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We study doubly excited3s®, 13P°, and *®D® resonances in He below the=2 He" threshold by the
saddle-point complex-rotation method wihispline functions. We calculated 78 resonances. Recently, accu-
rate measurements on tH®° have been performed, which allow detailed comparisons withabumitio
theoretical results. FotP®, we calculate six members in th€0,1)} (2<n<=7) series, five members in the
2(1,0), (3=<n=<7) series, and four members in thé— 1,0)2(3sns6) series. The resonance energies and
widths are compared with accurate experimental and theoretical results. The agreement is good. For other
symmetries, the energies and widths are also calculated wg=fh, and are also in good agreement with
available experimental and theoretical resyl&1050-2947)01912-4

PACS numbes): 31.15.Ct, 32.80.Dz, 32.70.Fw

I. INTRODUCTION method is advantageous in its simplicity, effectiveness, and
stability.
Doubly excited helium is a prototype for the study of
electron-electron correlations. Since the observdtijrand Il. THEORY

interpretation 2], many experimental and theoretical efforts )
have been devoted to this topic to understand the strong We have developed46] the saddle-point complex-
electron-electron correlations quantitatively and qualitaotation method wittB-spline functiong47]. We will briefly
tively. Photoionization, electron-impact, ion-impact, beam-Summarize the method here.

foil, and ejected-electron spectra techniques have been used [N @ configuration interaction scheme, we constructed the
to study the autoionizing states of helium. For many yearswave functions in terms oB splines of orderk and total
considerable experimental effort®oodruff and Samson NumberN, defined between two end pointsy,=0 and
[3], Bizauet al.[4], Morgan and Ederdi5], Lindle et al.[6], M ma— R, and_ build vacancies into the wave functions. .W|th
Kossmanet al. [7], Zubeket al. [8], Domke et al. [9-11], an exponential sequence, we have the trial wave function for
and Schulzet al. [12], for examples have been working at @ two-electron system

improving the resolution by using various synchrotron light _ _

sources. From the theoretical side, there are many different Y=A{[1-P(r)][1-P(ry)]}

approaches. The earlier calculations have been reviewed in

previous experimental workisl3,3,59 and by Ho[14]. Re- X E C
cently, Buckman and Clarkl5] reviewed both of the theo- BHERP
retical and experimental works. Some of the recent theoreti- .

cal approaches are the algebraic variational close-coupling with
method [16], the close-coupling method 17,18, the B. (r1) Bi (1)
complex-rotation methofll9—24, theL? techniqud 25,28— @, (r1,F5)= 2Lk Pk 2)
33], the saddle-point complex-rotation methf®b,27], the ’ r )
saddle-pointR-matrix method[34] , the diabatic and adia-

batic hyperspherical methd@5,36), and the hyperspherical LM _ - -
close-coupling methof87—39 . Herrick and Sinanog|{40] Vi, mlz,mz (1212Myma|LM)Y1, my (F1) Y1, my(T2),
and Lin[41] have introduced a classification scheme, which 3
is widely used, along with a hyperspherical coordinate de-
scription of He. Very recently, because of the development and
of high-resolution monochromators at synchrotron-radiation
facilities, accurate measuremeifis-12) on the *P° doubly
excited resonances of He were performed, which allow de-

. ; . A . where the numbers and j are positive integers, which are
tailed comparisons witlab initio. theoretical results. They not larger tharN [48], andjm is some selected integftd]
have renewed the interest in studying this topic. 9 ! J 9getl.

In the present work, the saddle-point complex—rotationA is the antisymmetrization operatqy(1,2) is the spin wave

method withB-spline basis functions will be used in study- function, andP(r) is a projection operator. For the present,
ing the resonant helium below time=2 He' threshold. The the 1s orbital is the vacancy orbital. We assume it to be
saddle-point method was developed by Chiiag]. Many  hydrogenic with effective nuclear charge, The saddle-
successful results have been obtained by Chung and his cBOINt variation is carried out by first minimizing the energy
workers [26,27,43—4% (we only refer to some of their With respect toC;;, , and the set oB spline basis func-
works) by the saddle-point complex-rotation method. Thistions, and then maximizing the energy with respect to the

iy

@ j(rur) Y (12, (@

: 2

i=j—jm, 4
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TABLE |. Comparison between experimental and theoretical values for energies and widths for doubly
excited 1P° below theN=2 threshold. 2.(B) means 2.0+ 0.3.

E, E; E, Es r, I'; r, I's
(eV) (meV)
2(0,1)
Expt. 60.1504) 63.6583) 64.4662) 64.816 37.62)0 8.35) 3.47) 2.003)
Theory
Present 60.146 63.656 64.464 64.814 37.3 8.16 35 1.75
[19] 60.145 63.656 64.464 64.814 37.4 8.2 35 1.8
[25] 60.154 63.656 64.463 36.5 7.9 3.3
[23] 60.147 63.658 64.466 37.36 8.19 3.49
[52] 60.146 63.656 64.465 374 8.19 35
[28] 60.156 63.661 64.467 38.3 8.39 3.58
2(1,0),
Expt. 62.7612) 64.1362) 64.6592) 0.112) 0.065 0.033)
Theory
Present 62.758 64.134 64.657 0.105 0.055 0.027
[19] 62.758 64.134 64.657 0.105 0.056
[25] 62.756 64.132 0.098 0.047
[23] 62.760 64.136 64.659 0.105 0.055 0.027
[52] 62.758 64.134 64.656 0.106 0.055 0.027
[28] 62.760 64.137 64.659 0.112 0.057 0.028
2(—1,000
Expt. 64.119 64.648 64.907 <0.05
Theory
Present 64.118 64.648 64.906 0.00041  0.00008
[19] 64.118 64.648 64.906 0.00044
[25] 64.117 64.646 64.906 0.00053  0.00023
[23] 64.118 64.648 0.00028  0.000004
[52] 64.118 0.00037
[28] 64.116 64.646 64.908 0.000157 0.0000376

effective nuclear chargej, to obtain the saddle-point energy tions as the closed-channel components, we only varied these
and wave function. Th&-spline basis functions with an ex- coefficients of the partial waves which make major contribu-
ponential knot sequendd8,50 are employed in the present tions to the saddle-point energies. We found that we can
calculations. We then calculate the resonance energy armbmbine a few terms of the saddle-point wave functifdcs.
width by a complex-rotation method. We choose the open{l)] to a single term to reduce the working space in the
channel componen{f6] to be computer. The accuracy was deemed sufficient for our cal-
culations. The closed-channel components for our calcula-

ke tion are constructed from the saddle-point wave function as

\Popen:A’pls(r_;)k;L Crclke(r2)x(1,2), 5 follows:
U T =K% BT (7)), 6) Y=A{[1-P(r)][1-P(ry)]}
where i, is the ground-state wave function of He The X Z Dm,n,ll,I2¢m,n(r_1vr_;)Y|L1'\,A|2X(1’2)1 )
non-negative integekc is chosen to be large enough to en- m.nlyl2

sure the accuracy of the resonance energy and width in the,
calculation by the complex-rotation method. The trial waveWith
functions are composed of the saddle-point wave functions
(the closed-chgnnel_componemd the open-channel Som- bmn(Fl2) = 2 Ci,j,ll,lzq)i j ®)
ponents¥ e, in Which each radial coordinate in uy(r;) (Dmyn
takes the fornr;e'’.

In carrying out the complex-rotation calculation, the pa-The coefficienty, |, are varied in the complex-rotation
rameterss, kc and the coefficient€, [in Egs.(5) and(6)]  calculation. The selection of the grougisj),, is also opti-
and the coefficient€; ;| |, of the saddle-point wave func- mized to obtain stable resonance energies and widths. We
tions are optimized46,5] to find stable resonant energies expect the success of grouping the saddle-point wave func-
and widths. In practice, in using the saddle-point wave functions because of the flexibility d8-spline functions.



TABLE II. Energies and widths for doubly excitetfP°® below theN=2 threshold(in a.u). Underlined
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digits indicate uncertainties. Numbers is square brackets indicate powers of ten.

3P0
State E, Width E, Width

2(0,1) 2(1,0)y
Present n=2 0.693069 0.1372-2] 0.760489 0.299-3]
[19,20 0.69313495 0.13733-2] 0.76049239 0.298862 3]
[52] 0.6930920 0.137297 2]
[24] 0.693135 0.1373-2] 0.760492 0.299- 3]
[16] 0.6928 0.133- 2] 0.7604512 0.3(1 3]
Present n=3 0.564Q74 0.2998 — 3] 0.584671 0.824- 4]
[19,20 0.5640850 0.3010%7 3] 0.5846723 0.8235-4]
[52] 0.5640777 0.301167 3]
[24] 0.56409 0.30[- 3] 0.58467 0.82B-4]
[16] 0.56401 0.30- 3] 0.584652 0.7[7— 4]
Present n=4 0.534358 0.178- 3] 0.542837 0.31[7- 4]
[19,20 0.534361 0.129-3] 0.5428373 0.316-4]
[23] 0.534363144 0.1283- 3]
[16] 0.534322 0.124- 3] 0.542830 0.302-4]
Present n=>5 0.521501 0.644- 4] 0.525711 0.151-4]
[19,20 0.5214995 0.643-4] 0.52571 0.138-4]
[16] 0.521489 0.658-4] 0.5257083 0.144- 4]
Present n==6 0.514732 0.371-4] 0.517107 0.86-5]
[19,20 0.51473265 0.361-4] 0.51711 0.7p-5]
[16] 0.514720 0.38-4]
Present n=7 0.510725 0.225-4] 0.512206 0.54—5]
[19,20 0.510750 0.51219
[16] 0.510670

2(1,0), 2(0,1)
Present n=3 0.597074 0.3§4-5] 0.579030 0.185-5]
[19,20 0.5970738 0.395-5] 0.57903099 0.1894-5]
[52] 0.59707496 0.38999-5]
[24] 0.59707 0.38¢-5] 0.57903 0.188-5]
[16] 0.5970725 0.399-5] 0.5790245 0.178-5]
Present n=4 0.546490 0.202-5] 0.539558 0.790-6]
[19,20 0.5464933 0.205-5] 0.53955879 0.77+6]
[52] 0.54649029 0.20226-5]
[16,34 0.546457 0.208-5] 0.539501 0.445-5]
Present n=5 0.527295 0.998-6] 0.523946 0.410-6]
[19,20 0.5272950 0.523945
[23] 0.527297769 0.9821 6]
(16,34 0.527289 0.102-5] 0.522106 0.348-6]
Present n=6 0.5179395 0.94-6] 0.516079 0.2B-6]
[19,20 0.5179355 0.516077
[16] 0.517930 0.3p-6]
Present n=7 0.5126789 0.32-6] 0.511547 0.165-6]
[19,20 0.5126675 0.511551

2(—1,00 2(=1,0)
Present n=3 0.547087 0.1 -7] 0.548841 0.130-7]
[19,20 0.5470927 0.16- 7] 0.54884435 0.197-7]
[23] 0.547092709 0.105-7]
[52] 0.5470880 0.1375-7]
[24] 0.5471 <0.1-6] 0.54884 0.1p- 7]
[16] 0.54879738 0.109-7]
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TABLE Il. (continued.

1po 3po
State E, Width E, Width

Present n=4 0.527613 0.3-8] 0.528637 0.66—8]
[19,20 0.5276103 0.52863841

[23] 0.527616338 0.14-9]

[34] 528009 0.240D-6]
Present n=5 0.518115 0.518708 0.2 8]
(19,20 0.5181148 0.51869300

[34] 0.516530 0.713-6]
Present n=6 0.512789 0.513155 0.16 8]
[19,20 0.5127880 0.51314450

Ill. RESULTS AND DISCUSSIONS =4) of 2P°, and therefore we list those of Wu and [84] in

We calculated 78 resonances®®, 1%P°, and 1D¢). Table Il. The widths of Wu and X[34] for ,(0,1), and

The saddle-point and resonance energies are converged to ble~1:0)a5 0f °P° are much larger than ours. Their reso-
accurate to the first six digits except(—1,0);, 'S%,  Nhance energies are larger than ours an_d those O[Z.G]J
2(0,1)23' (1,007, 2(_1,0)2 1po and ,(1,0) 4, 2(0,1)%4 According to_ Fano and CoopéBB_], the W|dth§ of a given
1pe, In'carrying out the saddle-point variation, we calculategRYdberg series decrease according to_ the third power of the
1s® py including partial waves, |(,l,)=(0,0, (1,1, (2,2, reduced quantum numbery =n—u (u is the quantum de-
(3,3, (4,9, (5,5, (6,6), (7,7, with R=250 a.u. or 550 a.u. fect. We estimated the quantum defects to be 0.17, 0.72, and
and °S® by including partial waves up tq,l,<6. For 13p°,  —0.17, respectively, for,(0,1); , 2(1,0), , and »(—1,0);

we included six partial waves){,1,)<(5,6), withR=300 series of 'P°. They agree very well with the results of
a.u. or 600 a.u. Seven partial waves,,(,)=(0,2), (1,1), Domkeet al.[11]. The quantum defects are also estimated to
(1,3, (2,2, (2,9, (3,3, and (3,5 are used to calculatt®D®  be 0.60, 0.42, and—0.17, respectively, for,(1,0);,

with R=300 a.u. or 640 a.u. We truncated the partial waves,(0,1),, , and ,(—1,0), series of3P° from the present re-
because of the limited space in the computer, and the acciduits. Except for,(— 1,0)° series of*P°, the reduced widths
racy of the calculations. In the calculation of the complex-(n*3T1) are nearly constant for higher members'dP°. Our
rotation method, the resonance energies and widths are staliggth and that of Wintgen and Delan{23] are too small for

for kc [Eq. (5)] about 16. The range @ and 6, in which we (—1,0)2 of 1P°. We think that our width of,(1,0); of 1P°
obtained stable resonance energies and widths, vary for difs more reliable than that of 0446] by examining the con-
ferent statesAB and A 6 are not less than 0.1 in the worst stancy of the reduced widths. And so are our widths of

case. . »(—1,0), series of*P° more reliable than those of Wu and
In Table I, we compare our results 6P° with the recent Xi [34]. Our resonance energies for higher member3Rrst

expt;rin;entzl 2re51ﬁ]lt{1hl,12 .an? othler theoretical rgsults states agree with the resu[tg9,20, which were calculated
[19,25,23,52,2B The theoretical results are converted to eV ih Hylieraas functions, better than for the lower members

by using Ry-=13.603 83 eV and.. (the double-ionization  1po’gtates. It is similar to what we found for the energies

thre;hold :b791:'003:je.v' r’? mor_el Cor;npletekI;st IOf theoretical ot | yer states of singly excited Hé8,54,59. However, our
works can be found in the article of Domle al. [11]. Our resonance energies of the lower membersR?t are shown

results agree well with experimet1,12. The widths of 1, ho i good agreement with the accurate experimental re-
»(—1,0), are so small that no experimental results are ava'l'sults[ll,lﬂ as well as Ho's resultgl9].

able to compare with the theoretical results. The theoretical |, Taples 11l and IV, the present results of the resonance
results listed in Table | generally agree well with each Otherenergies and widths fol3se and 13D¢ are shown and com-
and with experimenf11,12. The various theoretical widths pared with those of H$21], Ho and Bhatig22], Lindroth
of »(—1,0 show a spread, but our width of(—~1,0  [24], Oza[16], Wu and Xi[34], and Macaset al. [57]. The
agrees very well with Ho's resuf.9]. agreement amongst the present results and those §2Hp

In Table II, our results of resonance energies and width$yg and Bhatig22], Lindroth[24], and Ozg16] is good. Ho
for *P° (°P°) are shown for,(0,1);, »(1,0),, and ,  [21], Ho and Bhatig22], and Lindroth[24] only calculated
(—1,0mG(1,0)y, 2(0,1),, and 5(—1,0),) series <7, lower members of the*3s® and 13D® series. Our results
m=<6) and compared with other theoretical resultsagree with theirs very well except for the resonance energies
[19,23,52,20,24,16,34Our results of the widths generally for 2(—1,0);‘3 of 1S and 2(1,0);3 of D& The agreement
agree well with other theoretical results except those of Wialso tends to be better for higher members or triplet states as
and Xi[34] as shown in Table Il. The agreement is better forwe found in Table II. The resonance energies'sf, calcu-
the larger widths. Few works of the widths on the higherjated by Wu and Xi[34] and Macas and Rierd56], are
members of 2(1,3), and ,(—1,0)° P° and ,(0,1), , and  close to those of H§21], Lindroth[24], Oza[16], and ours.
,(—1,0), 3P° are available to the author’s knowledge. OzaHowever, the widths of Wu and XB4] are too small, espe-
[16] did not calculate the,(0,1), and ,(—1,0), series @ cially for higher members of thg(1,0); series of'S®, and
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TABLE lIl. Energies and widths for doubly excitetfS® below theN=2 threshold(in a.u). Underlined
digits indicate uncertainties,(K,T),"~ meansA=1 for 1S* and A=—1 for 3S°. Numbers in square
brackets indicate powers of ten.

lge 8s®

State E, Width E, Width
Present 2(1,0); " 0.77787 0.453-2]
[21] 0.777868 0.453- 2]
[24] 0.777868 0.4541 2]
[16] 0.7778 0.45B— 2]
[34] 0.777879 0.333- 2]
[56] 0.778405 0.542- 2]
Present 2(1,0057 0.589896 0.137- 2] 0.602577 0.665-5]
[21] 0.589895 0.135- 2]
[24] 0.58989 0.136- 2] 0.60258 0.66f— 5]
[16] 0.589865 0.138- 2] 0.602576765 0.642-5]
[34] 0.589957 0.926- 3]
[56] 0.589925 0.134-2] 0.602589 0.665-5]
Present 2(1,05 0.544882 0.50-3] 0.548841 0.310- 5]
[21] 0.544875 0.45-3]
[16] 0.54487 0.4p-3] 54884039 0.307 5]
[34] 0.544892 0.40[1- 3]
[56] 0.544878 0.471- 3] 0.548844 0.310- 5]
Present (1,08 0.526687 0.23-3] 0.528414 0.154-5]
[16] 0.52679 0.20-3] 0.5284136 0.150-5]
[34] 0.526619 0.194 3]
[56] 0.526674 0.2071- 3] 0.518336 0.8([1— 6]
Present 2(1,0)8 0.517641 0.1p-3] 0.518546 0.86-6]
[16] 0.517632 0.110- 3]
[34] 0.517417 0.197- 4]
[56] 0.517260 0.131-3] 0.518336 0.80[1— 6]
Present 2(1,01" 0.512514 0.60-4] 0.513046 0.5 6]
[16] 0.512455
[56] 0.507694 0.340-5]
Present 2(—1,0)5" 0.62181 0.217§-3]
[21] 0.621928 0.2196- 3]
[24] 0.621926 0.216- 3]
[16] 0.620516 0.231- 3]
[34] 0.622255 0.647- 3]
[56] 0.619277 0.286- 3]
Present A(—1,05" 0.548Q70 0.775 — 4] 0.559745 0.26]1- 6]
[21] 0.5480855 0.78-4]
[24] 0.54809 0.76p- 4] 0.55975 0.256- 6]
[16] 0.5478765 0.897 4] 0.5597187 0.23-6]
[34] 0.547908 0.255- 3]
[56] 0.547759 0.106- 3] 0.559670 0.277- 6]
Present 2(—1,00 0.527707 0.4p-4] 0.532505 0.143- 6]
[21] 0.527710 0.5 4]
[16] 0.527625 0.52—4] 0.5324929 0.15-6]
[34] 0.527697 0.959- 4]
[56] 0.527586 0.676- 4] 0.532476 0.153- 6]
Present A(—1,00" 0.518100 0.32—4] 0.520549 0.82-7]
[16] 0.518056 0.35-4]
[34] 0.517786 0.155- 3]
[56] 0.517865 0.445- 4] 0.520510 0.120- 6]
Present (=100 0.512762 0.2p-4] 0.514180 0.48-7]
[34] 0.512554 0.908- 4]
[56] 0.508513 0.283- 4] 0.512268 0.198- 8]

Present H(—1,00 0.510378 0.30-7]




4542 MING-KEH CHEN 56

TABLE IV. Energies and widths for doubly excitedfD® below theN=2 threshold(in a.u). Underlined
digits indicate uncertainties,(K,T),"~ meansA=1 for 'D® and A=—1 for 3D® Numbers in square
brackets indicate powers of ten.

1De 3De

State E, Width E, Width
Present »(1,0)5~ 0.70183 0.23G 2]
[22] 0.7019457 0.23622- 2]
[24] 0.701946 0.23q2- 2]
[16] 0.701655 0.241-2]
[57] 0.69865 0.26[1— 2]
Present 2(1,05 0.569193 0.56Q — 3] 0.583784 0.312-7]
[22] 0.569221 0.555-3] 0.58378427 0.286-7]
[24] 0.56922 0.556- 3] 0.58378 0.3p-7]
[16] 0.569115 0.5[7- 3] 0.58378017 0.37+ 7]
[57] 0.56826 0.625-3] 0.58321 0.40%- 8]
Present 2(1,0 0.536715 0.234-3] 0.541679 0.10-7]
[22] 0.536727 0.233-3]
[16] 0.53669 0.237—3] 0.54167657 0.115-7]
[57] 0.53616 0.26B8- 3] 0.54124 0.150-7]
Present (1,02~ 0.522737 0.118- 3] 0.525018 0.48-8]
[16] 0.52272 0.11p-3] 0.52501735 0.91-8]
[57] 0.52210 0.135-3] 0.52451 0.930-7]
Present (1,008 0.515451 0.676-4] 0.516687 0.25- 8]
[16] 0.51544 0.6B—4]
[57] 0.51480 0.89B— 4] 0.51313 0.12P- 5]
Present 2(1,0)7°7 0.511178 0.418-4]
[16] 0.51112150 0.433-4]
Present (1,0~ 0.508499 0.26-4]
[16] 0.508272 0.318- 4]
Present »(0,1)3 0.556417 0.201-4] 0.560684 0.796-5]
[22] 0.5564303 0.2(1 4] 0.560687 0.76-5]
[24] 0.55643 0.200- 4] 0.56069 0.750-5]
[16] 0.5563903 0.199-4] 0.5606695 0.74-5]
[57] 0.55552 0.108-4] 0.55969 0.408- 5]
Present »(0,1); 0.531506 0.112- 4] 0.533462 0.382-5]
[22] 0.5315012 0.11-4] 0.533462 0.382-5]
[16] 0.53150 0.110— 4] 0.53345656 0.3§2-5]
[57] 0.53080 0.398-5] 0.53238 0.348- 5]
Present »(0,1) 0.520114 0.640-5] 0.521130 0.208-5]
[16] 0.52011 0.620-5] 0.5211277 0.205- 5]
[57] 0.51901 0.739-6] 0.51985 0.160-5]
Present »(0,1)° 0.513950 0.382-5] 0.514540 0.1p-5]
[16] 0.513944 0.391-5]
Present »(0,1) 0.510242 0.26-5]
Present »(0,1)9 0.507836 0.17-5]
Present »(—1,00% 0.529292 0.121-7] 0.529312 0.7—10]
[22] 0.529292995 0.13-7]
[16] 0.52928885 0.135-7] 0.52930856 0.732-10]
[57] 0.52900 0.30p-7] 0.52793 0.127- 7]
Present 2(—1,002 0.519000 0.519016
[57] 0.51251 0.51313
Present 2(—1,02 0.513310 0.513322

too large for higher members of thé—1,0), series of'S®  ergies and widths of Maaset al.[57] are less in agreement

in comparison with other theoretical results. The widths ofwith ours for higher members of the®D® series. Examining
Maclas and Rierd56] for 1:°S® agree with ours except for the reduced widths, we think our results are reliable for these
2(1,0); and 5(—1,0)s 3S°. We also find the resonance en- states. The quantum defects are estimated to be 0.67 and 0.26
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TABLE V. Comparison of the present resultsSt, P°, and 1*D®) with the experiments observing the
electrons ejected in the process of autoinizat|{&.844) means 57.84~ 0.04, etc]

State Hicks and Coméb8] Gelebartet al. [59] Present
E, (in eV)
»(1,0); 1s° 57.844) 57.803) 57.839
2(1,0)5 1s® 62.963) 62.953
2(1,0); 1s° 64.2003) 64.178
2(1,0)8 1s° 64.694) 64.673
(=105 s 62.084) 62.123) 62.095
2(1,0)5 3P° 63.093) 63.083) 63.095
2(1,0)5 3P° 64.253) 64.234
»(1,0)F 3P° 64.714) 64.700
»(1,0); D® 59.91(3) 59.893) 59.908
»(1,0); D® 63.523) 63.517
»(1,0); D® 64.413) 64.400
I' (in eV)
»(1,0); 1s° 0.13§15) 0.13815) 0.123
2(1,0); 1s° 0.041(10) 0.0373
»(1,0)5 3P° < 0.015 = 0.01 0.00814
»(1,0); 'D® 0.07218) 0.064

(0.81 and 0.0§ respectively, for,(1,0)7 and,(—1,0) se- to calculate the doubly excited resonant state’sy, *°P°,
ries of 1S°[,(1,0), and ,(—1,0), series of3S*] and 0.31, and 13D®) of He below then=2 threshold. We obtain ac-
0.013, and—0.13 (0.53, 0.136,—0.13), respectively, for curate results not only for the lower states but also for the
(1,00}, 2(0,1)2, and 2(_1,0)2 series of 'D® [,(1,0), , higher states, in compgring with the experimental and other
»(0,1)0, and ,(—1,0)° series of°D?. theoretical results and judging from the constancy of reduced
In Table V, our results of the resonance energies an(\j\l!dths. It is also impressive Fhat our result_s agree very well
widths for 1S¢, 3P°, and D® are compared with experimen- with the most accurate previous results given by Hylleraas
tal result/58,59. The experimental resonance positions areVave functions. In our calculations, the rangespoand 6
renormalized with respect to the lowedP® resonance &€ ggnerally SO large that we can obtain stable resonance
(60.15 eVJ. Our present results are converted to eV by usingENergies and W|dths easily. It is advantageous for us to cal-
Ry=13.603 83 eV and.. (the double-ionization threshgld culate the small widths.
=79.003 eV. Our results are in very good agreement with
the experimental results. It shows that our results for
(—1,0);5 of *S® and ,(1,0); 5 of 'D® are not necessarily
worse than those of Hf21], Ho and Bhatig22], and Lin- This work is supported by National Science Council
droth[24]. In conclusion, the saddle-point complex-rotation Grant Nos. NSC81-0208-M005-512y and NSC85-2112-M-
method withB-spline functions has been used successfully005-002.
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