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Density matrices and density functionals in strong magnetic fields
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The equation of motion for the first-order density mattbDM) is constructed for interacting electrons
moving under the influence of given external scalar and vector potentials. The 1DM is coupled there to the
2DM by means of the electron-electron interaction. This equation is then employed to obtain the differential
virial equation for interacting electrons moving in a magnetic field of arbitrary strength. Suitable integration
leads back to the virial theorem derived recently by Erhard and Gross. The exchange-correlation scalar poten-
tial of the current-density functional theory of Vignale and Rasolt is derived in two forms, in terms of 1DMs
and 2DMs and their noninteracting-system counterparts, involving(adsolinear way the vector potentials:
external and exchange-correlatioe) ones in the first form, and the xc one in the second form. An equation
is obtained also for determining the corresponding xc vector potential in terms of the same DMs and the
external vector potential. Approximate exchange-only scalar and vector potentials are proposed in terms of
noninteracting 1DM. Finally the Hartree-Fock 1DM for atoms and molecules in magnetic fields is shown to
satisfy the same equation of motion as the fully interacting 1P84.050-294{®7)06312-9

PACS numbg(s): 31.15.Ew, 31.15.Md, 71.15.Mb

[. INTRODUCTION Sec. lll. Section V constitutes a summary. The gauge invari-
ance of the obtained equations is discussed in the Appendix.
There is considerable current interest in the problem of

atoms and molecules subjected to intense external magnetic ~ 1l. ORBITAL MOTION IN MAGNETIC FIELD
fields (see, e.g.[1,2]). Numerical studies, using both quan- IN TERMS OF DENSITY MATRICES
tum Monte Carlo simulation for the Jimolecule[3] and the
Hartree-Fock approximation for some atofdg, have been
reported very recently. Our purpose in the present work is to When a vector potentiah is imposed on an atom or a
provide the basic underlying theory for a density-matrixmolecule, through the application of a strong magnetic field
(DM) approach to the problem of molecules in magneticB, related toA by
fields of arbitrary strength. This will, in essence, provide a
generalization of our earlier studi¢5—7], made for zero
magnetic field, of the exchange-correlation potentiglr)
of the density-functional theory in terms of first- and second-

order density matrice€lDMs, 2DMs. In particular, we give
in Sec. Il below the equation of motion for 1DM and also theA s to change the kinetic energ{/(2m)]p® of an electron

2 . .
differential virial equation, which both played a central rolet0 [1/(2m)]{p+(e/c)A} (notee>0). It is useful to define

in our earlier workg5,6], in the presence of a magnetic field " operatow by

of arbitrary strength. However, in contrast to the procedure 1 2

adopted in[5], it will be valuable here to approach the dif- yr; [A])— (p(r)+ —A(r) ) - —{p(r 12
ferential virial equation via the equation of motion for the

1DM. The integral virial theorem in a magnetic field has 2
recently been given by Erhard and Gr¢8%and their result

A. The Hamiltonian

B(r)=V XA(r), 2.1

then it is well known thatA is ill defined to the extent of
“addition of the gradient of any scalar function. The effect of

) _ he
AZ(r) =i 5 [V -A(N)]+2A(1)- V(1)},

will be shown to follow also from our present derivation of 2mc*

the differential virial theorem. (2.2
Section Il will extend the results of Sec. Il to include

spin-dependent potentials. Direct contact will be made withusingp(r)=—iAV(r)=—i#d/dr. In terms of this operator

the work of Vignale and Raso[9] on the current-density w we next construct the one-body Hamiltoniardefined by
functional theory. We will deal specifically with the forms of

the exchange-correlation potentialg,,(r) and A, (r) in h(r:[v,A]D)=t(r)+w(r;[A])+v(r), (2.3
the presence of an applied magnetic field. Approximations

for exchange-only potentials will also be proposed. By waywhere

of illustration of the exact theory, Sec. IV will derive the )

Hartree-Fock single-determinantal approximation, but now i _ﬁ_vz( r, (2.4)
in the density-matrix form, from the equation of motion of

1050-2947/97/56)/459511)/$10.00 56 4595 © 1997 The American Physical Society



4596

A. HOLAS AND N. H. MARCH 56

andv(r) denotes the external scalar potential. In order toand

focus on the electron current due to the presend&(of, we

disregarded in the Hamiltoniaf2.3) any dependence on the
spin variable, leaving this subject to be taken into account in

the remaining sections.

2
(N-1)

(L1 = f d29,(1212) (212

The N-electron nonrelativistic Hamiltonian may then be gre DMs generated from the eigenfunctiobiz. Here

written
N
H[v,A]= 21 h(rj;[v,AD)+U=T+W+ D+, (2.5
=

where

B. Equation of motion for the first-order density matrix 7y,

With the usual definitions of DMs from thbl-electron
wave functionV (see, e.g., Davidsofl0], Parr and Yang
[11], and also beloyy the equation of motioGEOM) for ;,

in terms of the commutator of, and#, takes the form

(Pel[y1(1;1),H]_|We)=0, (2.83
whereW ¢ satisfies
HIWe)=E|Wg), (Ve Pe)=1. (2.8b

In the coordinate representation, the evaluation of (B3
can be performed in a straightforward way as

Nf d*2. . - d*N[WE(1'23 - -N){HWg(123 - -N)}

—{HP(1'23 - -N)*¥(123 --N)]=0. (2.9

Thus dealing with the spin-independent Hamiltoni@yb),
we arrive at the following EOM for the 1DM;:

{Rh(1;[v,A])—h*(1";[v,AD)} y2(L;1")

+ 2] d*2{u(12)—u(1'2)}y,(121'2)

=0, (2.10
where
N(N—1)
y2(121'2") = ———=
2
xfd43-~d4N\I'E(123~-~N)
XWE(1'2'3---N) (2.12)

1=x,={r;s,} denotes space and spin coordinates of an elec-
tron, [d*2 meansZ [d°r,, andu(1'2) meansu(ry,rp).

An analogous EOM in the absence of a magnetic field is
already well known, see, e.g., Dawson and Mdrth| and
Ziesche[13], and was used extensively in our previous in-
vestigation[6]. The EOM(2.10 plays a quite central role in
the present study. In particular, we shall immediately utilize
it to derive the differential virial equation for interacting
electrons in a molecule subjected to an intense magnetic field
(similarly as done in6] for the case when such a field is
absent The gauge invariance of EQR.10 is discussed in
the Appendix.

C. Differential virial equation (DVE)

By acting with the operatog[V(1)—V(1')] on the
EOM (2.10, setting thereaftet’=1, and taking a sum over
s; ands,, we can rewrite the resulting DVE in terms of
spinless matrices defined by

p1<r1;r1>=52 y1(r1s1;r181), Nn(1)=ny(1)=py(1;1),
' (2.13

and

(2.19

Ny(rq,rp)= 2 Y2(r181,1282:1181,12S7).
S1.59

The “diagonals,” the patrticle densitp(1)=n,;(1) and the
pair densityn,(12), are crucial ingredients in expressing the
DVE in a form useful for our present purposes:

ﬁZ
2(Lilpa)) ~ 2= VVN(L)

2

+n(1>V(v(1>+%A2(1) +k(Lilip11.AD

+2f d®2{V(1)u(12)}n,(12) =0, (2.19
where
za<1;[p1]>=2§ Va(Dtep(Lilps), (216
in terms of the kinetic-energy-density tensor
ﬁZ
taﬂ(l;[pl]):m{va(l )V 5(1")
V(1Y (1)} ps(1+ 171427,

(2.17
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and

. e )
ka(l;[lp,A])=§ V(DAL ps(1)
FVa(I{A(Djp(D}], (218

in terms of the paramagnetic-current-density vegtar de-
fined also as a functional gf; by

jp(l;[Pl])

1
= 5 {P(1) +p* (1)} ps(1+17;1+1")]

1'=1"=0

1'=1"=0

if
=~ 5 V(1) = V(1)}py(1+11+1")]
h
= _V(1)Impy(1+171)[, . (2.19

Note that all terms in Eq(2.195 and alsot,; andj,, Egs.
(2.17 and(2.19, are real-value quantities.

The above DVE(2.15 leads immediately to the integral

virial equation(VE). One applies the operatiofd®r;r;- to
the DVE to obtain

2
2T[p1]+Ee&{n2]=f d3rn(r)r-V(v(r)+ 2mCZAZ(r)

= [ @rigrtpnir v-nSam,
(2.20

where the global kinetic enerdy is given explicitly by

Tlpil= f dsrlf(rl)Pl(rl;ri)Li:rl

4597

D. Interpretation of DVE as a force-balance equation

We define the external ford¢r) as minus the gradient of
the external potential(r). Then we readily obtain from Eq.
(2.195 the result

hZ
f(r)=n1(r)( Z(r;[p1]) — mVVZn(r)

+2f d3r’[V(r)u(r,r’)]nz(r,r’))

2
N~ HOK(r:ligpal AD + meZV[A%r)])

J’_

=f"Yr)+fMqr). (2.23

In making the separation éfr) shown in Eq(2.23 into the
sum of two parts, what is to be emphasized is that the mag-
netic partf 4 r) vanishes as the magnetic vector poterial

is switched off. While the nonmagnetic paf"Yr) depends

on the magnetic field through the fact that the DMs corre-
spond to the eigenfunction calculated in the presence of the
vector potentialA, it has a nonzero limit ad— 0, when our
earlier result{5] in zero magnetic field is of course recov-
ered.

As to the physical significance 6f"qr), it can again be
decomposed into the sum of two terms, the first being the
well-known Lorentz force of electromagnetism, namigdge
Eq. (2.D],

ft;’f(r):n1(r>(j<r>x§8(r))

=030 3 {00V o A0 =1 s AD,

(2.29

expressed in terms of the gauge-invarightysical current
j(r), defined as a sum of thgaramagneticcurrentj(r) and
a term due to the vector potentialfr),

= f d*r 2 taa(rilpal), (229 o
I =jp(N)+ n(DA(r). (2.29
while the electron-electron interaction energy, is o ) ] ) )
The continuity equation for the stationamyr), i.e., satisfy-
ing dn(r)/gt=0 (as corresponding to an eigenfunction
Eodno]= J d31d32u(12)n,(12), (2.22  reads
V-j(r)=0. (2.2
the Coulombic form(2.6) of u(12) being used to obtain the
VE (2.20. The above VE(2.20 is precisely Eq.(36) of  Writing then
Erhard and GrosE8], obtained by them in a completely dif- .
ferent way. fmaq(r)=fLo'(r)+"(r), (2.2

The VE(2.20 is an example belonging to a vast family of
so-called hypervirial equations, which can be easily generand invoking Eq.(2.26), the second force is obtained in the
ated by applying prefactors, different thap, prior to the form
integration of the DVE(2.15. In this way generalizations
may be obtained, for interacting many-electron systems in a
magnetic field, of our previous resulid4] on hypervirial
equations, concerning noninteracting systems in the absence
of such a field. where the tensoD ;=D g, is defined by

fiC'Jh(r)=n‘1(r)% V5D p(r), (2.29
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D (1) =1.(1) SAKD +] 4 SA(D) N =N AD Zha(r) =0, (3.2

) where both scalar and vector potentials ardependent and

€ arbitrary. This Hamiltonian acts on a functigrix) as a local
B Wn(r)Aa(r)AB(r) or differential operator with respect to spatial coordinate, and
o R as aAdiagonaI matrix, having diagonal elemefts(r1)
:jpa(r)EAB(rHjpﬂ(r)EAa(r) apd hm(rl),A with respect to spin coordinate, so
(hpe)(ro)=hy(ro)e(ro), without any summation over
e? the spin coordinater. In application to real systems, one
@2 NODALNAL). (229 imposesv(r)+v(r)=2v(r), whereuv(r) is the physical

external scalar potentiali;(r)—v (r)=2[%e/(2mc)]B(r),
So fil;‘h arises from inhomogeneity in the tenddy,,(r) —a whereB(r) is the physical external magnetic field, and sets
combination of the current density, particle density, and thé®(r)=A (r)=A(r)= the physical external vector poten-
vector potential. It is worth noting that the structure of thetial. A
force (2.29 is similar to the structure of the contribution in  Using the generat(x), Eq.(3.2), we have for the inter-
Eq. (2.23 due to inhomogeneity of the kinetic-energy- acting system the magnetic Hamiltonigzrompare Eq(2.5)]
density tensot ,z=1g,:

N
Am: ﬁm i =T Am Am A. 3.3
n“iNz(n=2n"Y > Vtue(r). (230 Tt ;1 (X)) FU=TH Wit Vintld. (3.3
B

Evaluating Eq.(2.9) with 7 replaced byfim, we arrive at

See the Appendix for comments concerning the gauge int—he EOM for y,, similar to Eq.(2.10:
1 . . .

variance of various force terms.

The above force-balance equati@23 is to be com-
pared with the one-electron result of Amovilli and March
[15], namely,

{Am(1)— %1} yo(1;2)

2 2

h f m
—Vy=V|—n-2 2_ 0 o -1lyg2ny —n—2i2
v V8 n-—<(Vvn) am" Vn+2n ]).

+ 2f d“2{u(12—u(1'2)}y»(121'2)=0. (3.4a

Since the HamiltoniaﬂA{m, Eqg. (3.3, commutes with the
(2.31 operator of the total-spiz component, the DM elements

Equation(2.31) is readily obtained from the general result ya(ri1;r1l) and yy(ryl;ri7) vanish(see Davidsor{10]).
(2.23 by settingn,=0 and py(r:r')=(r)¢*(r'), with Thergf(_)re the EOMs are obtained from H&.49 for the
#(r) now the one-electron wave function. Again in Eq. émaining two elements of the 1DM, fer=1,|:
(2.31) the continuity equatiori2.26 has been invoked. N fe o .

Before relating the above more directly to the current-  {NMLi[ve,Ac) —h* (1 [vs AcD}p1s(1:17)
density functional theory as set out by Vignale and Rasolt
[9], it is important to turn next to the case when the electron +2J d32{u(12) —u(1'2)}p,,(12;1'2)=0,
spin is included.

(3.4b
I1l. INCLUSION OF ELECTRON SPIN
AND DIRECT CONTACT
WITH CURRENT-DENSITY-FUNCTIONAL THEORY

where

P1,(r1;r1)=y1(r1oir10) (3.59
A. Equation of motion and differential virial equation

In this and the remaining sections we shall restrict ourand
considerations to the case when the external magnetic field
B(r) has a constant direction. Choosing thaxis as the field P2o(T1,T 2115 5= yo(F10,1 2S5 10,1 5Sy).
direction, therB(r) is defined by its magnitude and the unit 2

(3.5b
vectorz:

- - There are then two DVEs, namely
B(r)=B(r)z=|V XA(r)|z. (3.2
2

Now one must extend the one-body Hamiltonian by adding &(1;[p1,]) — HVVZnU(l)

term [#ie/(mc)]B(r)s,(o) [wheres,(o) is a spin operator

with the eigenvaluest3]. Having in mind the current- e 2 :

density functional applicatiofsee Vignale and Rasd®]) of N (DV{v,(1)+ WAU(D +k(Lilidp1ol Al
our result, we admit an even more general one-b@dsg-
netico Hamiltonian, allowing it to bes dependenfsee Eq.

(2.3]: +2f d*2{V(1)u(12)}n,,(12)=0, (3.6
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where and the numbeN ., known from the interacting system to be
N, (1)=n1,(1)=p1,(1;1) (3.7a
N(,=f d*1n,(1), N;+N;=N. (3.13b
and
Ny (12)=p,,(12;12). (3.7  The physical current in the reference systisompare Eq.
(3.80)]

One can, as a consequence, write two force-balance equa-

tions and two integral virial equations. s he off
Let us investigate the EONB.4b on the diagonal. By Jo(D)=Jpo( 1)+ 2no(DA, (1) (3.1
performing the limit £ —1 we transform this equation to the
form satisfies the continuity equatid-j$=0.
he The DVE in the reference system reads
=iV j(Lilp1 )+ =N (1)A,(1) | =0. (3.83 )

fi
2(Li[p3,)) = 2oV, (1) +K(Lil ]y AT
All real terms involvingp,, and the whole term involving m

po, Vanished, because of Hermicity of DMs. The obtained g2
Eqg. (3.89 is, in fact, the static continuity equation, because +n,(1)V viﬁ(1)+ 5 CZ[A?,“(l)]Z =0.
the o component of the physical current density is known to m
be (3.1
he . .
io(1=in(Li[p1,))+ m:na(l)A(,(l) (3.8b C. Exchange-correlation scalar potential

Let us partition the one-body Hamiltonian, EG.3) with
[compare Eqs(2.25 and(2.26) in the spinless form Inthe  EQ. (2.2), into its differential-operatotdop) and local(loc)
absence of a magnetic field, this diagonal limit of the EOMterms:
as the continuity equation was pointed out by Zies(ct. A .
h(r;[v,AD) =hgodr;[AD) +hiee(r;[v,A]), (3.163
B. Application to current-density-functional theory

of Vignale and Rasolt ~ A he

o T - o Ti[AD) =E(1) I =AMV (), (3.160
A referencenoninteractingsystem is introduce¢ts DMs

are marked out with the superscript),s’such that the
particle-number spin densities and the paramagnetic-current h . _ z 2 . he v

spin densities are the same as in the original interacting sys- 'OC(F’[U’A])_U(rHZmCZA (r) =i 2mc[ AN
tem: (3.160

NS (r=pi,(r;N=n,(r)=pi,(r;r), (3.98 By dividing the EOM (3.4b of the interacting system by
_ _ _ _ p1,(1;1") and that, Eq(3.1)), of the reference system by
Jpe(N=1p(r5 [P =lpe(N=jp(ri[p1s]) (39D pS (1:1'), we can separate out the local terms

[see Eq(2.19]. The particles now move in effective poten- he (1 Al —h* (1': A
tial fields: v®(r), A®(r). The corresponding one-body ol Lilvg A~ Rioe( 15105 A
Hamiltonian is therefor¢compare Eq(3.2)] =Wy 11;[A,p145]) —Wed 11';[U, p14,p24]),
REf(1) = h(L:vS", AST). (3.10 (3.173
The EOM for the reference systdiag. (3.4b with u=0] is where
R -Re(1)ps, (1) =0,  (aap Vel HTALD
N . _R* ’. Lqr
where, assuming a nondegenerate ground state and, there- — {aod 1iLAD ~ o 1i[AD}p1(1:1 ), (3.179
fore, a single-determinantal wave function, the 1DMs are p1(1;1")
given by
N, Wed 11';[U,p1,p2])
$.(1;1)= HAL)E (1), 3.1
PLLi1)= 2 $as(1)65,(1) (3.12 2f 2(u(12) u(1'2)py(12:1'2)
= , (3.179

with ¢, , satisfying the Kohn-Sham equations p1(1:;1")

h(1) pan(1) = €agan(l), €ar<€as1, (3.138  and
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hloc(]-;[viff

= —Wqol(115[A%" 03 1).

eff
ag

AT —hE (1[0, A%T)

(3.18

The replacemenf ,—A was performed in Eq(3.173 in
order to have results pertaining to the real system.

This Eq. (3.173 can be immediately rearranged to the
formuv (r)=v,(r") +{terms depending op;, , ps,, U, A}.

It demonstrates that the external scalar potential can be r

constructed from the known DMg,,, ,p,,, the interaction
u, and the external vector potential For that reason one
must choose and fix some reference poinand an arbitrary

constanb ,(r’). This last freedom reflects the fact that scalar
potentials which differ by a constant are equivalent. A simi-

lar statement concerns E(.18.
As shown by Vignale and Rasd®], the effective poten-
tials can be written in the forms

AS(1)=A(1) + A, (1), (3.19
05(1)=04(1) +0ed 1)+ V(1)
+ %{[A(l)]Z—[Aiﬁm]z}, (3.20
with
ved 1)=ved 1i[N])= f d*2u(12)n(2), (3.2
n(2)=n(2)+n(2), (3.22

SE ;. Jpt dpi]
(1)

Uxeo( L[Nt N dpyadpy D)=

(3.23

SEd NN gt )]
Bjpe(1)

e . .
EAXCU(l;[nT Ny lpr :Jpl]):
(3.29

E,. being the exchange-correlation energy, ke Here's
indicates theartial functional differentiation.
After inserting the potentials " and A®", Egs. (3.20),

(3.19, into Eqg. (3.18, and then subtracting from it Eq.

(3.173, one obtains from the real part of the result an ex-

A. HOLAS AND N. H. MARCH

he
- 2mC{V'AXCU(1)+V'AXCG(1,)}

= IM{Wao( 11';[ A, p1,]) = Wao 11';[A+ Axc .1, ])

+Wee(11,;[u1p101p20])}' (326)

The structure offige,, EQ. (3.16b, induces the following

e_

Splitting of Wyqp, Eq.(3.17b:
Wi 115 [A, p1]) = Wiin(11;[p1])

_he
—i AW (113 [ps])

+A(L)WHL' Li[p])}, (3.278

where the kinetic energy operator contribution is

{t(1)—1(1")}ps(2;2")

W,in(11'; = , (3.27
(115 p1]) L1 (3.27b
and the reduced gradient of 1DM is
V(1)pi(1;17)
W (1L5[py])=—— ™ (3.279

p1(1;1")
So the final expression far,., is

Uyeo(1)
=Uyeo(1") + REWin(11';[ p15]) = Wign(11'5[ p3,1)
+Wed 11;[U,p14,P24]) —ved 1;[N]) +ved 17;[N])}

h
+ MD)Wl 11 1, ]) ~Wed 17305, 1)}

—AxcoDWg (113 [p3, N+ 2 1)} (3.28

As seen from the above, the term preceded by Im vanishes
with vanishingA andA,.,, while that preceded by Re sur-
vives. In this way our earlier resul6] in the absence of a
magnetic field is recovered.

Equation (3.28 demonstrates that the scalar exchange-

pression for the scalar exchange-correlation potentials’ difcorrelation potential can be reconstructed from the known

ference

Uxco( 1) —Uxeo(1")
= Re[Wdop(llr;[Avplo]) _Wdop(llr;[A"'Axcmpio])
+Wee(11,;[u’pllr !p2¢r]) _Ue41;[n])

+ved17;[N])}, (3.29

DMs p1,, pa, Of the interacting system, angf of the
reference system, the interactiopand the vector potentials:
external A and exchange-correlatioA,.,. The reference
point 1, chosen arbitrarily, is kept fixed. The presence of an
arbitrary constant,.,(1") reflects the freedom of the gauge
transformation for the static scalar potenti§l' of the refer-
ence system: DMs obtained with this potential and with the
transformed potentiali.e., shifted by a constantare the
same, therefore that constant cannot be determined from the

and from the imaginary part — an expression for the sum oknowledge of DMs.

the corresponding vector potential divergences

The difference of the DVE$3.15 and(3.6) yields
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13005 — P10 TK(Li[jpr AST— A, vn(1
Z(1i[p1,— Prs)) T K(Lilip D o(Ln]) = r]r(l(l))_ (3.32b
+ng(1)V<vgﬁ(1)—vU(1) , _
Finally, using Eqs(3.27 and(3.32), Eqg. (3.26 can be re-
o2 written as
eff 2_ A2
Fome AW AL Areo(1)G(11) + A, (1) G(1'1) = H(11'),

(3.333

— 3 =

zf d32{V(1)u(12)}n,,(12)=0.  (3.29 with
It is essential than,(1) andj,,(1) are the same for the . he s
reference and the original systems. After inserting the Vig- G(11')= ﬁ{ig(l,[na])—Re\Ngr(ll Lp1,D)}
nale and Rasolt effective potentials, E¢8.19 and (3.20),
we obtain from Eq(3.29 fie , ,

= me Re{Wgr(ll ;[Pio])hn:l_wgr(ll ;[Pio])}

fxea(1)

=G(11;[p3.]), 3.33
=~ V(Loye(1) (rilesal (3.33
=0, (2L p3, pao)) + KLl pF ) Aver D)} HAL)=HAL=HALIIA P, s p20])
he
-2 f d%2{V(1)u(12}{n, (1)n;,(12) - 3n(2)}. =| meA(L) ReW(11:[p7,])

(3.303
_Wgr(llr;[pl(r])} +{1 - 17}

It gives the force arising from the scalar exchange-
correlation potentiab,(1) in terms ofpy,, Ny, p,, U, +HIM{Wiin(11';[p15]) = Wiin(11';[p3,])
andA,.,. The force fieldf,.,(r) is conservative because it .

stems from the potential,.,(r) [see the first line of Eq. F Wed 115 [U.p1,. P21} (3.339
(3.303], therefore, similarly as if5], the potential can be

evaluated as a line integral having diagonals

i G(11)=0, H(11)=0. (3.339
UxcolF0) =Vsco(To) fré dr-fice(r),  (3:308 Thus Eq. (3.333 relates, at any point pai{1,1'}, the
exchange-correlation vector potential field with the external
which is independent of the particular path chosen for inteone, and with some simple functionals of D§,, p1,,
gration. Again, the reference pointy and the constant p2,, and the interaction. Since our aim is to reconstruct
Uxeo(I'0) are arbitrary. Axco from the known DMs with the help of E¢3.33, let us
Equations(3.28 and(3.30 —two alternative explicit ex- investigate first if some freedom is left by the gauge trans-
pressions for the exchange-correlation scalar potential of théormation of AS", Eq. (A1). We see from Eq(A4) that a

current-density functional theory—are the main results ofconstantA only does not change DMs, but it means no trans-
the present subsection. formation at all, Eq.(Al1). So, opposite to the case of the

scalar potential, the vector potentia)., must follow from
the DMs in a unique way.
We sketch now a procedure for calculation of the field
In order to simplify Eq.(3.26 let us note that the differ- A __(r) from Eq. (3.33 by applying a discretization of the
ence of the continuity equations in terms of the physicalproblem. The vectora,,(r) will be determined on a grid of
current in the reference system, Kg.14), and the original  (large numberM points. Since the derivatives of DMs are

D. Exchange-correlation vector potential

system, Eq(3.8b), gives[see Eq.(4.9 of [9]] undefined at nuclear positioripecause of “cusps” there,
5 see, e.g9.[10]), these points should be avoided on the grid.

0=V{j§—jg}=V(—en0Axw) (3.3) Equation(3.333 is symmetric in{1,1'}, and its diagonal

mc {1,1 represents a trivial identitysee Eq(3.33d]. Therefore

. the discretization of EQ.(3.333 leads to a system of
[Egs.(3.9 and(3.19 have been usddSo the divergence of (M—1)M/2 linear inhomogeneous equations inM3

the exchange-correlation vector potential can be written fromynknowns —the components #f,(j), j=1, ... M. This
Eq.(3.3) as system, although overdetermined, cannot be contradictory,
because it stems from exact relations satisfied by DMs. So, a
V- Axeo(1) = = Axer(1)9(15[N,]), (3.328  subsystem of BI equations, having a nonsingular coefficient

matrix, can be chosen, and then solved. It should be noted
in terms of the reduced density gradient that the DVE(3.29 does not provide a separate equation for
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determination ofA,.,(r) [to be an analog of the derived By applying the replacements,— py,, in Eq. (3.33), we
from EOM Eq.(3.26)], because it is lacking the imaginary obtain an equation for the approximate exchange-only vector
part. potential

The determined fieldA,.,(r) can be inserted into Eq.
(3.28 or (3.30, which give v, (r). In this way the con- AEOM(1)G(11') + AEM(1")G(171) =HEM(11"),
struction of both vector and scalar exchange-correlation po- (3.37a
tentials is possible from the following inpys, , p1s, P24
u, andA. with

EOM I — ’. S S
E. Approximate exchange-only potentials HE(11) = ImWed 117U, p14,P25])

In our investigation$5,6] of finite electron systems in the ,
absence of magnetic fields, we proposed approximations for - _f d*2{u(12 -u(1'2)}
the exchange-only potential, derived from the exact expres-
sions for the exchange-correlation potential by means of re- pi,(1;2)p3,(2;1")
placing there the interacting-system DMs by their noninter- x1m pS.(1;1) , (3.37b

acting counterparts. We were guided by the fact that such

replacement in the exact expression terms of DMg for

E,c resulted in the exact exchange energy. Applying this re
lacement now to Eq.3.28 we obtain an approximate ex- o .

gression for the exglange scalar potentiegpfrom the EOm Determination of the f'el‘AEzSM from Eq. (3.37) may be

approach, free of the kinetic energy operator tekfis, and ~ Performed in a similar way as in the caseAy, from Eq.

of the external vector potentiél. The exchange-correlation (3-33. Because of approximations, the system of

vector potential remaining there should be replaced by it§M —1)M/2 linear inhomogeneous equations iM3un-
exchange-only part, to be consistent with the applied apknowns, corresponding to the discretized E34373, may be
proximation. The result is (slightly) contradictory. Therefore it should be solved as a

linear least-squares problem. One ought, perhaps, to add to
Eom Eom he s the minimized least-squares sum also the terms correspond-
Vo (1) =0y (1) = IM{AG(D W (115 [p1,D} ing to the discretized Eq3.323 (with the divergence repre-
sented via finite differencgsin order to impose on the ap-
+{1 Z 1) proximate AZS™ the constraint of satisfying the continuity
equation.
_J d32{u(12)—u(1'2)} By applying again the discussed replacemezg
to the expression for the exchange-correlation force, Eg.
pS (1:2)p5,(2:1") (3.3;)6), we ?bgain thte follpwir]:g apt)rp])rogiygtion for the
R WRD . (3.34  exchange-only force stemming from the :
Pis '

free of dependence on the external poterdiél) [compare
Eq. (3.39 for the W, contribution.

foo (D)=n; (DKLl Lp3,] Ax])
The form of its last term results from expressing the 2B}

in terms of the 1DMy; as +f d32{V(1)u(12}n, *(1)|p3,(12)|?,

Y3(12,1°2") = H{¥3(1:1)93(2;2)) ~ ¥3(1:2)) 93(2:1)}, (3.383
59 and, with the help of line integration, the corresponding po-

valid, in general, for DMs derived from a single- €Nt

determinantal wave functiofil0], and from expressing the o

1DM as[see Eq.(3.12] UE:E(VO):UE:E(V('))_ fré dr.f)l()()/E(r). (3.38h

Y1(ri81;7181) =p3;(ry;ry) e(sy) a(sy)
s . , Similarly as in the EOM case, the approximate exchange
+p1(rir)B(s)B(s)), (338 scalar potentiab2YE may depend on the choice of for the
reference point and on the integration path, because the ap-

because the noninteracting-system Hamiltonian commutgsroximate force field may contain also soifsenal) noncon-
with the total-spinz component operatdi.0], and applying  servative component. WheAZ9 | determined from Eq.
next the definition ofp3, according to Eq(3.5H. While the  (3.37), is inserted forA,,, in Eq. (3.34 or (3.38), construc-
exactv,,(r), determined from Eq(3.28, must be indepen- tion of the approximate exchange vector and scalar potentials
dent of the choice of’ for the reference poinfup to arbi-  becomes feasible solely in terms @f, andu.
trary additive constant,.,(r’)], this property may be lost, It should be noted that the resyB.38a reduces to the
due to approximations, by=2M(r), Eq. (3.34, although we  Harbola-Sahni exchange-only resfi6] in their work for-
anticipate this potential dependence rdrwill be weak. malism,
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8 < (3.39

O~ [ Praptrsr -l -,

when the magnetic field is absend soA,,=0), and a
spin-compensated system,(=p, | =
gether with the Coulombia(r4,r,). Herep,(rq,r,) denotes
the so-called exchange hole dengitge, e.g.[11]). Since all
the approximations discussed above, E@&34), (3.37),

(3.38, are analogs or extensions of the Harbola-Sahni a
proximation, one may expect them to lead to similarly prom
ising results as their zero-field worlsee, e.g., Sahni's re-

view [17]).

IV. HARTREE-FOCK APPROACH

As the Hartree-FockHF) approximation is still widely
used to investigate atoms in a magnetic figddy.,[3]), we

derive below its density-matrix form. The self-consistent
one-electron eigenfunctions of the HF single determinant are

solutions of
RrE(X) R (X) = eRFpRF(x), 4.9
where

Are(ro)=h(r;[v, Al +vedr;[nTFD) + 657 (ros L)),

(4.2
Here the HF 1DM
N
FO6x) = 2 8270 5™ (X) 4.3
enters the kernel
7 (1204 ) = —u(127(1:2) (4.9
of the nonlocal exchange potenti@htegral operator
oy (De(1)= f d*27 (12 ¢(2), (4.5
while the external potential is
eh
(r)—v(r)+ B(r) + for o=1,]. (4.6
The EOM for the HF 1DM idcompare Eq(3.11)]
{hue(D) —hEe(1) )7 (11) =0. (4.7)

Since thez component of the total spin is a good quantum
number, the HF 1DM is given by E3.36 with the replace-

ment s—HF for superscripts. Therefore E(.7) is equiva-
lent to two equations, for=71,|:

{Aue(ri0) —he(rio)}pil(riir)) =0, (4.9
The terms containing.sando "

contribution in terms of the HF 2DM/4F, which is a com-
bination of HF 1DM " element{Eq. (3.3 with s—HF],

3p1) is considered to-

can be combined to give a
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so an alternative form of the EOM looks like the exact EOM
(3.4b of the interacting system

{h(1;[v, A —h*(1";[v, AD}pYF(1;1")
Jd32{u(12) u(1'2)}p5F(12;1'2)=0.

(4.9

pThe analogous equation in the absence of a magnetic field

“was obtained by us earlier [i8]. The corresponding DVE
reads

2(1;[p} ])— VV?n“Fu)

2
~ A1) | KL AD

+nﬁF(1)V(u0(1)+

fd32{v (Lu(12)}nfF(12)=0 (4.10

so it looks like the exact DVE3.6) of the interacting system.
Equations(4.9) and (4.10 open an interesting possibility
of checking the accuracy of any numerical solution of the HF
equations for a particular system. Since E84b has ex-
actly the same form as E¢4.9), Eq. (3.173, which is de-
rived from it, can be rewritten in terms of the HF DMs:

e2
v (r)+ WAz(r)—const

:_wadop(r r' [A pl(r] +Wee(r r' [U pl(r'pZ{r])}
(4.113

he ,
—m{VA(I’)‘FVA(r )}
—IM{Weodr,r";[ A, pf5]) +Wed 1.1 s [U, pt5 o5 1)}

(4.11b

the reference point’ is kept fixed. Similarly, from Eq.
(4.10 divided byn""(r) we have

2

e 2
Viv,(r)+ 2mC2A (r)

=—{nz"(n}*

x| 2(r;[pY, ])—

VVZHHF(f) +k(r; [l pTs], AD

+2j d3r{V(ryu(r,r’)\nFrr )) (4.110

After evaluating the right hand sides of E¢4.11) on a grid

of pointsr, using ;" and pi¥ (calculated from the inaccu-
rate HF orbitalsand the giverA, the results may be thought
of as representing theshown on the left-hand sidesombi-
nations of some actual potentidts,(r), A(r)} for which the
considered HF orbitals are the exact solutions. By comparing
the obtained combinations with those evaludisztording to
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the left-hand side expressigrfsom the applied external po- CDFT2 and SDFT, including the extension to an arbitrary
tentials,r regions of substantial discrepancy can be detectedlirection of a magnetic field.

This may be helpful when looking for improvements in the

calculational procgdure, for _insta'nce, by providing more ac- ACKNOWLEDGMENTS

curate representation of orbitals in the troublesome regions.
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APPENDIX: GAUGE INVARIANCE

V. SUMMARY For time-independent problems, if we transform the vec-

The most important results established through theor potential, occurring in the Hamiltoniaft[v,A], Eq.
present density-matrix approach to the nonrelativistic(2.5), according to
current-density functional theory, applicable to finite electron
systems in magnetic fields of arbitrary strength but a constant A — A1) =A(r)—8VA(r), (A1)
direction, are(i) the equation of motior{3.4) for the first-
order density matrix(ii) the differential virial equatior(3.6);
(iii) an expression for the exchange-correlation scalar pote
tial v,,(r) in terms of density matrice$a) in a direct form,
involving the vector potential&\(r), A,.,(r), in Eq.(3.28,

where A(r) is an arbitrary scalar function, and at the same
time modify the wave function according to

(b) in a line-integral form, involvingA,,(r), in Eq. (3.30); WXy, o Xn) = Whew( Xy, - - XN)

(iv) an equation for determining the exchange-correlation e

vector potentialA,.,(r) in terms of density matrices and the =ex;{ i—{A(r)+ AP (Xg, - XN,
external potentiaA(r), Eqg. (3.33; (v) an expression for an ke

approximate exchange-only scalar potential in terms of (A2)

noninteracting-system density matrices ahg(r): (a) in a
direct form, in Eq.(3.34), (b) in a line-integral form, in Eq.  then the form of the original Schdinger equation(2.8b
(3.38; (vi) an equation for determining an approximate remains unchanged,
exchange-only vector potential in terms of the
noninteracting-system first-order density matrix, in Eqg.
(3.37); and (vii) the proof that the equation of motida.9)
and the differential virial equatioi4.10, satisfied by the )
density matrices of the Hartree-Fock approximation, are thd his is called the gauge invariance of the Sclinger equa-
same as corresponding equatidB8s4b and (3.6), satisfied tion. The transformatioA2) induces the following transfor-
by the exact matrices. mation of DMs, Egs(2.11), (2.12:

While vy, (r) andA,.,(r) are defined via functional dif-
ferentiation, Eqs(3.23 and (3.24), the merit of the results e
(iii) and (iv) is to avoid such differentiation, but the price vz,new(12:l’2)=exp(lh—C{A(l)—A(l’)})72(12:1’2),
paid is that potentials are found in terms of nondiagonal (Ada)
elements of density matrices, going beyond these diagonal
and close-to-diagonal elements, which defmgr), jp.(r), o
andn,(r,r,). Although th_ese resylts are somewhat formal, Y1 ned L; 1’)=ex;{ i —{A(l)—A(l’)}) y1(L1:1).
they may become useful in practice if some controlled ap- hc
proximations for the interacting-system density matrites (Adb)
functionals of the densijycan be inserted.

As the present investigation was approaching completionSince the EOM(2.10 follows directly from Eq.(2.9), its
a work by Capelle and Grod49]| appeared, linking inti- gauge invariance is dictated by E@3), which means that
mately two versions of the current-density functional theoryEg. (2.10 remains unchanged if transformatioAs— A qu,
(CDFT) and the spin-density functional theoSDFT). Eq. (A1), and yx— ¥k news EQ.(A4), are performed simulta-
Their result may be used to transform our equations for exagteously. The gauge invariance of the DVE15 means the
Uxeo » Axcr @nd approximate, ., A,,, pertaining to the Vig- same, because this equation is obtained from(E4.0 by
nale and Rasolt CDFT1, to corresponding potentials oflifferentiation. It should be noted that the diagonal elements
CDFT2 and SDFT, on a certain set of densities. Their workof DMs, Egs. (2.13 and (2.14), are invariant,nye,=n,
[19] motivates also future extension of our investigation vian, .= n,, as it follows from Eq.(A4). The gauge invari-
the density-matrix approach, from the present CDFT1 to thence of the physical current, E(.25, means that

IH[U rAnew]\PE,new: E\I,E,new- (A3)
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e e When extending all above considerations to include the
JolP1nend 1 NAnew=pl p1]+ A (A5)  electron spin, in the manner introduced in Sec. Ill A, it is
sufficient to replace in Eq$A1)—(A4) the fieldsA(r;) and
A(r;) by A,,j(rj) andA(,j(rj) (here thejth electron coordi-
Concerning the force-balance equatith23, we note in-  nate isx;={r;o;}). Then the gauge invariance is shown
variance of the following terms: ih"™ the termVV?2n and separately foor=1,|, in the EOM and DVE3.4b), (3.6),
the term involvingn,, in ™9 the Lorentz forcef ", and,  similarly in two physical current$3.8b), and in two conti-

finally, the sum {"™"+n~1z). nuity equationsv -j,=0.
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