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Two hundred coefficients of the renormalized strong-coupling perturbation expansion for the ground and
first excited states of the quartic anharmonic oscillator are calculated numerically. The large-order behavior of
the perturbation coefficients is analyzed, a general and comparatively simple analytic formula describing their
large-order behavior is proposed, and it is shown that this formula is consistent with known results from the
divergent weak-coupling expansion. The accuracy of our numerically determined coefficients is checked by
summation rules. In particular, if the summation rules are supplemented by the leading terms of our large-order
formula, we obtain remarkably accurate results. This independently confirms the correctness of our large-order
analysis. It is shown that the renormalized strong-coupling expansion converges—in contrast to other pertur-
bation expansions—for all physically relevant coupling constd&$050-294{@7)03712-9

PACS numbegps): 03.65—~w, 02.30.Lt, 02.70-c

I. INTRODUCTION In contrast to Eq(1), the perturbation itHg(«) is a differ-
ence of two terms, which partly compensate for each other
We investigate the Schdinger equatiom(B8) y=E(B8)¢  [11,12. The renormalized energlig(x) can either be ex-
for the quartic anharmonic oscillator, where pressed as a divergent weak-coupling expansion[it2], or
as a strong-coupling expansion in-X [14],
H(B)=p?+x2+Bx*, B=0. (1)

This is one of the old, but nontrivial problems of quantum ER(K):nZO Cn"n:nzo Ca(1=r)" ©
mechanics. As is well knowrg(8) can be expressed as a

weak-coupling perturbation series in powers@fwhich di-  The advantage of the renormalized approach is due to the
verges for everyB>0 [1-4]. Hamiltonian (1) can be fact that Ex(x) is finite for x<[0,1] [ER(0)=1 and

transformed  into an  equivalent  Hamiltonian Ex(1)=T,], since the troublesome pole {l) 2 is ex-
H=pgYp?+ B 2*?+x*] [3]. Consequently,E(8) also plicitly factorized out in Eq(5).
possesses the strong-coupling expansion The weak-coupling expansion fég(«) diverges almost

as strongly as the corresponding weak-coupling expansion
13 - o3 for E(B) [10,12. In contrast, it was shown in theorems 1
E(B)=8B Zfo KnB™ (2 and 2 of Ref.[14] that the strong-coupling expansion for
Er(k) is analytic atc=1, which implies that it converges if
This series converges 8 is large[3,4]. Unfortunately, the ¥ is close to 1. Moreover, Table V in Rdfl4] indicates that

perturbative computation of the coefficieids is very diffi- this strong-coupling expansion actually converges for all
cult [5—9]. physically relevantc[0,1).

An alternative perturbative approach based upon renor- Thg main purpose of this paper Is to ;tgdy th_e large-order
malization (Wick ordering[10] or scaling[9—14)) has con- behavior of the perturbation series coefficients in the strong-
siderable conceptual and technical advantages. In the quarl‘?@up“ng case. We' show that th|s.large-order blehaV|o.r IS ex-
case, Wick ordering and scaling are closely related, and the§EPtionally simple in the renormalized case. This provides us
differ by a numerical factor in the effective coupling con- With an interesting insight which can be used even for the
stant. In the scaling approaci,c[0:) is replaced by a study of the strong-couplmg expanstl)._ln contrast to a
renormalized coupling constank[0,1) according to Iarge—qrder analysis of Q|vergent expansions, our large-order
B=rI[3(1- x)¥?], and Hamiltoniar(1) is transformed into analysis can be used directly for numerical purposes.

a renormalized Hamiltoniaklg(«) [11,12:
Il. NUMERICAL CALCULATIONS

H(B)= (1= k) Hg(x), 3 In this paper, we compute numerically 200 coefficidngs

for the ground and first excited states of the quartic anhar-

Hr(x)=p>+x*3+(1- k) (x*=x*3), (4)  monic oscillator, perform their large-order analysis, and pro-
pose an analytic large-order formula fof . With the help of

E(B)=(1—«) YER(k). (5) this formula, we show that the strong-coupling expansion for
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Er(x) converges for all physically relevarte [0,1). Further summation rules can be derived by calculating the
Such a large-order analysis could not be done beforejerivatives of both the weak- and strong-coupling expansion
since only a comparatively small number of coefficiehits in Eq. (6) with respect tox. Settingx=0 then yields
could be computefil4]. Here we use a methdd5] which is
able to produce very accurate results at comparatively low o
computational costs even for very large perturbation orders, 3= > [n(n=1)---(n—j+1)T,]=(— 1ijte;.
and which can also be used for the direct computation of the n=0
coefficientsK, in Eq. (2) [16]. (11)
We assume that an eigenfunctignof the renormalized
HamiltonianHR possesses a strong-coupling expansion ~ MAPLE programs, which compute the ground state coeffi-
cientsc; exactly, are described in Refd.2,13.
For our numerically determined coefficiedts, we com-

b= (1= )" (7)  Pute the partial sums
n=0
N
Standard perturbative approach leads to the equations EJ(N)=nZO [n(n=1)---(n—j+1I,], j=1. (12
4
p2+ X Yo=Totho, (8) ForN=200, the exack; as well as the differenc%}N)—Ej
3 are shown in Table Il. Foj=0, 1, and 2, the differences
EJ(N)—EJ» are very small, and show the high accuracy of our
x4 x4 n numerical results. Fof=3, 4, and 5, they become larger
p2+ 3| ¥t X2— g) Un-1= 20 Lihnj (9  because of the increasing weight of the coefficiditswith
=

n>N. Moreover, convergence is apparently slower for the
first excited state than for the ground state. We also note that
for n=0 andn=1, respectively. For the technique of the EJ(N)>EJ. , Which is a consequence of the fact that fige 2
solution of Egs.(8) and (9) we refer to Ref.[15]. This gl T, are negative.

method is combined with the Taylor expansion of the wave

functions. As indicated in Ref15], we replace the boundary

condition at infinity by a boundary condition at a sufficiently !l LARGE-ORDER BEHAVIOR OF  I'; COEFFICIENTS

large numbewo. Our results depend oxy, and the highest 1y order to study the large-order behavior f, we in-
powerx™ occurring in the Taylor expansion. However, we yegtigate the ratid, /T',_, which occurs in the d’Alembert
obtain very accurate resultsxp andN are sufficiently large.  conyergence criterion. This ratio was extrapolated using the
As a test, we calculated the energies of the ground angichardson schemél7] in the variable Y2 For the
first excited state of the quartic oscillator with Hamiltonian ground state, we found that the large-order behavior of this

2y ; ; N —
H=p“+x" in MAPLE, using 100 decimal digitsN=1300,  rti5 can be described by the following truncated expansion
andxo=6.5. In this way, we obtained an accuracy of at leasf, 1/,1/2

75 decimal digits, which is much better than previous results

[6.7].
We also calculated 200 coefficiertg for the ground and OO _q_ £/2+ 1 (19
first excited states inMAPLE, using 75 decimal digits, n'tn-1 n¥2  2n°

N=2000, andxo=8. In Table I, only some selected coeffi-
cients are shown. Far=2, all T",, are negative.

If the I',, are known, the coefficientk, of the strong-
coupling expansiol(2) can be computed by using either Eq.
JABLE. In e ater way, 16 catculated 100 cosficienty TS 1aN0€ 18EN=200. The values of the fst two coeff-
for the ground and first éxcited state. So far, only reIativerCIents in Bq/(13) are not very sensitive to thg !nteryal being
few K., could be computed perturbative[ﬁ—é] Unfortu- used. However, the value of the third coefficient is less ac-

n ' curate and oscillates arourid Nevertheless, we are confi-

Qiarfiy{hae:?;?eﬁzriﬁggnglyiﬁeﬁrﬁg‘%jjﬁmST:‘%rbeefo?gﬂwg regent that also this coefficient is correct. The large-order for-
9 g€ q 9 y: ’ which is consistent with Eq(13), has the

The values of the coefficients in E@l3) depend on the
interval of indicesn of I',, which were used in the interpo-
#ation. We tried interpolation intervals of different lengths in

(0)
stricted our attention to thE,, . mula for I'y™,

The accuracy of our coefficients,, can be checked by S
summation rules. The first obvious rule follows from the fact

that Hamiltonian(1) describes fol3=0 the harmonic oscil- (0)_ A (0) g 2/
lator with energie€(0)=2K+1, K=0,1,2 ... . This im- Iy7=A on (14)

plies[14]

w HereA®) is a constant.
Analogous calculations for the first excited state showed
0= I',=E(0)=2K+1. 10 )
0 ngo n=E(0) (19 that T(M/T'(M, can be described by
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TABLE I. Selected perturbation coefficienlf, of the strong-coupling expansion for the ground and first
excited state energlir(«) of the renormalized quartic oscillator.

Ground state First excited state

n ro e

0 0.735 214 010 331 216 2.634 546 134 058 831
1 0.277 055 672 879 946 0.422 158 671 146 023
2 —0.111 788 972 096 45010 * —0.317297 121 676 53010 *
3 —0.466 149 311 582 119103 —0.118 348 533 354 82610 *
4 —0.293 444 235 328 68310 3 —0.566 020 610 884 99210 2
5 —0.148 065 256 807 32410 ° —0.298 444 332 180 92010 ?
6 —0.769 154 429 963 378104 —0.168 196 037 910 155102
7 —0.423 206 186 488 08310 * —0.996 162 298 547 618102
8 —0.242 857 940 621 44210 * —0.613 183 501 076 960102
9 —0.144 250 579 507 10410 * —0.389 299 010 839 41310 3
10 —0.882 035 796 048 39710 ° —0.253 531 925 098 16310 °
11 —0.552 867 849 653 39410 ° —0.168 684 451 476 76810 3
12 —0.354 065 902 908 94410 ° —0.114 304 581 919 29810 3
13 —0.231 060 058 334 93510 ° —0.786 945 770 110 20810 *
14 —0.153 323581 119 56210 ° —0.549 385 838 893 81810 *
15 —0.103 267 824 141 98610~ ° —0.388 309 856 406 98310 *
16 —0.704 933 716 265 41010 © —0.277 513 646 802 81010 *
17 —0.487 094 742 781 16610 © —0.200 320 156 542 17610 *
18 —0.340 325 648 653 58310 © —0.145 915 572 269 96410 *
19 —0.240 209 641 371 47%10°° —0.107 170 633 904 95010 4
20 —0.171 140 073 870 88810 © —0.793 148 696 590 61710 °
21 —0.122 990 906 347 7221078 —0.591 131 390 412 72010 °
22 —0.891 015 087 373 82510 7 —0.443 446 990 479 76210 °
23 —0.650 353 066 160 62610’ —0.334 681 619 010 12810 °
24 —0.478 027 227 703 690107 —0.254 027 612 001 87010 °
25 —0.353 675 330 095 645107 —0.193 835 914 598 83210 °
26 —0.263 289 801 622 18810’ —0.148 646 023 997 30610 °
27 —0.197 144 828 033 62410’ —0.114 528 455 544 14810 °
28 —0.148 428 783 780 86710’ —0.886 343 135 165 53710 ©
29 —0.112 332 167 365 36710’ —0.688 837 022 415 33810 ©
30 —0.854 331 361 307 300108 —0.537 482 145 539 26810 ©
40 —0.692 427 651 200 22410 ° —0.539 973504 236 510 7
50 —0.763 555 251 883 62710 10 —0.699 402 643 129 444108
60 —0.104 682 599 734 45410 1° —0.108 816 065 189 05210
70 —0.169 163 425 861 46510 ! —0.194 948 682 414 63310 °
80 —0.311 233 024 257 55410 12 —0.391 114 882 919 38710 *°
90 —0.636 481 899 357 22610 '3 —0.861 610 800 449 05810 1*
100 —0.142 178 964 205 29910 13 —0.205 416 058 730 72310 *
125 —0.455 898 856 814 73710 1° —0.753 137 381 819 772010 %3
150 —0.204 948 564 682 98310 1° —0.376 559 140 065 20710 4
175 —0.118 903 133 815 52910 17 —0.238 602 260 079 99410 15
200 —0.843 663 366 54410 *° —0.182 543 904 09% 10 %6

(L)1) 2 (K)— A(K) (K=1)l2q—2v20 S
I /rn_1=1—nT/2+ﬁ. (15 r0=AM(2n) e 2 1+m2:1W . (17

This leads to the large-order formula
g Here,K=0 corresponds to the ground state, &1,2, ...

rf):A(l)e—zm, (16)  correspond to excited states.
Next we discuss the analytical calculation of the coeffi-
whereA® is a constant. cients A and al). There are two possibilities: The first

On the basis of Eq414) and(16), we conjecture that the one is to transform the known results for the renormalized
large-order expansion for tﬂéﬂ() has the form weak-coupling case. The second one is to consider tunnelling



4474 L. SKALA, J. CIZEK, V. KAPSA, AND E. J. WENIGER 56
TABLE Il. Summation rules for the coefficients, of the strong-coupling expansion for the ground and first excited state eBg(gy

of the quartic anharmonic oscillata¥,; is the exact value of the summation rule for the infinite number of teﬁﬁg. denotes the partial

sum forN= 200.2}'0”” (2}‘03”) denotes the partial suEl](N) plus the remaining part of the series in which the truncated large-order formula

(17) with the numerical estimatganalytical valuesof the aﬂf) coefficients is used. This part of the series was calculated by extending the

upper limit in the sum to 1500.

Ground state First excited state

j 3 3M-3, 3OM-3, 2003, 3 3M-3, 3OM-3,

0 1 0.803« 107 —0.216x10°%% -0.133x10°% 3 0.178<10°15 —0.412x10°18
1 0.25 0.16%10° %% —0.454<10°*° —0.279x 10 %° 0.25 0.37X10°* —0.865<10° 16
2 —0.0456 0.356x10° % —0.951x10°Y7 -—0.584x10 % —0.5416 0.795x10°* —0.181x10° 18
3 —0.09375 0.74%10° % -0.199<10°* -0.121x10°%° —2.78125 0.16%10°8 —0.379x10° ¢
4 —-0.686631 @ 0.156x10°8 —0.416x10°12 —0.252¢x10° 18 —26.228 298 & 0.351x10°%  —0.790x10°°
5 —-7.89171006Q 0.327x10°% —0.867x10° 1 —0.524x10° ' 383510199657 0.736x10°* —0.165<10°°

through a peak given by a negative harmonic term combinedharacter, the large-order behavior in Eq7) is also of
with a positive quartic term. The latter possibility would semiclassical character. Here, semiclassical character stands
have the advantage of certain visualization of the problemfor the JWKB approximation supplemented by higher-order
However, in this case we would be obliged to start from theterms.
beginning, while in the case of the first technique we can use First, we analytically calculated the coefficieAt®) via
the renormalized weak-coupling results needed for the calclEgs. (11), (17) and (18), yielding
lation of the AK) and a{¥) coefficients. We shall see that
even with this advantage the calculation of the coefficients is _
a nontrivial problem. We shall return to the second technique (—D)ljref 12 46
. . : AR = m— = (22)
in a forthcoming paper. - [ (K) K!' ;e
For the above purpose we use the summation (iig, : 0
and assume thatis large. If we replace summation by inte-

. i With the help of Richardson extrapolation, we estimated
gration, we have to calculate integrals of the form

the higher-order coefficienta{’) in Eq. (17) from the nu-
merical coefficientd”,,. For the ground state, we obtained
o (7 X exp(—2y2x) a{®=—-1.15 anda{®= - 0.5. The truncated expressi¢h?7)
I)= f )T (o mr ik 9% (18 with these coefficients is a good approximation to the actual
. +(2%) values of the coefficients(?) . Starting fromn=85, its rela-
tive accuracy is better than 18. Now we can calculate the
infinite series in the summation rules in such a way that we
use the numerical values of the coefficierif§) for
0=<n=<N and the large-order formul@?7) for n>N. It fol-
(j?2)! el _ lows from Table Il that the use of the truncated large-order
o o g VT 19 expression(17) improves the accuracy of the summation
(1%2=pt ] rules for j=0,...,5 by 3—4orders, which independently
confirms the correctness of our large-order analysis. The er-
ror of the summation rules supplemented by our asymptotic
results lies in the range from 18! to 10~ °. This shows that
= d our numerically calculated coefficient§® with 0<n=200
2 —I') (20) supplemented by the truncated large-order form{@i@ for
=1 n>200 provide extremely accurate results.
For the first excited state, we obtained only one coeffi-
Here, thed, are constants. In the next step, we insert thiscient a{t)= —2.99. Starting frorm= 108, the relative accu-
equation and the large-order formula ff [10,12) racy of the truncated expressi@hv) is better than 10°. We
see from Table Il that the use of the truncated large order
expression(17) for n>200 improves the summation rules by

Here, we use the convention=1"(x+1) also for noninte-
gral x. The leading term of this integral for largeis

| (K) =
m

Further, it can be shown that

1§21 1
il '+K—1/2|: 1/2; m 1+
iN(] )| 2ert?ym|

c(K)z(_ 1)+ 112424M%(j + K~ 1/2)! / 14 fm 2-3 orders. Again, the summation rules are obeyed with re-
] iK1 773/263 \ m=1jm/)’ markable accuracy.
(21) Finally, we calculated four coefficients) analytically.
These quantities were calculated from the coefficients
where thef ,, are constants, into Eq11). In this way, it can  fq, ... ,f4 in Eq. (21). The coefficientf, is taken from the

be shown that Eq(17) is consistent with the results given in results of Ref[10], f,, f3, andf,, were calculated with some
Ref. [10] for all orders of 1{/2n. This indicates that our effort using the results of Ref[18]. We obtained
ansatz(17) is justified. Since Eq(21) is of semiclassical a{®”=-83/72, a{®=-5243/10368, al’)=—5 949 823/
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11 197 440, anago): —1 526 347 139/3 224 862 720 which computed by theconvergentrenormalized strong-coupling
are in good agreement with estimated valuesafﬁ} anda(zo) expansion. . _ _

given above. Using these coefficients it is seen that(Eg). So far, perturbative calculation of the energy eigenvalues
is qualitatively correct already fan=4, while the relative ©Of the anharmonic oscillators involved strongly divergent
accuracy fon=25 (n=200) is 3x 103 (2x 10~%), respec-  Perturbation seriegthe standard and renormalized weak-
tively. If these coefficients are used in the summation rulesCOUPling casesor the series converging for sufficiently large
the accuracy of the difference3 3 improves consider- £ (the standard strong-coupling cas@he results of this
ably, as seen in Table II. Detailed description of this calcu-PaPer show that these difficulties can be avoided if the renor-

lation as well as the calculation of the coefficieat§’ for malized strong-coupling perturbation series is used. We
the excited states will be published separately showed that the perturbation theory is convergent in this case

for all the physical values of the coupling constghtand
that the large-order behavior of the perturbation coefficients
can be described by a simple analytical formula. A natural
The results of this paper may be summarized as followsguestion is what is the physical content of the large-order
Using 200 numerically calculated perturbation coefficientsoehavior described by E@17). It follows from Sec. Il that
I, for the ground and first excited state energy of the quarti¢he large-order behavior of both the strong- and weak-
anharmonic oscillator, we investigated the large-order behavoupling expansions dig(«) is of semiclassical character.
ior of the renormalized strong coupling expansionEef«). ~ However, the strong-coupling expansion is convergent and
We showed that the perturbation coefficiefits permit—  structurally more simple. From this point of view, the renor-
unlike the coefficients, of the strong-coupling expansion Malized strong-coupling expansion is the most natural per-
(2)—a relatively easy large order analysis, and found that théurbative approach for the anharmonic oscillators.
coefficientsI', can be described by the analytic large order The quartic anharmonic oscillator is a very important
formula (17), which is consistent with known results from model problem in quantum mechanics and quantum field
the divergent weak-coupling expansift0]. In this paper, theory, and, consequently, the conclusions given above are
the leading termA®) and the Coefficientago)’ o ,a£10) of qonS|derabIe S|gn|f|ca_1nce. We hope_to do .S|m|lar investi-
were calculated analytically. Further analytic coefficientsg@tions not only for various anharmonic oscillators and the
aﬂf) can be calculated using E(1) and results from Refs. hydrogen atom in a magnetic flel_d, but also in quantum field
[10.18. The coefficiena ! was estimated numerically. The theory. Concluding, we would like to state that from the
T 1 . mathematical point of view it would be highly desirable to
summation ruleg10) and (11) for I, are obeyed with re- ut our results into a completely rigorous form in the spirit of
markable accuracy and show that our numerically compute ef. [19]
coefficientsT',, supplemented by the truncated large-order '
formula(17) are apparently very close to the exact ones. The
convergence of the strong-coupling expansiongg(«) for 5
all ke[0,1] follows from the large-order formulél?). Ex- J. C thanks the Alexander von Humboldt Foundation for
pansion(17) is expected to be only asymptotic. However, thefinancial support, which made this work possible. We also
absolute value of the leading term in Ed.7) is an upper thank Professor J. Ladik from UniverditaErlangen-
bound to the absolute value bf, (see the negative signs of Nirnberg, Professor K. O. Geddes, and Professor G. Labahn
the differencesEjLO—Ej in Table I). Thus the strong- from University of Waterloo for very stimulating discus-
coupling expansion foEg(x) converges for allk e[0,1], sions. This work was supported in part by the GACR, the
and the energf(B) of the quartic anharmonic oscillator can GAUK (L. S. and V. K), the NSERQJ. C), and by the FCI
for all physically relevant coupling constange[0,~) be (E.J. W).

IV. CONCLUSIONS
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