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Engineering two-mode interactions in ion traps

J. Steinbach, J. Twamley, and P. L. Knight
Optics Section, Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

~Received 8 April 1997!

We describe how two vibrational degrees of freedom of a single trapped ion can be coupled through the
action of suitably chosen laser excitation. We concentrate on a two-dimensional ion trap with dissimilar
vibrational frequencies in thex and y directions of motion and derive from first principles a variety of
quantized two-mode couplings, concentrating on a linear coupling that takes excitations from one mode to
another. We demonstrate how this can result in a state rotation, in which it is possible to transfer the motional
state of the ion from, say, thex direction to they direction without prior knowledge of that motional state.
@S1050-2947~97!05711-9#

PACS number~s!: 03.75.Be
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I. INTRODUCTION

In recent years, advances in the cooling and trapping
ions have led to a situation in which the center-of-ma
~c.m.! motion of trapped ions has to be treated quantum m
chanically@1#. This motion can be coherently controlled b
coupling the ion’s external and internal degrees of freed
through laser irradiation@2–6#. Systems of trapped ions hav
been employed to demonstrate experimentally the genera
and measurement of nonclassical states of the ion’s c.m.
tion @7–10#. Furthermore, trapped ions have been used
implement quantum logic gates@11–13#.

Most of the previous investigations have focused on
one-dimensional quantum motion of trapped ions. Recen
Gou et al. @14–18# considered the generation of particul
two-mode states of an ion. In this paper we address the i
of how to engineer a class of interactions between two of
quantized motional degrees of freedom of a single trap
ion. We assume that the ion is confined within a trap pot
tial that can be closely approximated by a two-dimensio
harmonic well. In this case the c.m. motion of the ion
completely equivalent to that of a two-dimensional harmo
oscillator, characterized by two frequencies of oscillationna
andnb in orthogonal directionsx andy, and the correspond
ing operatorsâ† (â) and b̂† (b̂) create~annihilate! vibra-
tional excitations in thex and y directions. The interaction
that we want to engineer is of the parametric form

ĤI5\$gâ†kab̂kb1g* âkab̂†kb%, ~1!

where ka and kb are positive integers andg is a complex
coupling constant. In particular, we note that the powerska
andkb can be independently controlled to take on any po
tive integer numbers and the phase of the coupling cons
g is freely adjustable. To give specific examples of this cl
of interaction between the two vibrational modesa and b,
we address the two coupling Hamiltonians

ĤI
~1!5 i\g$â†b̂2âb̂†%, ~2!

ĤI
~3!5\$gâ†3b̂1g* â3b̂†%. ~3!
561050-2947/97/56~6!/4815~11!/$10.00
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The Hamiltonian~2! generates an active rotation of the tw
dimensional quantized motional state of the ion at a f
quencyg, whereg is real. HereĤI

(1) is the kind of Hamil-
tonian associated with a linear coupler or beam splitter
optics~see, e.g.,@19# and references therein!. There a photon
in modea is annihilated and a photon in modeb is created,
and vice versa. In a trapped ion, vibrational anticorrela
SU~2! states of motion characteristic of this kind of line
coupling can be generated@14#. The linear couplingĤI

(1)

makes it possible to transfer the motional state of the
from, say, thex direction into they directionwithout prior
knowledgeof that motional state and irrespective of wheth
it is a pure or a mixed state. In the situation in which o
may want to use the quantized motion in thex direction for
quantum computation@11–13#, perhaps later entangling th
quantum state of motion with internal electronic states, thy
direction can then be employed as a quantum memory
ment. Note the key point here is that states of motion in
x direction can be transferred entirely to they direction with-
out reading out their nature entirely nondestructively. T
Hamiltonian ĤI

(3) is of the three-photon down-conversio
kind: In optics, it represents a process in which one pu
photon in modeb is annihilated and three photons in modea
are created, and vice versa. This process is known to
highly peculiar: Unlike its two-photon down-conversio
counterpart, quantization of the pump is essential to av
pathological divergences@20#. These are avoided in a fully
quantized treatment, where the pump and down-conve
field modes become highly entangled@21#.

In Sec. II we first introduce a two-mode Raman transiti
that couples the electronic and motional degrees of freed
of the ion. Choosing the initial state of the ion to be a dire
product of an arbitrary motional state and a specific el
tronic state, we then decouple the electronic and motio
dynamics of the ion through a particular configuration
laser beams~Sec. III!. In the Lamb-Dicke approximation an
in the limit of suitable trap anisotropy we obtain the abo
Hamiltonian~1! for various sideband detunings of the lase
We then examine the severity of the approximations mad
obtain the Hamiltonian~1!. In Sec. IV we obtain analytica
estimates regarding the effects of off-resonant and hig
on-resonant processes. In Sec. V we specialize to the
4815 © 1997 The American Physical Society
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ka5kb51 and show that the HamiltonianĤI
(1) rotates the

motional quantum state of the ion. Finally, we perform
numerical analysis of the complete quantum dynamics
find that the Hamiltonian~2! can be accurately engineere
over a range of parameters.

II. GENERAL TWO-MODE RAMAN COUPLING

In the following we describe the Raman coupling that
use to engineer the Hamiltonian given in Eq.~1!. We con-
sider an effective three-level ion in aL configuration, con-
fined within a two-dimensional harmonic trap as illustrat
in Fig. 1. The trap is characterized by the two frequenciesna

andnb , which describe the harmonic potential in thex andy
directions, respectively. As shown in Fig. 1, the ion is e
cited by two linearly polarized laser beams that propagat
the x and y directions connecting levelsu1&⇔u2& and
u2&⇔u3&. These beams are far detuned from the excited s
u2& in order to generate a stimulated Raman transition
tween the two statesu1& andu3&. We assume statesu1& andu3&
to be ground-state hyperfine sublevels.

We do not include decoherence effects in our model
the following reason. The Raman coupled energy-le
scheme greatly suppresses the spontaneous emission
tween the two ground-state levelsu3& and u1& as these state
are coupled byM1 andE2 transitions at best. At the sam
time we neglect the effects of spontaneous emission f
level u2&, as the coupling to the excited state can be eff
tively eliminated over the time scales of interest to us h
when the laser beams are far detuned. Another sourc
decoherence in ion trap experiments is classical noise in
laser beams and trapping potential. This may be descr
using so-called intrinsic decoherence models~see, e.g.,@22#!
of dephasing. The effects of this kind of decoherence h
been seen in a recent experiment by Meekhofet al. @7#.

FIG. 1. Two-mode Raman transition that couples the electro
and the two motional degrees of freedom in thex andy directions.
The effective three-level ion shown in~a! is confined within a two-
dimensional harmonic trap. As illustrated in~b!, two laser beams
propagating in thex andy directions generate a stimulated Ram
transition between the ground statesu1& and u3&.
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However, they expect to reduce decoherence from class
noise sources significantly in future experiments@23#. We
thus do not include any decoherence effects in our mode

Treating the laser excitations classically, the two elec
fields are described by

EI12~ x̂,t !5eI 12$E12e
2 i @k12x̂2v12t#1H.c.%,

EI23~ ŷ,t !5eI 23$E23e
2 i @k23ŷ2v23t#1H.c.%, ~4!

whereeI 12 and eI 23 are polarization vectors,k12 and k23 are
wave numbers, andv12 and v23 are the frequencies of th
lasers. We assume the laser phases to be absorbed i
complex amplitudesE12 and E23. In dipole approximation
this leads to the Hamiltonian

Ĥ5\v1u1&^1u1\v2u2&^2u1\v3u3&^3u1\na~ â†â!

1\nb~ b̂†b̂!2DI 12•EI122DI 23•EI23, ~5!

where we have denoted the dipole moments of theu1&⇔u2&
and u2&⇔u3& transitions byDI 12 andDI 23, respectively. The
frequenciesv1 , v2 , andv3 are associated with the energie
of the electronic statesu1&, u2&, and u3& and the operatorsâ
(â†) and b̂ (b̂†) are the annihilation~creation! operators for
vibrational quanta in thex andy directions. These operator
are related to the position of the ion in thex-y plane through

x̂5Dx0~ â1â†!,

ŷ5Dy0~ b̂1b̂†!, ~6!

where Dx05(\/2nam)1/2 and Dy05(\/2nbm)1/2 are the
widths of the ground state in the two-dimensional harmon
oscillator potential in thex and y directions andm is the
mass of the ion. If the laser beams are sufficiently far
tuned, i.e.,

uD12u,uD23u@ug12u,ug23u,uD122D23u, ~7!

the two ground statesu1& andu3& are coupled via a stimulate
Raman transition and the excited stateu2& can be adiabati-
cally eliminated. In the above inequality we have defined
laser detuningsD125(v22v1)2v12 and D235(v22v3)
2v23 and the dipole coupling constantsg125^1uDI 12
•eI 12u2&E12/\ and g235^3uDI 23•eI 23u2&E23/\. As described
in the Appendix, the adiabatic elimination procedure leads
the Hamiltonian

Ĥ5\ṽ1u1&^1u1\ṽ3u3&^3u1\na~ â†â!1\nb~ b̂†b̂!

2\g13e
2 i @k12x̂2k23ŷ2~v122v23!t#

^ u1&^3u

2\g13* ei @k12x̂2k23ŷ2~v122v23!t#
^ u3&^1u, ~8!

where we have dropped the term describing the free ene
of the excited stateu2& as in the far detuned limit~7! the

ic



te
ta

ti

in

-
o
to

o
d
c
o
t

e
n

be

t
on
b

,

n

n
ga-

ire a
t

rst
the
un-

-
ms
that
e

e
ting

that

ns
ics

e

ed

d
e

56 4817ENGINEERING TWO-MODE INTERACTIONS IN ION TRAPS
excited state is no longer connected to the two ground sta
Furthermore, we have defined the Raman coupling cons

g135g12g23* S 1

D12
1

1

D23
D ~9!

and the energies\ṽ1 and\ṽ3 of the ground state levelsu1&
and u3&, which are Stark shifted as a result of the adiaba
elimination of the excited state, are

ṽ15v12
2ug12u2

D12
,

ṽ35v32
2ug23u2

D23
. ~10!

In order to proceed, we will consider the Raman coupl
Hamiltonian ~8! in the interaction picture of
Ĥ05\ṽ1u1&^1u1\ṽ3u3&^3u1\na(â†â)1\nb(b̂†b̂) and
transform to the new Hamiltonian

ĤI5eiĤ 0t/\~Ĥ2Ĥ0!e2 iĤ 0t/\. ~11!

In doing so and replacing the position operatorsx̂ and ŷ by
Eq. ~6! we obtain the interaction Hamiltonian

ĤI52\g13 expF2
1

2
~h12

2 1h23
2 !G u1&^3u

^ (
m,m,n,n

~2 ih12!
m1m

m!m!

~ ih23!
n1n

n!n!
â†m

amb̂†n
bn

3exp$ i ~na@m2m#1nb@n2n#1D13!t%1H.c.,

~12!

where we have defined the Raman detuning

D135v122v232~ṽ32ṽ1! ~13!

and the Lamb-Dicke parameters in thex and y directions
h125Dx0k12 and h235Dy0k23. The square of the Lamb
Dicke parameter gives the ratio of the single-photon rec
energy to the energy-level spacing in the harmonic-oscilla
potential.

III. SPECIFIC COUPLING SCHEME

In this section we construct a particular configuration
Raman lasers to decouple the electronic and motional
namics of the trapped ion for suitably chosen initial ele
tronic states. This is done by symmetrically combining tw
Raman transitions as described below. We then obtain
Hamiltonian~1! in the Lamb-Dicke approximation and in th
limit of suitable trap anisotropy for specific sideband detu
ings of the lasers.

The electronic and motional dynamics can
decoupled in general for the HamiltonianĤI5

M̂ ^ u1&^3u1M̂†
^ u3&^1u, whereM̂ may be any operator tha

acts on the motional degrees of freedom only. This is d
through the addition of another interaction generated
ĤI85M̂ ^ u3&^1u1M̂†

^ u1&^3u. Combining both interactions
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we haveĤI
tot5ĤI1ĤI8 , so that the combined Hamiltonia

ĤI
tot5(M̂1M̂†)^(u3&^1u1u1&^3u) factorizes. For the case

whereĤI is given by Eq.~12!, ĤI8 can be generated by a
extra pair of Raman lasers with suitable detunings, propa
tion directions, and phases. To be more specific, we requ
symmetric combination of two Raman transitions, so tha

D138 52D13, ~14!

h128 52h12,

h238 52h23, ~15!

g138 5g13* , ~16!

where all quantities without primes correspond to the fi
pair of Raman lasers and all primed quantities refer to
second pair. If, for the first pair of lasers, the Raman det
ing D13 is given by Eq.~13!, then the first condition~14!
requires an appropriate choice of the frequenciesv128 andv238
for the second pair, so thatD138 5v128 2v238 2(ṽ3

2ṽ1)52D13. This is illustrated in Fig. 2. The second con
dition ~15! is satisfied by choosing the second pair of bea
to be counterpropagating with respect to the first pair, so
k128 52k12 andk238 52k23, as seen from the definition of th
Lamb-Dicke parametersh125Dx0k12 and h235Dy0k23.
Here we have neglected the differencesuk12u2uk128 u and
uk23u2uk238 u since uv122v128 u!v12,v128 and uv232v238 u
!v23,v238 . This restriction can be lifted if one chooses th
second pair of lasers to be not exactly counterpropaga
with the first. The third condition~16! requires a suitable
choice of laser phases for the two pairs of Raman beams
can be easily read from Eq.~9!.

FIG. 2. Schematic diagram of two symmetric Raman transitio
that in combination decouple the electronic and motional dynam
of the trapped ion for suitably cosen initial electronic states. In~a!,
the frequenciesv12 and v23 of the two lasers that generate th
stimulated Raman transition between the ground state levelsu1& and
u3& are chosen such that the Raman detuningD135v12

2v232(ṽ32ṽ1) is positive. The coupling lasers are red detun
with respect to theu1&⇔u3& transition. In~b!, we show the sym-
metric Raman transition to~a!. The frequenciesv128 andv238 of the
coupling lasers are adjusted so that D138 5v128
2v238 2(ṽ32ṽ1)52D13. The coupling beams are blue detune
with respect to theu1&⇔u3& transition. For the two transitions to b
symmetric we additionally require the coupling beams in~b! to be
counterpropagating with respect to the beams in~a!.
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The symmetric combination of the two Raman transitions
specified by Eqs.~14!–~16! then leads to the interactio
Hamiltonian

ĤI
tot52\H g13expF2

1

2
~h12

2 1h23
2 !G

3 (
m,m,n,n

~2 ih12!
m1m

m!m!

~ ih23!
n1n

n!n!
â†m

amb̂†n
bn

3exp$ i ~na@m2m#1nb@n2n#1D13!t%1H.c.J
^ $u1&^3u1u3&^1u%, ~17!

which factorizes. We now assume the ion to be initially in
direct product of its motional and electronic state with t
electronic state prepared asu1&5(u1&1u3&)/&. This super-
position stateu1& can be prepared from the ground stateu1&
by applying a resonantp/2 pulse (D1350) if the ion is con-
fined within the Lamb-Dicke limit, i.e.,h12,h23!1 @9#. The
dynamics generated by Eq.~17! acting on this state factor
and leaves the electronic state unchanged. This allows u
reduce the dynamics to that of the motional degrees of f
dom only and we write

ĤI
tot52\g13expF2

1

2
~h12

2 1h23
2 !G

3 (
m,m,n,n

~2 ih12!
m1m

m!m!

~ ih23!
n1n

n!n!
â†m

amb̂†n
bn

3exp$ i ~na@m2m#1nb@n2n#1D13!t%1H.c.

~18!

We now discuss the sideband detunings, which, in the La
Dicke approximation and in the limit of suitable trap aniso
ropy, lead to the desired interaction~1!. In particular, detun-
ing the two pairs of Raman lasers to specific vibratio
sidebands allows us to choose specific values forka andkb
in Eq. ~1!. Since we require the two Raman transitions to
symmetric, it is sufficient to consider the first pair of Ram
lasers. Therefore, we return to the vibronic Raman coup
Hamiltonian~12!. From Eq.~12! it is clear that by fixing the
size of the detuningD13, i.e., by choosing the frequencies
the two coupling lasers, we can tune to a resonance betw
specific vibronic levels. As illustrated in Fig. 3, we introdu
a virtual level uc& with energy \vc to help visualize the
Raman transitions between the ion’s vibronic levels. If
set v125(vc2ṽ1)2kana andv235(vc2ṽ3)2kbnb , then
with respect to leveluc& the first laser is tuned to thekath red
sideband of the ion’s vibration in thex direction, the second
laser is tuned to thekbth red sideband of the vibration in th
y direction, and the Raman detuning is

D135kbnb2kana . ~19!

This situation is illustrated in Fig. 3 for the specific examp
ka5kb51. Now, if only on-resonant terms in Eq.~12! are
retained, we havem5m1ka and n5n1kb and we obtain
the Hamiltonian
s

to
e-

b-

l

e

g
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ĤI5u1&^3u ^ (
m,n

\g~m,n!â†kaâ†m
âmb̂†n

b̂nb̂kb1H.c.,

~20!

where we have defined the coupling constants

g~m,n!52g13expF2
1

2
~h12

2 1h23
2 !G

3
~2 ih12!

2m1ka

m! ~m1ka!!

~ ih23!
2n1kb

n! ~n1kb!!
. ~21!

This is a two-mode generalization of the nonlinear Jayn
Cummings model introduced by Vogel and de Matos Fil
@4#. It is important for the trap frequenciesna andnb to be
noncommensurate to arrive at this result. This becomes c
from Fig. 3. If the trapping potential is isotropic,na5nb and
the energy levels become degenerate. Consequently, the
man transition Hamiltonian~12! contains on-resonant term
in addition to the ones retained in Eq.~20!. In the example
ka5kb51, this leads to a coupling HamiltonianĤI

}@11h2(â†b̂1âb̂†2â†â2b̂†b̂)1O(h4)# ^ u1&^3u1 H.c.,
where we have assumed the Lamb-Dicke parameters to b
the same order of magnitude,h12'h23'h. In general, if the
frequenciesna andnb are commensurate, the Raman tran
tion Hamiltonian~12! contains resonances in addition to th
ones considered in Eq.~20!. As we will show in Sec. IV, in
the Lamb-Dicke limit, the coupling constants correspond
to these additional resonances can be greatly reduced b
creasing the ratio of the trap frequenciesna /nb .

FIG. 3. Schematic diagram of the vibronic energy levels that
connected by the two laser beams that generate the stimulated
man transition. The two Raman lasers are tuned such that the
man detuningD135kbnb2kana , with ka5kb51. With respect to
the virtual leveluc&, the laser propagating in thex direction is tuned
to the first red sideband of the ion’s vibration in thex direction and
the laser that propagates in they direction is tuned to the first red
sideband of the ion’s vibration in they direction. This causes a
resonant transition between the vibronic sta
una21&aunb&bu3&⇔una&aunb21&bu1&, where the statesuna&aunb&b

denote the usual number state basis for the two-dimensional
monic oscillator and the numbersna and nb give the number of
vibrational excitations in thex andy directions, respectively.
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The symmetric Raman transition is generated by a sec
pair of lasers as specified in Eqs.~14!–~16!. In particular, we
note that Eq. ~14! can be satisfied with the choic
v128 5(vc2ṽ1)1kana and v238 5(vc2ṽ3)1kbnb for the
frequencies of the second pair of lasers. With respect to
virtual level uc&, these lasers are then detuned by the sa
amount as the first pair, but to the blue vibrational sideba
rather than the red. Combining both Raman transitions,
obtain the reduced Hamiltonian

ĤI
tot5(

m,n
\g~m,n!â†kaâ†m

âmb̂†n
b̂nb̂kb1H.c. ~22!

for the motional dynamics of the trapped ion as discus
above.

In the last step, we now assume the Lamb-Dicke lim
whereh12,h23!1. In this limit we approximate Eq.~22! by
keeping only the lowest-order terms inh12 and h23. From
Eq. ~21! these are the termsm5n50 and we obtain

ĤI
tot5\$gâ†kab̂kb1g* âkab̂†kb%, ~23!

where g5g(0,0) is given in Eq.~21!. The above Hamil-
tonian ~23! realizes the desired interaction~1! between the
two modesa and b of the ion’s motion in thex and y
directions. We note that the coupling constantg depends on
the Lamb-Dicke parameters through the factorh12

kah23
kb . Con-

sequently, for fixed laser power, i.e., fixedug12u and ug23u,
and small Lamb-Dicke parameters, the coupling stren
may be very small. One can increase the coupling constag
by increasing the laser power while at the same time m
taining inequality~7!. This permits us to ignore the spont
neous emission from the excited stateu2& on a time scale

T!Tspont5S ug12u2

D12
2 1

ug23u2

D23
2 D 21

g21, ~24!

whereg is the rate of spontaneous decay from levelu2& @24#.
This is important as the decoupling of the motional and el
tronic dynamics relies on maintaining the coherence of
electronic degrees of freedom. In Sec. V we will compare
time scales for spontaneous emission and the Ram
generated motional dynamics for the specific case of rota
~2!, given the parameters of recent experiments@7#.

IV. LIMITATIONS

In this section we further discuss the approximations
der which the Hamiltonian~23! gives a valid description o
the system dynamics. First, we address the size of the
rections that we have neglected in the Lamb-Dicke appro
mation. We then show that the coupling constants of
additional resonances in the case of commensurate trap
quencies can be made as small as these corrections
suitably large ratio of the trap frequenciesna /nb . Finally,
we discuss the limitations imposed on our Hamiltonia
from neglecting off-resonant transitions.

A. Lamb-Dicke approximation

From the preceding section it is clear that the Lamb-Dic
limit is an important requirement for us to engineer the d
nd

e
e
s
e

d

,

th
t
-

-
e
e
n-
n

-

r-
i-
e
re-
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s

e
-

sired interaction~23!. The Lamb-Dicke approximation led u
from Eq. ~22! to Eq. ~23! under the assumptionh12,h23!1.
We note that both Eqs.~22! and~23! couple the same vibra
tional states

um&aun1kb&b⇔um1ka&aun&b , ~25!

whereum&aun&b denotes the usual number state basis for
two-dimensional harmonic oscillator. Therefore, we do n
neglect any additional resonances between states other
the ones given in Eq.~25! by making the Lamb-Dicke ap
proximation.

We define the Lamb-Dicke approximation for suitab
smallh12,h23 to be the approximation where all terms in E
~22! of orderh2 smaller than the leading term are neglecte
i.e.,

ug~m,n!u
ug~0,0!u

<O~h2!, ~26!

where we have assumed the Lamb-Dicke parameters to b
the same order of magnitude,h12'h23'h.

It is important to note that the orthogonality of the Ram
laser beams shown in Fig. 1 is not essential. In fact, the
of the Lamb-Dicke parameters can be reduced by chang
the geometry of the lasers and choosing the two Ram
beams to be almost counterpropagating. In this situation
wave vectorskI 12 andkI 23 of the two Raman beams have to b
added and the numbersk12 and k23 in Eq. ~8! are then the
projections ofkI 5kI 121kI 23 onto thex and y axes, respec-
tively.

B. Trap anisotropy

As we have mentioned in Sec. III, even in the case of
anisotropic trap, there are on-resonant terms in addition
the ones included in Eq.~20! when the trap frequencies ar
commensurate. This is illustrated in Fig. 4, wherena55nb
and againka5kb51. In addition to theum21&aun&bu3&
⇔um&aun21&bu1& transition shown in Fig. 3, the
um&aun24&bu3&⇔um&aun&bu1& transition is resonantly
coupled as in Fig. 4. In the following we show that in th
Lamb-Dicke limit, the coupling constantsg̃, corresponding
to these additional resonances, satisfy

ug̃u
ug~0,0!u

<O~h2! ~27!

if the ratio of the trap frequencies is chosen large enou
These additional terms can thus be neglected in the La
Dicke approximation.

We start by deriving the resonances that occur if the t
trap frequenciesna andnb are multiples of each other. With
out loss of generality we choose

na5 lnb , ~28!

wherel is a positive integer number. In deriving the intera
tion ~23! the laser frequencies were chosen to give the
tuningsD135kbnb2kana andD138 5kana2kbnb for the two
pairs of coupling beams, respectively. We will explicit
consider only the first of these two cases, i.
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D135kbnb2kana , since the second follows analogously b
interchanging the operatorsâ⇔â† and b̂⇔b̂† and leads to
the same limits for the trap ratiol 5na /nb . Now, with Eq.
~28!, the resonance condition in Eq.~12! becomes

2 l ~m2m!2~n2n!2 lka1kb50, ~29!

where all numbers are positive integers. In order to simp
the discussion we categorize the resonances by introdu
an integer numberN and rewrite Eq.~29! so that

m2m52ka1N,

n2n52kb1 lN. ~30!

Following this categorization, we divide the resonances
termined by Eq.~29! into the three cases~i! N50, ~ii ! N
positive, and~iii ! N negative. We subdivide case~ii ! further
into ~ii a 1! 0,N<ka , 0,Nl<kb and ~ii a 2! 0,N<ka ,
Nl.kb , and ~ii b 1! N.ka , 0,Nl<kb and ~ii b 2! N
.ka , Nl.kb . Below we will examine cases~i! and ~ii a 2!
in detail as the latter case contains resonances with the
est contribution besides the required resonance atN50. We
have examined the other cases and will not repeat t
analysis except to note that they all give rise to leading-or
corrections of order higher than those found in case~ii a 2! in
h. Thus, to obtain the desired Hamiltonian~23!, the reso-
nances in case~ii a 2! will impose the most stringent cond
tion on the size of the trap ratiol 5na /nb . Throughout this
discussion we will consider only the lowest-order terms
the Lamb-Dicke parameters since we have already addre
the size of the corrections to the Lamb-Dicke approximat
in the above.

FIG. 4. Vibronic energy-level diagram for the case of the tw
trap frequenciesna andnb being multiples of each other,na55nb .
As in Fig. 3 the two Raman lasers are tuned such that the Ra
detuningD135kbnb2kana , with ka5kb51. In addition to the de-
sired resonant transitionuna21&aunb&bu3&⇔una&aunb21&bu1&,
shown in gray, theuna&aunb24&bu3&⇔una&aunb&bu1& transition is
resonantly coupled, as shown in black. In the Lamb-Dicke limit,
coupling constant corresponding to this additional resonance ca
reduced to the size of the corrections to the Lamb-Dicke appr
mation for the desired resonance by increasing the ratio of the
frequenciesna /nb .
y
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In case~i! we haveN50, so that from the resonanc
condition in Eq. ~30! we obtain m2m52ka and
n2n52kb . This is the case that leads us to the desi
interaction~23!, which we have discussed in Sec. III.

We now consider case~ii a 2!. Here we have 0,N<ka
andNl.kb , so that from Eq.~30! we obtain

m5m1ka2N>m, ~31!

n5n1 lN2kb.n.

Inserting these identities into Eq.~12! and keeping only the
lowest-order terms in the Lamb-Dicke approximation, i.
m5n50, we obtain

ĤI5\g̃â†ka2N
b̂†lN2kbu1&^3u1H.c., ~32!

where we have defined the coupling constant

g̃52g13expF2
1

2
~h12

2 1h23
2 !G ~2 ih12!

ka2N

~ka2N!!

~ ih23!
lN2kb

~ lN2kb!!
.

~33!

We require the coupling constants of the above resonan
~31! to be smaller than or equal to the coupling constants
the terms that we have neglected in the Lamb-Dicke lim
~27!. Therefore, we have the condition

ug̃u
ug~0,0!u

5
ka!

~ka2N!!

kb!

~ lN2kb!!

~h23!
lN22kb

~h12!
N <h2,

~34!

where again we assume both Lamb-Dicke parameters to
of the same order of magnitude,h12'h23'h. In order to
derive a limit for the trap ratiol from the above expression
we consider the factor containing the Lamb-Dicke para
eters and the one containing the factorials separately
h12'h23'h, we have

~h23!
lN22kb

~h12!
N 'hN~ l 21!22kb<h2, ~35!

which is satisfied ifN( l 21)22kb>2. Since this condition
has to hold for allN in the range 0,N<ka , this leads to the
requirement

l>2kb13 ~36!

for the trap ratiol . Next we consider the term including th
factorials. We require this term to be smaller than or equa
unity as under the above condition~36! the factor containing
the Lamb-Dicke parameters already satisfies Eq.~35!. We
have

ka!

~ka2N!!

kb!

~ lN2kb!!
<

ka!kb!

~ lN2kb!!
<

~ka1kb!!

~ lN2kb!!
, ~37!

where in the first inequality we made use of the fact that
the resonances we are discussing here 0,N<ka and the
second inequality holds since (ka1kb)!>ka!kb! for all posi-
tive integerska andkb . From the above inequality~37! the
factor containing the Lamb-Dicke parameters is smaller th
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or equal to unity if (lN2kb)!>(ka1kb)! and since this has
to be satisfied for allN in the range 0,N<ka we require

l>2kb1ka . ~38!

Depending on the interaction that we want to generate,
depending on the numberka , the inequality~36! or ~38! will
impose the stronger limit on the trap anisotropy. For the t
examples given in Eqs.~2! and ~3!, we haveka5kb51 and
ka53, kb51, respectively. Therefore, in order to genera
the linear coupling Hamiltonian~2! we require the trap ratio
l 5na /nb>5 ~36!. For the cubic interaction~3! a trap ratio of
l 5na /nb>5 is needed from Eq.~38!. For the remaining
cases~ii a 1!, ~ii b 1!, ~ii b 2!, and ~iii ! a similar analysis
shows that the requirements~36! and ~38! are sufficient to
limit the strength of these resonances to Eq.~27!.

Although in the above discussion we have explicitly a
sumed the two trap frequenciesna andnb to be multiples of
each other, the limits~36! and~38! also hold for commensu
rate trap frequencies. In this case the trap ratio is a ratio
number, i.e.,l 5p/q, wherep and q are positive integers
Since in the resonance condition~30! all numbers need to be
integers, the numberN that categorizes the resonances c
only take on multiple values ofq, so thatlN5pN/q is an
integer. As we have discussed all integer values ofN, any
trap ratiol 5p/q that satisfies inequalities~36! and~38! suf-
fices for the unwanted resonances to satisfy Eq.~27!. Hence,
for given values ofka andkb , the coupling constants of a
additional resonances due to energy-level degeneracies i
case of commensurate trap frequencies are at least a fac
h2 smaller than the coupling constant of the desired re
nance~23! if the trap ratio is chosen large enough accord
to the limits in Eqs.~36! and ~38!.

C. Off-resonant terms

As pointed out by Gardineret al. @25#, dropping all off-
resonant terms in going from Eq.~18! to Eq. ~23! imposes a
limit on the timeT for which the Hamiltonian~23! is a valid
approximation. This limit can be calculated in second-or
perturbation theory to beTV2/D!1, whereV is the effective
coupling to the nearest off-resonant transition in Eq.~18! and
D is the corresponding detuning. IfuM &auN&b is a character-
istic state that represents the highest-energy state tha
allow to be acted upon, the transitions

uM2ka11&auN&b⇔uM &auN2kb&b ,

uM2ka&auN&b⇔uM &auN2kb11&b ~39!

are the strongest coupled off-resonant terms. For these
transitions the limit becomes

Tug~0,0!u2
M !N!

~M2ka11!! ~N2kb!! S ka

h12
D 2

!na ,

Tug~0,0!u2
M !N!

~M2ka!! ~N2kb11!! S kb

h23
D 2

!nb , ~40!

where we have assumed the Lamb-Dicke limit to calcul
the couplingV between the states~39!. We will further in-
vestigate the significance of the limitations discussed her
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the following section where we concentrate on the line
coupling HamiltonianĤI

(1) given in Eq.~2!.

V. ENGINEERING ROTATION

In the following we use the above formalism to target t
linear coupling HamiltonianĤI

(1) given in Eq.~2! and show
how this generates a rotation of the two-dimensional qu
tum motional state of the ion. We then examine the valid
of the approximations discussed in the preceding sec
through a numerical analysis of this specific example.

The linear couplingĤI
(1) is obtained from the symmetri

cally combined two-mode Raman Hamiltonian~18! through
the particular choiceD135nb2na for the Raman detuning
and adjusting the relative phase of the lasers such that
Raman coupling constantg135 i ug13u is purely imaginary.
This leads to the Hamiltonian

ĤI
tot52 i\ug13uexpF2

1

2
~h12

2 1h23
2 !G

3 (
m,m,n,n

~2 ih12!
m1m

m!m!

~ ih23!
n1n

n!n!
â†m

amb̂†n
bn

3exp$ i ~na@m2m21#1nb@n112n#1D13!t%1H.c.,

~41!

which, in the limits discussed in Sec. IV, results in the line
coupling ĤI

(1) . The coupling constantg in Eq. ~2! is then
given byg52ug(0,0)u. The HamiltonianĤI

(1) effects a ro-
tation of the two-dimensional quantum motional state of
ion about the center of the trap. This can be seen by ex
ining the action of the HamiltonianĤI

(1) on the operatorsâ
and b̂. Using the Baker-Campbell-Hausdorff theorem, w
have

âu5Û ~1!âÛ ~1!†
5â cosu2b̂ sinu,

b̂u5Û ~1!b̂Û ~1!†
5â sinu1b̂ cosu, ~42!

where the angleu5gt andÛ (1) is the unitary transformation
generated by the HamiltonianĤI

(1) , i.e.,

Û ~1!5eiĤ I
~1!t/\. ~43!

From Eq.~6! it is clear that the transformation in Eq.~42!
corresponds to a rotation of the rescaled coordinate sys
x̃5x/Dx0 and ỹ5y/Dy0 through an angleu5gt, so that in
the rotated coordinate system we have

x̃u5 x̃ cosu2 ỹ sinu,

ỹu5 x̃ sinu1 ỹ cosu. ~44!

Now an arbitrary pure or mixed motional state of the ion
characterized by a density operatorr̂, which can be written
as
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r̂5 (
m,n,m,n

rm,n
m,n um&aun&b^mua^nub

5 (
m,n,m,n

rm,n
m,n â†m

b̂†n

Am!n!
u0&au0&b^0ua^0ub

âmb̂n

Am!n!
. ~45!

The time evolution of this state under the action of t
HamiltonianĤI

(1) is then given by

r̂~ t !5Û ~1!r̂Û ~1!†

5 (
m,n,m,n

rm,n
m,n

âu
†m

b̂u
†n

Am!n!
u0&au0&b^0ua^0ub

âu
mb̂u

n

Am!n!

5 (
m,n,m,n

rm,n
m,n um&a

uun&b
u^mua

u^nub
u , ~46!

where we have used Eq.~42! and um&a
uun&b

u is the number
state basis for the two-dimensional harmonic oscillator,
now in the rotated coordinatesx̃u andỹu as given in Eq.~44!.
Therefore, the motional state of the ion given byr̂(t) is
identical to r̂, but rotated through an angleu5gt. In par-
ticular, this is accomplished without prior knowledge of t
motional stater̂.

Having convinced ourselves that the linear coupli
HamiltonianĤI

(1) does rotate an arbitrary motional state
the ion, we now examine the validity of the approximatio
discussed in Sec. IV for this specific example of the gene
coupling Hamiltonian~23!. We consider a state rotatio
through the angleu5p/2, so thatTrot5p/2g is the required
time to rotate the state. For this case, the limitations due
off-resonant terms~Sec. IV C! as given in Eq.~40! take the
form

p

2
Nmax!

nb

ug13u
~47!

in the limit of smallh12'h23'h, where we have assume
nb to be the smaller of the two trap frequencies. He
Nmax5max(N,M) in Eq. ~40!. From Eq.~47! it is clear that
the ratio of the lower trap frequency over the Raman c
pling constant

g5nb /ug13u ~48!

determines the significance of off-resonant terms in the s
tem dynamics.

From our discussion of the significance of additional o
resonant terms~Sec. IV B! we require a trap ratio
l 5na /nb>5 for the linear coupler whereka5kb51 @Eq.
~36!#. The estimates used to determine this minimal trap ra
essentially compare the coupling strengths of the differ
terms appearing in the Hamiltonian~41! with no reference to
the actual state on which it acts. Although this method
estimation is used in the literature, it can serve only a
rough guide. A more rigorous measure of how the unit
time evolution Û tot

(1) , generated by the symmetrically com
bined two-mode Raman Hamiltonian~41!, deviates from the
desired unitary evolutionÛ (1), generated by the linear cou
pling Hamiltonian~2!, can be quite complicated. A fully rig
t

al

to

e

-

s-

-

io
t

f
a
y

orous state-independent measure of the difference betw
two unitary operators can be constructed@26#, but we will
not consider this here. In order to examine the validity of t
approximations discussed in Sec. IV we adopt the overla

d[ z^C totuC& z ~49!

as a measure of the deviation between the two unitary e
lutions Û tot

(1) and Û (1) for an initially pure quantum state
uC0&. Here the state

uC tot&5Û tot
~1!uC0& ~50!

gives the unitary evolution of the initial stateuC0& under the
action of the symmetrically combined Raman Hamiltoni
~41! and the state

uC&5Û ~1!uC0& ~51!

gives the desired evolution of the initial state under the
tion of the linear coupling Hamiltonian~2!. This cannot be
calculated analytically. To go beyond the analytics we n
merically compute the unitary evolution~50!, including the
higher on-resonant and off-resonant terms, on the initial p
stateuC0&5ua&a^ ua&b , whereua&a and ua&a are coherent
states in the vibrational modesa andb, respectively. In this
case the desired state~51!, rotated throughu5p/2, is given
by uC&5u2a&a^ ua&b . The results of our numerical analy
sis are shown in Fig. 5. There we plot the overlapd as a
function of the scaled timegt, for different values of the
parameterg, given by Eq.~48! and a coherent state ampl
tude a51. Before we discuss our results, we note the f

FIG. 5. Results from our numerical analysis of the deviation
the unitary evolution generated by the symmetrically combined
man Hamiltonian tuned for rotation from the desired state rotati
We plot the overlapd5 z^C totuC&z, between the stateuC tot&, result-
ing from the Raman Hamiltonian tuned for rotation, and the desi
state uC&5u2a&a^ ua&b , resulting from a rotation of the initial
stateuC0&5ua&a^ ua&b , through the angleu5p/2. We have cho-
sena51. Graphs~a!–~d! show the dependence of the time evol
tion of d on the parameterg, which takes on the valuesg522/2n,
wheren53,...,0 inunit steps.
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lowing on our choice of parameters. In Figs. 5~a!–5~d!, g
takes on the valuesg522/2n, wheren53,...,0 inunit steps,
and the Raman coupling constantg13 is kept constant. For
simplicity, we assume the geometry of the laser excitation
be arranged so that the Lamb-Dicke parametersh125Dx0k12
andh235Dy0k23 are equal. Here it is important to note th
the values of the Lamb-Dicke parametersh12 and h23 de-
pend on the size of the trap frequenciesna and nb through
Dx05(\/2nam)1/2 and Dy05(\/2nbm)1/2. Therefore, the
size of the Lamb-Dicke parameters depends ong and varies
from Fig. 5~a! to 5~d!. To incorporate this dependence in o
numerical analysis we setgh12

2 5gh23
2 50.88, which gives

h125h2350.2, wheng522. These are values for the Lam
Dicke parameters and the ratiog that have been demon
strated in cold ion experiments@7–10#. Following our dis-
cussion of the trap anisotropy, we choose the trap r
l 5na /nb55. Our numerical analysis was performed in
finite ~truncated! number state basis (u0&au0&b •••u8&au8&b)
with a cutoff chosen such that an increase of this cutoff d
not significantly alter the result of our integration. Figu
5~a! shows the time evolution of the overlapd for the lowest
value of g. Here the off-resonant terms in Eq.~41! cause
strong modulations ind. For higher values ofg these modu-
lations become much less pronounced as the off-reso
terms contribute less on these time scales@Figs. 5~b!–5~d!#.
The time evolution ofd for the highest value ofg is shown
with the solid line in Fig. 5~d!. The plot reaches a maximum
of d'0.99 atgt'1.023p/2. It shows almost no deviation
from the dashed line in Fig. 5~d!, which is a numerical inte-
gration of the system dynamics where we include only
desired resonances in the Hamiltonian as in Eq.~22!. The
numerical analysis shows that for low system excitation
Hamiltonian ĤI

(1) can be engineered with high accura
within present ion traps. The investigation of the system
namics for higher energies becomes computationally v
expensive. To achieve the same accuracy as obtained
a51 for higher values ofa, the number state basis must b
greatly enlarged.

In the above, we neglected decoherence. From our fi
comments in Sec. III, using the experimental parameters@7#
for 9Be1 with g/2p519 MHz, g13/2p5500 kHz,
D12/2p5D23/2p512 GHz, and h125h2350.2, we find
Tspont'200ms. This is to be compared with the time to rota
the motional state through the angleu5p/2, Trot'12ms.
This confirms our initial assumption that decoheren
through spontaneous emission can be neglected for this
cess. However, this may not be the case when enginee
higher-order interactions. One can shorten the interac
time by increasing the laser power while maintaining
equality ~7! by increasing the detuningsD12 and D23. The
fundamental limit is then given by the detunings that one
realize and the accessible laser power.

VI. CONCLUSION

In this work we showed how one can engineer a class
Hamiltonians for the motional dynamics of an ultracold i
in a harmonic trap. The process uses a stimulated Ra
transition in aL configuration with the two lasers propaga
ing along thex and y directions. To decouple the interna
electronic dynamics from the external motional dynamics
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constructed a Hamiltonian in which these evolutions fa
tored. This was done through the addition of a second pa
lasers that generated the symmetric counterpart to the Ha
tonian generated by the first pair of lasers. By preparing
electronic states in a particular superposition, the internal
external dynamics completely separated and we could t
the motional dynamics alone. In the Lamb-Dicke limit an
with suitable sideband detunings, we could ‘‘target’’ a pa
ticular term to be of leading order in the Hamiltonian. How
ever, we found that in addition to the term we wanted
dominate, other, higher on-resonant terms appeared.
could manipulate the strengths of the couplings to these
wanted terms by altering the trap frequency ratio and fou
that we could neglect these unwanted terms in the Lam
Dicke approximation for large enough trap anisotropies.
nally, we did a numerical evaluation of the full Hamiltonia
as a check on the analytical estimates. Although we h
primarily concentrated on the linear rotation Hamiltoni
~2!, higher-order dynamics can be generated, i.e.,ĤI

(3) given
by Eq. ~3!. The nonlinear HamiltonianĤI

(3) has been much
studied in the quantum optical literature as a model of n
linearly coupled field modes@21#. We know from this work
that such Hamiltonians generate a rich nonlinear dynam
structure reflecting the strong mode entanglement chara
istic of those couplings. Their optical realization is difficu
but may well be more straightforward in trapped ion dyna
ics, as resonances can then be used to isolate chosen no
earities.

Finally, we note the recent publication of two papers@27#
that examine types of nonlinear interaction Hamiltonians
the motion of trapped ions that are closely related to
work presented here.
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APPENDIX

In this appendix we derive the effective Hamiltonia
given in Eq.~8!, which follows from the adiabatic elimina
tion of the excited levelu2& and describes the Raman co
pling between the two ground-state levelsu1& and u3&. After
performing the rotating-wave approximation, the Ham
tonian in Eq.~5! becomes

Ĥ5\v1u1&^1u1\v2u2&^2u1\v3u3&^3u1\na~ â†â!

1\nb~ b̂†b̂!2u1&^2u ^ \g12e
2 i ~k12x̂2v12t !

2u2&^1u ^ \g12* ei ~k12x̂2v12t !2u3&^2u ^ \g23

3e2 i ~k23ŷ2v23t !2u2&^3u ^ \g23* ei ~k23ŷ2v23t !, ~A1!

where we have defined the dipole coupling consta
g125^1uDI 12•eI 12u2&E12/\ and g235^3uDI 23•eI 23u2&E23/\.
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In order to compare the time scales of the transitions indu
by the two laser beams we consider the Heisenberg equa
of motion for the transition operatorsŝ12[u1&^2u and
ŝ13[u1&^3u,

i
d

dt
sC 125~v22v1!sC 122g12* ei ~k12xC 2v12t !~sC 112sC 22!

2g23* ei ~k23yC 2v23t !sC 13,

i
d

dt
sC 135~v32v1!sC 132g23e

2 i ~k23yC 2v23t !sC 12

1g12* ei ~k12xC 2v12t !sC 23. ~A2!

Here all operators~denoted by overbars! are taken in the
Heisenberg picture, i.e., sC 125Û(t)ŝ12Û

†(t), where
Û(T)5T̂ exp$i@*tĤ(t8)dt8/\#% is the time-ordered evolution
operator. Using the transformation

sC 125e2 iv12tŝ̃12,

sC 235eiv23tŝ̃23,

sC 135sC 12sC 235e2 i ~v122v23!tsC 13 ~A3!

to remove the explicit time dependences from Eq.~A2! we
have

i
d

dt
ŝ̃125D12ŝ̃122g12* eik12xC~sC 112sC 22!2g23* eik23yC ŝ̃13,

i
d

dt
ŝ̃135~D122D23!ŝ̃132g23e

2 ik23yC ŝ̃121g12* eik12xC ŝ̃23.

~A4!
d

d,

tt.

ev
.

.

.

ns
d
ns
Under the assumption of large detunings, as given in Eq.~7!,

we obtain the adiabatic solution forŝ̃12 by setting

dŝ̃12/dt[0 @28#, so that after restoring the rapidly oscilla
ing time dependence, we obtain

sC 125
1

D12
$g12* ei ~k12xC 2v12t !~sC 112sC 22!1g23* ei ~k23yC 2v23t !sC 13%.

~A5!

For theu2&⇔u3& transition we find in an analogous mann

sC 325
1

D23
$g23* ei ~k23yC 2v23t !~sC 332sC 22!1g12* ei ~k12xC 2v12t !sC 31%.

~A6!

Upon inserting these adiabatic solutions forsC 12 andsC 32 into
Eq. ~A1!, we have

Ĥ5\ṽ1u1&^1u1\ṽ3u3&^3u1\na~ â†â!1\nb~ b̂†b̂!

2\g13e
2 i @k12x̂2k23ŷ2~v122v23!t#

^ u1&^3u

2\g13* ei @k12x̂2k23ŷ2~v122v23!t#
^ u3&^1u, ~A7!

where we have dropped the term describing the free ene
of the excited stateu2& since in this adiabatic approximatio
it is no longer connected to the two ground states. Furth
more, we have defined the Raman coupling constant as g
in Eq. ~9! and the energies\ṽ1 and\ṽ3 ~10! of the ground-
state levelsu1& and u3&, which are Stark shifted as a result o
the adiabatic elimination of the excited state.
ys.

,

.
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