, independently of the part'CUIarquantum-mechanical treatment, as shown by the typical
form of S(q), for very smallq|, that is to say for very small quantum-structure of the Lindblad equation, relying on non-
¢, one has, in a good approximation, commutating operators, in which an essential role is played
_ 2 2 by the statistical operatar, rather then by the wave function
Al@)=mnbDS:(0)¢". . This point is of central relevance, since the terms which
The value ofS.(0) could then be obtained, at least in prin- describe the incoherent dynamics cannot be introduced in the
ciple, comparing the amplitude of the interference patterrformalism of the wave function, and are therefore unavoid-
with the measured transmitted intensity. ably absent in an optical-like treatment, simply reminiscent
of classical optical descriptions.
We hope that this study of the emergence of incoherence
in neutron-matter interaction will lead to a better understand-
The example of neutron interaction with matter has beering of the general problem of irreversibility and of descrip-
discussed inside the approach outlined in REfs:9] to de-  tion of nonequilibrium systems. Typically, coexistence of an
scribe the subdynamics of a microsystem interacting with ancoherent particlelike behavior, described by a quantum
system having many degrees of freedom. The formal schemBoltzmann equation, and a wave-function description by
leads to a generator for the irreversible time evolution of themeans of Gross-Pitaevskii equation, is important for under-
Lindblad form, whose expression relies on suitable choicestanding Bose-Einstein condensati@#]. In Refs.[8,9] it
for the potential term related to the matrix and the statis- was shown how the formalism we used in the present paper
tical operator describing the thermodynamic state of the syssopes with the more general problem of nonequilibrium
tem. In the example considered the main ingredient is givemacroscopic systems. However, a systematic treatment of
by the Fermi pseudopotential adopted to describe théreversibility in the very similar problem of atomic interfer-
neutron-nucleus interaction in impulse approximation. Therometry involves QED and is a future challenge.
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