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Perturbative expansions for the fidelities and spatially correlated dissipation of quantum bits
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We construct generally applicable short-time perturbative expansions for some fidelities, such as the input-
output fidelity, the entanglement fidelity, and the average fidelity. Successive terms of these expansions yield
characteristic times for the damping of the fidelities involving successive powers of the Hamiltonian. The
second-order results, which represent the damping rates of the fidelities, are extensively discussed. As an
interesting application of these expansions, we use them to study spatially correlated dissipation of quantum
bits. Spatial correlations in the dissipation are described by a correlation function. Explicit conditions are
derived for independent decoherence and for collective decoherence.@S1050-2947~97!02712-1#

PACS number~s!: 03.65.Bz, 89.70.1c, 42.50.Dv
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In various fields of physics, the study of open quantu
systems plays an important role. For example, decohere
was recognized as a major problem in realizing quant
computation @1,2#. Decoherence in quantum compute
mainly results from the coupling of quantum bit~qubits! to
environment. In general, it is not practical to look for exa
solutions of these complicated systems, which consis
many spatially correlated qubits interacting with a reserv

In this paper, we propose a perturbative approach to
study of open quantum systems. We construct generally
plicable short-time perturbative expansions for some fid
ties, such as the input-output fidelity, the entanglement fid
ity, and the average fidelity. A similar perturbative expans
for coherence loss has been proposed in a recent pape@3#,
where coherence loss is measured by the quantityd(t)
5tr@r(t)2r2(t)#, in which r(t) indicates the reduced den
sity operator of the system. Sinced(t) has no direct physica
meanings, in this paper, we choose the fidelities rather t
d(t) as measures of decoherence. The fidelities are impo
quantities and have been widely used in quantum cod
theory @4–7#. Through the perturbative expansions, we c
get some general relations between the fidelities, such a
demonstration that the entanglement fidelity decays m
rapidly than the average fidelity.

As an interesting application of this perturbative a
proach, we use it to study spatially correlated dissipation
qubits. The question is of great practical importance in
signing quantum computers. Spatial correlations in p
dephasing of the qubits have been analyzed in Refs.@8# and
@9#. However, the calculations of spatial correlations in ge
eral dissipation of the qubits, including the dephasing and
relaxation, are far more involved. This question is hard
solve either by any existing exact approaches or by solv
the master equation@10#. Fortunately, here we show, throug
the perturbative expansions, spatial correlations in gen
dissipation of the qubits can be easily analyzed. Spatial
relations are described by a correlation function. From t
result, we derive explicit conditions for independent dec
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herence and for collective decoherence, which are two
portant ideal circumstances in dissipation of the qubits.

I. PERTURBATIVE EXPANSIONS FOR THE FIDELITIES

We consider an open quantum system, the total Ham
tonian of which is expressed as

HT5H01HI1Henv, ~1!

where H0 and Henv indicate the free Hamiltonians of th
system and of the environment, respectively.HI is the inter-
action Hamiltonian between the system and the environm
First, we suppose that the system is initially in a pure st
uC0&. If there is no coupling between the system and
environment, at timet the system is in the state

uC~ t !&5e2 iH 0t/\uC0&5U0~ t !uC0&. ~2!

But in reality, coupling of the system to environment is i
evitable. So at timet the system is in fact described by th
reduced density operator

r~ t !5trenv@exp~2 iH Tt/\!renv~0! ^ uC0&

3^C0uexp~ iH Tt/\!#, ~3!

whererenv(0) is the initial density operator of the environ
ment. Decoherence of the system due to this inevitable c
pling can therefore be measured by the fidelity between
state~2! and ~3!, which has the form

F~ t !5^C0uU0
1~ t !r~ t !U0~ t !uC0&. ~4!

The input-output fidelity is first defined in Ref.@4#. Here the
definition is slightly modified to Eq.~4! to make it more
suitable for measuring decoherence of the system.

In general, the reduced density operatorr(t) in Eq. ~3! is
hard to calculate. So there is difficulty in obtaining the fide
ity ~4!. Fortunately, in practice, short-time behaviors of t
system under dissipation are of most interest. Hence we
not need to exactly calculate the fidelity~4!, but expand it
into a short-time power series
4466 © 1997 The American Physical Society
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F~ t !512
t

t1
2

t2

t2
22••• . ~5!

Following Eqs.~2!, ~3!, and ~4!, it is not difficult to obtain
the expansion coefficients. Up to ordert2 they read explicitly
as

1

t1
50, ~6!

\2

2t2
2 5^C0utrenv$†HI ,@HI ,renv~0! ^ uC0&^C0u#‡

1†@HI ,H0#,renv~0! ^ uC0&^C0u‡%uC0&

5^HI
2&s,env2Š^HI&s

2
‹env, ~7!

where the symbol̂•••&s,env stands for the average value ov
the system and the environment, i.e.,^HI&s5^C0uHI uC0&,
and^HI&s,env5trenv@renv(0)^HI&s#. It is obvious that the ex-
pansion coefficients in Eq.~5! furnish characteristic timestn
associated with decoherence processes involvingHI to order
n. The second-order coefficient 1/t2

2 is of special interest. It
is the coefficient of the first nontrivial term in the expansio
Under the short-time approximation, 1/t2 measures the
damping rate of the fidelity. In most cases, it is sufficient
consider the expansion up to ordert2.

In the above, we have assumed that the system is initi
in a pure state. The input-output fidelity~4! does not apply
for mixed states. For a mixed input state of the system, th
are some fidelities defined, such as the entanglement fid
and the average fidelity@5#. These two fidelities are widely
used in quantum coding theory. SupposeuC rs& is a purifica-
tion of the density operatorrs , i.e., the stateuC rs& satisfies
trr(uC rs&^C rsu)5rs , where the symbolr denotes an ancil-
lary system. Similar to Eq.~4!, the entanglement fidelityFe
is defined as

Fe~ t !5^C rsuU0
1~ t !trenv@exp~2 iH Tt/\!renv~0! ^ uC rs&

3^C rsuexp~ iH Tt/\!#U0~ t !uC rs&

512
t

t1e
2

t2

t2e
2 2•••, ~8!

whereFe(t) is furthermore subjected to a short-time pow
series expansion. In Ref.@5#, it has been proven that th
entanglement fidelity defined above is an intrinsic quantity
the systems, i.e., it does not depend on the specific pur
cation uC rs&. From Eq.~5!, we easily obtain

1

t1e
50, ~9!

\2

2t2e
2 5^HI

2&s,env2Š^HI&s
2
‹env. ~10!

Comparing Eqs.~6! and ~7! with Eqs. ~9! and ~10!, we see
that the characteristic times for the entanglement fide
have the same forms as those for the input-output fide
The only change is that the symbol^HI&s now meanŝ HI&s
5trs(rsHI). So the entanglement fidelity is a natural exte
.
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sion of the input-output fidelity to include the mixed inp
states. Equations~9! and ~10! also show the characteristi
times for the entanglement fidelity are all intrinsic propert
of the systems.

The initial density operator of the system can be e
pressed as a mixture of pure states, i.e.,

rs5(
i

pi uC i&^C i u, ~11!

wherepi satisfy( i pi51. The average fidelityFa is defined
as

Fa~ t !5(
i

piF~ uC i&)512
t

t1a
2

t2

t2a
2 2•••, ~12!

whereF(uC i&) indicates the input-output fidelity for the pur
stateuC i&. Since the expression~11! for the density operator
rs is not unique, unlike the entanglement fidelity, the avera
fidelity is not solely defined for a definiters . From Eqs.~12!
and~4!, we get the characteristic times for the average fid
ity

1

t1a
50, ~13!

\2

2t2a
2 5^HI

2&s,env2K (
i

pi^HI& i
2L

env

, ~14!

where the symbol̂HI& i meanŝ C i uHI uC i&. Comparing Eq.
~10! with Eq. ~14!, we get an interesting inequality. For an
interaction HamiltonianHI , there is the operator inequality

(
i

pi^HI& i
2>S (

i
pi^HI& i D 2

5^HI&s
2. ~15!

Hence Eqs.~10! and ~14! yield

1

t2e
>

1

t2a
, ~16!

which suggests that the entanglement fidelity decays m
rapidly than any average fidelities. In Ref.@5# it has been
proven that the entanglement fidelity is always less than
average fidelity. Here we show this fact from another asp

II. SPATIALLY CORRELATED DISSIPATION
OF THE QUBITS

As an interesting application of the perturbative approa
to open quantum systems, we consider a practical ques
decoherence in quantum computers. This decoherence is
to the inevitable coupling of the qubits to the external en
ronment. A few papers@1,2,8,9,11–14# have been published
on this subject with some simplifications, such as omitti
spatial correlations in the decoherence@11–14#, or omitting
relaxation of the qubits@8,9#, or omitting both of them@1,2#.
However, in real circumstances, such as in the ion-trap
quantum computers@15#, relaxation of the qubits has notab
contributions to decoherence@11–13#. On the other hand
spatial correlation properties of decoherence play an imp
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tant role in the choice of the decoherence-reducing strateg
For independent decoherence and for collective decohere
the decoherence-reducing strategies are quite different
here we consider a more practical model of decohere
This decoherence is described by a spatially correlated
plitude damping, which includes both the dephasing and
relaxation of the qubits. The environment is modeled b
bath of oscillators with infinite degrees of freedom and
mode functions of the bath field are chosen as plane wa
The Hamiltonian describing this decoherence process ha
form

H5H01(
l 51

L

(
k

@\gk~e2 ikr lak1eikr lak
†!~l1s l

x1l2s l
y!#

1(
k

~\vkak
†ak!, ~17!

where the Pauli operators l represents thel qubit andak is
the annihilation operator of the bath modek. The symbolr l
denotes the site of thel qubit, andl1 , l2 , andgk are cou-
pling constants.H0 in Eq. ~17! describes the free evolutio
and the internal interaction of the qubits. The qubits, whet
in memory or in quantum gate operations, can all be
scribed by the Hamiltonian~17!.

The Hamiltonian~17! is very complicated and it is hard t
find its exact solutions. Fortunately, with the perturbat
approach developed in the previous section, this comp
system can be easily treated. To analyze the decoherenc
use the perturbative expansion for the entanglement fide
which returns to the input-output fidelity if the initial state
the qubits is pure. The environment is supposed in ther
equilibrium, i.e., the initial density operatorrenv(0) of the
bath has the following form in the coherent representatio

renv~0!5)
k
E d2ak

1

p^Nvk
&

expS 2
uaku2

p^Nvk
& D uak&^aku,

~18!

where the mean photon~or phonon! number

^Nvk
&51YFexpS \vk

kBT D21G . ~19!

With this density operator, substituting the Hamiltonian~17!
into Eq. ~10!, we obtain the decoherence rate 1/t2e for this
system,

1

t2e
2 5 (

l 1 ,l 251

L

V2~r l 1
2r l 2

!^DAl 1
DAl 2

&s , ~20!

where the operator is

Al i
5l1s l i

x 1l2s l i
y ~ i 51,2! ~21!

and the spatial correlation function is

V2~r l 1
2r l 2

!52(
k

H ugku2 cos@k~r l 1
2r l 2

!#cothS \vk

2kBTD J .

~22!
s.
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Spatial correlation properties of the decoherence are c
pletely determined by the correlation functionV2(r l 1

2r l 2
).

In the following, we discuss two important ideal circum
stances for the correlation function. Equation~22! can be
rewritten as

V2~r l 1
2r l 2

!5x(
k

f ~k!cos@k~r l 1
2r l 2

!#, ~23!

where f (k) is a normalized distribution satisfying(kf (k)
51 andx is the normalization constant

x52(
k

ugku2cothS \vk

2kBTD . ~24!

The expression off (k) is given by comparing Eq.~23! with
Eq. ~22!. Its explicit form depends on the coupling coeffi
cient ugku2, whereas the latter is determined by the spec
physical model for quantum computers. As a simplificatio
here we assume that the distributionf (k) can be approxi-
mated by a Gaussian function with an expectation valuk̄
and a varianceDk, respectively. With this simplification, Eq
~23! reduces to

V2~r l 1
2r l 2

!'x cos@ k̄~r l 1
2r l 2

!#exp@2 1
2 ~Dk!2~r l 1

2r l 2
!2#.
~25!

Supposed is distance between the adjacent qubits. Ifd sat-
isfies

~Dk!d@1, ~26!

Eq. ~25! yields

V2~r l 1
2r l 2

!'xd l 1l 2
, ~27!

and then from Eq.~20! the decoherence rate is simplified

1

t2e
2 5(

l 51

L

x^~DAl !
2&s , ~28!

which suggests that the total decoherence rate ofL qubits
equals the sum of the decoherence rates of individual qu
So in this circumstance, the qubits are decohered indep
dently. Equation~26! is the condition for independent deco
herence. Most of the existing quantum error correct
schemes are designed to correct for the errors induced
independent decoherence@16–24#.

Apart from the independent decoherence, there is ano
ideal circumstance for the spatial correlation function. Su
pose there are 2L qubits. Two adjacent qubits make up
qubit pair. So we haveL qubit pairs. The two qubits in thel
qubit pair are denoted byl andl 8, respectively. If distanced
between the adjacent qubits satisfies the conditions

k̄d!1, ~Dk!d!1, ~29!

from Eq. ~25! the spatial correlation function remains a co
stant for the two qubits in each qubit pair. The decohere
rate 1/t2e for L qubit pairs thus becomes
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1

t2e
2 5 (

l 1 ,l 251

L

V2~r l 1
2r l 2

!^D~Al 1
1Al

18
!D~Al 2

1Al
28
!&s .

~30!

So under the condition~29! the two qubits in each qubit pai
are decohered collectively. In the collective decoherence,
decoherence rate is sensitive to the type of the initial sta
If the initial state of the qubit pairs is a coeigenstate of all
operatorsAl1Al8 , from Eq. ~30!, the second-order decohe
ence rate 1/t2e reduces to zero. With these states decoh
ence of the qubits can therefore be much reduced. The
eigenstates of the operatorsAl1Al8 are called the
subdecoherent states. In fact, an arbitrary input state oL
qubits can be transformed into the corresponding subd
herent state ofL qubit pairs by the following encoding:

u21&→u21,11&,

u11&→u11,21&, ~31!

where u21& and u11& are two eigenstates of the operat
Al . Obviously, the encoded state is a coeigenstate of
operatorsAl1Al8 with the eigenvalue 0. This encoding ha
been mentioned in@8# and@25# and extended in@26# and@27#
to reduce decoherence in general circumstances. Here
derive the working condition~29! for this encoding.

In the above,k̄ and Dk are introduced phenomenolog
cally. It is assumed that we have no knowledge about
coupling coefficientugku2. There is an interesting case
which the spatial correlation function can be calculated
actly. Consider one-dimensional quantum computers. In
continuum limit, it can be assumed that

(
k

ugku2•••}E
0

`

dvkvke
2vk /vc•••, ~32!

wherevc is the cutoff frequency whose specific value d
pends on the particular nature of the physical qubit un
investigation. The form~32! of ugku2 was also used in Refs
@1# and @8#. We consider two circumstances. In the hig
temperature limit, i.e.,T@\vc /kB , the correlation function
~22! is simplified to

V2~r l 1
2r l 2

!}
4kBT

\ E
0

`

dvke
2vk /vccosFvk

v
~r l 1

2r l 2
!G

5
4kBT

\vc

vc
2

11@vc~r l 1
2r l 2

!/v#2 , ~33!

wherev indicates velocity of the noise field. If distanced
between the adjacent qubits satisfiesd@v/vc , Eq. ~33!
tends to a delta function, and the qubits are therefore de
hered independently. On the other hand, ifd!v/vc , we
haveV2(d)'V2(0) and the adjacent qubits are then dec
hered collectively. In the low-temperature limit, things a
much similar. If T!\vc /kB , coth(\vk/2kBT)'1 and Eq.
~22! yields
he
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V2~r l 1
2r l 2

!}2E
0

`

dvkvke
2vk /vccosFvk

v
~r l 1

2r l 2
!G

52vc
2

12vc
2~r l 1

2r l 2
!2/v2

@11vc
2~r l 1

2r l 2
!2/v2#

. ~34!

Equation~34! suggests that the above conditions for ind
pendent decoherence and for collective decoherence
hold at low temperature. The type of decoherence is ma
determined by the distance between adjacent qubits an
the cutoff frequency. The temperature of the environm
hardly influences the decoherence type, though it determ
the decoherence rate.

As an illustration of the above conditions, we consider t
ion trap quantum computers@15#. There are two importan
sources of decoherence@11–13#. One is spontaneous emis
sion and the other is thermal vibration of the qubits. F
these two sources of decoherence,v/vc can be estimated
respectively by the optical wavelengthlopt or by the acoustic
wavelengthlaco. Since different ions should be separate
addressable by a laser, we haved@lopt. On the other hand
it is relatively easy to maked!laco. So in spontaneous
emission, the qubits are decohered independently; an
thermal vibration, they may be decohered collectively.

III. CONCLUSION

In this paper, we develop short-time perturbative exp
sions for some widely used fidelities. From the expansio
we demonstrate some interesting relations between the fi
ties. Perturbative expansions for the fidelities can be use
study open quantum systems. As an example, we cons
spatially correlated dissipation of the qubits in the quant
computer. Spatial correlations in the dissipation are
scribed by a correlation function and we successfully der
the explicit conditions for independent decoherence and
collective decoherence. This example suggests that the
turbative expansions for the fidelities may be proven a
useful tool for studying open quantum systems.

The study of spatially correlated dissipation of the qub
is a subject that must be considered in depth if quantum e
correction is ever to be made to work in practice. There
still many interesting open problems in this direction. F
example, until now many sources of decoherence have b
found. What are the spatial correlation properties of th
sources of decoherence? Quantum error correction is
signed to correct a single or a certain number of errors.
they applicable for reducing general spatially correlated
coherence? If so, to what extent can the decoherence b
duced? And if not, are there more effective decoheren
reducing strategies? With the techniques applied in
paper, some of these open problems may become acces

This project was supported by the National Natural S
ence Foundation of China.
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