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Large-order analysis of the convergent renormalized strong-coupling perturbation theory
for the quartic anharmonic oscillator
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Two hundred coefficients of the renormalized strong-coupling perturbation expansion for the ground and
first excited states of the quartic anharmonic oscillator are calculated numerically. The large-order behavior of
the perturbation coefficients is analyzed, a general and comparatively simple analytic formula describing their
large-order behavior is proposed, and it is shown that this formula is consistent with known results from the
divergent weak-coupling expansion. The accuracy of our numerically determined coefficients is checked by
summation rules. In particular, if the summation rules are supplemented by the leading terms of our large-order
formula, we obtain remarkably accurate results. This independently confirms the correctness of our large-order
analysis. It is shown that the renormalized strong-coupling expansion converges—in contrast to other pertur-
bation expansions—for all physically relevant coupling constants.@S1050-2947~97!03712-8#

PACS number~s!: 03.65.2w, 02.30.Lt, 02.70.2c
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I. INTRODUCTION

We investigate the Schro¨dinger equationH(b)c5E(b)c
for the quartic anharmonic oscillator, where

H~b!5p21x21bx4, b>0. ~1!

This is one of the old, but nontrivial problems of quantu
mechanics. As is well known,E(b) can be expressed as
weak-coupling perturbation series in powers ofb, which di-
verges for everyb.0 @1–4#. Hamiltonian ~1! can be
transformed into an equivalent Hamiltonia
H5b1/3@p21b22/3x21x4# @3#. Consequently,E(b) also
possesses the strong-coupling expansion

E~b!5b1/3(
n50

`

Knb22n/3. ~2!

This series converges ifb is large@3,4#. Unfortunately, the
perturbative computation of the coefficientsKn is very diffi-
cult @5–9#.

An alternative perturbative approach based upon ren
malization~Wick ordering@10# or scaling@9–14#! has con-
siderable conceptual and technical advantages. In the qu
case, Wick ordering and scaling are closely related, and
differ by a numerical factor in the effective coupling co
stant. In the scaling approach,bP@0,̀ ) is replaced by a
renormalized coupling constantkP@0,1) according to
b5k/@3(12k)3/2#, and Hamiltonian~1! is transformed into
a renormalized HamiltonianHR(k) @11,12#:

H~b!5~12k!21/2HR~k!, ~3!

HR~k!5p21x4/31~12k!~x22x4/3!, ~4!

E~b!5~12k!21/2ER~k!. ~5!
561050-2947/97/56~6!/4471~6!/$10.00
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In contrast to Eq.~1!, the perturbation inHR(k) is a differ-
ence of two terms, which partly compensate for each ot
@11,12#. The renormalized energyER(k) can either be ex-
pressed as a divergent weak-coupling expansion ink @12#, or
as a strong-coupling expansion in 12k @14#,

ER~k!5 (
n50

`

cnkn5 (
n50

`

Gn~12k!n. ~6!

The advantage of the renormalized approach is due to
fact that ER(k) is finite for kP@0,1# @ER(0)51 and
ER(1)5G0#, since the troublesome pole (12k)21/2 is ex-
plicitly factorized out in Eq.~5!.

The weak-coupling expansion forER(k) diverges almost
as strongly as the corresponding weak-coupling expan
for E(b) @10,12#. In contrast, it was shown in theorems
and 2 of Ref.@14# that the strong-coupling expansion fo
ER(k) is analytic atk51, which implies that it converges i
k is close to 1. Moreover, Table V in Ref.@14# indicates that
this strong-coupling expansion actually converges for
physically relevantkP@0,1).

The main purpose of this paper is to study the large-or
behavior of the perturbation series coefficients in the stro
coupling case. We show that this large-order behavior is
ceptionally simple in the renormalized case. This provides
with an interesting insight which can be used even for
study of the strong-coupling expansion~2!. In contrast to a
large-order analysis of divergent expansions, our large-o
analysis can be used directly for numerical purposes.

II. NUMERICAL CALCULATIONS

In this paper, we compute numerically 200 coefficientsGn
for the ground and first excited states of the quartic anh
monic oscillator, perform their large-order analysis, and p
pose an analytic large-order formula forGn . With the help of
this formula, we show that the strong-coupling expansion
4471 © 1997 The American Physical Society
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ER(k) converges for all physically relevantkP@0,1).
Such a large-order analysis could not be done bef

since only a comparatively small number of coefficientsGn
could be computed@14#. Here we use a method@15# which is
able to produce very accurate results at comparatively
computational costs even for very large perturbation ord
and which can also be used for the direct computation of
coefficientsKn in Eq. ~2! @16#.

We assume that an eigenfunctionc of the renormalized
HamiltonianHR possesses a strong-coupling expansion

c5 (
n50

`

cn~12k!n. ~7!

Standard perturbative approach leads to the equations

S p21
x4

3 Dc05G0c0 , ~8!

S p21
x4

3 Dcn1S x22
x4

3 Dcn215(
j 50

n

G jcn2 j ~9!

for n50 and n>1, respectively. For the technique of th
solution of Eqs.~8! and ~9! we refer to Ref.@15#. This
method is combined with the Taylor expansion of the wa
functions. As indicated in Ref.@15#, we replace the boundar
condition at infinity by a boundary condition at a sufficient
large numberx0. Our results depend onx0, and the highest
power xN occurring in the Taylor expansion. However, w
obtain very accurate results ifx0 andN are sufficiently large.

As a test, we calculated the energies of the ground
first excited state of the quartic oscillator with Hamiltonia
H5p21x4 in MAPLE, using 100 decimal digits,N51300,
andx056.5. In this way, we obtained an accuracy of at le
75 decimal digits, which is much better than previous res
@6,7#.

We also calculated 200 coefficientsGn for the ground and
first excited states inMAPLE, using 75 decimal digits
N52000, andx058. In Table I, only some selected coeffi
cients are shown. Forn>2, all Gn are negative.

If the Gn are known, the coefficientsKn of the strong-
coupling expansion~2! can be computed by using either E
~13! of Ref. @9# or standard series manipulation techniques
MAPLE. In the latter way, we calculated 100 coefficientsKn
for the ground and first excited state. So far, only relativ
few Kn could be computed perturbatively@5–9#. Unfortu-
nately, a large-order analysis of theKn seems to be difficult
since their signs change quite irregularly. Therefore, we
stricted our attention to theGn .

The accuracy of our coefficientsGn can be checked by
summation rules. The first obvious rule follows from the fa
that Hamiltonian~1! describes forb50 the harmonic oscil-
lator with energiesE(0)52K11, K50,1,2, . . . . This im-
plies @14#

S05 (
n50

`

Gn5E~0!52K11. ~10!
e,

w
s,
e

e

d

t
ts

f

y

-

t

Further summation rules can be derived by calculating
derivatives of both the weak- and strong-coupling expans
in Eq. ~6! with respect tok. Settingk50 then yields

S j5 (
n50

`

@n~n21!•••~n2 j 11!Gn#5~21! j j !cj .

~11!

MAPLE programs, which compute the ground state coe
cientscj exactly, are described in Refs.@12,13#.

For our numerically determined coefficientsGn , we com-
pute the partial sums

S j
~N!5 (

n50

N

@n~n21!•••~n2 j 11!Gn#, j >1. ~12!

For N5200, the exactS j as well as the differencesS j
(N)2S j

are shown in Table II. Forj 50, 1, and 2, the difference
S j

(N)2S j are very small, and show the high accuracy of o
numerical results. Forj 53, 4, and 5, they become large
because of the increasing weight of the coefficientsGn with
n.N. Moreover, convergence is apparently slower for t
first excited state than for the ground state. We also note
S j

(N).S j , which is a consequence of the fact that forn>2
all Gn are negative.

III. LARGE-ORDER BEHAVIOR OF Gn COEFFICIENTS

In order to study the large-order behavior ofGn , we in-
vestigate the ratioGn /Gn21 which occurs in the d’Alembert
convergence criterion. This ratio was extrapolated using
Richardson scheme@17# in the variable 1/n1/2. For the
ground state, we found that the large-order behavior of
ratio can be described by the following truncated expans
in 1/n1/2:

Gn
~0!/Gn21

~0! 512
21/2

n1/2
1

1

2n
. ~13!

The values of the coefficients in Eq.~13! depend on the
interval of indicesn of Gn which were used in the interpo
lation. We tried interpolation intervals of different lengths
the range 181<n<200. The values of the first two coeffi
cients in Eq.~13! are not very sensitive to the interval bein
used. However, the value of the third coefficient is less
curate and oscillates around12. Nevertheless, we are confi
dent that also this coefficient is correct. The large-order f
mula for Gn

(0) , which is consistent with Eq.~13!, has the
form

Gn
~0!5A~0!

e22A2n

A2n
. ~14!

HereA(0) is a constant.
Analogous calculations for the first excited state show

that Gn
(1)/Gn21

(1) can be described by
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TABLE I. Selected perturbation coefficientsGn of the strong-coupling expansion for the ground and fi
excited state energyER(k) of the renormalized quartic oscillator.

Ground state First excited state
n Gn

(0) Gn
(1)

0 0.735 214 010 331 216 2.634 546 134 058 831
1 0.277 055 672 879 946 0.422 158 671 146 023
2 20.111 788 972 096 45031021 20.317 297 121 676 53031021

3 20.466 149 311 582 11931023 20.118 348 533 354 81631021

4 20.293 444 235 328 68331023 20.566 020 610 884 99231022

5 20.148 065 256 807 37431023 20.298 444 332 180 92031022

6 20.769 154 429 963 37831024 20.168 196 037 910 15531022

7 20.423 206 186 488 08331024 20.996 162 298 547 61831023

8 20.242 857 940 621 44231024 20.613 183 501 076 96031023

9 20.144 250 579 507 10131024 20.389 299 010 839 41331023

10 20.882 035 796 048 39731025 20.253 531 925 098 16331023

11 20.552 867 849 653 39131025 20.168 684 451 476 76331023

12 20.354 065 902 908 94131025 20.114 304 581 919 29831023

13 20.231 060 058 334 93531025 20.786 945 770 110 20331024

14 20.153 323 581 119 56231025 20.549 385 838 893 81831024

15 20.103 267 824 141 98631025 20.388 309 856 406 98331024

16 20.704 933 716 265 41031026 20.277 513 646 802 81031024

17 20.487 094 742 781 16631026 20.200 320 156 542 17531024

18 20.340 325 648 653 58331026 20.145 915 572 269 96431024

19 20.240 209 641 371 47731026 20.107 170 633 904 95031024

20 20.171 140 073 870 88831026 20.793 148 696 590 61731025

21 20.122 990 906 347 77231026 20.591 131 390 412 77031025

22 20.891 015 087 373 82531027 20.443 446 990 479 76231025

23 20.650 353 066 160 67631027 20.334 681 619 010 11331025

24 20.478 027 227 703 69031027 20.254 027 612 001 87031025

25 20.353 675 330 095 64531027 20.193 835 914 598 83231025

26 20.263 289 801 622 18831027 20.148 646 023 997 30631025

27 20.197 144 828 033 61431027 20.114 528 455 544 14331025

28 20.148 428 783 780 86731027 20.886 343 135 165 53731026

29 20.112 332 167 365 36731027 20.688 837 022 415 33831026

30 20.854 331 361 307 30031028 20.537 482 145 539 26331026

40 20.692 427 651 200 22431029 20.539 973 504 236 57131027

50 20.763 555 251 883 617310210 20.699 402 643 129 44131028

60 20.104 682 599 734 451310210 20.108 816 065 189 05231028

70 20.169 163 425 861 465310211 20.194 948 682 414 63331029

80 20.311 233 024 257 551310212 20.391 114 882 919 387310210

90 20.636 481 899 357 226310213 20.861 610 800 449 058310211

100 20.142 178 964 205 299310213 20.205 416 058 730 723310211

125 20.455 898 856 814 737310215 20.753 137 381 819 770310213

150 20.204 948 564 682 983310216 20.376 559 140 065 207310214

175 20.118 903 133 815 519310217 20.238 602 260 079 994310215

200 20.843 663 366 544310219 20.182 543 904 091310216
-

d
ng
Gn
~1!/Gn21

~1! 512
21/2

n1/2
1

1

n
. ~15!

This leads to the large-order formula

Gn
~1!5A~1!e22A2n, ~16!

whereA(1) is a constant.
On the basis of Eqs.~14! and~16!, we conjecture that the

large-order expansion for theGn
(K) has the form
Gn
~K !5A~K !~2n!~K21!/2e22A2nS 11 (

m51

` am
~K !

~2n!m/2D . ~17!

Here,K50 corresponds to the ground state, andK51,2, . . .
correspond to excited states.

Next we discuss the analytical calculation of the coeffi
cientsA(K) and am

(K) . There are two possibilities: The first
one is to transform the known results for the renormalize
weak-coupling case. The second one is to consider tunnelli
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TABLE II. Summation rules for the coefficientsGn of the strong-coupling expansion for the ground and first excited state energyER(k)
of the quartic anharmonic oscillator.S j is the exact value of the summation rule for the infinite number of terms.S j

(N) denotes the partia
sum forN5200.S j

LOnu (S j
LOan) denotes the partial sumS j

(N) plus the remaining part of the series in which the truncated large-order form
~17! with the numerical estimates~analytical values! of theam

(K) coefficients is used. This part of the series was calculated by extendin
upper limit in the sum to 1500.

Ground state First excited state

j S j S j
(N)2S j S j

LOnu2S j S j
LOan2S j S j S j

(N)2S j S j
LOnu2S j

0 1 0.803310218 20.216310221 20.133310222 3 0.178310215 20.412310218

1 0.25 0.169310215 20.454310219 20.279310220 0.25 0.377310213 20.865310216

2 20.0416 0.356310213 20.951310217 20.584310218 20.5416 0.795310211 20.181310213

3 20.093 75 0.747310211 20.199310214 20.121310215 22.781 25 0.16731028 20.379310211

4 20.686 631 94 0.15631028 20.416310212 20.252310213 226.228 298 61 0.35131026 20.79031029

5 27.891 710 0694 0.32731026 20.867310210 20.524310211 2383.510 199 6527 0.73631024 20.16531026
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through a peak given by a negative harmonic term combi
with a positive quartic term. The latter possibility wou
have the advantage of certain visualization of the proble
However, in this case we would be obliged to start from
beginning, while in the case of the first technique we can
the renormalized weak-coupling results needed for the ca
lation of the A(K) and am

(K) coefficients. We shall see tha
even with this advantage the calculation of the coefficient
a nontrivial problem. We shall return to the second techniq
in a forthcoming paper.

For the above purpose we use the summation rule~11!,
and assume thatj is large. If we replace summation by inte
gration, we have to calculate integrals of the form

I m
~K !5E

j

` x!

~x2 j !!

exp~22A2x!

~2x!~m112K !/2
dx. ~18!

Here, we use the conventionx! 5G(x11) also for noninte-
gral x. The leading term of this integral for largej is

I m
~K !5

~ j 2/2!!

~ j 2/22 j !!

e2 j

j m2K
Ap j 3. ~19!

Further, it can be shown that

I m
~K !2 j

j ! ~ j 1K21/2!!
5

1

2ep1/2j mS 11(
l 51

`
dl

j l D . ~20!

Here, thedl are constants. In the next step, we insert t
equation and the large-order formula forcj

(K) @10,12#

cj
~K !5

~21! j 1112K241/2~ j 1K21/2!!

2 jK!p3/2e3 S 11 (
m51

`
f m

j mD ,

~21!

where thef m are constants, into Eq.~11!. In this way, it can
be shown that Eq.~17! is consistent with the results given i
Ref. @10# for all orders of 1/A2n. This indicates that our
ansatz~17! is justified. Since Eq.~21! is of semiclassical
d

.
e
e
u-

is
e

s

character, the large-order behavior in Eq.~17! is also of
semiclassical character. Here, semiclassical character st
for the JWKB approximation supplemented by higher-ord
terms.

First, we analytically calculated the coefficientA(K) via
Eqs.~11!, ~17! and ~18!, yielding

A~K !5 lim
j→`

~21! j j !cj
~K !

I 0
~K !

52
12K

K!

4A6

pe2
. ~22!

With the help of Richardson extrapolation, we estimat
the higher-order coefficientsam

(K) in Eq. ~17! from the nu-
merical coefficientsGn . For the ground state, we obtaine
a1

(0)521.15 anda2
(0)520.5. The truncated expression~17!

with these coefficients is a good approximation to the act
values of the coefficientsGn

(0) . Starting fromn585, its rela-
tive accuracy is better than 1023. Now we can calculate the
infinite series in the summation rules in such a way that
use the numerical values of the coefficientsGn

(K) for
0<n<N and the large-order formula~17! for n.N. It fol-
lows from Table II that the use of the truncated large-ord
expression~17! improves the accuracy of the summatio
rules for j 50, . . . ,5 by 3–4orders, which independently
confirms the correctness of our large-order analysis. The
ror of the summation rules supplemented by our asympt
results lies in the range from 10221 to 10210. This shows that
our numerically calculated coefficientsGn

(0) with 0<n<200
supplemented by the truncated large-order formula~17! for
n.200 provide extremely accurate results.

For the first excited state, we obtained only one coe
cient a1

(1)522.99. Starting fromn5108, the relative accu-
racy of the truncated expression~17! is better than 1023. We
see from Table II that the use of the truncated large or
expression~17! for n.200 improves the summation rules b
2–3 orders. Again, the summation rules are obeyed with
markable accuracy.

Finally, we calculated four coefficientsam
(0) analytically.

These quantities were calculated from the coefficie
f 1 , . . . ,f 4 in Eq. ~21!. The coefficientf 1 is taken from the
results of Ref.@10#, f 2, f 3, andf 4, were calculated with some
effort using the results of Ref.@18#. We obtained
a1

(0)5283/72, a2
(0)525243/10 368, a3

(0)525 949 823/
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11 197 440, anda4
(0)521 526 347 139/3 224 862 720 whic

are in good agreement with estimated values fora1
(0) anda2

(0)

given above. Using these coefficients it is seen that Eq.~17!
is qualitatively correct already forn54, while the relative
accuracy forn525 (n5200) is 331023 (231025), respec-
tively. If these coefficients are used in the summation ru
the accuracy of the differencesS j

LO2S j improves consider-
ably, as seen in Table II. Detailed description of this cal
lation as well as the calculation of the coefficientsam

(K) for
the excited states will be published separately.

IV. CONCLUSIONS

The results of this paper may be summarized as follo
Using 200 numerically calculated perturbation coefficie
Gn for the ground and first excited state energy of the qua
anharmonic oscillator, we investigated the large-order beh
ior of the renormalized strong coupling expansion forER(k).
We showed that the perturbation coefficientsGn permit—
unlike the coefficientsKn of the strong-coupling expansio
~2!—a relatively easy large order analysis, and found that
coefficientsGn can be described by the analytic large ord
formula ~17!, which is consistent with known results from
the divergent weak-coupling expansion@10#. In this paper,
the leading termA(K) and the coefficientsa1

(0) , . . . ,a4
(0)

were calculated analytically. Further analytic coefficien
am

(K) can be calculated using Eq.~21! and results from Refs
@10,18#. The coefficienta1

(1) was estimated numerically. Th
summation rules~10! and ~11! for Gn are obeyed with re-
markable accuracy and show that our numerically compu
coefficientsGn supplemented by the truncated large-ord
formula ~17! are apparently very close to the exact ones. T
convergence of the strong-coupling expansion forER(k) for
all kP@0,1# follows from the large-order formula~17!. Ex-
pansion~17! is expected to be only asymptotic. However, t
absolute value of the leading term in Eq.~17! is an upper
bound to the absolute value ofGn ~see the negative signs o
the differencesS j

LO2S j in Table II!. Thus the strong-
coupling expansion forER(k) converges for allkP@0,1#,
and the energyE(b) of the quartic anharmonic oscillator ca
for all physically relevant coupling constantsbP@0,̀ ) be
-
be

.
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computed by theconvergentrenormalized strong-coupling
expansion.

So far, perturbative calculation of the energy eigenvalu
of the anharmonic oscillators involved strongly diverge
perturbation series~the standard and renormalized wea
coupling cases! or the series converging for sufficiently larg
b ~the standard strong-coupling case!. The results of this
paper show that these difficulties can be avoided if the ren
malized strong-coupling perturbation series is used.
showed that the perturbation theory is convergent in this c
for all the physical values of the coupling constantb, and
that the large-order behavior of the perturbation coefficie
can be described by a simple analytical formula. A natu
question is what is the physical content of the large-or
behavior described by Eq.~17!. It follows from Sec. III that
the large-order behavior of both the strong- and we
coupling expansions ofER(k) is of semiclassical characte
However, the strong-coupling expansion is convergent
structurally more simple. From this point of view, the reno
malized strong-coupling expansion is the most natural p
turbative approach for the anharmonic oscillators.

The quartic anharmonic oscillator is a very importa
model problem in quantum mechanics and quantum fi
theory, and, consequently, the conclusions given above
of considerable significance. We hope to do similar inve
gations not only for various anharmonic oscillators and
hydrogen atom in a magnetic field, but also in quantum fi
theory. Concluding, we would like to state that from th
mathematical point of view it would be highly desirable
put our results into a completely rigorous form in the spirit
Ref. @19#.
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