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Engineering two-mode interactions in ion traps
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We describe how two vibrational degrees of freedom of a single trapped ion can be coupled through the
action of suitably chosen laser excitation. We concentrate on a two-dimensional ion trap with dissimilar
vibrational frequencies in the& andy directions of motion and derive from first principles a variety of
guantized two-mode couplings, concentrating on a linear coupling that takes excitations from one mode to
another. We demonstrate how this can result in a state rotation, in which it is possible to transfer the motional
state of the ion from, say, the direction to they direction without prior knowledge of that motional state.
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PACS numbd(s): 03.75.Be

I. INTRODUCTION The Hamiltonian(2) generates an active rotation of the two-
dimensional quantized motional state of the ion at a fre-
In recent years, advances in the cooling and trapping ofjuencyg, whereg is real. HereH(" is the kind of Hamil-
ions have led to a situation in which the center-of-masgonjan associated with a linear coupler or beam splitter in
(c.m) motion of trapped ions has to be treated quantum megptics(see, e.g.[19] and references thergirThere a photon
cham_cally[l]._ This motion can b_e coherently controlled by i, modea is annihilated and a photon in modeis created,
coupling the ion’s external and internal degrees of freedom, 4 yice versa. In a trapped ion, vibrational anticorrelated

through laser irradiatiof2—€]. Systems of trapped ions have SU(2) states of motion characteristic of this kind of linear

been employed to demonstrate experimentally the generation ™ . ()
and measurement of nonclassical states of the ion’s c.m. m§PUPIiNg can be generatgd4]. The linear couplingH;

tion [7—-10. Furthermore, trapped ions have been used tgnakes it possiblg to'trarllsfer the motio'nal state of t.he ion
implement quantum logic gat¢d1—13. from, say, thex direction into they directionwithout prior
Most of the previous investigations have focused on th&knowledgeof that motional state and irrespective of whether
one-dimensional quantum motion of trapped ions. Recentlyit is @ pure or a mixed state. In the situation in which one
Gou et al. [14—18 considered the generation of particular may want to use the quantized motion in thelirection for
two-mode states of an ion. In this paper we address the issiilantum computationl1-13, perhaps later entangling the
of how to engineer a class of interactions between two of thguantum state of motion with internal electronic states ythe
quantized motional degrees of freedom of a single trappedirection can then be employed as a quantum memory ele-
ion. We assume that the ion is confined within a trap potenment. Note the key point here is that states of motion in the
tial that can be closely approximated by a two-dimensionak direction can be transferred entirely to thelirection with-
harmonic well. In this case the c.m. motion of the ion isout reading out their nature entirely nondestructively. The
completely equivalent to that of a two-dimensional harmonicHamiltonian Hl(3) is of the three-photon down-conversion
oscillator, characterized by two frequencies of oscillatign  kind: In optics, it represents a process in which one pump
andy, in orthogonal directiong andy, and the correspond- photon in modé is annihilated and three photons in maale
ing operatorsa’ (a) andb' (b) create(annihilate vibra- are created, and vice versa. This process is known to be
tional excitations in thex andy directions. The interaction highly peculiar: Unlike its two-photon down-conversion
that we want to engineer is of the parametric form counterpart, quantization of the pump is essential to avoid
pathological divergencg®0]. These are avoided in a fully
quantized treatment, where the pump and down-converted
field modes become highly entanglgziL].
o ) In Sec. Il we first introduce a two-mode Raman transition
wherek, andk, are positive integers and is a complex  that couples the electronic and motional degrees of freedom
coupling constant. In particular, we note that the powers of the jon. Choosing the initial state of the ion to be a direct
andky, can be independently controlled to take on any posiproduct of an arbitrary motional state and a specific elec-
tive integer numbers and the phase of the coupling constafonic state, we then decouple the electronic and motional
g is freely adjustable. To give specific examples of this clasgjynamics of the ion through a particular configuration of

H,=#%{ga" “bko+g* akap ™}, ()

of interaction between the two vibrational modesand b, laser beams$Sec. Il). In the Lamb-Dicke approximation and
we address the two coupling Hamiltonians in the limit of suitable trap anisotropy we obtain the above
Hamiltonian(1) for various sideband detunings of the lasers.
H(V=ixg{a’o—ab'}, (2)  We then examine the severity of the approximations made to

obtain the Hamiltonia{1). In Sec. IV we obtain analytical
~ 3 stan A3t estimates regarding the effects of off-resonant and higher
H”=f{ga""b+g*ab'}. (3 on-resonant processes. In Sec. V we specialize to the case
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(a) (b) However, they expect to reduce decoherence from classical
noise sources significantly in future experimef@8]. We
thus do not include any decoherence effects in our model.

Treating the laser excitations classically, the two electric
fields are described by

512(5\(’t) = elz{ElZeii[klziiwlzt] + HC}y

Exd,t) =€pa Epge™ e w2l 4 H e, @)

wheree;, and e,; are polarization vectorsk,, and k,5 are

wave numbers, and,, and w,3 are the frequencies of the
lasers. We assume the laser phases to be absorbed in the
complex amplitudes;, and E,3. In dipole approximation

this leads to the Hamiltonian

FIG. 1. Two-mode Raman transition that couples the electronic

and the two motional degrees of freedom in thandy directions. H=hw|1)(1]|+hwy]2)(2| + hws|3)(3| +hvy(aTa)
The effective three-level ion shown {a) is confined within a two- n.~

dimensional harmonic trap. As illustrated Gh), two laser beams +hvp(bTh) —Dip- E19~ Doz Ens, (5
propagating in thex andy directions generate a stimulated Raman

transition between the ground statgsand|3). where we have denoted the dipole moments of| the=|2)

and|2)«<|3) transitions byD, andD,3, respectively. The
frequenciesy;, w,, andw; are associated with the energies
of the electronic stateld), [2), and|3) and the operatora
éé*) andb (b") are the annihilatioricreation operators for
ibrational quanta in th& andy directions. These operators
are related to the position of the ion in tkey plane through

k,=ko,=1 and show that the Hamiltoniar (" rotates the
motional quantum state of the ion. Finally, we perform a
numerical analysis of the complete quantum dynamics an
find that the Hamiltoniar(2) can be accurately engineered
over a range of parameters.

;(:AXO(é‘l‘ é-r),
Il. GENERAL TWO-MODE RAMAN COUPLING

| _ | y=Ayo(b+b"), ®)
In the following we describe the Raman coupling that we

use to engineer the Hamiltonian given in E#). We con- ;a0 Axo=(A/2v,m)Y2 and Ay,=(fi/2v,m)*2 are the
a

sider an effective three-level ion in & configuration, con-  \igihs of the ground state in the two-dimensional harmonic-
fined within a two-dimensional harmonic trap as illustratedgscillator potential in thex andy directions andm is the

in Fig. 1. The trap is characterized by the two frequeneies  mass of the ion. If the laser beams are sufficiently far de-
andvy, which describe the harmonic potential in thandy  tuned, i.e.,
directions, respectively. As shown in Fig. 1, the ion is ex-

cited by two linearly polarized laser beams that propagate in

the x and y directions connecting level$l)<|2) and
|2)<|3). These beams are far detuned from the excited statg

|2) in order to generate a stimulated Raman transition bef?]e two ground stated) and|3) are coupled via a stimulated

Raman transition and the excited st can be adiabati-
tween the two stateld) and'|3>. We assume stat¢®) and|3) cally eliminated. In the above inequality we have defined the
to be ground-state hyperfine sublevels.

: . laser detuningsA,= - - and A,z= —
We do not include decoherence effects in our model for_ 0,3 and tr?e ldzipélzz cg)dz)linglzconstarftaglz(i)(zl|82
the following reason. The Raman coupled energy-level €12 2)E1,/h and gp3=(3|D o3 €53 2)E3/fi. As described

scheme greatly suppresses the spontaneous emission Reihe Appendix, the adiabatic elimination procedure leads to
tween the two ground-state leve and|1) as these states tne Hamiltonian

are coupled byM1 andE2 transitions at best. At the same

time we neglect the effects of spontaneous emission from . o non
level [2), as the coupling to the excited state can be effec- H=7@1| 1)(1|+7@3|3)(3|+7iv4(a'a)+7vp(bb)
tively eliminated over the time scales of interest to us here _ﬁgme—i[klzi—kzé—<wlz—wzs>t]®|1><3|

when the laser beams are far detuned. Another source of
decoherence in ion trap experiments is classical noise in the _ﬁg’l*gei[klzi*kz&*(wlz*wzs)t]@|3><1|, (8)
laser beams and trapping potential. This may be described

using so-called intrinsic decoherence modske, e.g.[22])

of dephasing. The effects of this kind of decoherence havavhere we have dropped the term describing the free energy
been seen in a recent experiment by Meekbo#l. [7]. of the excited stat¢2) as in the far detuned limit7) the

|A 12, [Ang>1912l, 924, | A 12— Asg, (7)
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excited state is no longer connected to the two ground states. (a) (b)
Furthermore, we have defined the Raman coupling constant

1 1
— *
013 912923<A12+ Ay ©)
and the energied®, andf @5 of the ground state level4) ™
and|3), which are Stark shifted as a result of the adiabatic
elimination of the excited state, are
hi)] hwl
2917 o _ .
W1T W17 AT FIG. 2. Schematic diagram of two symmetric Raman transitions
12 that in combination decouple the electronic and motional dynamics
2/ of the trapped ion for suitably cosen initial electronic stategaln

) (10) the frequenciesw,, and w,; of the two lasers that generate the
A3 stimulated Raman transition between the ground state [€h)edsd

. . . [3) are chosen such that the Raman detunings= w1,
In order to proceed, we will consider the Raman coupling_, _ (z.—,) is positive. The coupling lasers are red detuned

Hamiltonian (8) in the in'EerAaction picture  of \ith respect to thd1)«|3) transition. In(b), we show the sym-
Ho=%@,|1)(1|+ /4 @3|3)(3|+hva(aa)+hvy(b™0) and  metric Raman transition t@). The frequencies), and w}; of the

transform to the new Hamiltonian coupling lasers are adjusted so thatAjgz=wi,
R . L P — wy3— (@3~ @1)=—A43. The coupling beams are blue detuned
H,=eMo"(H—H,)e Hot/A, (11)  with respect to thél)«|3) transition. For the two transitions to be

R R symmetric we additionally require the coupling beamshinto be
In doing so and replacing the position operatorandy by  counterpropagating with respect to the beamé&jn
Eq. (6) we obtain the interaction Hamiltonian

we ha\[el:|j°t=|:l|+lz|{, so that the combined Hamiltonian
|1)(3] HI*'=(M+M"@(|3)1|+[1)(3|) factorizes. For the case
whereH, is given by Eq.(12), H| can be generated by an
(i)™ (199" oom ~ew extra pair of Raman lasers with suitable detunings, propaga-
® > atasb’b" tion directions, and phases. To be more specifi i
m! u! n! ! ) 6] . pecitc, we require a
symmetric combination of two Raman transitions, so that

. 1 5, 5
Hi=—-%g3exp — 5(7712+ 723)

m,u,n,v

Xexpli(vy m—pul]+vy[v—n]+A9t}+H.c.,

(12 Ajz=—Ays, (14
where we have defined the Raman detuning "
712 712,
A13= 017~ w3~ (03~ 1) (13 ,
723= ~ 723, (15

and the Lamb-Dicke parameters in tReandy directions
n12=AXoK1o and 7,3=Aygk,3. The square of the Lamb-
Dicke parameter gives the ratio of the single-photon recoil

energy to the energy-level spacing in the harmonic-oscillator . . . :
potegt}i/al 9y P g where all quantities without primes correspond to the first

pair of Raman lasers and all primed quantities refer to the
second pair. If, for the first pair of lasers, the Raman detun-
ing A3 is given by Eq.(13), then the first conditior(14)

In this section we construct a particular configuration ofrequires an appropriate choice of the frequenaigsandwy,
Raman lasers to decouple the electronic and motional dyfor the second pair, so thatAj;=w;,— w53~ (@3
namics of the trapped ion for suitably chosen initial elec-—w,)=—A13. This is illustrated in Fig. 2. The second con-
tronic states. This is done by symmetrically combining twodition (15) is satisfied by choosing the second pair of beams
Raman transitions as described below. We then obtain th® be counterpropagating with respect to the first pair, so that
Hamiltonian(1) in the Lamb-Dicke approximation and in the kj,= —k;, andkjs= —k»3, as seen from the definition of the
limit of suitable trap anisotropy for specific sideband detun-Lamb-Dicke parametersy;,=AXoK;, and 7,3=AyoKos.

013=073, (16)

Ill. SPECIFIC COUPLING SCHEME

ings of the lasers. _ _ Here we have neglected the differencds,— |k, and
The electronic and motional dynamics can be|i,|—|kj since |wi,— wi)<wis,wl, and |wm— why
decoupled in general for the HamiltonianH;=  <g,; w},. This restriction can be lifted if one chooses the

M®|1)(3|+MT®|3)(1|, whereM may be any operator that second pair of lasers to be not exactly counterpropagating
acts on the motional degrees of freedom only. This is dongvith the first. The third conditior(16) requires a suitable
through the addition of another interaction generated byhoice of laser phases for the two pairs of Raman beams that
H,=M®|3)(1|+M'®|1)(3|. Combining both interactions, can be easily read from E¢p).
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The symmetric combination of the two Raman transitions as
specified by Egs(14)—(16) then leads to the interaction
Hamiltonian

R 1
fytot— _h[ gl3exr{ — 5 izt ’733)}

oy

2 (—i 7]12)m+“ (i 7]23)””

~4+M ~
— ——a'"ab"b"
m,u,n,v miu! ntwv!

X

g M

lo— e o—w

Xexpli(vym—ul+vy[v—n]+Att+H.c.

2{[1)(3[+[3)(1l}, 17

which factorizes. We now assume the ion to be initially ina |1} 0
direct product of its motional and electronic state with the
electronic state prepared jas) = (|1)+|3))/v2. This super- FIG. 3. Schematic diagram of the vibronic energy levels that are
position statd+) can be prepared from the ground stife  connected by the two laser beams that generate the stimulated Ra-
by applying a resonant/2 pulse (A 3=0) if the ion is con-  man transition. The two Raman lasers are tuned such that the Ra-
fined within the Lamb-Dicke limit, i..7715,7,3<1[9]. The = man detuningA ;3= k,v,—kav,, with k,=k,=1. With respect to
dynamics generated by E(L7) acting on this state factors the virtual level/c), the laser propagating in thedirection is tuned

and leaves the electronic state unchanged. This allows us to the first red sideband of the ion’s vibration in the&irection and

reduce the dynamics to that of the motional degrees of freethe laser that propagates in thedirection is tuned to the first red
dom only and we write sideband of the ion’s vibration in thg direction. This causes a

resonant transition between the vibronic states

o~ e omnw o

i 1, IMa= L)ale)o]3) M)y~ 1)o[1), where the statedna)alno)s
H{%'= —figisexp — 5(7712+ 753) denote the usual number state basis for the two-dimensional har-
monic oscillator and the numbers, and n, give the number of
(—i 7]12)m+/1, (i 7]23)”” vibrational excitations in the andy directions, respectively.

~+M ~
aa*b'b"

X >

m,zn, v m! w! n!v! . ) .
- athan tha upnt’hrhk
X expli (v M= ]+ vp[ v—N]+ At} + H.c. H'_|1><3|®ﬂ2,y hg(p,vjar"at ab b+ H.C,
We now discuss the sideband detunings, which, in the LambWhere we have defined the coupling constants
Dicke approximation and in the limit of suitable trap anisot- 1
ropy, lead to the desired interacti¢b). In particular, detun- 9(u,v)= _glsex% — (72t 12)
ing the two pairs of Raman lasers to specific vibrational 2
sidebands allows us to choose specific valueskfoandkj, (=i 719) 24" Ka (i 1) 2 K0
in Eq. (1). Since we require the two Raman transitions to be 71 N123 _ (22)
symmetric, it is sufficient to consider the first pair of Raman pH(utka)! vl(vtkp)!

lasers. Therefore, we return to the vibronic Raman couplingl_ o o )
Hamiltonian(12). From Eq.(12) it is clear that by fixing the ~ This iS & two-mode generalization of the nonlinear Jaynes-
size of the detuning\;3, i.e., by choosing the frequencies of CUmmings model introduced by Vogel and de Matos Filho

the two coupling lasers, we can tune to a resonance betwedfil- It is important for the trap frequencieg and », to be
specific vibronic levels. As illustrated in Fig. 3, we introduce NONcommensurate to arrive at this result. This becomes clear

a virtual level|c) with energy%w, to help visualize the from Fig. 3. If the trapping potential is isotropig,= v, and
Raman transitions between the ion’s vibronic levels. If wethe energy levels become degenerate. Consequently, the Ra-
setwiy=(wo— @1) — Kavy and woz= (w.— @3) —Kyvp, then ~ Man transition Ham|lton|ar(11_2) contains on-resonant terms
with respect to levelc) the first laser is tuned to theth red i addition to the ones retained in EQO). In the example
sideband of the ion’s vibration in thedirection, the second Ka=k,=1, this leads to a coupling Hamiltoniar,

laser is tuned to thi,th red sideband of the vibration in the *[1+ 7?(a'b+ab'—a'a—b'b)+O(#*1®|1)(3|+ H.c,

y direction, and the Raman detuning is where we have assumed the Lamb-Dicke parameters to be of
the same order of magnitudg;,~ 7,3~ 7. In general, if the
Az=kprp,— kv, (199  frequenciesy, and v, are commensurate, the Raman transi-

tion Hamiltonian(12) contains resonances in addition to the
This situation is illustrated in Fig. 3 for the specific exampleones considered in Eq20). As we will show in Sec. IV, in
ka=kp=1. Now, if only on-resonant terms in E¢l2) are  the Lamb-Dicke limit, the coupling constants corresponding
retained, we haven=pu+k, andn=v+k, and we obtain to these additional resonances can be greatly reduced by in-
the Hamiltonian creasing the ratio of the trap frequencies,/vy.
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The symmetric Raman transition is generated by a seconsired interactior{23). The Lamb-Dicke approximation led us

pair of lasers as specified in Eq44)—(16). In particular, we  from Eq.(22) to Eq.(23) under the assumption;,, 7,3<1.

note that Eq.(14) can be satisfied with the choice We note that both Eq$22) and(23) couple the same vibra-

w1,=(w.—®1) +Kav, and wys=(w.—@3) +kyv, for the tional states

frequencies of the second pair of lasers. With respect to the

virtual level |c), these lasers are then detuned by the same

amount as the first pair, but to the blue vibrational sidebands

rather than the red. Combining both Raman transitions, W%vhe:jg|m)a|n)b dlerr]]otes the usqclelll tnum_?ﬁr stfate baS|sdfor th?
obtain the reduced Hamiltonian wo-dimensional harmonic oscillator. Therefore, we do no

neglect any additional resonances between states other than
N PP the ones given in Eq25) by making the Lamb-Dicke ap-
~ +kan ~ ey N i
HP"=2 fig(u,v)aa™a#b"b’b*+H.c. (22 proximation.

v We define the Lamb-Dicke approximation for suitably
for the motional dynamics of the trapped ion as discusse§Mall 7712, 72310 be the approximation where all terms in Eq.
above. (22) of order »~ smaller than the leading term are neglected,

In the last step, we now assume the Lamb-Dicke limit,!-€-:
where 715, 723<1. In this limit we approximate Eq22) by

|m>a|n+kb>b<:>|m+ka>a|n>br (25)

keeping only the lowest-order terms iy, and 7,5. From 9(p,v)] <0(7?) (26)
Eq. (21) these are the terms=»=0 and we obtain 19(0,0)| '
ﬁ}ot:ﬁ{ga‘rkaﬁkw g* akaBTkh}’ (23)  Where we have assumed the Lamb-Dicke parameters to be of
the same order of magnitudeg,,~ 7,3~ 7.
where g=g(0,0) is given in Eq.(21). The above Hamil- It is important to note that the orthogonality of the Raman

tonian (23) realizes the desired interactidth) between the laser beams shown in Fig. 1 is not essential. In fact, the size
two modesa and b of the ion’s motion in thex andy  of the Lamb-Dicke parameters can be reduced by changing
directions. We note that the coupling constgndepends on the geometry of the lasers and choosing the two Raman
the Lamb-Dicke parameters through the fao@;n;g . Con- beams to be almost counterpropagating. In this situation the
sequently, for fixed laser power, i.e., fixég, and|g,4, wave vectork,, andk,; of the two Raman beams have to be
and small Lamb-Dicke parameters, the coupling strengti@dded and the numbeks, andky; in Eq. (8) are then the
may be very small. One can increase the coupling congtant Projections ofk=k;,+kz; onto thex andy axes, respec-

by increasing the laser power while at the same time maintiVely.

taining inequality(7). This permits us to ignore the sponta-

neous emission from the excited stéeon a time scale B. Trap anisotropy

|§112|2 1923
T<T —( +
| an, A,

(24) anisotropic trap, there are on-resonant terms in addition to
the ones included in Eq20) when the trap frequencies are

wherey is the rate of spontaneous decay from lef@g[24]. co?mengulzat_ei( T_h If I|S |IIu§g$ted ![n Ii;]g.|4,_wlhe/|r£: Tgb
This is important as the decoupling of the motional and elecdC 30aNMKa == 2. 1N addition o hejm — Jaln)ol3)
tronic dynamics relies on maintaining the coherence of th &|maln—1)p1) transiion shown in Fig. 3, the
electron¥c degrees of freedom. In Sechwe will compare thjm>a|n_4>b|3>‘:’|m>a|”>b|1> transition is  resonantly
time scales gfor S ontaneou.s emis;sion and the pRamar(I:-olJpIeOI as in Fig. 4. In the following we show that in the

) P . s .~ Lamb-Dicke limit, the coupling constants corresponding
generated motional dynamics for the specific case of rotatio

(2), given the parameters of recent experimdis to these additional resonances, satisfy

|2> -1 As we have mentioned in Sec. Ill, even in the case of an
-1

[
IV. LIMITATIONS 5(0.0] <O(7% (27)

In this section we further discuss the approximations un- , L
der which the Hamiltoniar23) gives a valid description of 1 the ratio of the trap frequencies is chosen large enough.
the system dynamics. First, we address the size of the cof-nese additional terms can thus be neglected in the Lamb-

rections that we have neglected in the Lamb-Dicke approxip'Cke approximation. ,

mation. We then show that the coupling constants of the We start bY deriving the resonances that occur if th_e two
additional resonances in the case of commensurate trap frd@P frequencies, and v, are multiples of each other. With-
quencies can be made as small as these corrections forO4t [0ss of generality we choose

suitably large ratio of the trap frequencieg/vy,. Finally,

we discuss the limitations imposed on our Hamiltonians
from neglecting off-resonant transitions.

va=lvy, (28)

wherel is a positive integer number. In deriving the interac-
tion (23) the laser frequencies were chosen to give the de-
tuningsA ;3= kyvp—Kkava and Aj3=k,v,—kyvy for the two
From the preceding section it is clear that the Lamb-Dickepairs of coupling beams, respectively. We will explicitly
limit is an important requirement for us to engineer the deconsider only the first of these two cases, i.e.,

A. Lamb-Dicke approximation



4820 J. STEINBACH, J. TWAMLEY, AND P. L. KNIGHT 56

In case(i) we haveN=0, so that from the resonance
condition in Eq. (30) we obtain u—m=-k, and
v—n=—k,. This is the case that leads us to the desired
interaction(23), which we have discussed in Sec. Il

We now consider cas@i a 2). Here we have &N=<k,
andNI>k, so that from Eq(30) we obtain

np

m=u+k,—N=pu, (32

Ng M

v=n+IN—Kky>n.

o —cw o=

Inserting these identities into E¢L2) and keeping only the
lowest-order terms in the Lamb-Dicke approximation, i.e.,
pu=n=0, we obtain

SR R N L L =

o H,=xga™ "b™ “|1)(3|+H.c., (32

where we have defined the coupling constant

(—in)*a N (impN
(Ka—N)T  (IN—kp)!
(33

FIG. 4. Vibronic energy-level diagram for the case of the two
trap frequencies, and v, being multiples of each other,= 5w, . 1
As in Fig. 3 the two Raman lasers are tuned such that the Ramang= _glseXF{ — E( 77§2+ 7753)
detuningA (3=k,v,—Kav,, with k,=k,=1. In addition to the de-
sired resonant transition|n,— 1), Np)p|3) | Na)alNp— 1)p|1),

shown in gray, thgna)a|Ny—4)/3)[na)alno)s|1) transition is We require the coupling constants of the above resonances
resonantly coupled, as shown in black. In the Lamb-Dicke limit, the .
1) to be smaller than or equal to the coupling constants of

coupling constant corresponding to this additional resonance can h h | d in the Lamb-Dicke limi
reduced to the size of the corrections to the Lamb-Dicke approin e terms that we have neglected in the Lamb-Dicke limit

mation for the desired resonance by increasing the ratio of the traEJZ7)' Therefore, we have the condition
frequenciesv, /vy, . ~ _
ar [] Ka! Kol (N2

= <
A13=k,v,—Kav,, since the second follows analogously by [9(0.0]  (ke=N)! (IN—kp)! ()™ 7
interchanging the operatogs=a' andb<b' and leads to (34)
the same limits for the trap ratio=v,/v,. Now, with Eq.
(28), the resonance condition in E¢l.2) becomes

where again we assume both Lamb-Dicke parameters to be
of the same order of magnitudey,~ 7,3~ 7. In order to
N—m)—(n—v)—IK,+k =0, 29 derive a 'Iimit for the trap ratid;_frpm the above e_xpression,
(u=m)=( ) a’’mh 29 we consider the factor containing the Lamb-Dicke param-
where all numbers are positive integers. In order to simplifyeters and the one containing the factorials separately. If
the discussion we categorize the resonances by introducingi2™ 723~ 7, We have
an integer numbeN and rewrite Eq(29) so that

(79" 2% N(I—1)— 2k 2
pom=—ky N, T T ™
v—n=—Kk,+IN. (300  which is satisfied ifN(I —1)—2k,=2. Since this condition

. _ o o has to hold for alN in the range 6<N<Kk,, this leads to the
Following this categorization, we divide the resonances derequirement

termined by Eq.(29) into the three case§) N=0, (ii) N

positive, and(iii) N negative. We subdivide casi) further [=2k,+3 (36)

into (iia 1) O<N=<k,, 0<NI=<k, and (iia 2) 0<N=k,,

NI>k,, and (ib1) N>k,, O<NI<k, and (ib2) N for the trap ratid. Next we consider the term including the
>k,, NI>k,. Below we will examine case@) and(iia2)  factorials. We require this term to be smaller than or equal to
in detail as the latter case contains resonances with the largiity as under the above conditi¢d6) the factor containing
est contribution besides the required resonandé-a0. We  the Lamb-Dicke parameters already satisfies B%). We
have examined the other cases and will not repeat theffave

analysis except to note that they all give rise to leading-order

corrections of order higher than those found in ddis&2) in Ka! Ko _ Ka'kp! _ (Katkp)! @37

». Thus, to obtain the desired Hamiltoni&®3), the reso- (ka—N)! (IN—kp)! ~ (IN—kp)! — (IN—kp)!’

nances in caséi a 2) will impose the most stringent condi-

tion on the size of the trap ratio=v,/v,. Throughout this where in the first inequality we made use of the fact that for
discussion we will consider only the lowest-order terms inthe resonances we are discussing hereN3<k, and the
the Lamb-Dicke parameters since we have already addressedcond inequality holds sinck+ k;,)! =k,! k! for all posi-

the size of the corrections to the Lamb-Dicke approximatiortive integersk, andk,. From the above inequalit{87) the

in the above. factor containing the Lamb-Dicke parameters is smaller than
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or equal to unity if (N —kp)!=(k,+k;)! and since this has the following section where we concentrate on the linear
to be satisfied for alN in the range 8<N<k, we require coupling HamiltoniarH(" given in Eq.(2).

1= 2k, + kg . (38)
V. ENGINEERING ROTATION

Depending on the interaction that we want to generate, i.e., . .

depending on the numbég,, the inequality(36) or (38) wil . In the foII'owmg wg usg tb(el)ab.ove fgrmallsm to target the

impose the stronger limit on the trap anisotropy. For the twdinear coupling HamiltoniarH;* given in Eq.(2) and show

examples given in Eq€2) and(3), we havek,=k,=1 and how thIS. generates a rotquon of the two—dlm.ensmnal quan-

k,=3, k,=1, respectively. Therefore, in order to generatetum motional §tate_ of the'lon. We then examine t_he val|d|'ty

the linear coupling Hamiltoniat2) we require the trap ratio of the approximations discussed in the preceding section

| = v,/v,=5 (36). For the cubic interactiof8) a trap ratio of through a numerical analysis of this specific example.

|=v,/v,=>5 is needed from Eq(38). For the remaining The linear couplingH{") is obtained from the symmetri-

cases(iia 1), (ib1), (iib2), and (i) a similar analysis cally combined two-mode Raman Hamiltoniét8) through

shows that the requirement36) and (38) are sufficient to the particular choic&\ ;3= v,— v, for the Raman detuning

limit the strength of these resonances to Ey). and adjusting the relative phase of the lasers such that the
Although in the above discussion we have explicitly as-Raman coupling constard;s=i|g:4 is purely imaginary.

sumed the two trap frequencieg and v, to be multiples of ~ This leads to the Hamiltonian

each other, the limit§36) and(38) also hold for commensu-

rate trap frequencies. In this case the trap ratio is a rational, . . 1, 5

number, i.e.|=p/q, wherep andq are positive integers. " =—ifi|gigex — 5 (712t 723)

Since in the resonance conditi¢80) all numbers need to be

integers, the num h rizes the resonan n —i7)™ (99" m s
tegers, the numbeX that categorizes the resonances ca « S (—im)™ * (i 729 3TMaeh

only take on multiple values af, so thatiN=pN/q is an mah m! ! n! p!

integer. As we have discussed all integer valuedNpfany

trap ratiol = p/q that satisfies inequalitie®6) and(38) suf- xexpli(vam—pu—1]+v[v+1-n]+Amti+H.c,
fices for the unwanted resonances to satisfy(E@).. Hence, (41)

for given values ok, andk,, the coupling constants of all
additional resonances due to energy-_level degeneracies in t ich, in the limits discussed in Sec. IV, results in the linear
case of commensurate trap frequencies are at Ieastafactoré)Ou lina Y The counlina constard in E (2) is then

»? smaller than the coupling constant of the desired reso- piing Hi. piing g in Eq.

— H H 1
nance(23) if the trap ratio is chosen large enough accordingdiVen byg=—|g(0,0). The HamiltoniarH{ ) effects a ro-
to the limits in Eqs.(36) and (38). tation of the two-dimensional quantum motional state of the

ion about the center of the trap. This can be seen by exam-
ining the action of the Hamiltoniakl{" on the operatora
and b. Using the Baker-Campbell-Hausdorff theorem, we

C. Off-resonant terms

As pointed out by Gardineet al. [25], dropping all off-

. . : ave
resonant terms in going from E(L8) to Eq.(23) imposes a
limit on the timeT for which the Hamiltoniar(23) is a valid s rwan@Ta -~
approximation. This limit can be calculated in second-order a,=U'"aUu'™ =a cosf—b sind,
perturbation theory to b&V?/A<1, whereV is the effective
coupling to the nearest off-resonant transition in 8@) and b,= UDpUM =3 sing+b cos, (42)

A is the corresponding detuning. |I¥1)./N), is a character-

istic state that represents the highest-energy state that w _ S ) . .
allow to be acted upon, the transitions Where the anglé@=gt andU'" is the unitary transformation

generated by the Hamiltonian(?  i.e.,
|M_ka+1>a|N>b<:>|M>a|N_kb>bv -0

UL = giH| 't 43
M=k )= M) N— kot 1), (39 43

are the strongest coupled off-resonant terms. For these twg©M EG-(6) it is clear that the transformation in E¢42)
transitions the limit becomes corresponds to a rotation of the rescaled coordinate system

X=x/Ax, andy=y/Ay, through an anglé@=gt, so that in

) MIN! k, |2 the rotated coordinate system we have
TIo00 G DTl <" o
Xp=X COH—Y sind,
) MIN! Ky \? o B
T|g(0,0)] M—K)T(N=K DT | 7y =70 (40) Yo=X sing+y cos. (44)

where we have assumed the Lamb-Dicke limit to calculateNow an arbitrary pure or mixed motional state of the ion is
the couplingV between the state®9). We will further in-  characterized by a density operafarwhich can be written
vestigate the significance of the limitations discussed here ias
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;7: E P'lr#,]r}1|m>a|n>b<ﬂ|a<v|b
m,n,u,v
ATm"Tn éM"V
= ot ———=10),/0)p(0]2(0]p——=—=. (45 ©
o, P s 0)el (OOl (45)

The time evAqution of this state under the action of the
HamiltonianHl(l) is then given by

(=050

ATm"Tn AM v
ayby

= ot~ |0),| 0){ O] o Ol ——=
my%’v Prm,n /—m!n!| )al0)u(0]a(Op !

0 /4 w2 34 n 0 ) /2 3m/4 T
8t gt

= 2 plarlmyin)gul v, (46) 00
m,n,u,v

where we have used E@2) and |[m)|n){ is the number

state basis for the two-dimensional harmonic oscillator, but FIG. 5. Results from our numerical analysis of the deviation of

now in the rotated coordinatéf% and'% as given in Eq(44). the unitary evolution generated by the symmetrically combined Ra-

Therefore, the motional state of the ion given pft) is man Hamiltonian tuned for rotation from the desired state rotation.

identical top, but rotated through an angke=gt. In par-  We plot the overlaps=|('¥,{ V)|, between the statelo,), result-

ticular, this is accomplished without prior knowledge of theing from the Raman Hamiltonian tuned for rotation, and the desired

motior;al statep state|¥)=|—a),®|a)y, resulting from a rotation of the initial
Having convinced ourselves that the linear couplingStateVo)=la)a®|a),, through the anglé'==/2. We have cho-

iitoni (1) d bi . | fsenazl. Graphs(a)—(d) show the dependence of the time evolu-

Han_1| tonianH; oes_rotate an f';\r_ itrary motiona _Stat(_a Ol tion of 5 on the parametey, which takes on the valueg=22/2",

the ion, we now examine the validity of the approximations, heren=3,...,0 inunit steps.

discussed in Sec. IV for this specific example of the general

coupling Hamiltonian(23). We consider a state rotation orgys state-independent measure of the difference between
through the angl®=7/2, so thafT o= 7/2g is the required  two unitary operators can be construc{@s], but we will

time to rotate the state. For this case, the limitations due t@ot consider this here. In order to examine the validity of the
]?ff-resonant termgSec. IV Q as given in Eq(40) take the  gpproximations discussed in Sec. IV we adopt the overlap
orm

o= Wi W) (49)

b
ENmax< loid (47) as a measure of the deviation between the two unitary evo-

lutions U and U™ for an initially pure quantum state

in the limit of small 7,~ 7,3~ n, where we have assumed |W,). Here the state

v, to be the smaller of the two trap frequencies. Here )

Nmax=maxMN,M) in Eq. (40). From Eq.(47) it is clear that |V o =UZ | W) (50)

the ratio of the lower trap frequency over the Raman cou-

pling constant gives the unitary evolution of the initial staj@,) under the
action of the symmetrically combined Raman Hamiltonian

¥Y=vp/|944 (48 (41) and the state

determines the significance of off-resonant terms in the sys- W) =UD|w ) (51)
tem dynamics.

From our discussion of the significance of additional on-gjyes the desired evolution of the initial state under the ac-
resonant terms(Sec. IVB we require a trap ratio tjon of the linear coupling Hamiltoniaf2). This cannot be
| =v,/v,=5 for the linear coupler wher&,=k,=1 [EQ.  calculated analytically. To go beyond the analytics we nu-
(36)]. The estimates used to determine this minimal trap ratiqnerically compute the unitary evolutia®0), including the
essentially compare the coupling strengths of the differenhigher on-resonant and off-resonant terms, on the initial pure
terms appearing in the Hamiltoni&l) with no reference to state| ¥ o) =|a),®|a),, where|a), and|a), are coherent
the actual state on which it acts. Although this method ofstates in the vibrational modesandb, respectively. In this
estimation is used in the literature, it can serve only as &ase the desired statsl), rotated throughd= /2, is given
rough guide. A more rigorous measure of how the unitaryy, |W)=|—a),®|a),. The results of our numerical analy-
time evolutionU{), generated by the symmetrically com- sis are shown in Fig. 5. There we plot the overldpms a
bined two-mode Raman Hamiltoni&Al), deviates from the function of the scaled timgt, for different values of the
desired unitary evolutiott(*), generated by the linear cou- parametery, given by Eq.(48) and a coherent state ampli-
pling Hamiltonian(2), can be quite complicated. A fully rig- tude a=1. Before we discuss our results, we note the fol-
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lowing on our choice of parameters. In Figgas-5(d), y  constructed a Hamiltonian in which these evolutions fac-
takes on the valueg=22/2", wheren=3,...,0 inunit steps, tored. This was done through the addition of a second pair of
and the Raman coupling constamys is kept constant. For lasers that generated the symmetric counterpart to the Hamil-
simplicity, we assume the geometry of the laser excitation tdonian generated by the first pair of lasers. By preparing the
be arranged so that the Lamb-Dicke parameiges= Axgk,,  €electronic states in a particular superposition, the internal and
and 7,3= Aygk,3 are equal. Here it is important to note that external dynamics completely separated and we could treat
the values of the Lamb-Dicke parameteys, and 7,3 de-  the motional dynamics alone. In the Lamb-Dicke limit and
pend on the size of the trap frequencigsand v, through  with suitable sideband detunings, we could “target” a par-
AXo= (Al2v,m)¥? and Ay,=(A/2v,m)¥?. Therefore, the ticular term to be of leading order in the Hamiltonian. How-
size of the Lamb-Dicke parameters dependsyand varies ever, we found that in addition to the term we wanted to
from Fig. 5a) to 5(d). To incorporate this dependence in our dominate, other, higher on-resonant terms appeared. We
numerical analysis we Se,t,ﬁzz 7,733: 0.88, which gives could manipulate the strengths of the couplings to these un-
712= 123= 0.2, wheny= 22. These are values for the Lamb- wanted terms by altering the trap frequency ratio and found
Dicke parameters and the ratip that have been demon- that we could neglect these unwanted terms in the Lamb-
strated in cold ion experimenf§—10]. Following our dis- Dicke approximation for large enough trap anisotropies. Fi-
cussion of the trap anisotropy, we choose the trap rati;mally, we did a numerical evaluation of the full Hamiltonian

| =v,/v,=5. Our numerical analysis was performed in a@s a check on the analytical estimates. Although we have

finite (truncated number state basis@)4|0), - *|8)48)p) primarily concentrated on the linear rotation Hamiltonian

with a cutoff chosen such that an increase of this cutoff doe€2), higher-order dynamics can be generated, H¢?) given

not significantly alter the result of our integration. Figure by Eq. (3). The nonlinear Hamiltoniahi(®) has been much

5(a) shows the time evolution of the overladfor the lowest  studied in the quantum optical literature as a model of non-

value of y. Here the off-resonant terms in E¢#1) cause linearly coupled field modef21]. We know from this work

strong modulations i. For higher values of these modu- that such Hamiltonians generate a rich nonlinear dynamical

lations become much less pronounced as the off-resonastructure reflecting the strong mode entanglement character-

terms contribute less on these time scdféigs. §b)-5(d)].  istic of those couplings. Their optical realization is difficult,

The time evolution ofs for the highest value of is shown  but may well be more straightforward in trapped ion dynam-

with the solid line in Fig. &d). The plot reaches a maximum ics, as resonances can then be used to isolate chosen nonlin-

of §~0.99 atgt~1.02x 7/2. It shows almost no deviation earities.

from the dashed line in Fig.(8), which is a numerical inte- Finally, we note the recent publication of two papgt¥]

gration of the system dynamics where we include only thethat examine types of nonlinear interaction Hamiltonians in

desired resonances in the Hamiltonian as in @€). The  the motion of trapped ions that are closely related to the

numerical analysis shows that for low system excitation thevork presented here.

Hamiltonian Hl(l) can be engineered with high accuracy

within present ion traps. The investigation of the system dy- ACKNOWLEDGMENTS
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Tspont=200us. This is to be compared with the time to rotate

the motional state through the anghe= 7/2, T, ;=12 us. APPENDIX

This confirms our initial assumption that decoherence In thi di derive the effective Hamiltoni

through spontaneous emission can be neglected for this pro- n tis_appendix we derive the etiective Hamiitonian

cess. However, this may not be the case when engineerirﬁ;/en in Eq.(8)3 which follows from the adiabatic elimina-
higher-order interactions. One can shorten the interactio n of the excited leve|2) and describes the Raman cou-

time by increasing the laser power while maintaining in-pllng be_tween the twp ground-state Ie\_/él$ ?‘”d|3>- Alter .
equality (7) by increasing the detuningsy, and A ;. The per_forrr_ung the rotating-wave approximation, the Hamil-
fundamental limit is then given by the detunings that one Caﬁonlan in Eq.(5) becomes

realize and the accessible laser power. 0 — By | 11|+ h | 2)(2] + hos] 3)(3| + Fva(2TR)

VI. CONCLUSION +hvy(bTh) — [1)(2| @ fig, e (ki w1ad)
In this work we showed how one can engineer a class of - |2><1|®hg*1kzei(klzf<—wlzt>_ 13(2|® %953
Hamiltonians for the motional dynamics of an ultracold ion o o
in a harmonic trap. The process uses a stimulated Raman x e~ 1(key—w2d) — |2y (3| @A gie! ey w2t (AD)

transition in aA configuration with the two lasers propagat-
ing along thex andy directions. To decouple the internal where we have defined the dipole coupling constants
electronic dynamics from the external motional dynamics wegi,=(1|D1,-€152)E1,/% and gy3=(3|Dos- €23 2)Exs/ti.
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In order to compare the time scales of the transitions inducetnder the assumption of large detunings, as given in(Byqg.
by the two laser beams we consider the Heisenberg equatiogg optain the adiabatic solution fop, by setting

gf r=n|olt|>(zr:;| for the transition  operators;,=|1)(2| and d’glz/thO [28], so that after restoring the rapidly oscillat-
13= ;

ing time dependence, we obtain

. d a a i g _ a a
Gt G12= (03— 1) 1o g1 12 12 (511~ 5)) 1 . .
. Ko o) 2 512:A_lz{gfzel(klzxiwlzt)(fin_ 020+ g5 e g
_923e 23y 23 0-13, (AS)
B (wo— wr) Eor e ~i(kogy— wd) " o
| 915~ (03— 1) 013~ Goe™ 2 230 For the|2)«|3) transition we find in an analogous manner
+ gfzei(klzi7 “12) Gy (A2) 1
2 T garai(koy—wag) A A * Ak X—wqgt) 2
Here all operatorgdenoted by overbarsare taken in the T32 A23{923e (033~ 020 T 018 3}
Heisenberg picture, i.e., o,=U(t)oUT(t), where (AB)
U(T)=T exgli[/'H(t")dt'/#]} is the time-ordered evolution
operator. Using the transformation Upon inserting these adiabatic solutions for and &5, into

R A Eqg. (Al), we have
o= 120y,

G pa= 619235 o, H =%, |1)(1|+ A3/ 3)(3| +hva(aTa) +fvy(bTh)
. . . _ R _ —i[kqX— Koy — (w19~ wpat]
013= 0120 23= e*l(w127w23)t6_13 (A3) hg.s€ 1 2 12~ @2 ®|1><3|
_ * Ai[k 23(—k23§/—(w 2~ wo3)t]
to remove the explicit time dependences from E&R) we hgre™™ ! ®[3)(1l, (A7)
have
d where we have dropped the term describing the free energy
P — 312: Alzélz_ g* eiklzi( G11— 6o — G eikzaﬁgm of the excited stat¢2) since in this adiabatic approximation
dt 12 28 ’ it is no longer connected to the two ground states. Further-
q more, we have defined the Raman coupling constant as given

i at 013= (A 1= A3 013~ Goe ™ Voot 01712053,

in Eq. (9) and the energies®, and%z w5 (10) of the ground-
state levelgl) and|3), which are Stark shifted as a result of
(A4) the adiabatic elimination of the excited state.
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