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Auger transition rates for metastable states of antiprotonic helium H&p
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The rates of Auger transitions of antiprotonic helitide*p and 3He*p are calculated by using a varia-
tional scattering method with an elaborate three-body trial function. The shift of the energy levels of these
systems due to the coupling with the Auger-decay channels is also obtained from this calculation. Thus an
improvement is made over the previously calculated nonrelativistic energies. Together with the relativistic
corrections calculated elsewhere, the theoretical transition wavelength between thenstate$3(7,34) and
(38,33) of *He*p, for example, is significantly improved to be 713.593 nm, which compares well with the
experimental value 713.57280.006 nm. The calculated Auger lifetime of the le\@8,33 is 3.2 ps, as
compared with the value 4#10.2 ps deduced from the measured line broadening. Auger rates are calculated
also using Fermi’s golden-rule formula with a regular Coulomb function with no phase shift for the Auger
electron. The results agree fairly well with the accurate variational re$8t950-29477)05912-X]

PACS numbgs): 36.10—k, 32.80.Hd

[. INTRODUCTION In fact, these Hép states are not true bound states, but
are resonance states in the sense that the electron can acquire

Recently measured time spectra of decay products aftérom p a large enough energyé to be emitted as an Auger
the stopping of antiprotonp in helium clearly showed de- electron without an external perturbation:
layed components, and revealed the existence of extremely
Io_ng—livedﬁabout 3% of the st_oppe@iv_e aslongasa _feW (He"pYoy—( HE D)y +e . @)
microseconds as compared with a lifetime of some picosec-
onds of mostp [1]. These long-livedp states have been _ _ _ o
observed both in*He and 3He [2], but not in any other The resultant ion H&" p undergoes rapid collisional Stark
material studied, and are considered to be due to a mechBlixing because of the degeneracy of sublevels of this hydro-
nism [3] similar to that for long-lived kaons and pions in genic ion. The(interna) Auger process2) is fast for most
helium already known from bubble-chamber experiments ifHe"P) ni, but is strongly suppressed for high nearly cir-

the 196044]. cular (=n—1) orbits, for which the condition of large
The scenario in the independent-particle picture is the fol€noughA¢& (and hence large enougtn=n’—n) automati-
lowing. Most of thep stopped in helium in the process cally excludes small| transitions; note that the Auger pro-
cess occurs efficiently only for smalll (=1'—1), i.e., only
He+p— He'p+e~ (1)  for small angular-momentum transfer to the electron, since

- an electronic wave function with high angular momentym
occupy highly excited orbitals in Hep, with principal quan-  (greater than about) 2vould have a small value in the region
tum numbers aroundn* = yM*/m,=38, whereM* is the  of the p wave function, and would lead to inefficient energy
reduced mass betwegnand helium. These cascade down exchange betweep and the electron.
to lower and lower orbitals by the emission of an Auger Thus the long-livedp are considered to be those that are
electron, by radiative transitions, and by energy and angulafeaptured into hight, nearly circular states. The Auger rates
momentum transfer in collisions of He with ambient He  are crucial in distinguishing between long- and short-liped
atoms, and eventually decay in the intra-atomic encountesnd in determining the fraction of the former among all
with the helium nucleus either in a high-s state or in a stoppedp. The Auger rates are also indispensable to a study
low-n state. The neutrality of Hep and the considerable of the whole cascade process.
energy difference between sublevélwith the samen pre- Subsequent experimens,7] used a new technique of a
vent prompt collisional deexcitation and collisional Stark laser-induced transition from a long-lived or metastable par-
mixing, unless the density of He atoms is extremely high.ent state to a daughter state that ought to be short lived, i.e.,
The radiative transitions from high-levels are also slow, ought to have a high Auger rate. If the laser frequency
i.e., of the order of microseconds foraround 30 to 5@see, matches the transition energy, a spike is observed in the de-
e.g., Ref.[5)). layed component in the time spectrum of decay products at

the time when the laser is shot, because of an abrupt increase
in the number of short-lived Hep. This technique allows
*On leave from Joint Institute for Nuclear Research, 141980direct measurements of transition wavelengths with a high

Dubna, Russia. relative accuracy of some ppm. If the Auger rate of the
TPermanent address: The Institute of Physical and Chemical Redaughter state is very high, its Auger width may exceed the
search(RIKEN), Hirosawa, Wako, Saitama 351-01, Japan. laser bandwidth, and may be determined experimentally
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from the broadening of the line profile of the spike intensityformalism for the resonance parametgt$]. Furthermore,

as a function of the laser wavelength, as was indeed dontae regular Coulomb function may be used for the Auger
recently[7]. This technigue has been further developed in alectron to a good approximation if the background phase
few different ways, e.g., a double-resonant laser-induceghift is small. Therefore, we also try this simplified Fermi-
transition from a long-lived to a short-lived state via an in- golden-rule approach, and compare the results with those
termediate long-lived state8], and the use of impurity hy- from the Kohn variational method.

drogen molecules to shorten the lifetime of otherwise meta-

stable states and to observe new transitions inaccessible by Il. FERMI'S GOLDEN RULE

the original laser-induced transition techniqi@. The Au-

ger rates of H&p states near the borderline between long- The Fermi golden rule used here for the rate of Auger
and short-lived states play a significant role in the processeiansition from a given initial bound statg, with an energy

occurring in these experiments. & to a final continuum stat&d , reads
In spite of the importance of the Auger rates of Hg )
there has not been much effort devoted to accurate calcula- I'=2mp(e)(WalH=e [ W)[% (4)

tions of them until recently. The early calculation for some
circular orbitals by Russe€flL0] was based on Fermi's golden X
rule, with simple wave functions, and with theelectron sity of final states per energy. In early papers, the opgrator
Coulomb interaction chosen as the transition operator. ThE —¢€r_Was often replaced by the Coulomb interaction be-
unpublished work by Ohtsuki, quoted in Ref$1] and[12], tweenp anq the_electron. The present work, however, avoids
uses more accurate wave functions. Recently, Fedotov, KafliS @pproximation.

tavtsev, and Monakho\i 3] and Reai and Kruppd14] used

improved open-channel wave functions representing the final A. Initial state of Auger transition

state of the Aug_er process an_d fairly elgborate bound-_state- The initial-state wave function?,(R,r) is expanded in
type wave functions represeptmg the initial stelltg;. the differgrms of molecule-type basis functions Bf the position
ence between the full Hamﬂtomgﬁ a_nd th_e initial-state  \,octor of p with respect to H&*, andr, the position vector
energye, causes the Auger transition in their approaches. f the electron with respect to the center of mas and

Since an Auger-allowed state of Fip is a resonance pe2+ A state with the total orbital angular momentumits

state, which is a continuum state, its enekgyand the Auger  yrqiactionM onto the space-fixed quantization axis, and the
decay widthI' (which is related to the Auger rate by (g spatial parity7 may be written as

A=T'/#) are defined as the position and the width of a reso-
nance in the scattering process L
- VRN = 2 Fr/(REODYL(®.0,0),  (5)
e+ He'p. ©) m=

where

whereH is the three-body Hamiltonian, ande) is the den-

If one assumes Born-Oppenheim@O) separation of the

electronic motion from the relative Hé-p motion, which is

a fairly good approximation for high; high{ states, the Dkﬂ%((p,@,go):
resonance states turn into molecule-type bound states

[5,15,16, which may be called BO states. The kinetic-
energy operator for the Hé -p motion introduces two kinds
of nonadiabatic effects. The first is the coupling with differ-
ent bound BO states. This effect was taken into account i
detail in a previous work using an elaborate analytic varia
tional trial function, leading to a convergence of eigenvalues. . . :
e, of the Hamiltonian matrix withinr~10"7 a.u.[17]. The ixed frf';\me c?nn(_actgd with the three—bo/dy (_:on_flgu_ratlon as
other effect is the nonadiabatic coupling with continuum Orfollows. Thez' axis lies alongr, ansthey axis lies in the
electron-emission channels, which leads both to an Augepl@ne ofR andr. The component§ "(R,r,6) are labeled

1/2

2L+1 )
[DMm((I)1®1(P)

167%(1+ Sm)
+9(=1""™Dy _n(9,0,0)] ()

fre the symmetrized Wigné&r functions;R, r, and g are the
‘magnitudes of and the angle between the vecimndr;
nd ®, O, and ¢ are the Euler angles of a moving body-

process and to a shiiE=E, —e, of the metastable level. PY thé subscripm=0, 1,2, ... corresponding to the, ,
This latter effect of coupling with continuum may be studied & - - - States in the Born-Oppenheimer approximation, and
by a scattering-type approach to procéds defining the projection of the total orbital angular momentum

In this work we apply to the scattering proble(®) the ~ Onto thez axis of t[‘f; body-fixed frame. o
Kohn variational method with an elaborate trial function Each functionF " is expressed as a linear combination
similar to the one used in RefL7], but augmented by terms [17]
representing an Auger-decay channel; only a single channel
that contributes most to the Auger rate is taken into account, _

9 Fann_ 2 Cn1n2n3 E]Tr)12n3(R:§e:77e)

and hence the only scattering parameter to be considered is niong
the phase shift. ) 2 1mZeam
Fermi’s golden rule is a good approximation if the correct =[(&e— D1~ 7o) " R"exp — (a+ B R}
transition operator is used, and if an accurate and consistent
set of initial and final wave functions for the Auger transition X > Cnlnznanlézzn? (7)

are used, as is evident from the Feshbach projection-operator ninzng
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of square-integrable functions & and spheroidal coordi- Naturally, functions(9) and(10) in the atomic represen-
natesé.=(r,+r,)/R and n.=(r,—rp)/R, r, andr, being tation are expressed in terms of the Jacobi coordinates

the distances of the electron from the helium nucleus angRr, r). The angular functiofY, ®Y, }LM(R r), however, is
from the antiproton. Herer and 8 are nonlinear variational expressible as a linear comb|nat|on of the symmetrized

parameters. The linear variational parametys, n,, and  \yjgnerD functions(6), the coefficients being functions only
hence the wave functioW in Eq. (4), and the correspond- of the variabled (see Appendix A Therefore, these func-
ing energy valuee, are determined according to the tions may be treated on the same footing as the molecular
Rayleigh-Ritz method, i.e., by diagonalizing the Hamiltonianrepresentatiorts).

matrix; see Eq(15) in Sec. Ill. Although the states of our

concern are not true bound states, some lowest eigenvalues ;| vARIATIONAL SCATTERING APPROACH

are expected to show a rapid “asymptotic convergence,”

unless too manyn components are included in expansion More accurate calculations are possible by applying varia-
(5). The dependence of the eigenenergies on the number §pnal methods for scattering to proce&® [19]. For this

m components included was studied in Réf7], and indeed purpose we adopt a variational trial function

a rapid convergence was observed; the three-component ap- N+2

roximation already turned out to be highly accurate.
P Y i V=gt Ko+ 3 ), (1)
B. Auger-electron emission channels
] ] ~_ where
We consider the final state of the Auger transition in
which the system H&p is left in a hydrogenic state d1=F(R,r), ¢,=G(R,r), (12
xn11(R). Thus we write the continuum wave function in a
single-channel form and where{¢;} for j>3 are sguare-integrable basis func-

o tions ufTh .\ (R,&e, 76) Diii(®,0,¢) of the same form as
VAR = (Dxn (R{Y1r @Y fim(R), (8 are used for calculating?, for Fermi’'s golden rule. The
coefficientsK and{c;} are variational parameters, the former

where the angular eigenfunctiqm,®Y,9}LM(|§,F) is ob-  having the meaning of the tangent of the phase shifor
tained by coupling’ andl, into L. Since the Auger rate is electron scatterin@3). The variational procedure may be de-

the highest for the smallest possible value of the eIectroniécribted bydin]'f_rodéjcting matrices, A, and B, whose ele-
orbital angular momentunh,, as explained in Sec. I, we ments are detined by

choose only an electronic channel satisfying the condition Mii=(di|H—e|d;) for ij=1
le=|L—1"]. Note that, for this choice, the spatial parity . J o
n=(—1)"*'e of the final state is the same as for the initial Aij=(#ilH|®)), Bij=(ile;) for i,j=3.

state, as it should be. Wave functioug (r) of the Auger . .
We also define a matriM = A—eB and vectorsv; andw,

electron of various levels of accuracy may be considered. Fo T lenath N d of mat | M dM. f
our calculations using Fermi’s golden r{®, we choose the . ;ng composed of matrix elementd;; andM;; for

simplest form, namely,kr) ~F, (kr; —mg/k) involving the - - - .
'mp y_K ) '_e( ° )_I vowing . The variationally optimized phase shiff, is determined
regular Coulomb funct|0|PF| , With no scattering phase shift; by the condition that Eq1) satisfies the Schiinger equa-
k is the wave number of the Auger electron. In other wordsijon in the subspace of functions spanned By} ;=2 [19]. In
we choose fof¥' in Eq. (4) the function other words, we demand that the Satirmer equation pro-
jected onto this subspace be satisfied. This leads to a system

AR = _FI (kr; me/k)an/(R){Y|/®Y|E}LM(§,F). of coupled linear equations

(9) W1+W2K+Moc:0,
(13
The normalization of this wave function is such that

p(e)=2mk/m as in the case of the free wave.
In Sec. Il we use another, similar function

M 21+ M 22K +W-|2-C: 0

for K, and the vectoc composed of{c;}. The optimized
value of the tangent of the phase shift is calculated by

, .1
g(Ryr):(l_eia r)|e+ﬁ +1HGIe(kr;_me/k)Xn’l’(R) tan5 K+c MOC (14)
x{Y; @Y, }LM(Q,E), (10) This method is referred to as the Kohn variational method. A
€ similar method, in which the roles ap; and ¢, are inter-

changed, is called the inverse-Kohn method, and provides a
variationally optimized cdj, .

Resonance structures appearsjnclose to matrix eigen-
valuese, defined by

defined in terms of the irregular Coulomb functi(ime and a

factor (involving artificial parameters’ andB’) for cutting
off the singular part of5, near the origin. Since this cutoff

factor tends to unity as—oe, a linear combination of- and
G would represent a nonzero phase shift. AX,=¢g,BX,, (15
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i.e., close to the energies of the “bound statek; . A fit of

8, to the Breit-Wigner formula for an isolated resonance 26
would produce a set of resonance positiepn, resonance _27_' o a7is)
width I", and backgroundor off-resonancephase shifts,, . o J/ e 10
In general, there is a resonance sife=E,— ¢, from the 284 sy o L
energye, of ¥,, or of Eq. (15). Note that the coefficient : g -_— T
vector ¢ determined from Eq(13) is independent of the 2.9 S am 8 -
bound-state vectox, in Eqg. (15), sincec is determined to ~ 1 ,,igl;ﬁ"u[s] 2001 pida
optimizethe whole continuum statd 1). s 207 d;,_—_—f‘__:’.__ﬂ--"-
In actual numerical calculations in this paper, we use an & | S e e 20 2R oss
other procedure nearly equivalent to the Kohn method witt  F /! -
the Breit-Wigner fitting. This procedure may be derived by 8 -32 ety AT oy 28 2
working directly on the matriceM, A, andB, as shown in L:Jé a5 T ) g -
Appendix B. ~] / g MM
3.4 4, =
IV. CALCULATIONS AND RESULTS 1 He'e
3.5 n=32
The matricesA and B have been calculated to a high 1 »
precision using the quadruple precision arithmetic, as de 36 T J T T T T T T

scribed previously[17]. The matrix elementsM;; (i or
j=1,2) involving Coulomb functions have been evaluated
by numerical integration over a three-dimensional configura-
tion space of the internal coordinates with the use of Gauss- FIG. 1. Energy-level diagram ofHep states designated by
ian quadratures, and the final accuracy of these matrix elexpproximate quantum numbers,(l); the calculated Auger rate
ments is about five significant digits or higher. This lowera[b]=ax 10’ s~! is attached to each level. Open circles represent

Angular momentum/

accuracy than foA andB causes no problem since all the circular statesif’, I’=n"~1) gjj—ie“ﬁEach_arrpw connecting a
three quantitiesAE, I', and &, in Appendix B need to be He*p level (n, 1) and a*He** p level (n’, |") indicates an Auger
calculated only to a few significant digits. process with the minimum angular-momentum chadde=1"—|

Some test calculations using various different values oP0ssible for that initial state.
the cutoff parametera’ and 8’ in Eq. (10) have been car-
ried out. These tests have resulted in a fixed, empiricastronger than that of the energy values studied in Rif].
choice (@' =2, ' =15) for the purpose of stable numerical When the number afh components reaches the valueAdf
results. the Auger rate becomes close to the converged value. While
The antiprotonic helium states that play an important rolethe two methods provide similar results, the variational
in the experiments summarized in Sec. | are those moleculanethod is slightly more stable with respect to the change in
states¥, in which by far the main Born-Oppenheimer con- the basis set.
figuration consists of the d electron orbital and a ro-
vibrational H& " -p state {, v), where the rotational quan-

’ —  —

tum numberj is practically the same ds in this papef5]. 25 >
In terms of an approximate atomic-type representatigr 1 ‘ /
of the HE?"-p orbital, the vibrational quantum number 269 _—
corresponds tom—1—1 [5]. The angular-momentum corre- _27_' /0,’ 29
spondence reads gs=1; note thatL is a good quantum ] 210 BB e

number, butj and| are not. Since the common electron 28 K ey 333 384
orbital 1o need not be specified explicitly, an Auger transi- 1

~ 845 490U
tion may be specified by the simplified notation £ 291 S AL :
(n,—(n’",1") as in Eq.(2). ERN R ,"1A1='z'"1'5m' o L 20 -
For an Auger electron to be emitted in proc&2y the oE O,':-_;". e 3510
energy of the final state ( H&p),,» must be lower than that B 3.1 gLl 28 — < n-34
of the initial state ( H&p),,. Figures 1 and 2 of the level g D ey
diagrams indicate that this energy condition sets a lowe = -32 LN — e n=3
limit (Al)min to Al=1'—1. This lower limit depends on the T gal--T He'p
initial state. For a particular initial state the Auger process '3‘3'_ s
with Al=(Al) i, has the highest rate, as was explained in 344
Sec. |. Calculations were carried out only for such transi- ]
tionS. -3.5 T T T T T T T T
We studied the dependence of the Auger rates on th 78 » N M B B U B B
number ofm components retained in the molecular expan- Angular momentum/

sion (5). Table | presents the results from both Fermi's
golden rule and the variational method and for some transi- FIG. 2. Same as Fig. 1, but plotted fiide *p and *He?*p; see
tions with different values ofAl. The dependence is much the caption of Fig. 1.
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TABLE I. Dependence of the Auger rates in'son the number  ered to be accurate to all digits shown. We estimate the er-
of m components retained in the molecular expansgrfor three  rors in the Auger widths from the stability of the numerical
states (1, 1) of “He™p; My is the maximum value ofn retained,  results as~5% for the cases witth| =2, ~15% for Al =3
andN is the number_ of_ basis functions in E@.l).bFGR: Fermi’'s ~50% forAl =4, and even larger fak| =5. There are some
golden rule. VM: variational method{b]=ax 10" exceptions, however, where the convergence was unsatisfac-
tory. Such cases are enclosed in curly brackets in Tables Il
and IV. Most of the unsatisfactory cases are either for ex-
tremely narrow Auger widths, for which the absolute error is
1200 1.9%9] 1.979] 1.746] 1.796] 4.332] 6.142]  actually small, or for states in the upper-right corner in the
1648 4.0[11] 3.2411] 1.698] 1.698] 4.144] 4.414] tables. We suspect that the reason for the latter case might be
1942 3.6711] 3.0411] 7.548] 7.748] 1.2¢5] 1.245] the overlap of such a resonance with one involving an ex-
2158 3.6511] 3.0411] 7.998] 7.6718] 1.895] 1.895] cited electronic orbital. Tables Il and IV clearly demonstrate
2374 1.8f5] 1.845] the extremely strong dependence of the Auger widton
Al; roughly speaking,[=10"°~10"" a.u. for Al=
[=10"°~10"° a.u. forAl=3, I'=10 *~10"*® a.u. for
A by-product of the variational approach is the back-A|=4, and'<10 ' a.u. forAl=5. Figures 1 and 2 of the
ground phase shift for electron scattering on €Hg)// in  energy-level diagram include the calculated Auger rates.
the energy range of the considered resonances. The back- Table V compares the Auger rates of some selected states
ground phase shiffy, is as small as- 10" rad or less for the  obtained in this paper with other theoretical calculations. A
calculated cases whete =2, as is expected from the high thorough comparison reveals that the method of Fedotov
centrifugal barrier for an electron wil=2, which prevents et al.[13], which uses basis sets for the initial state including
the electron from interacting strongly with Bép. The  up to 600 atomic-type basis functions and a scattering wave
small 6, explains the fairly good performance of Fermi's function for an effective potential for the final state, the ini-
golden rule with the regular Coulomb function for the Auger tial and final wave functions being orthogonal to each other,
electron in the final state. produces results in agreement with the present values within
All the states of Hép calculated in a previous wof7]  about 20% except for a few cases. The results oféRand
were treated as bound states. That would lead to some ukruppal14], who employ initial-state wave functions of Ref.
certainties in the evaluation of the energy values of the statg97], including up to 1230 terms witm=2, also agree well
with Auger width greater than, say, 10a.u., since the cou- with the present results in most cases. It was found in the
pling with Auger-decay channels may not be negligible forpresent careful numerical investigation that the calculated
these states. Using the present variational scattering apuger rates depend strongly on the quality of the wave func-
proach, improved values of the nonrelativistic energies cation. In this sense we believe that our results are the most
be obtained by adding the level shiftE to the bound-state accurate to date.
energy &,. Table Il compares the energy, of A stringent test on the validity of the present variational
(*He'p),- 3s)=33 from the bound-state approach with the approach would be a comparison with experimentally deter-
shift-corrected energf, from the variational-scattering ap- mined Auger widths. A candidate for this test found in the
proach, for a few choices of the basis set differing mainly inliterature is the broadening of the line profile for a transition
the componentsn=1. The corrected energy is at least one(n,l)=(37,34)—(38,33) of * He"p [7]. The full line width
digit more stable than the uncorrected one, and the correctioait half maximum of 0.06Z 0.006 nm was much larger than
ranges from X 10 © to 6x 10 © a.u.(with either positive or  the laser bandwidth of 0.007 nm. This broadening is consid-
negative sigh which is of the same order of magnitudelas ered to be due to the Auger width of the daughter state
The calculated shift-corrected energles, Auger widths  (38,33), since that of the parent state (37,34) is six orders of
I', and Auger rates\ are summarized in Table Il for magnitude smaller according to Table Il of this paper. From
4He'p and in Table IV for® He'p. The typical size of the this broadening the authors of RdfZ] deduce a lifetime
basis set isN=2228 for Al=2, N=2278 for Al=3, and 4.1+0.2 ps of the daughter state, which is to be compared
N=2374 forAl=4. The energieg, were found to be stable with the valueX "1=3.2 ps calculated from Table Ill. The
at least to the last digit shown in the tables, and are considexperimental Auger rate is included in Table V. The mea-

(n,1,Al) (38,33,2) (39,34,3) (37,34,4)
Mmx N FGR VM FGR VM FGR VM

A WNPFP O

TABLE II. Resonance parameters fiile ' p(L =33p =4) calculated with four basis sets differing in the
sizeN, and a nonlinear parametgrin Eq. (7) for Fhﬁ with m=1. ¢, : eigenvalue of the Hamiltonian matrix
in the bound-state approach, : energy-shift corrected variational estimate of the resonance enErgy.
resonance width. All quantities are in atomic unéfb]=ax 10°.

Bound-state approach Variational-scattering approach
& E, r
First set (N=2388,3=0.8) —2.8473206 —2.8473229 7.26- 6]
Second setN|=2270,3=0.5) —2.847 3298 —2.847 3239 7.47- 6]
Third set N=1934,3=0.5) —2.847 328 3 —2.847 3236 7.43-6]

Fourth set N=2172,3=0.4) —2.847 3298 —2.847 3238 7.45-6]
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TABLE IIl. Level-shift-corrected nonrelativistic energi€s (in a.u), Auger widthsI" (in a.u), Auger
ratesh (in s~1), and the minimum angular-momentum chargein Auger transitions for metastable states
of “He™'p. The antiprotonic atomic-orbital quantum numbens () are related to the rovibrational quantum
numbers [, v) by n=v+L+1 andl=L. The convergence was unsatisfactory for the values in curly
bracketsa[b]=ax 10P.

v=0 v=1 v=2 v=3 v=4

L=31 E, —350763495 -3.36465164 —3.238577 —3.127 333

r 1.9-11] 2.9-8] 1.7 -5] 3.7}

N 6.15] 1.29] 4911] {1.410]}

Al 4 3 2 2
L=32 E, —3.35375780 —3.22767631 —3.11667894 —3.019 058 —2.9330906

r 2.1-12] 5.3-9] 9.0 8] 1.4 -5] 4.9-71}

N 8.74] 2.78] 3.79] 5.911] {2.J10]}

Al 4 3 3 2 2
L=33 E, —3.21624420 -—-3.10538264 —3.00797902 —2.92244412 —2.8473238

r 2.9-13] 5.0-12] 5. -9] {14 -7} 7.9 -6]

N 1.24] 2.15] 2.48] {5.79]} 3.1[11]

Al 4 4 3 3 2
L=34 E, —3.09346687 —2.99633542 —2.91118090 -—2.83652454 —2.77101123

r 2.1 -13] 4.9-13] 4.4 -12] 3.7-9] 1.9-8]

N 8.93] 2.04] 1.95] 1.38] 7.78]

Al 5 4 4 3 3
L=35 E, —298402094 -—2.89928216 —2.82514679 -—2.76023330 —2.70328310

r {9.0 — 18]} 1.6 — 16] 2.7-13] 1.7-12] 1.9 —11]

N {3.17—1}} 6.40] 1.14] 7.94] 4.75]

Al 5 5 4 4 4

sured line center lies at 713.578.006 nm[7], whereas the which the minimum possible angular-momentum chaigje
transition wavelength calculated from Table [(ihcluding in Auger transitions is 2, 3, 4, or 5. The calculated dat&pn
the effect of the level shiftAE) is 713.520 nm. If corrected are extremely accurate. Those Bnshould be considerably
for the relativistic effect reported elsewhdr20], the theo- accurate with a few exceptions, the exceptions being due to
retical value changes into 713.594 nm, which agrees witlihe subtlety of the Auger width calculations. Indeed, the cal-
experiment within~20 ppm. culated Auger width is quite sensitive to the quality of the
In conclusion, we have applied a variational method forwave function. The order of magnitude df depends
scattering to Auger width§ and shift-corrected nonrelativ- strongly on the value oAl, and ranges from 10° to 10~/
istic energiesE, of some states ofHe™p and *He*p for  a.u., the smaller for the largel.

TABLE IV. Level-shift-corrected nonrelativistic energi& (in a.u), Auger widthsI' (in a.u), Auger
ratesh (in s™1), and the minimum angular-momentum chargdein Auger transitions for metastable states
of ®He*p. The antiprotonic atomic-orbital quantum numbens|() are related to the rovibrational quantum
numbers [, v) by n=v+L+1 andl=L. The convergence was unsatisfactory for the values in curly
bracketsa[b]=ax 10P.

v=0 v=1 v=2 v=3 v=4
L=31 E, —3.34883211 -3.21950718 —3.1061422 —3.006 891 —2.919764 4
r 1.0-11] 1.7-8] 8. 71} 3.4 -5] 2.9-6]
N 4.35] 6.98] {3.910]} 1.912] 1.011]
Al 4 3 3 2 2
L=32 E, —3.20767227 —-3.09445092 -—2.99540431 —2.908857 —2.833 0656
r 1.d-12] 2.4 —11] 1.4 —8] {2.4 - 5]} {1.4 -5}
N 6.94] 9.95] 6.98] {1.1012]} {6.911]}
Al 4 4 3 3 2
L=33 E, —3.08211408 —2.98337310 —2.89719226 -—2.82196287 -—2.756217 37
r 8.4 —16] 2.-12] 2.J—-11] 7.9-9] 5.1 —8]
N 3.91] 1.15] 8.4 5] 3.38] 2.19]
Al 5 4 4 3 3
L=34 E, —297062827 —2.88491260 -—2.81026107 —2.74517413 -—2.688292 86
r 1.J-16] 1.7-15] 1.4-12] 7.01-12] 6.9 —11]
N 4.30] 491] 5.944] 2.95] 2.76]
Al 5 5 4 4 4
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TABLE V. Comparison of Auger rates variationally calculated for some statetHef" p with other

theoretical and experimental resulgb]=ax10° s~ 1.

(n,1,Al) Ohtsuki? Ohtsuki® Fedoto\® Revai ¢ Present YamazaRi
(38,33,2) o1 34111  2.4+0.111]
(38,34,3) 8.57] 2.78] 1.48] 1.98] 1.98]
(39,34,3) 1.89] 2.59] 8.38] 7.78]
(37,34.4) 2.74] 2.96] 2[5] 7.44] 1.95]
(39,35,4) 6.72] 3.45] 1.05] 2.45] 7.04]

8Unpublished, quoted in Ref11].
®Unpublished, quoted in Ref12].
‘Referencd13].

dReferencd 14].

®Experimental: Ref[7].
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Solving Eqgs.(13) for K, we have
APPENDIX A: ATOMIC VS MOLECULAR

REPRESENTATION ~ M21—W;M61W1 - (Sr_S)Gzl_W_er—n
A relation between the atomic representati@nhand the K=~ M~ WIM 5w, T (&,— )Gy W2
molecular representation of ford) may be established by '
using the formula where

le _ Thg -1 —
Y8 Yy (R =\27 S GYDELY, 1(0.0), Cas=Mze™WoMo W, (S=1.2).
m=0 The resonance positioB, and the resonance width are
calculated from a polee, —iI'/2 of the scattering matrix
S=(1+iK)(1—iK) 1. Retaining only two leading terms in
the slowly varying functionw,,w, of ¢ nears=¢, and

where the coefficienté;hr: are defined by

2 21+1\ 42 "
Lm_ writing
Gii, 1760, | 2051 (Lm|I0l gm) -
- d(wy,Wg,)
O W0 (e o) ST _
in terms of a Clebsch-Gordan coefficient. Thus EB).may War W =W, We,— (&~ &)~ ) (s=1.2),

be cast into a form

we find that
WA(RT)= 27 (1) xnn1(R)
le AE=E Wh, (W3, Gy + W5, Gpp)
L Lm = — &=
><m2=0 Dyin(®,0,9) G Y m( 6,0), (& o2+ G2,
which is to be compared with E¢5). Equationg9) and(10) /o= Wgr(wng_ZZ_ W_ng—zl)
may also be written in a similar form. B G2+ G2
22 21
APPENDIX B: VARIATIONAL PROCEDURE tand,= G,1/Goy,
FOR RESONANCE PARAMETERS
where

Here we sketch the method of calculating resonance pa-
rameters, working directly on the matrices and vectors de- _ d(Wy,We,)
fined in the text. First the inverse mati#, *, for & close to Gos=Cast — (s=12.
g, of Eq. (15), is represented in a form e=e



4594

[1] M. lwasakiet al, Phys. Rev. Lett67, 1246(1991).
[2] T. Yamazakiet al., Nature(London 361, 238(1993.
[3] G. T. Condo, Phys. Let®, 65 (1964.
[4] J. G. Fetkovich and E. G. Pewitt, Phys. Rev. Ldit, 290
(1963; M. M. Block et al, ibid. 11, 301(1963; M. M. Block,
J. B. Kopelman, and C. R. Sun, Phys. R&0, B143(19695;
J. G. Fetkovichet al, Phys. Rev. 2, 1803(1970.
[5] I. Shimamura, Phys. Rev. A6, 3776(1992.
[6] N. Morita et al, Phys. Rev. Lett72, 1180 (1994; F. Maas
et al, Phys. Rev. A52, 4266(1999; H. A. Torii et al, ibid.
53, R1931(1996.
[7] T. Yamazakiet al, Phys. Rev. A55, R3295(1997.
[8] R. S. Hayancet al, Phys. Rev. A55, 1 (1997.
[9] B. Ketzeret al, Phys. Rev. Lett78, 1671(1997.
[10] J. E. Russell, Phys. Rev. & 742(1970.
[11] N. Morita, K. Ohtsuki, and T. Yamazaki, Nucl. Instrum. Meth-

V. I. KOROBOV AND ISAO SHIMAMURA

ods Phys. Res. 830, 439(1993.

[12] T. Yamazaki,Atomic Physics 13AIP, New York, 1993, p.
325.

[13] S. I. Fedotov, O. I. Kartavtsev, and D. E. Monakhov, Yad. Fiz.
59, 1717(1996 [Phys. At. Nucl.59, 1662(1996].

[14] J. Revai and A. T. Kruppa, Phys. Rev. fio be publisheji

[15] P. T. Greenland and R. Thuachter, Hyperfine InteractZ6,
355(1993.

[16] P. T. Greenland, J. S. Briggs, and R. Tiwachter, J. Phys. B
27, 1233(1994.

[17] V. I. Korobov, Phys. Rev. /A4, R1749(1996.

[18] H. Feshbach, Ann. PhyéN.Y.) 5, 357(1958; 19, 287(1962).

[19] R. K. Nesbet,Variational Methods in Electron-Atom Scatter-
ing Theory(Plenum, New York, 1980

[20] V. I. Korobov and D. D. Bakalov, Phys. Rev. Left9, 3379
(1997.



