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Darwin-Foldy nuclear-size corrections in electronic atoms and nuclear radii are discussed from the nuclear-
physics perspective. The interpretation of precise isotope-shift measurements is formalism dependent, and care
must be exercised in interpreting these results and those obtained from relativistic electron scattering from
nuclei. We strongly advocate that the entire nuclear-charge operator be used in calculating nuclear-size cor-
rections in atoms rather than relegating portions of it to the nonradiative recoil corrections. A preliminary
examination of the intrinsic deuteron radius obtained from isotope-shift measurements suggests the presence of
small meson-exchange currents~exotic binding contributions of relativistic order! in the nuclear charge opera-
tor, which contribute approximately12 %. @S1050-2947~97!04312-6#
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Recent measurements by Pachukiet al. @1# and de Beau-
voir et al. @2# have greatly improved our knowledge of th
isotope shift between deuterium and normal hydrogen. D
to their greatly increased precision@3#, these measuremen
now rival the traditional relativistic electron scattering@4# for
determining the~nuclear! sizes of these isotopes~and their
differences!. This level of precision has led to a reexamin
tion of many contributions to the level shifts@5,6# and to the
calculation of higher-order QED processes. Inevitably, a c
tain amount of controversy has ensued over the best wa
proceed and over the proper interpretation of various mec
nisms @5,6#. Our purpose here is to discuss these top
briefly from the nuclear-physics perspective, given that th
measurements have presented nuclear physics with grea
portunities. Nothing that we say here is entirely new~indeed,
much is very old@4,7,8#!, but we believe that the totality
casts considerable light on the interpretation and significa
of these measurements.

Specifically,~i! we will ~briefly! review the physics from
the nuclear- physics perspective.~ii ! We will discuss the con-
ventions ~formalism dependence! attendant to introducing
nuclear size. Although there is no right or wrong way to
this, there are consistent or inconsistent ways to proceed
there are ample opportunities for double counting.~iii ! We
will make recommendations for avoiding such problems a
discuss recent electron-scattering results@9–11# from this
perspective.~iv! We will make an assessment of thed-p
isotope-shift data in terms of ‘‘normal’’ and ‘‘exotic’’ com
ponents of the deuteron structure, even though the latter
not yet entirely well defined@12#. A set of ‘‘second-
generation’’ nuclear potentials@13–15# gives improved in-
sight into deuteron structure, and this will prove useful
reducing theoretical uncertainties.

Relativistic electron scattering traditionally has been
only successful method for measuring the sizes of the lig
est nuclei@4#. Muonic atoms provided significant informa
561050-2947/97/56~6!/4579~8!/$10.00
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tion on heavier nuclei, but until very recently electronic-ato
measurements lacked the necessary precision. Nuclear p
ics has been investigated primarily using nonrelativistic d
namics, but the increasing precision of electron-scatter
data in the late 1960s and early 1970s led to a reexamina
@7,8,12# of the ways that relativity can affect a nuclear char
distribution. In order to be as specific as possible, we w
first discuss various options that have arisen in discussing
simpler and better-known proton charge distribution and th
extend the discussion to light nuclei. We use natural un
(\5c51) and the conventions and metric (p25m2) of Ref.
@16#. We also remove the proton chargeep from all currents.

For historical reasons~analogy with the electron! the elec-
tromagnetic structure of the proton was introduced in ter
of two form factors~i.e., Lorentz scalars!: the Dirac form
factor F1(q2) and the Pauli~anomalous magnetic momen!
form factor F2(q2). The covariant current~normalized to
unit charge! is given by@16#

Jl5 ū~P8!S glF1~q2!1
ikp

2M
F2~q2!slnqnDu~P!, ~1!

wheregl and sln are Dirac matrices,u(P) and u(P8) are
Dirac spinors,kp is the proton anomalous magnetic mome
M is the nucleon mass,F1(0)5F2(0)51, andq5(P82P)
is the momentum transferred~by an electron! to the final
nucleon (P8) from the initial one (P). Becauseq2,0 for
scattering kinematics, it is convenient to adopt the conv
tion Q2[2q2.0, thus avoiding inconvenient minus signs

It was soon realized that even thoughF2 primarily de-
scribes magnetic properties of the nucleon, it also contribu
~in a minor way at smallQ2) to the charge distribution@17#,
so the Sachs@18# charge and magnetic form factorsGE and
GM , respectively, were introduced:
4579 © 1997 The American Physical Society
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GE5F1~Q2!2
kpQ2

4M2
F2~Q2!, ~2a!

GM5F1~Q2!1kpF2~Q2!. ~2b!

In terms of these form factors, the~laboratory-frame! cross
section for~massless! electron scattering by protons in firs
Born approximation is given by the Rosenbluth formu
@19,4,17#

ds

dV

5sMottH A0~Q2!1B0~Q2!F1

2
1S 11

Q2

4M2D tan2~u/2!G J ,

~3!

whereu is the electron scattering angle,sMott is the cross
section for a spinless point particle, and

A0~Q2!5
GE

2~Q2!

11
Q2

4M2

[G̃E
2 , ~4a!

B0~Q2!5
Q2

2M2F GM
2 ~Q2!

11
Q2

4M2
G[

Q2

2M2
G̃M

2 . ~4b!

Equation~3! applies to elastic electron scattering by an ar
trary nucleus, while Eq.~4! applies only to spin-12 systems
~such as the proton,3He, or 3H!. The form factorsG̃E and
G̃M were proposed long ago@17,20,4# as alternatives toGE
andGM , but were never popularly adopted. Equation~3! has
been written so thatA0 is a form factor associated with th
charge distribution, whileB0 is analogously associated wit
the magnetization distribution obtained from the transve
~to q̂) component of the~space! current. This division is
most transparently performed in Coulomb gauge@7#. Often
the term in curly brackets in Eq.~3! is rearranged as
@A(Q2)1B(Q2)tan2(u/2)#, but thenA is no longer associ-
ated solely with the proton charge distribution.

One has the option of describing the proton’s structure
terms of (F1 ,F2), (GE ,GM), or (G̃E ,G̃M). Only the last
option correctly gauges the proton charge distribution to
der (v/c)2 ~or, equivalently, Q2/M2). Factors of
t5Q2/4M2 andh511t are of relativistic origin and also
affect the proton mean-square charge radius, defined in
Breit frame@7,17# as^r 2&ch[*d3xx2r(x), whereJl5(r,J).
Further defining^r 2&1526F18(0) and ^r 2&E526GE8 (0),
we obtain from Eq.~2a!

^r 2&E5^r 2&11
3kp

2M2
, ~5a!

while the charge form factor obtained from Eq.~4a! produces

^r 2&ch5^r 2&E1^r 2&DF, ~5b!
-

e

n

r-

he

where we have defined̂r 2&ch526 G̃E8 (0) and

^r 2&DF5
3

4M2
. ~5c!

The various mean-square radii^r 2&1, ^r 2&E , and^r 2&ch, dif-
fer by amounts of order (1/M2);0.044 fm2, but are for-
mally identical in the nonrelativistic~large-M ) limit. Note
that ^r 2&E

1/2 is often called the proton radiusr p @21#.
The quantity (3/4M2) in Eq. ~5c! is the Darwin-Foldy

~DF! term @16,22# and is obtained by expanding the 1/h fac-
tor in Eq. ~4a!. This factor is traditionally incorporated into
the kinematical factors~along with sMott) and the experi-
mental data are then used to determineGE andGM . That is,
by convention, the Darwin-Foldy term is not considered pa
of the proton structure, even though it affects the cross s
tion.

Nevertheless, to order (1/M2) we can easily expand th
l50 component of Eq.~1! to obtain the true charge density
One finds that thecovariant form of u ~normalized to
ūu51) generates a frame-dependent total charge~obtained
by settingq→0). The reason for this is that the wave fun
tion normalization factor (1/A2E) appropriate for this con-
vention is relegated to the phase space@ i.e.,
d3P/(2E)(2p)3]. If, on the other hand, we incorporate th
factor in Jl, the phase space isd3P/(2p)3 and the total
charge isinvariant @7,8#. The invariant form of the charge
operator@16,22# is

r.S 12
q2

8M2D GE1 i
~2GM2GE!

4M2
s•q3P, ~6!

where the Darwin-Foldy factor (q2/8M ) is an explicit part of
the charge operator, as is the spin-orbit interaction~ex-
pressed here in terms of the Pauli spin operators). The
spin-orbit interaction plays a significant role in the isotop
charge-density differences of heavier nuclei@4,23#. Equation
~6! for the charge distribution is equivalent@to O(1/M2)# to
using the form factorG̃E .

This daunting multiplicity of forms extends to the atomi
physics problem as well. The Barker-Glover@24# calculation
of (Za)4 corrections incorporated the Darwin-Foldy part
the charge density as a recoil correction of order 1/M2. This
is most easily seen by examining the expression that se
as the base line for defining the Lamb-shift energy@25#.
Writing

f ~n, j ![S 11
~Za!2

Fn2 j 2
1

2
1AS j 1

1

2D 2

2~Za!2G2D 21/2

,

~7a!

then for the state of an electron of massme specified by
quantum numbers (n,l , j ), we have to order (Za)4/M2 for
the two-body Coulomb problem
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Enl j5me1M1m@ f ~n, j !21#2
m2

2~me1M !
@ f ~n, j !21#2

1
~Za!4m3

2n3M2 S 1

j 1
1

2

2
1

l 1
1

2
D @12d l0#, ~7b!

where m is the usual reduced mass. This equation can
rewritten as

Enl j5me1M1m@ f ~n, j !21#2
m2

2~me1M !
@ f ~n, j !21#2

1
~Za!4m3

2n3M2 S 1

j 1
1

2

2
1

l 1
1

2
D 1EDF, ~7c!

where the contribution of the proton Darwin-Foldy (d l0)
term to the atom’s energy is

EDF5
~Za!4m3

2n3M2
d l0 . ~7d!

The standard expression@1# for the leading-order nuclear
finite-size correction to the atom’s energy is

EFS5
2~Za!4m3

3n3
^r 2&chd l0 , ~7e!

and using Eq.~5c! for ^r 2&ch in Eq. ~7e! precisely reproduces
Eq. ~7d!. Consequently, the DF term in an atom can be
ternatively considered as part of a recoil correction
O(1/M2) @Eq. ~7b!# or as the energy shift due toa part of the
mean-square radius of the nuclear charge distribution@Eq.
~7e!#.

Thus this same Darwin-Foldy term isby conventiona
recoil correction in atomic physics@viz., the Barker-Glover
formula ~7b!# and a kinematic factor in electron scatterin
@viz., the Rosenbluth formula~3!#. This is perfectly allow-
able but somewhat confusing since that term is part of
charge density of the proton in both cases. It is unfortuna
far too late to change these conventions for the hydro
atom. We do not recommend, however, that they be
tended to other nuclei. These options were extensively
cussed many years ago in the nuclear context@4# and are
clearly formalism dependent~i.e., a theorist’s choice!.

Equation~7b! was originally developed for the proton, bu
has been applied to other nuclei. For the deuteron prob
Pachucki and Karshenboim@5# have argued that the DF term
for a pointlike deuteron vanishes and henceEDF should be
dropped from Eq.~7c!. Khriplovich, Milstein, and Sen’kov
@6# responded that only the fortuitous choice in Ref.@5# of a
particularg factor for the deuteron caused that term to va
ish, and in general such a term exists. We agree with Ref@5#
that this DF term should not be included in Eq.~7c!, but for
different reasons. As we argue below~and as noted in Ref
@6#!, the choice of inclusion or not is formalism depende
although in general the term is not vanishing. Any such te
is a part of the nuclear charge density~see the discussion
below Refs.@8,24#! and contributes a part of the mean-squa
e
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f
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n

x-
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m

-

,

e

radius of that density. Indeed, as we have seen, whethe
proton’s DF term is a recoil correction or a nuclear-finit
size shift is also formalism dependent, although its inclus
in the standard expression~7b! is sanctioned by decades o
consensus. We strongly advocate that nuclear DF term
included as part of̂r 2&ch.

We examine electron scattering from the deuteron,3H,
3He, and 4He in turn using Eq.~3! @7#. This is particularly
relevant and topical because of the recent reanalysis of
experimental electron-deuteron scattering data by Sick
Trautmann@9#. Their derived radiuŝr 2&ch

1/252.128(11) fm is
the rms radius of the complete deuteron charge density. T
is typical of most nuclear calculations, which work with th
charge density using the invariant convention~although there
are some exceptions!.

The deuteron hasZ51 and spin 1, which adds anothe
form factor to the ‘‘chargelike’’ form factorG1 and ‘‘mag-
neticlike’’ form factorG2: the ‘‘quadrupolelike’’ form factor
G3. Various definitions and combinations can be used,
we use the notation and definitions of Refs.@27,28#. Because
the charge-monopole~the spherical part ofr) and charge
quadrupole~the nonspherical part ofr) contributions are in-
coherent~unless the deuteron spin is somehow constraine!,
the A0 function of Eq.~3! becomes

A0~Q2!5GC
2 1

8

9FQ2GQ

4M2 G 2

, ~8a!

where for smallQ2 the charge form factorGC is approxi-
mately @28#

GC~Q2!.G11
Q2

6
Qd , ~8b!

while the quadrupole form factorGQ depends onG1 ,G2,
and G3 @28#. The static deuteron quadrupole moment
Qd50.286 fm2. Equation~8b! is equivalent to correspond
ing forms in Refs.@5,6,28–30#. Defining ^r 2&ch526GC8 (0)
and ^r 2&1526G18(0), onefinds

^r 2&ch5^r 2&12Qd . ~8c!

Note that^r 2&ch is the mean-square charge radius and
^r 2&1; 2Qd provides a Darwin-Foldy–type correction toG1
and is only one part of̂r 2&ch. Because there are alternativ
form factor definitions for the deuteron, there are cor
sponding alternative size definitions. However,^r 2&ch is both
unique and physically motivated.

The 3H and 3He cases~both having spin1
2 ) mirror the

treatment of the proton, as in Ref.@10#, where theirFC(Q2)
is the analog ofGE in Eq. ~2! andFC /h1/2 is the complete
charge form factor in the invariant representation. Refere
@11#, on the other hand, uses a charge operator normal
according to the covariant convention and their form fac
denotedFch(Q

2) differs from that of Ref.@10# by an addi-
tional factor ofh1/2 (Fch/h is the charge form factor if one
uses the invariant normalization convention!. The mean-
square charge radius obtained from Ref.@10# is therefore
given by 26FC8 (0)13/4M2, while from Ref. @11# it is
26Fch8 (0)13/2M2.
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For completeness we also consider the spinless nuc
4He. The form factor and the invariant form of the char
operator for a spin-0 nucleus are the same to order (v/c)2

and there are no DF corrections. We find@5–8,16# B050,

r5
~E81E!

A4E8E
F0~Q2!.F0~Q2!F11OS 1

M4D G , ~9!

and ^r 2&ch526F08(0), which is another attractive propert
of the invariant form.

Manifest covariance, which emphasizes form factors
the traditional way to implement special relativity, but it
not the only one. Lorentz invariance@at least to order (v/c)2,
which is the limit of our interest here# can be implemented
by constructing explicit many-body representations of
Poincare´ group @8,12,30#. In this scheme, no part of th
charge density is more fundamental than any other. Rat
one works with the complete density, including ‘‘boost’’ e
fects such as the Thomas precession@31,8#. For these reason
~based on common nuclear practice! we strongly recommend
the convention that the mean-square radius of the comp
nuclear charge distribution be used when computing ene
shifts. This further implies that no ‘‘Darwin-Foldy’’ piece
of the mean-square charge radius of a nucleus should
incorporated into ‘‘recoil’’ corrections. If the latter is neve
theless done, it is imperative that this convention be sta
explicitly.

Whatever conventions are adopted for the proton, con
tency within the framework of nuclear physics~which treats
nuclei as composed of nucleons! requires that the physics o
the deuteron~or any heavier nucleus! incorporate Eq.~6!.
There will be other mechanisms allowed by the presenc
additional nucleons as well. Figure 1~a! shows schematically
the interaction of a single proton with an external Coulom
field. The solid dot on the double line~the proton! indicates
the proton’s~finite! charge density. An identical interactio
occurs in Fig. 1~b! on that proton inside the deuteron, whe
again the solid dot indicates the full proton charge distrib
tion including the DF term. We have indicated by shad
vertical bars on left and right the strong interactions that b
the proton and neutron together to make a deuteron. In a
tion to the proton interaction, the neutron has a finite s
that contributes via Eq.~5b! @note that̂ r 2&DF vanishes for a
system with no net charge#. The external field can attach t

FIG. 1. Deuteron and proton interactions with external elec
field ~curly line!. The nucleons are depicted as double lines, wh
meson exchanges in deuterium that lead to binding or electric
rents are shown as shaded double lines connecting the proton
neutron.~a! shows the proton,~b! shows the deuteron graph th
generates the ‘‘matter’’ radius, while~c! illustrates meson-exchang
currents. The graph depicting the neutron’s finite-size contribu
@identical to~b! with the curly line attached to the neutron# is not
shown.
us

s

e
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te
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the neutron in Fig. 1~b! in an identical fashion to the proto
interaction. In addition, the spin-orbit interaction@7,8# ~last!
term in Eq.~6! generates a small relativistic correction^r 2&so
in the bound deuteron~or any complex nucleus!. Figure 1~c!
illustrates a generic contribution of the meson-exchange
rent ~MEC! type @26#, where the flow of mesons that bind
the deuteron generates a small contribution of relativistic
der to the nuclear charge density@12#.

Putting everything together, we can write for the deuter

^r 2&ch5^r 2&m1^r 2&ch
n 1^r 2&ch

p 1^r 2&B ~10a!

or, equivalently,

^r 2&ch5^r 2&pt1^r 2&ch
n 1^r 2&ch

p , ~10b!

where the part due to the binding mechanism is given by

^r 2&B5^r 2&so1^r 2&MEC1••• ~10c!

and the ‘‘point-nucleon’’ radius of the deuteron is defined
be

^r 2&pt5^r 2&m1^r 2&B . ~10d!

The nucleon mean-square charge radii are given by Eq.~5b!
@recall that ^r 2&DF50 for the neutron case#. In addition,
^r 2&m is the mean-square ‘‘matter’’ radius, obtained direc
from the square of the deuteron wave functi
@^r 2&m[*d3r uCd(r )u2(r /2)2, wherer /2 is the distance from
the deuteron center of mass to the proton#. Equation~10! is
quite general and applies to an arbitrary nucleus if a facto
N ~the number of neutrons! multiplies ^r 2&ch

n and a factor of
Z ~the number of protons! multiplies ^r 2&ch, ^r 2&m , and
^r 2&ch

p . The correction due to nuclear binding mechanis
^r 2&B has been written as the sum of spin-orbit contributio
from the individual neutrons and protons via the last term
Eq. ~6! and ~potential-dependent! meson-exchange current
plus ••• . Its presence makes Eqs.~10! a definition.

In the traditional interpretation of the isotope shift@1#, one
calculateŝ r 2&ch2^r 2&E

p as the measure of the finite-size di
ference in the isotope shift, where the first~deuteron! term
incorporates a proton DF term while the second~proton!
term does not. This difference then includes a term^r 2&DF
from the proton in the deuteron that counterbalances a s
lar term implicit in the Barker-Glover recoil correction fo
the proton contained in Eq.~7b!. This has been done consis
tently @1#. Thus the proton-size effect~including the DF part!
completely cancels in thed-p isotope shift. This cancellation
must occur on physical grounds~see Fig. 1!, irrespective of
the fact that in the proton caseby conventionwe choose to
call the DF term a ‘‘recoil’’ correction rather than a finite
size term.

At the level of accuracy of Ref.@3#, however, this ap-
proach is no longer adequate. Each nuclear finite-size ef
comes with its own reduced-mass correction@see Eq.~7e!#.
The proton finite-size corrections in the deuterium atom a
in the hydrogen atom differ by 0.9 kHz in the 2S-1S isotope
shift from this effect, although it is very tiny for the DF pa
alone. The finite-size correction should be calculated
each isotope with the proper reduced mass before they
subtracted.
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TABLE I. Calculation of the deuteron rms matter radius for a variety of potential models listed on the
The full radius for each potential is shown in the first column of numbers, followed by the zero-r
approximation for that case and the defect mean-square radius~the difference in the squares of those co
umns!. The final column combines the defect with the ‘‘experimental’’ value@41# of the zero-range approxi
mation ~1.9847~18! fm! to obtain a prediction for the full matter radius.

Potential model ^r 2&1/2 (fm) ^r 2&ZR
1/2 (fm) D^r 2& (fm2) ^r 2&m

1/2 (fm)
Second-generation potentials

Nijmegen~full relativistic! 1.9632 1.9811 -0.0705 1.9669
Nijmegen~nonlocal nonrelativistic! 1.9659 1.9831 -0.0681 1.9675
Nijmegen~nonlocal relativistic! 1.9666 1.9839 -0.0683 1.9675
Nijmegen~local nonrelativistic! 1.9671 1.9843 -0.0680 1.9675
Nijmegen~local relativistic! 1.9675 1.9847 -0.0680 1.9675
Reid soft core~93! 1.9686 1.9866 -0.0709 1.9668
ArgonneV18 1.9692 1.9865 -0.0685 1.9674

First-generation potentials
Reid soft core~68! 1.9569 1.9683 -0.0446 1.9735
Bonn ~CS! 1.9687 1.9871 -0.0726 1.9664
Paris 1.9714 1.9890 -0.0695 1.9672
de Tourreil–Rouben–Sprung 1.9751 1.9926 -0.0694 1.9672
ArgonneV14 1.9816 2.0005 -0.0754 1.9657
Nijmegen~78! 1.9874 2.0069 -0.0780 1.9650
Supersoft core (C) 1.9915 2.0119 -0.0816 1.9641
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Our final topic is a preliminary analysis of the deuter
charge radius in the nonrelativistic impulse approximat
@26# ~i.e., the ‘‘matter’’ radius!. The zero-range approxima
tion @32# results from neglecting thed-state wave function
and replacing the deuteron reduceds-state wave function by
its asymptotic formASe2br , whereb is the deuteron relativ-
istic wave number andAS is thes-wave asymptotic normal
ization constant. This excellent approximation overestima
^r 2&1/2 by less than 1%. Table I shows a calculation of^r 2&1/2

for a wide variety of first-generation@34–40# ~i.e., older! and
second-generation potentials@13–15# ~i.e., newer ones tha
fit the nucleon-nucleon scattering data from very well to e
ceptionally well!. The full ^r 2&1/2 is followed by the zero-
range result for that potential. The residualD^r 2&5^r 2&
2^r 2&ZR is next. The residual is small and for our secon
generation potentials spans the range20.0695(15) fm2.
The zero-range result using the best current values
AS @0.8845(8) fm21/2# and b @41# is ^r 2&ZR

5AS
2/16b35@1.9847(18) fm#2, which combines with the

residual just quoted to give our best theoretical value for
root-mean-square matter radius of the deuteron

theor̂ r 2&m
1/251.967~2! fm. ~11!

This result is our base line, from which deviations sign
‘‘exotic’’ components of the deuteron charge density. W
can make our own estimate of this deviation by using
current experimental value@3# of the 1S-2S isotope shift:
670 994 334~2! kHz. We also use an updated version of t
theoretical analysis presented in Ref.@1#, which is displayed
in Table II. We use the improvedmp /me ratio of Ref. @42#
@1836.152 666 5~40!# and the md /mp ratio of Ref. @43#
@1.999 007 500 9~8!#. We also use the improved deuteron p
larizability of Ref.@44#; the proton polarizability of Ref.@45#
cancels in the isotopic difference. Higher-order (Za)5 and
n
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e

l

e

-

(Za)6 Coulomb finite-size corrections are obtained fro
Ref. @46#. The neutron mean-square charge radius is ta
from Ref. @47#: 20.1140(26) fm2. All other constants are
taken from Ref.@48#. Using the deuteron mean-square char
radii defined by Eq.~10!, we obtain the experimental valu
of the deuteron point-nucleon radius

expt̂ r 2&pt
1/251.9753~11! fm ~12!

and

expt̂ r 2&pt
1/22 theor̂ r 2&m

1/250.008~2! fm, ~13!

where the error in Eq.~12! is obtained by compounding
1.5-kHz mp /me uncertainty, the 2-kHz experimental unce
tainty, an estimated 4-kHz uncertainty in QED calculatio
@1#, and an~equivalent! 3.5-kHz uncertainty from the neu
tron charge radius. These results are shown in Table III.
the scale of these uncertainties the DF terms discussed e

TABLE II. Experimental and theoretical 2S-1S deuterium-
hydrogen isotope shifts in kHz. The experimental value is given
the left, followed by the theoretical value for point nuclei~with no
Darwin-Foldy terms included in either nonradiative recoil contrib
tion!, the sum of nuclear polarization, nuclear Lamb shift, a
higher-order Coulomb finite-size contributions is next, followed
the right by the leading-order nuclear finite-size contribution~in-
cluding all nuclear Darwin-Foldy terms! adjusted to produce agree
ment with the experimental isotope shift.

Experiment Point nuclei Miscellaneous
nuclear

Nuclear size

670 994 334~2! 670 999 503.2 19.2 25188.4
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TABLE III. Experimental and theoretical deuteron radii. The deuteron matter radius correspond
second-generation nuclear potentials renormalized to the experimental zero-range approximation
experimental point-nucleon charge radius of the deuteron are shown in the first two columns, followed
difference of experimental and theoretical results. Relativistic corrections to the mean-square charge
from the electromagnetic spin-orbit interaction and from MEC~assuming minimal nonlocality! are listed in
the next two columns. The final theoretical estimate of the charge radius for pointlike nucleons is listed
sixth column. No uncertainty is given in the final estimate because of consistency problems betwe
MEC and the nuclear potentials.

theor̂ r 2&m
1/2 (fm) expt̂ r 2&pt

1/2 (fm) Difference~fm! ^r 2&so (fm2) ^r 2&MEC (fm2) theor̂ r 2&pt
1/2 (fm)

1.967~2! 1.9753~11! 0.008~2! 20.0014 0.0159 1.971
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are very large for the 2S-1S transition, approximately 45
kHz/A2 (A is the nucleon number!, where roughly 5 kHz
changeŝ r 2&ch

1/2 by 0.001 fm.
The atomic results above can be contrasted with the

precise determination of^r 2&pt
1/2 using Eqs.~10! and the elec-

tron scattering results of Refs.@9,21#:

expt̂ r 2&pt
1/251.966~13! fm, ~14!

from which we obtain

expt̂ r 2&pt
1/22 theor̂ r 2&m

1/2520.001~13! fm. ~15!

At this level of precision, the result~15! is null. Equations
~10b! and~12! lead to a full deuteron charge radius from t
isotope shift of 2.136~5! fm, which is consistent with the
value of 2.128~11! fm from Ref. @9#.

Although the result~13! is effectively nonzero, there is
one caveat about its significance. The matter radius der
earlier is not entirely well defined. It was shown long a
@12# that to order (v/c)2 there are two unitary equivalence
that arise naturally in treating relativistic corrections; the
are the~pion! chiral-rotation equivalence specified by a p
rameter m and the quasipotential equivalence~similar to
electromagnetic gauge dependence! specified by a paramete
n. These parameters modify the nuclear potential thro
nonlocal terms and also modify the nuclear charge oper
through meson-exchange currents. Because none of the
resentations corresponds precisely to a nonrelativistic~i.e.,
momentum-independent! potential, no specification ofm and
n is possible without performing a consistent relativistic c
culation @at least to order (v/c)2#. Since a unitary transfor
mation cannot change observables~and hence the zero-rang
approximation is unchanged!, only the defect wave function
and the defect mean-square radius (^r 2&m2^r 2&ZR) can be
changed and both will therefore depend onm andn, as will
^r 2&MEC. Both (̂ r 2&m1^r 2&MEC) and^r 2&ch do not. We can
stipulate conditions on the potential that will restrict the p
rametersm andn. One condition is ‘‘minimal nonlocality,’’
which requires the nuclear tensor force to be as loca
possible and the entire force to be energy independent.
is equivalent tom50 and n51/2 @12# and bears a rough
correspondence to Coulomb gauge in atomic physics. Su
representation is probably the closest to~but not quite the
same as! using the local potentials that are the norm
ss

ed

e

h
or
ep-

-

-

s
is

a

nuclear physics. This representation for the MEC charge
erator is well known@12# and produces

^r 2&MECun51/2
m50 .0.0159fm2, ~16!

and together with

^r 2&so.20.0014 fm2, ~17!

one finds the full radius

theor̂ r 2&pt
1/251.971 fm, ~18!

which makes up approximately half the difference betwe
the experimental value and the base-line estimate predic
on nonrelativistic second-generation potentia
(^r 2&pt

1/22^r 2&m
1/2) given in Table III. We hope the remainin

0.004 fm comes from the difference between a true rela
istic treatment of the deuteron and our nonrelativistic o
that we have supplemented with~somewhat! ad hoccorrec-
tions. Our results for̂r 2&B are similar to those of Ref.@49#.

In summary, we have reviewed the various ways t
nuclear sizes are incorporated into electron scattering
atomic calculations. We strongly recommend the convent
that completenuclear charge radii be used in calculatin
atomic energy shifts rather than radii based on arbitrary fo
factor definitions. A ‘‘base-line’’ value of the deuteron rm
radius was calculated using nonrelativistic second-genera
potentials to correct the~excellent! zero-range approxima
tion. A value of the deuteron rms radius extracted from
d-p isotope shift is 0.008~2! fm larger than this base-line
value, some of which is almost certainly due to meso
exchange currents. A complete resolution of the probl
caused by this difference awaits a relativistic treatment of
deuteron dynamics@50# that is of ‘‘second-generation’’ qual
ity because we are dealing with very small size differenc
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