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Density matrices and density functionals in strong magnetic fields
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The equation of motion for the first-order density matrix~1DM! is constructed for interacting electrons
moving under the influence of given external scalar and vector potentials. The 1DM is coupled there to the
2DM by means of the electron-electron interaction. This equation is then employed to obtain the differential
virial equation for interacting electrons moving in a magnetic field of arbitrary strength. Suitable integration
leads back to the virial theorem derived recently by Erhard and Gross. The exchange-correlation scalar poten-
tial of the current-density functional theory of Vignale and Rasolt is derived in two forms, in terms of 1DMs
and 2DMs and their noninteracting-system counterparts, involving also~in a linear way! the vector potentials:
external and exchange-correlation~xc! ones in the first form, and the xc one in the second form. An equation
is obtained also for determining the corresponding xc vector potential in terms of the same DMs and the
external vector potential. Approximate exchange-only scalar and vector potentials are proposed in terms of
noninteracting 1DM. Finally the Hartree-Fock 1DM for atoms and molecules in magnetic fields is shown to
satisfy the same equation of motion as the fully interacting 1DM.@S1050-2947~97!06312-9#

PACS number~s!: 31.15.Ew, 31.15.Md, 71.15.Mb
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I. INTRODUCTION

There is considerable current interest in the problem
atoms and molecules subjected to intense external mag
fields ~see, e.g.,@1,2#!. Numerical studies, using both qua
tum Monte Carlo simulation for the H2 molecule@3# and the
Hartree-Fock approximation for some atoms@4#, have been
reported very recently. Our purpose in the present work i
provide the basic underlying theory for a density-mat
~DM! approach to the problem of molecules in magne
fields of arbitrary strength. This will, in essence, provide
generalization of our earlier studies@5–7#, made for zero
magnetic field, of the exchange-correlation potentialvxc(r )
of the density-functional theory in terms of first- and secon
order density matrices~1DMs, 2DMs!. In particular, we give
in Sec. II below the equation of motion for 1DM and also t
differential virial equation, which both played a central ro
in our earlier works@5,6#, in the presence of a magnetic fie
of arbitrary strength. However, in contrast to the proced
adopted in@5#, it will be valuable here to approach the di
ferential virial equation via the equation of motion for th
1DM. The integral virial theorem in a magnetic field h
recently been given by Erhard and Gross@8# and their result
will be shown to follow also from our present derivation
the differential virial theorem.

Section III will extend the results of Sec. II to includ
spin-dependent potentials. Direct contact will be made w
the work of Vignale and Rasolt@9# on the current-density
functional theory. We will deal specifically with the forms o
the exchange-correlation potentialsvxcs(r ) and Axcs(r ) in
the presence of an applied magnetic field. Approximatio
for exchange-only potentials will also be proposed. By w
of illustration of the exact theory, Sec. IV will derive th
Hartree-Fock single-determinantal approximation, but n
in the density-matrix form, from the equation of motion
561050-2947/97/56~6!/4595~11!/$10.00
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Sec. III. Section V constitutes a summary. The gauge inv
ance of the obtained equations is discussed in the Appen

II. ORBITAL MOTION IN MAGNETIC FIELD
IN TERMS OF DENSITY MATRICES

A. The Hamiltonian

When a vector potentialA is imposed on an atom or
molecule, through the application of a strong magnetic fi
B, related toA by

B~r !5“3A~r !, ~2.1!

then it is well known thatA is ill defined to the extent of
addition of the gradient of any scalar function. The effect
A is to change the kinetic energy@1/(2m)#p2 of an electron
to @1/(2m)#$p1(e/c)A%2 ~notee.0). It is useful to define
an operatorŵ by

ŵ~r ;@A# !5
1

2mS p~r !1
e

c
A~r ! D 2

2
1

2m
$p~r !%2

5
e2

2mc2 A2~r !2 i
\e

2mc
$@“•A~r !#12A~r !•“~r !%,

~2.2!

usingp(r )52 i\“(r )52 i\]/]r . In terms of this operator
ŵ we next construct the one-body Hamiltonianĥ defined by

ĥ~r ;@v,A# !5 t̂~r !1ŵ~r ;@A# !1v~r !, ~2.3!

where

t̂~r !52
\2

2m
¹2~r !, ~2.4!
4595 © 1997 The American Physical Society
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and v(r ) denotes the external scalar potential. In order
focus on the electron current due to the presence ofA(r ), we
disregarded in the Hamiltonian~2.3! any dependence on th
spin variable, leaving this subject to be taken into accoun
the remaining sections.

The N-electron nonrelativistic Hamiltonian may then b
written

Ĥ@v,A#5(
j 51

N

ĥ~r j ;@v,A# !1Û5T̂1Ŵ1V̂1Û, ~2.5!

where

Û5 (
1< i , j <N

u~r i ,r j !, u~r i ,r j !5
e2

ur i2r j u
, ~2.6!

and

T̂5(
j 51

N

t̂~r j !, Ŵ5(
j 51

N

ŵ~r j ;@A# !, V̂5(
j 51

N

v~r j !.

~2.7!

B. Equation of motion for the first-order density matrix g1

With the usual definitions of DMs from theN-electron
wave functionCE ~see, e.g., Davidson@10#, Parr and Yang
@11#, and also below!, the equation of motion~EOM! for g1,
in terms of the commutator ofĝ1 andĤ, takes the form

^CEu@ ĝ1~1;18!,Ĥ#
2
uCE&50, ~2.8a!

whereCE satisfies

ĤuCE&5EuCE&, ^CEuCE&51. ~2.8b!

In the coordinate representation, the evaluation of Eq.~2.8a!
can be performed in a straightforward way as

NE d42•••d4N@CE* ~1823•••N!$ĤCE~123•••N!%

2$ĤCE~1823•••N!%* CE~123•••N!#50. ~2.9!

Thus dealing with the spin-independent Hamiltonian~2.5!,
we arrive at the following EOM for the 1DMg1:

$ĥ~1;@v,A# !2ĥ* ~18;@v,A# !%g1~1;18!

12E d42$u~12!2u~182!%g2~12;182!

50, ~2.10!

where

g2~12;1828!5
N~N21!

2

3E d43•••d4NCE~123•••N!

3CE* ~18283•••N! ~2.11!
o

in

and

g1~1;18!5
2

~N21!
E d42g2~12;182! ~2.12!

are DMs generated from the eigenfunctionCE . Here
1[x1[$r1s1% denotes space and spin coordinates of an e
tron, *d42 means(s2

*d3r 2, and u(182) meansu(r18 ,r2).
An analogous EOM in the absence of a magnetic field
already well known, see, e.g., Dawson and March@12# and
Ziesche@13#, and was used extensively in our previous i
vestigation@6#. The EOM~2.10! plays a quite central role in
the present study. In particular, we shall immediately util
it to derive the differential virial equation for interactin
electrons in a molecule subjected to an intense magnetic
~similarly as done in@6# for the case when such a field
absent!. The gauge invariance of Eq.~2.10! is discussed in
the Appendix.

C. Differential virial equation „DVE…

By acting with the operator12 @“(1)2“(18)# on the
EOM ~2.10!, setting thereafter1851, and taking a sum ove
s1 and s2, we can rewrite the resulting DVE in terms o
spinless matrices defined by

r1~r1 ;r18!5(
s1

g1~r1s1 ;r18s1!, n~1![n1~1!5r1~1;1!,

~2.13!

and

n2~r1 ,r2!5 (
s1 ,s2

g2~r1s1 ,r2s2 ;r1s1 ,r2s2!. ~2.14!

The ‘‘diagonals,’’ the particle densityn(1)[n1(1) and the
pair densityn2(12), are crucial ingredients in expressing t
DVE in a form useful for our present purposes:

z~1;@r1# !2
\2

4m
“¹2n~1!

1n~1!“S v~1!1
e2

2mc2 A2~1! D1k~1;†jp@r1#,A‡!

12E d32$“~1!u~12!%n2~12!50, ~2.15!

where

za~1;@r1# !52(
b

¹b~1!tab~1;@r1# !, ~2.16!

in terms of the kinetic-energy-density tensor

tab~1;@r1# !5
\2

4m
$¹a~18!¹b~19!

1¹b~18!¹a~19!%r1~1118;1119!u
1851950

,

~2.17!
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and

ka~1;@ jp ,A# !5(
b

e

c
@$¹a~1!Ab~1!% j pb~1!

1¹b~1!$Ab~1! j pa~1!%#, ~2.18!

in terms of the paramagnetic-current-density vectorj p , de-
fined also as a functional ofr1 by

jp~1;@r1# !

5
1

2m
$p~18!1p* ~19!%r1~1118;1119!u

1851950

52
i\

2m
$“~18!2“~19!%r1~1118;1119!u

1851950

5
\

m
“~18!Imr1~1118;1!u

1850
. ~2.19!

Note that all terms in Eq.~2.15! and alsotab and jp , Eqs.
~2.17! and ~2.19!, are real-value quantities.

The above DVE~2.15! leads immediately to the integra
virial equation~VE!. One applies the operation*d3r 1r1• to
the DVE to obtain

2T@r1#1Eee@n2#5E d3rn~r !r•“S v~r !1
e2

2mc2 A2~r ! D
1E d3r jp~r ;@r1# !$r•“21%

e

c
A~r !,

~2.20!

where the global kinetic energyT is given explicitly by

T@r1#5E d3r 1 t̂~r1!r1~r1 ;r18!u
r185r1

5E d3r(
a

taa~r ;@r1# !, ~2.21!

while the electron-electron interaction energyEee is

Eee@n2#5E d31d32u~12!n2~12!, ~2.22!

the Coulombic form~2.6! of u(12) being used to obtain th
VE ~2.20!. The above VE~2.20! is precisely Eq.~36! of
Erhard and Gross@8#, obtained by them in a completely dif
ferent way.

The VE~2.20! is an example belonging to a vast family
so-called hypervirial equations, which can be easily gen
ated by applying prefactors, different thanr1, prior to the
integration of the DVE~2.15!. In this way generalizations
may be obtained, for interacting many-electron systems
magnetic field, of our previous results@14# on hypervirial
equations, concerning noninteracting systems in the abs
of such a field.
r-

a

ce

D. Interpretation of DVE as a force-balance equation

We define the external forcef(r ) as minus the gradient o
the external potentialv(r ). Then we readily obtain from Eq
~2.15! the result

f~r !5n21~r !S z~r ;@r1# !2
\2

4m
“¹2n~r !

12E d3r 8@“~r !u~r ,r 8!#n2~r ,r 8! D
1S n21~r !k~r ;†jp@r1#,A‡!1

e2

2mc2 “@A2~r !# D
5f nmg~r !1f mag~r !. ~2.23!

In making the separation off(r ) shown in Eq.~2.23! into the
sum of two parts, what is to be emphasized is that the m
netic partf mag(r ) vanishes as the magnetic vector potentiaA
is switched off. While the nonmagnetic partf nmg(r ) depends
on the magnetic field through the fact that the DMs cor
spond to the eigenfunction calculated in the presence of
vector potentialA, it has a nonzero limit asA→0, when our
earlier result@5# in zero magnetic field is of course recov
ered.

As to the physical significance off mag(r ), it can again be
decomposed into the sum of two terms, the first being
well-known Lorentz force of electromagnetism, namely@see
Eq. ~2.1!#,

f a
Lor~r !5n21~r !S j ~r !3

e

c
B~r ! D

a

5n21~r !
e

c(b $ j b~r !¹a Ab~r !2 j b~r !¹b Aa~r !%,

~2.24!

expressed in terms of the gauge-invariantphysical current
j (r ), defined as a sum of theparamagneticcurrentjp(r ) and
a term due to the vector potentialA(r ),

j ~r !5 jp~r !1
e

mc
n~r !A~r !. ~2.25!

The continuity equation for the stationaryn(r ), i.e., satisfy-
ing ]n(r )/]t50 ~as corresponding to an eigenfunction!,
reads

“• j ~r !50. ~2.26!

Writing then

f mag~r !5f Lor~r !1f inh~r !, ~2.27!

and invoking Eq.~2.26!, the second force is obtained in th
form

f a
inh~r !5n21~r !(

b
¹b Dab~r !, ~2.28!

where the tensorDab5Dba is defined by
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4598 56A. HOLAS AND N. H. MARCH
Dab~r !5 j a~r !
e

c
Ab~r !1 j b~r !

e

c
Aa~r !

2
e2

mc2 n~r !Aa~r !Ab~r !

5 j pa~r !
e

c
Ab~r !1 j pb~r !

e

c
Aa~r !

1
e2

mc2 n~r !Aa~r !Ab~r !. ~2.29!

So f a
inh arises from inhomogeneity in the tensorDab(r ) — a

combination of the current density, particle density, and
vector potential. It is worth noting that the structure of t
force ~2.28! is similar to the structure of the contribution i
Eq. ~2.23! due to inhomogeneity of the kinetic-energ
density tensortab5tba :

n21~r !z~r !52n21~r !(
b

¹btab~r !. ~2.30!

See the Appendix for comments concerning the gauge
variance of various force terms.

The above force-balance equation~2.23! is to be com-
pared with the one-electron result of Amovilli and Marc
@15#, namely,

2“v5“S \2

8m
n22~¹n!22

\2

4m
n21¹2n1

m

2
n22 j 2D .

~2.31!

Equation~2.31! is readily obtained from the general resu
~2.23! by setting n250 and r1(r ;r 8)5f(r )f* (r 8), with
f(r ) now the one-electron wave function. Again in E
~2.31! the continuity equation~2.26! has been invoked.

Before relating the above more directly to the curre
density functional theory as set out by Vignale and Ras
@9#, it is important to turn next to the case when the elect
spin is included.

III. INCLUSION OF ELECTRON SPIN
AND DIRECT CONTACT

WITH CURRENT-DENSITY-FUNCTIONAL THEORY

A. Equation of motion and differential virial equation

In this and the remaining sections we shall restrict o
considerations to the case when the external magnetic
B(r ) has a constant direction. Choosing thez axis as the field
direction, thenB(r ) is defined by its magnitude and the un
vector ẑ:

B~r !5B~r !ẑ5u“3A~r !uẑ. ~3.1!

Now one must extend the one-body Hamiltonian by addin
term @\e/(mc)#B(r ) ŝz(s) @where ŝz(s) is a spin operator
with the eigenvalues6 1

2#. Having in mind the current-
density functional application~see Vignale and Rasolt@9#! of
our result, we admit an even more general one-body~mag-
netic! Hamiltonian, allowing it to bes dependent@see Eq.
~2.3!#:
e

n-

-
lt
n

r
ld

a

ĥs~r !5ĥ~r ;@vs ,As#!5ĥm~rs![ĥm~x!, ~3.2!

where both scalar and vector potentials ares dependent and
arbitrary. This Hamiltonian acts on a functionw(x) as a local
or differential operator with respect to spatial coordinate, a
as a diagonal matrix, having diagonal elementsĥm(r↑)
and ĥm(r↓), with respect to spin coordinate, s
(ĥmw)(rs)5ĥm(rs)w(rs), without any summation ove
the spin coordinates. In application to real systems, on
imposesv↑(r )1v↓(r )52v(r ), where v(r ) is the physical
external scalar potential,v↑(r )2v↓(r )52@\e/(2mc)#B(r ),
whereB(r ) is the physical external magnetic field, and se
A↑(r )5A↓(r )5A(r )5 the physical external vector poten
tial.

Using the generalĥm(x), Eq. ~3.2!, we have for the inter-
acting system the magnetic Hamiltonian@compare Eq.~2.5!#

Ĥm5(
j 51

N

ĥm~xj !1Û5T̂1Ŵm1V̂m1Û. ~3.3!

Evaluating Eq.~2.9! with Ĥ replaced byĤm, we arrive at
the EOM forg1, similar to Eq.~2.10!:

$ĥm~1!2ĥm* ~18!%g1~1;18!

12E d42$u~12!2u~182!%g2~12;182!50. ~3.4a!

Since the HamiltonianĤm, Eq. ~3.3!, commutes with the
operator of the total-spinz component, the DM element
g1(r1↑;r18↓) and g1(r1↓;r18↑) vanish ~see Davidson@10#!.
Therefore the EOMs are obtained from Eq.~3.4a! for the
remaining two elements of the 1DM, fors5↑,↓:

$ĥ~1;@vs ,As#!2ĥ* ~18;@vs ,As#!%r1s~1;18!

12E d32$u~12!2u~182!%r2s~12;182!50,

~3.4b!

where

r1s~r1 ;r18!5g1~r1s;r18s! ~3.5a!

and

r2s~r1 ,r2 ;r18 ,r28!5(
s2

g2~r1s,r2s2 ;r18s,r28s2!.

~3.5b!

There are then two DVEs, namely

z~1;@r1s#!2
\2

4m
“¹2ns~1!

1ns~1!“S vs~1!1
e2

2mc2 As
2~1! D1k~1;†jp@r1s#,As‡!

12E d32$“~1!u~12!%n2s~12!50, ~3.6!
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where

ns~1![n1s~1!5r1s~1;1! ~3.7a!

and

n2s~12!5r2s~12;12!. ~3.7b!

One can, as a consequence, write two force-balance e
tions and two integral virial equations.

Let us investigate the EOM~3.4b! on the diagonal. By
performing the limit 18→1 we transform this equation to th
form

2 i\“S jp~1;@r1s#!1
\e

mc
ns~1!As~1! D50. ~3.8a!

All real terms involvingr1s and the whole term involving
r2s vanished, because of Hermicity of DMs. The obtain
Eq. ~3.8a! is, in fact, the static continuity equation, becau
thes component of the physical current density is known
be

js~1!5 jp~1;@r1s#!1
\e

mc
ns~1!As~1! ~3.8b!

@compare Eqs.~2.25! and~2.26! in the spinless form#. In the
absence of a magnetic field, this diagonal limit of the EO
as the continuity equation was pointed out by Ziesche@13#.

B. Application to current-density-functional theory
of Vignale and Rasolt

A referencenoninteractingsystem is introduced~its DMs
are marked out with the superscript ‘s’!, such that the
particle-number spin densities and the paramagnetic-cur
spin densities are the same as in the original interacting
tem:

ns
s ~r ![r1s

s ~r ;r !5ns~r ![r1s~r ;r !, ~3.9a!

jps
s ~r ![ jp~r ;@r1s

s # !5 jps~r ![ jp~r ;@r1s#! ~3.9b!

@see Eq.~2.19!#. The particles now move in effective poten
tial fields: vs

eff(r ), As
eff(r ). The corresponding one-bod

Hamiltonian is therefore@compare Eq.~3.2!#

ĥs
eff~1!5ĥ~1;@vs

eff ,As
eff# !. ~3.10!

The EOM for the reference system@Eq. ~3.4b! with u50# is

$ĥs
eff~1!2ĥs

eff* ~18!%r1s
s ~1;18!50, ~3.11!

where, assuming a nondegenerate ground state and, t
fore, a single-determinantal wave function, the 1DMs
given by

r1s
s ~1;18!5 (

a51

Ns

fas~1!fas* ~18!, ~3.12!

with fas , satisfying the Kohn-Sham equations

ĥs
eff~1!fas~1!5easfas~1!, eas<ea11,s ~3.13a!
a-

nt
s-

re-
e

and the numberNs , known from the interacting system to b

Ns5E d31ns~1!, N↑1N↓5N. ~3.13b!

The physical current in the reference system@compare Eq.
~3.8b!#

js
s ~1!5 jps~1!1

\e

mc
ns~1!As

eff~1! ~3.14!

satisfies the continuity equation“• js
s 50.

The DVE in the reference system reads

z~1;@r1s
s # !2

\2

4m
“¹2ns~1!1k~1;@ jps ,As

eff# !

1ns~1!“S vs
eff~1!1

e2

2mc2 @As
eff~1!#2D50.

~3.15!

C. Exchange-correlation scalar potential

Let us partition the one-body Hamiltonian, Eq.~2.3! with
Eq. ~2.2!, into its differential-operator~dop! and local~loc!
terms:

ĥ~r ;@v,A# !5ĥdop~r ;@A# !1hloc~r ;@v,A# !, ~3.16a!

ĥdop~r ;@A# !5 t̂~r !2 i
\e

mc
A~r !“~r !, ~3.16b!

hloc~r ;@v,A# !5v~r !1
e2

2mc2 A2~r !2 i
\e

2mc
@“•A~r !#.

~3.16c!

By dividing the EOM ~3.4b! of the interacting system by
r1s(1;18) and that, Eq.~3.11!, of the reference system b
r1s

s (1;18), we can separate out the local terms

hloc~1;@vs ,A# !2hloc* ~18;@vs ,A# !

52Wdop~118;@A,r1s#!2Wee~118;@u,r1s ,r2s#!,

~3.17a!

where

Wdop~118;@A,r1# !

5
$ĥdop~1;@A# !2ĥdop* ~18;@A# !%r1~1;18!

r1~1;18!
, ~3.17b!

Wee~118;@u,r1 ,r2# !

5

2E d32$u~12!2u~182!%r2~12;182!

r1~1;18!
, ~3.17c!

and
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hloc~1;@vs
eff ,As

eff# !2hloc* ~18;@vs
eff ,As

eff# !

52Wdop~118;@As
eff ,r1s

s # !. ~3.18!

The replacementAs→A was performed in Eq.~3.17a! in
order to have results pertaining to the real system.

This Eq. ~3.17a! can be immediately rearranged to th
form vs(r )5vs(r 8)1$terms depending onr1s , r2s , u, A%.
It demonstrates that the external scalar potential can be
constructed from the known DMsr1s ,r2s , the interaction
u, and the external vector potentialA. For that reason one
must choose and fix some reference pointr 8 and an arbitrary
constantvs(r 8). This last freedom reflects the fact that sca
potentials which differ by a constant are equivalent. A sim
lar statement concerns Eq.~3.18!.

As shown by Vignale and Rasolt@9#, the effective poten-
tials can be written in the forms

As
eff~1!5A~1!1Axcs~1!, ~3.19!

vs
eff~1!5vs~1!1ves~1!1vxcs~1!

1
e2

2mc2 $@A~1!#22@As
eff~1!#2%, ~3.20!

with

ves~1!5ves~1;@n# !5E d32u~12!n~2!, ~3.21!

n~2!5n↑~2!1n↓~2!, ~3.22!

vxcs~1;@n↑ ,n↓ ,jp↑ ,jp↓# !5
d̃ Exc@n↑ ,n↓ ,jp↑ ,jp↓#

d̃ ns~1!
,

~3.23!

e

c
Axcs~1;@n↑ ,n↓ ,jp↑ ,jp↓# !5

d̃ Exc@n↑ ,n↓ ,jp↑ ,jp↓#

d̃ j ps~1!
,

~3.24!

Exc being the exchange-correlation energy, see@9#. Here d̃
indicates thepartial functional differentiation.

After inserting the potentialsvs
eff and As

eff , Eqs. ~3.20!,
~3.19!, into Eq. ~3.18!, and then subtracting from it Eq
~3.17a!, one obtains from the real part of the result an e
pression for the scalar exchange-correlation potentials’
ference

vxcs~1!2vxcs~18!

5Re$Wdop~118;@A,r1s#!2Wdop~118;@A1Axcs,r1s
s # !

1Wee~118;@u,r1s ,r2s#!2ves~1;@n# !

1ves~18;@n# !%, ~3.25!

and from the imaginary part — an expression for the sum
the corresponding vector potential divergences
re-

r
-

-
f-

f

2
\e

2mc
$“•Axcs~1!1“•Axcs~18!%

5Im$Wdop~118;@A,r1s#!2Wdop~118;@A1Axcs
,r1s

s # !

1Wee~118;@u,r1s ,r2s#!%. ~3.26!

The structure ofĥdop, Eq. ~3.16b!, induces the following
splitting of Wdop, Eq. ~3.17b!:

Wdop~118;@A,r1# !5Wkin~118;@r1# !

2 i
\e

mc
$A~1!Wgr~118;@r1# !

1A~18!Wgr* ~181;@r1# !%, ~3.27a!

where the kinetic energy operator contribution is

Wkin~118;@r1# !5
$ t̂~1!2 t̂~18!%r1~1;18!

r1~1;18!
, ~3.27b!

and the reduced gradient of 1DM is

Wgr~118;@r1# !5
“~1!r1~1;18!

r1~1;18!
. ~3.27c!

So the final expression forvxcs is

vxcs~1!

5vxcs~18!1Re$Wkin~118;@r1s#!2Wkin~118;@r1s
s # !

1Wee~118;@u,r1s ,r2s#!2ves~1;@n# !1ves~18;@n# !%

1
\e

mc
Imˆ„A~1!$Wgr~118;@r1s#!2Wgr~118;@r1s

s # !%

2Axcs~1!Wgr~118;@r1s
s # !…1„1 ←

→ 18…* ‰. ~3.28!

As seen from the above, the term preceded by Im vanis
with vanishingA andAxcs , while that preceded by Re sur
vives. In this way our earlier result@6# in the absence of a
magnetic field is recovered.

Equation ~3.28! demonstrates that the scalar exchan
correlation potential can be reconstructed from the kno
DMs r1s , r2s of the interacting system, andr1s

s of the
reference system, the interactionu, and the vector potentials
external A and exchange-correlationAxcs . The reference
point 18, chosen arbitrarily, is kept fixed. The presence of
arbitrary constantvxcs(18) reflects the freedom of the gaug
transformation for the static scalar potentialvs

eff of the refer-
ence system: DMs obtained with this potential and with
transformed potential~i.e., shifted by a constant!, are the
same, therefore that constant cannot be determined from
knowledge of DMs.

The difference of the DVEs~3.15! and ~3.6! yields
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z~1;@r1s
s 2r1s#!1k~1;@ jps ,As

eff2As#!

1ns~1!“S vs
eff~1!2vs~1!

1
e2

2mc2 $@As
eff~1!#22As

2~1!% D
22E d32$“~1!u~12!%n2s~12!50. ~3.29!

It is essential thatns(1) and jps(1) are the same for the
reference and the original systems. After inserting the V
nale and Rasolt effective potentials, Eqs.~3.19! and ~3.20!,
we obtain from Eq.~3.29!

fxcs~1!

52“~1!vxcs~1!

5ns
21~1!$z~1;@r1s

s 2r1s#!1k~1;†jp@r1s
s #,Axcs‡!%

22E d32$“~1!u~12!%$ns
21~1!n2s~12!2 1

2 n~2!%.

~3.30a!

It gives the force arising from the scalar exchang
correlation potentialvxcs(1) in terms ofr1s , n2s , r1s

s , u,
andAxcs . The force fieldfxcs(r ) is conservative because
stems from the potentialvxcs(r ) @see the first line of Eq.
~3.30a!#, therefore, similarly as in@5#, the potential can be
evaluated as a line integral

vxcs~r0!5vxcs~r08!2E
r08

r0
dr•fxcs~r !, ~3.30b!

which is independent of the particular path chosen for in
gration. Again, the reference pointr08 and the constan
vxcs(r08) are arbitrary.

Equations~3.28! and~3.30! — two alternative explicit ex-
pressions for the exchange-correlation scalar potential of
current-density functional theory — are the main results
the present subsection.

D. Exchange-correlation vector potential

In order to simplify Eq.~3.26! let us note that the differ-
ence of the continuity equations in terms of the physi
current in the reference system, Eq.~3.14!, and the original
system, Eq.~3.8b!, gives†see Eq.~4.9! of @9#‡

05“$ js
s 2 js%5“S \e

mc
nsAxcsD ~3.31!

@Eqs.~3.9! and~3.19! have been used#. So the divergence o
the exchange-correlation vector potential can be written fr
Eq. ~3.31! as

“•Axcs~1!52Axcs~1!g~1;@ns#!, ~3.32a!

in terms of the reduced density gradient
-

-

-

e
f

l

g~1;@n# !5
“n~1!

n~1!
. ~3.32b!

Finally, using Eqs.~3.27! and ~3.32!, Eq. ~3.26! can be re-
written as

Axcs~1!G~118!1Axcs~18!G~181!5H~118!,
~3.33a!

with

G~118!5
\e

mc
$ 1

2 g~1;@ns#!2ReWgr~118;@r1s
s # !%

5
\e

mc
Re$Wgr~119;@r1s

s # !u
1951

2Wgr~118;@r1s
s # !%

5G~118;@r1s
s # !, ~3.33b!

H~118!5H~181!5H~118;@A,u,r1s
s ,r1s ,r2s#!

5S \e

mc
A~1! Re$Wgr~118;@r1s

s # !

2Wgr~118;@r1s#!% D1$1 ←
→ 18%

1Im$Wkin~118;@r1s#!2Wkin~118;@r1s
s # !

1Wee~118;@u,r1s ,r2s#!%, ~3.33c!

having diagonals

G~11!50, H~11!50. ~3.33d!

Thus Eq. ~3.33a! relates, at any point pair$1,18%, the
exchange-correlation vector potential field with the exter
one, and with some simple functionals of DMsr1s

s , r1s ,
r2s , and the interactionu. Since our aim is to reconstruc
Axcs from the known DMs with the help of Eq.~3.33!, let us
investigate first if some freedom is left by the gauge tra
formation of As

eff , Eq. ~A1!. We see from Eq.~A4! that a
constantL only does not change DMs, but it means no tran
formation at all, Eq.~A1!. So, opposite to the case of th
scalar potential, the vector potentialAxcs must follow from
the DMs in a unique way.

We sketch now a procedure for calculation of the fie
Axcs(r ) from Eq. ~3.33! by applying a discretization of the
problem. The vectorsAxcs(r ) will be determined on a grid of
~large number! M points. Since the derivatives of DMs ar
undefined at nuclear positions~because of ‘‘cusps’’ there
see, e.g.,@10#!, these points should be avoided on the gr
Equation ~3.33a! is symmetric in$1,18%, and its diagonal
$1,1% represents a trivial identity@see Eq.~3.33d!#. Therefore
the discretization of Eq.~3.33a! leads to a system o
(M21)M /2 linear inhomogeneous equations in 3M
unknowns — the components ofAxcs( j ), j 51, . . . ,M . This
system, although overdetermined, cannot be contradict
because it stems from exact relations satisfied by DMs. S
subsystem of 3M equations, having a nonsingular coefficie
matrix, can be chosen, and then solved. It should be no
that the DVE~3.29! does not provide a separate equation
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determination ofAxcs(r ) @to be an analog of the derive
from EOM Eq. ~3.26!#, because it is lacking the imaginar
part.

The determined fieldAxcs(r ) can be inserted into Eq
~3.28! or ~3.30!, which give vxcs(r ). In this way the con-
struction of both vector and scalar exchange-correlation
tentials is possible from the following input:r1s

s , r1s , r2s ,
u, andA.

E. Approximate exchange-only potentials

In our investigations@5,6# of finite electron systems in th
absence of magnetic fields, we proposed approximations
the exchange-only potential, derived from the exact exp
sions for the exchange-correlation potential by means of
placing there the interacting-system DMs by their nonint
acting counterparts. We were guided by the fact that s
replacement in the exact expression~in terms of DMs! for
Exc resulted in the exact exchange energy. Applying this
placement now to Eq.~3.28! we obtain an approximate ex
pression for the exchange scalar potential from the EO
approach, free of the kinetic energy operator termsWkin and
of the external vector potentialA. The exchange-correlatio
vector potential remaining there should be replaced by
exchange-only part, to be consistent with the applied
proximation. The result is

vxs
EOM~1!5vxs

EOM~18!2
\e

mc
Im„$Axs~1!Wgr~118;@r1s

s # !%

1$1 ←
→ 18%* …

2E d32$u~12!2u~182!%

3ReS r1s
s ~1;2!r1s

s ~2;18!

r1s
s ~1;18!

D . ~3.34!

The form of its last term results from expressing the 2DMg2
s

in terms of the 1DMg1
s as

g2
s~12;1828!5 1

2 $g1
s~1;18!g1

s~2;28!2g1
s~1;28!g1

s~2;18!%,
~3.35!

valid, in general, for DMs derived from a single
determinantal wave function@10#, and from expressing the
1DM as @see Eq.~3.12!#

g1
s~r1s1 ;r18s18!5r1↑

s ~r1 ;r18!a~s1!a~s18!

1r1↓
s ~r1 ;r18!b~s1!b~s18!, ~3.36!

because the noninteracting-system Hamiltonian comm
with the total-spinz component operator@10#, and applying
next the definition ofr2s

s according to Eq.~3.5b!. While the
exactvxcs(r ), determined from Eq.~3.28!, must be indepen-
dent of the choice ofr 8 for the reference point@up to arbi-
trary additive constantvxcs(r 8)#, this property may be lost
due to approximations, byvxs

EOM(r ), Eq. ~3.34!, although we
anticipate this potential dependence onr 8 will be weak.
o-

or
s-
e-
-
h

-

ts
-

es

By applying the replacementsrks→rks
s in Eq. ~3.33!, we

obtain an equation for the approximate exchange-only ve
potential

Axs
EOM~1!G~118!1Axs

EOM~18!G~181!5HEOM~118!,
~3.37a!

with

HEOM~118!5ImWee~118;@u,r1s
s ,r2s

s # !

52E d32$u~12!2u~182!%

3ImS r1s
s ~1;2!r1s

s ~2;18!

r1s
s ~1;18!

D , ~3.37b!

free of dependence on the external potentialA(r ) @compare
Eq. ~3.34! for the Wee contribution#.

Determination of the fieldAxs
EOM from Eq. ~3.37! may be

performed in a similar way as in the case ofAxcs from Eq.
~3.33!. Because of approximations, the system
(M21)M /2 linear inhomogeneous equations in 3M un-
knowns, corresponding to the discretized Eq.~3.37a!, may be
~slightly! contradictory. Therefore it should be solved as
linear least-squares problem. One ought, perhaps, to ad
the minimized least-squares sum also the terms corresp
ing to the discretized Eq.~3.32a! ~with the divergence repre
sented via finite differences!, in order to impose on the ap
proximateAxs

EOM the constraint of satisfying the continuit
equation.

By applying again the discussed replacementsrps→rps
s

to the expression for the exchange-correlation force,
~3.30a!, we obtain the following approximation for th
exchange-only force stemming from the DVE:

f xs
DVE~1!5ns

21~1!k~1;†jp@r1s
s #,Axs‡!

1E d32$“~1!u~12!%ns
21~1!ur1s

s ~12!u2,

~3.38a!

and, with the help of line integration, the corresponding p
tential

vxs
DVE~r0!5vxs

DVE~r08!2E
r08

r0
dr•f xs

DVE~r !. ~3.38b!

Similarly as in the EOM case, the approximate exchan
scalar potentialvxs

DVE may depend on the choice ofr08 for the
reference point and on the integration path, because the
proximate force field may contain also some~small! noncon-
servative component. WhenAxs

EOM, determined from Eq.
~3.37!, is inserted forAxs in Eq. ~3.34! or ~3.38!, construc-
tion of the approximate exchange vector and scalar poten
becomes feasible solely in terms ofr1s

s andu.
It should be noted that the result~3.38a! reduces to the

Harbola-Sahni exchange-only result@16# in their work for-
malism,
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fxs
DVE~r1!→E d3r 2rx~r1 ,r2!~r12r2!/ur12r2u3,, ~3.39!

when the magnetic field is absent~and soAxs50), and a

spin-compensated system (r1↑5r1↓5
1
2 r1) is considered to-

gether with the Coulombicu(r1 ,r2). Hererx(r1 ,r2) denotes
the so-called exchange hole density~see, e.g.,@11#!. Since all
the approximations discussed above, Eqs.~3.34!, ~3.37!,
~3.38!, are analogs or extensions of the Harbola-Sahni
proximation, one may expect them to lead to similarly pro
ising results as their zero-field work~see, e.g., Sahni’s re
view @17#!.

IV. HARTREE-FOCK APPROACH

As the Hartree-Fock~HF! approximation is still widely
used to investigate atoms in a magnetic field~e.g., @3#!, we
derive below its density-matrix form. The self-consiste
one-electron eigenfunctions of the HF single determinant
solutions of

ĥHF~x!fa
HF~x!5ea

HFfa
HF~x!, ~4.1!

where

ĥHF~rs!5ĥ~r ;@vs ,A# !1ves~r ;@nHF# !1 v̂x
HF~rs;@g1

HF# !.
~4.2!

Here the HF 1DM

g1
HF~x;x8!5 (

a51

N

fa
HF~x!fa

HF* ~x8! ~4.3!

enters the kernel

ṽ x
HF~12;@g1

HF# !52u~12!g1
HF~1;2! ~4.4!

of the nonlocal exchange potential~integral operator!

v̂x
HF~1!w~1!5E d42 ṽ x

HF~12!w~2!, ~4.5!

while the external potential is

vs~r !5v~r !6
e\

2mc
B~r !, 6 for s5↑,↓. ~4.6!

The EOM for the HF 1DM is@compare Eq.~3.11!#

$ĥHF~1!2ĥHF* ~18!%g1
HF~1;18!50. ~4.7!

Since thez component of the total spin is a good quantu
number, the HF 1DM is given by Eq.~3.36! with the replace-
ment s→HF for superscripts. Therefore Eq.~4.7! is equiva-
lent to two equations, fors5↑,↓:

$ĥHF~r1s!2ĥHF* ~r18s!%r1s
HF~r1 ;r18!50. ~4.8!

The terms containingves andv̂x
HF can be combined to give

contribution in terms of the HF 2DMg2
HF , which is a com-

bination of HF 1DMg1
HF elements@Eq. ~3.35! with s→HF#,
p-
-

t
re

so an alternative form of the EOM looks like the exact EO
~3.4b! of the interacting system

$ĥ~1;@vs ,A# !2ĥ* ~18;@vs ,A# !%r1s
HF~1;18!

12E d32$u~12!2u~182!%r2s
HF~12;182!50.

~4.9!

The analogous equation in the absence of a magnetic
was obtained by us earlier in@18#. The corresponding DVE
reads

z~1;@r1s
HF# !2

\2

4m
“¹2ns

HF~1!

1ns
HF~1!¹S vs~1!1

e2

2mc2 A2~1! D1k~1;†jp@r1s
HF#,A‡!

12E d32$¹~1!u~12!%n2s
HF~12!50 ~4.10!

so it looks like the exact DVE~3.6! of the interacting system
Equations~4.9! and ~4.10! open an interesting possibility

of checking the accuracy of any numerical solution of the
equations for a particular system. Since Eq.~3.4b! has ex-
actly the same form as Eq.~4.9!, Eq. ~3.17a!, which is de-
rived from it, can be rewritten in terms of the HF DMs:

vs~r !1
e2

2mc2 A2~r !2const

52Re$Wdop~r ,r 8;@A,r1s
HF# !1Wee~r ,r 8;@u,r1s

HF,r2s
HF# !%,

~4.11a!

2
\e

2mc
$¹A~r !1¹A~r 8!%

52Im$Wdop~r ,r 8;@A,r1s
HF# !1Wee~r ,r 8;@u,r1s

HF,r2s
HF# !%,

~4.11b!

the reference pointr 8 is kept fixed. Similarly, from Eq.
~4.10! divided byns

HF(r ) we have

“S vs~r !1
e2

2mc2 A2~r ! D
52$ns

HF~r !%21

3S z~r ;@r1s
HF# !2

\2

4m
“¹2ns

HF~r !1k~r ;†jp@r1s
HF#,A‡!

12E d3r 8$“~r !u~r ,r 8!%n2s
HF~r ,r 8! D . ~4.11c!

After evaluating the right-hand sides of Eqs.~4.11! on a grid
of points r , usingr1s

HF andr2s
HF ~calculated from the inaccu

rate HF orbitals! and the givenA, the results may be though
of as representing the~shown on the left-hand sides! combi-
nations of some actual potentials$vs(r ), A(r )% for which the
considered HF orbitals are the exact solutions. By compa
the obtained combinations with those evaluated~according to
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the left-hand side expressions! from the applied external po
tentials,r regions of substantial discrepancy can be detec
This may be helpful when looking for improvements in t
calculational procedure, for instance, by providing more
curate representation of orbitals in the troublesome regio

Since Eqs.~3.4b! and~3.6! in terms of the DMs generate
from the exact wave functionCE(1•••N) look the same as
Eqs.~4.9! and~4.10! in terms of the HF DMs, all the abov
considerations, concerning investigation of the quality of
HF numerical solutions, can be applied to an analog
study of theN-electron wave function obtained by som
‘‘accurate’’ methods~like the configuration interaction or th
perturbation theory!.

V. SUMMARY

The most important results established through
present density-matrix approach to the nonrelativis
current-density functional theory, applicable to finite electr
systems in magnetic fields of arbitrary strength but a cons
direction, are~i! the equation of motion~3.4! for the first-
order density matrix;~ii ! the differential virial equation~3.6!;
~iii ! an expression for the exchange-correlation scalar po
tial vxcs(r ) in terms of density matrices:~a! in a direct form,
involving the vector potentialsA(r ), Axcs(r ), in Eq. ~3.28!,
~b! in a line-integral form, involvingAxcs(r ), in Eq. ~3.30!;
~iv! an equation for determining the exchange-correlat
vector potentialAxcs(r ) in terms of density matrices and th
external potentialA(r ), Eq. ~3.33!; ~v! an expression for an
approximate exchange-only scalar potential in terms
noninteracting-system density matrices andAxs(r ): ~a! in a
direct form, in Eq.~3.34!, ~b! in a line-integral form, in Eq.
~3.38!; ~vi! an equation for determining an approxima
exchange-only vector potential in terms of th
noninteracting-system first-order density matrix, in E
~3.37!; and ~vii ! the proof that the equation of motion~4.9!
and the differential virial equation~4.10!, satisfied by the
density matrices of the Hartree-Fock approximation, are
same as corresponding equations~3.4b! and ~3.6!, satisfied
by the exact matrices.

While vxcs(r ) andAxcs(r ) are defined via functional dif-
ferentiation, Eqs.~3.23! and ~3.24!, the merit of the results
~iii ! and ~iv! is to avoid such differentiation, but the pric
paid is that potentials are found in terms of nondiago
elements of density matrices, going beyond these diag
and close-to-diagonal elements, which definens(r ), jps(r ),
andn2s(r1 ,r2). Although these results are somewhat form
they may become useful in practice if some controlled
proximations for the interacting-system density matrices~as
functionals of the density! can be inserted.

As the present investigation was approaching complet
a work by Capelle and Gross@19# appeared, linking inti-
mately two versions of the current-density functional theo
~CDFT! and the spin-density functional theory~SDFT!.
Their result may be used to transform our equations for ex
vxcs , Axcs and approximatevxs , Axs , pertaining to the Vig-
nale and Rasolt CDFT1, to corresponding potentials
CDFT2 and SDFT, on a certain set of densities. Their w
@19# motivates also future extension of our investigation
the density-matrix approach, from the present CDFT1 to
d.
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CDFT2 and SDFT, including the extension to an arbitra
direction of a magnetic field.
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APPENDIX: GAUGE INVARIANCE

For time-independent problems, if we transform the ve
tor potential, occurring in the HamiltonianĤ@v,A#, Eq.
~2.5!, according to

A~r !→Anew~r !5A~r !28“L~r !, ~A1!

whereL(r ) is an arbitrary scalar function, and at the sam
time modify the wave function according to

C~x1 , . . . ,xN!→Cnew~x1 , . . . ,xN!

5expS i
e

\c
$L~r1!1•••1L~rN!% DC~x1 , . . . ,xN!,

~A2!

then the form of the original Schro¨dinger equation~2.8b!
remains unchanged,

Ĥ@v,Anew#CE,new5ECE,new. ~A3!

This is called the gauge invariance of the Schro¨dinger equa-
tion. The transformation~A2! induces the following transfor-
mation of DMs, Eqs.~2.11!, ~2.12!:

g2,new~12;182!5expS i
e

\c
$L~1!2L~18!% Dg2~12;182!,

~A4a!

g1,new~1;18!5expS i
e

\c
$L~1!2L~18!% Dg1~1;18!.

~A4b!

Since the EOM~2.10! follows directly from Eq.~2.9!, its
gauge invariance is dictated by Eq.~A3!, which means that
Eq. ~2.10! remains unchanged if transformationsA→Anew,
Eq. ~A1!, andgk→gk,new, Eq. ~A4!, are performed simulta-
neously. The gauge invariance of the DVE~2.15! means the
same, because this equation is obtained from Eq.~2.10! by
differentiation. It should be noted that the diagonal eleme
of DMs, Eqs. ~2.13! and ~2.14!, are invariant,nnew5n,
n2,new5n2, as it follows from Eq.~A4!. The gauge invari-
ance of the physical current, Eq.~2.25!, means that
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jp@r1,new#1
e

mc
nAnew5 jp@r1#1

e

mc
nA. ~A5!

Concerning the force-balance equation~2.23!, we note in-
variance of the following terms: inf nmg the term“¹2n and
the term involvingn2, in f mag the Lorentz forcef Lor, and,
finally, the sum (f inh1n21z).
d

ol.

m

When extending all above considerations to include
electron spin, in the manner introduced in Sec. III A, it
sufficient to replace in Eqs.~A1!–~A4! the fieldsA(r j ) and
L(r j ) by As j

(r j ) andLs j
(r j ) ~here thej th electron coordi-

nate is xj5$r js j%). Then the gauge invariance is show
separately fors5↑,↓, in the EOM and DVE,~3.4b!, ~3.6!,
similarly in two physical currents~3.8b!, and in two conti-
nuity equations“• js50.
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