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Perturbative expansions for the fidelities and spatially correlated dissipation of quantum bits
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We construct generally applicable short-time perturbative expansions for some fidelities, such as the input-
output fidelity, the entanglement fidelity, and the average fidelity. Successive terms of these expansions yield
characteristic times for the damping of the fidelities involving successive powers of the Hamiltonian. The
second-order results, which represent the damping rates of the fidelities, are extensively discussed. As an
interesting application of these expansions, we use them to study spatially correlated dissipation of quantum
bits. Spatial correlations in the dissipation are described by a correlation function. Explicit conditions are
derived for independent decoherence and for collective decohefSk@50-294©@7)02712-1
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In various fields of physics, the study of open quantumherence and for collective decoherence, which are two im-
systems plays an important role. For example, decohereng®rtant ideal circumstances in dissipation of the qubits.
was recognized as a major problem in realizing quantum
computation [1,2]. Decoherence in quantum computers | PERTURBATIVE EXPANSIONS FOR THE FIDELITIES
mainly results from the coupling of quantum Kdubits to . .
environment. In general, it is not practical to look for exact W€ consider an open quantum system, the total Hamil-
solutions of these complicated systems, which consist ofonian of which is expressed as
many spatially correlated qubits interacting with a reservoir.

In this paper, we propose a perturbative approach to the
study of open quantum systems. We construct generally apynere Ho and H

) X ; . AR env indicate the free Hamiltonians of the
plicable short-time perturbative expansions for some f'de“'system and of the environment, respectivély.is the inter-

ties, such as the input-output fidelity, the entanglement fidelaction Hamiltonian between the system and the environment.

ity, and the average fidelity. A similar perturbative expansiongirst, we suppose that the system is initially in a pure state

for coherence loss has been proposed in a recent paher |y ). If there is no coupling between the system and the

where coherence loss is measured by the quar{ty  environment, at time the system is in the state

=tr[ p(t)— p2(t)], in which p(t) indicates the reduced den-

sity operator of the system. Sinét) has no direct physical |W(t))=e Ho/A| W) =Uq(t)| Vo). 2)

meanings, in this paper, we choose the fidelities rather than

8(t) as measures of decoherence. The fidelities are importafut in reality, coupling of the system to environment is in-

quantities and have been widely used in quantum codin§Vitable. So a_t time the system is in fact described by the

theory [4—7]. Through the perturbative expansions, we canféduced density operator

get some general relations between the fidelities, such as the i

demonstration that the entanglement fidelity decays more p(t)=tren[exp(—iHt/7) pend 0) ® | W)

rapidly than the average fidelity. X(Wo|lexp(iH 1t/A)], )

As an interesting application of this perturbative ap-

proach, we use it to study spatially correlated dissipation ofvhere p..(0) is the initial density operator of the environ-

qubits. The question is of great practical importance in dement. Decoherence of the system due to this inevitable cou-

signing quantum computers. Spatial correlations in purgling can therefore be measured by the fidelity between the

dephasing of the qubits have been analyzed in R8Isand  state(2) and(3), which has the form

[9]. However, the calculations of spatial correlations in gen-

eral dissipation of the qubits, including the dephasing and the F(t)=(Wo|Ug (1) p(t)Ug(t)|¥y). 4

relaxation, are far more involved. This question is hard to

solve either by any existing exact approaches or by solving he input-output fidelity is first defined in Rg#]. Here the

the master equatidriQ]. Fortunately, here we show, through definition is slightly modified to Eq(4) to make it more

the perturbative expansions, spatial correlations in generaluitable for measuring decoherence of the system.

dissipation of the qubits can be easily analyzed. Spatial cor- In general, the reduced density operai¢t) in Eq. (3) is

relations are described by a correlation function. From thishard to calculate. So there is difficulty in obtaining the fidel-

result, we derive explicit conditions for independent deco-ity (4). Fortunately, in practice, short-time behaviors of the
system under dissipation are of most interest. Hence we do
not need to exactly calculate the fidelif), but expand it

*Electronic address: gcguo@sunix06.nsc.ustc.edu.cn into a short-time power series

Hr=Ho+H,+Hepy, 1
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t 2 sion of the input-output fidelity to include the mixed input
F(t)=1- P S (5)  states. Equation§9) and (10) also show the characteristic
2

times for the entanglement fidelity are all intrinsic properties
Following Egs.(2), (3), and(4), it is not difficult to obtain ~ Of the systens.

the expansion coefficients. Up to ordétthey read explicitly The initial density operator of the system can be ex-
as pressed as a mixture of pure states, i.e.,
1
—=0, (6) PSZEi pi| Wil 11
71
52 wherep; satisfy=;p;=1. The average fidelit§, is defined
Zg:<q,0|trenv{[Hl J[Hi .Pen\)(o)®|‘1’o><‘1’o|]] as
t 2
+[[Hi Hol,pend 0)® | Wo)(Wo| 1} W o) Fa)=> pF(¥)=1- —— ——-, (12
2 2 ' Tia T2a
:<HI >s,env_ <<Hl>s>env: (7)

whereF (|'¥;)) indicates the input-output fidelity for the pure
where the symbq(: -+ ) cn, Stands for the average value over state| ;). Since the expressioil1) for the density operator
the system and the environment, i.¢H)s=(WolH|Wo),  ,_is not unique, unlike the entanglement fidelity, the average
and(H)s env=trenl pend 0)(H,)s]. It is obvious that the ex-  fidelity is not solely defined for a definiie,. From Egs(12)

pansion coefficients in EdS) furnish characteristic times,  and(4), we get the characteristic times for the average fidel-
associated with decoherence processes involMintp order ity

n. The second-order coefficientr}/is of special interest. It
is the coefficient of the first nontrivial term in the expansion. 1

Under the short-time approximation, 73/ measures the T_lazo' (13
damping rate of the fidelity. In most cases, it is sufficient to
consider the expansion up to ordér #2

In the above, we have assumed that the system is initially 7 =(H)s.env— < > pi(H|)i2> , (14
in a pure state. The input-output fidelié¢) does not apply 2a ' env

for mixed states. For a mixed input state of the system, there
are some fidelities defined, such as the entanglement fideli
and the average fidelit}s]. These two fidelities are widely
used in quantum coding theory. Suppddg,) is a purifica-
tion of the density operatqss, i.e., the statéV,) satisfies 2
tr,(|W,s)(¥¢|) = ps, Where the symbot denotes an ancil- > pi<H|>i2>(z pi<HI>i) =(H))Z. (15
lary system. Similar to Eq4), the entanglement fidelitl . | !

is defined as

Fe(t) :<\Prs| Ug(t)tren\[exq —iH1t/h)pen0)® |\I’rs>

here the symbo{H,); means(¥;|H,|¥;). Comparing Eq.
10) with Eq. (14), we get an interesting inequality. For any
interaction HamiltoniarH, , there is the operator inequality

Hence Egs(10) and(14) yield

1 1
X(W rs|expliH7t/2) 1Uo(0)] ¥ ) o 7ol 19
2
=1— L_ _tT_ (8) which suggests that the entanglement fidelity decays more
Tile Toe rapidly than any average fidelities. In Rég] it has been

proven that the entanglement fidelity is always less than the

whereF(t) is furthermore subjected to a short-time power 5yerage fidelity. Here we show this fact from another aspect.
series expansion. In Ref5], it has been proven that the

entanglement fidelity defined above is an intrinsic quantity of
the systens, i.e., it does not depend on the specific purifi-
cation|¥,¢). From Eq.(5), we easily obtain

II. SPATIALLY CORRELATED DISSIPATION
OF THE QUBITS

As an interesting application of the perturbative approach
——p, 9) to open quantum systems, we consider a practical question:
Tie decoherence in quantum computers. This decoherence is due
to the inevitable coupling of the qubits to the external envi-
() e (HD (10) ronment. A few papergl,2,8,9,11-1#have been published
2736 I/s,env I/s/env: on this subject with some simplifications, such as omitting
spatial correlations in the decohereriéd—14], or omitting
Comparing Eqs(6) and (7) with Egs.(9) and (10), we see relaxation of the qubit§8,9], or omitting both of theni1,2].
that the characteristic times for the entanglement fidelittHowever, in real circumstances, such as in the ion-trapped
have the same forms as those for the input-output fidelityquantum computerdl 5], relaxation of the qubits has notable
The only change is that the symbgt,)s now meangH,)s  contributions to decoherendd1-13. On the other hand,
=trs(psH;). So the entanglement fidelity is a natural exten-spatial correlation properties of decoherence play an impor-

2
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tant role in the choice of the decoherence-reducing strategieSpatial correlation properties of the decoherence are com-
For independent decoherence and for collective decoherengaletely determined by the correlation functi@hz(r,l— r|2).
the decoherence-reducing strategies are quite different. So | the following, we discuss two important ideal circum-

here we consider a more practical model of decoherenctances for the correlation function. Equatit?®) can be
This decoherence is described by a spatially correlated ameywritten as

plitude damping, which includes both the dephasing and the
relaxation of the qubits. The environment is modeled by a
bath of oscillators with infinite degrees of freedom and the
mode functions of the bath field are chosen as plane waves.

The Hamiltonian describing this decoherence process has thg, o f(k) is a normalized distribution satisfyingf (k)
form =1 andx is the normalization constant

0%(ri,=ri,)=x2 f(kjcogk(r,—r,)l, (23

L
i ; h
H=Ho+ 2 2 [hgi(e " act e (o + hz00)] x=2> |gk|zcotr<%). (24)
= k B

The expression of (k) is given by comparing Eq23) with

Eqg. (22). Its explicit form depends on the coupling coeffi-
cient|g,|2, whereas the latter is determined by the specific
physical model for quantum computers. As a simplification,
here we assume that the distributib(k) can be approxi-

mated by a Gaussian function with an expectation viue

pling constantsH, in Eq. (17) describes the free evolution . . . L
and the internal interaction of the qubits. The qubits, Whethe?;,g ?e\éiréigcgk’ respectively. With this simplification, Eq.

in memory or in quantum gate operations, can all be de-
scribed by the Hamiltoniafil7). 20N T 1 20 . \2
The Hamiltonian(17) is very complicated and it is hard to Q7 =) =x cogk(r, —n ) Jexd =2 (Ak)5(r, =r,)"]
find its exact solutions. Fortunately, with the perturbative (29
approach developed in the previous section, this comple L . .
system can be easily treated. To analyze the decoherence, \%s Izgosaﬂ is distance between the adjacent qubitsd Bat-
use the perturbative expansion for the entanglement fidelit)),
which returns to the input-output fidelity if the initial state of

+ Ek (hoakay), (17)

where the Pauli operatar, represents thé qubit anday is
the annihilation operator of the bath mokleThe symbolr,
denotes the site of thequbit, and\,, \,, andg, are cou-

the qubits is pure. The environment is supposed in thermal (Akd>1, (26)
equilibrium, i.e., the initial density operater,,(0) of the :
bath has the following form in the coherent representation: Eq. (29 yields
, 1 Pk Q2(r) —1,)=X8,, (27)
Pen\XO)ZH fd ag <N >ex;{_ <N >)|ak><ak|v L .
k T\ Ny T No, 19 and then from Eq(20) the decoherence rate is simplified to
18
L
where the mean photar phonon number _12_: > X((AA)?)s, (28)
Toe I=1
ﬁwk
(N, )=1/ |ex KT -1 (19 which suggests that the total decoherence raté ofubits

equals the sum of the decoherence rates of individual qubits.

With this density operator, substituting the Hamiltonia) So in this circumstance, the qubits are decohered indepen-

into Eq. (10), we obtain the decoherence rate-,L/for this
system,

L

1
= 2 0%r —r )(AAAA), (20
Toe I1.12=1 ! 2 ! 2
where the operator is
AL=Niof a0 (1=1,2) (21)

and the spatial correlation function is

h
0xn,~r,)=23 |gk|2cos{k(rll—nz)]cotr(zk‘:;)].
@2

dently. Equation26) is the condition for independent deco-
herence. Most of the existing quantum error correction
schemes are designed to correct for the errors induced by
independent decoherengE5—24.

Apart from the independent decoherence, there is another
ideal circumstance for the spatial correlation function. Sup-
pose there are [2 qubits. Two adjacent qubits make up a
qubit pair. So we havé qubit pairs. The two qubits in thie
qubit pair are denoted byandl’, respectively. If distancd
between the adjacent qubits satisfies the conditions

kd<1l, (Ak)d<1, (29
from Eq. (25) the spatial correlation function remains a con-
stant for the two qubits in each qubit pair. The decoherence
rate 1/, for L qubit pairs thus becomes
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L
1 2 * —wilw Wy
r_ée:u%:l Q%(r, = )(AA +ANDAA,+A)))s. Q (r|1—r|2)°<2JO dwywe™ CCOS{;(r,l—r,Z)}
30
(30 1-wi(r,—r)?v?
So under the conditiof29) the two qubits in each qubit pair =2 (34

. . Y [1+ wl(r, —1,)%07
are decohered collectively. In the collective decoherence, the SRR T

decoherence rate is sensitive to the type of the initial states.

If the initial statfa of the qubit pairs is a coeigenstate of all theEquation(34) suggests that the above conditions for inde-
operatorsA, + A, , from Eq. (30), the second-order decoher- . .
pendent decoherence and for collective decoherence still

ence rate W,. reduces to zero. With these states decoher; . .
ence of the qubits can therefore be much reduced. The ChoId at low temperature. The type of decoherence is mainly

: , Yetermined by the distance between adjacent qubits and by
eigenstates of the operatorsy+A; are called the the cutoff frequency. The temperature of the environment

subdecoherent states. In fact, an arbitrary input state of o\ influences the decoherence type, though it determines
qubits can be transformed into the corresponding subdecqra decoherence rate.

herent state of qubit pairs by the following encoding: As an illustration of the above conditions, we consider the

|—1)—|—1,+1) ion trap quantum computefd5]. There are two important
' ' sources of decoheren¢@él1-13. One is spontaneous emis-
|+1)—|+1,—1) (31  Sion and the other is thermal vibration of the qubits. For

these two sources of decohereneéw. can be estimated
where|—1) and|+1) are two eigenstates of the operator respectively by the optical wavelength, or by the acoustic
A, . Obviously, the encoded state is a coeigenstate of theavelength\,.,. Since different ions should be separately
operatorsA; + A/ with the eigenvalue 0. This encoding has addressable by a laser, we haiz \q,. On the other hand,
been mentioned if8] and[25] and extended if26] and[27] it is relatively easy to makel<\,,. So in spontaneous
to reduce decoherence in general circumstances. Here v@nission, the qubits are decohered independently; and in
derive the working conditiori29) for this encoding. thermal vibration, they may be decohered collectively.

In the abovek and Ak are introduced phenomenologi-

cally. It is assumed that we have no knowledge about the
coupling coefficient|g,|2. There is an interesting case in 1. CONCLUSION
which the spatial correlation function can be calculated ex-
actly. Consider one-dimensional quantum computers. In thgio
continuum limit, it can be assumed that

In this paper, we develop short-time perturbative expan-
ns for some widely used fidelities. From the expansions,
we demonstrate some interesting relations between the fideli-
o ties. Perturbative expansions for the fidelities can be used to
2 |gk|2---mf dwgwe /@ (32 study open quantum systems. As an example, we consider
K 0 spatially correlated dissipation of the qubits in the quantum
computer. Spatial correlations in the dissipation are de-
cribed by a correlation function and we successfully derive
he explicit conditions for independent decoherence and for
collective decoherence. This example suggests that the per-
turbative expansions for the fidelities may be proven as a
useful tool for studying open quantum systems.
The study of spatially correlated dissipation of the qubits
AkgT jw iy {wk } is a subject that must be considered in depth if quantum error
dw,e™ “k'“ccog— (r;.—r;.)
h 0 v 1 2

where w, is the cutoff frequency whose specific value de-
pends on the particular nature of the physical qubit unde
investigation. The forn(32) of |g,|? was also used in Refs.
[1] and [8]. We consider two circumstances. In the high-
temperature limit, i.e.T>% w./Kg, the correlation function
(22) is simplified to

Qz(r|1—r|2)oc correction is ever to be made to work in practice. There are

still many interesting open problems in this direction. For
kT w2 example, until now many sources of decoherence have been

B c . . .

= 5, (33) found. What are the spatial correlation properties of these
hoe 1+[wdr, —r)/v] sources of decoherence? Quantum error correction is de-

o , L . signed to correct a single or a certain number of errors. Are

wherev indicates velocity of the noise field. If distande  hey applicable for reducing general spatially correlated de-
between the adjacent qubits satisfiés-v/wc, EQ. (33  coherence? If so, to what extent can the decoherence be re-
tends to a delta function, and the qubits are therefore decQjced? And if not, are there more effective decoherence-
hered independently. On the other handdiv/wc, We  requcing strategies? With the techniques applied in this

have?(d)~Q?%(0) and the adjacent qubits are then deco-paper, some of these open problems may become accessible.
hered collectively. In the low-temperature limit, things are

much similar. f T<Aw./kg, cothiw/2kgT)~1 and Eg. This project was supported by the National Natural Sci-
(22) yields ence Foundation of China.
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