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We present a mathematical physics analysis of entangled translucent eavesdropping in quantum cryptogra-
phy, based on the recent work of Ekert, Huttner, Palma, and Pehgs. Rev. A50, 1047(1994)]. The key
generation procedure involves the transmission, interception, and reception of two nonorthogonal photon
polarization states. At the receiving end, a positive operator valued med0MM) is employed in the
measurement process. The eavesdropping involves an information-maximizing von Neumann—type projective
measurement. We propose a design for a receiver that is an all-optical realization of the POVM, using a
Wollaston prism, a mirror, two beam splitters, a polarization rotator, and three photodetectors. We present a
guantitative analysis of the receiver. We obtain closed-form algebraic expressions for the error rates and
mutual information, expressed in terms of the POVM-receiver error rate and the angle between the carrier
polarization states. We also prove a significant result, namely, that in the entangled translucent eavesdropping
approach, the unsafe error rate based on standard mutual information comparisons is equivalent to the maxi-
mum allowable error rate based on perfect mutual information for the eavesdropper. In this case, the above
unsafe error rate is in fact not overly conservati@&1050-29477)01212-3

PACS numbgs): 03.65.Bz, 89.70tc, 42.50-p, 42.79.Sz

I. INTRODUCTION trary quantum states cannot be clor8], any attempt by
Eve to eavesdrop can in principle be detected by Bob and
For the purpose of secure key generation in quantunilice.

cryptography, one can employ a train of single photons hav- Entangled translucent eavesdropping is, of course, only
ing two possible equally likely nonorthogonal polarization one possible eavesdropping scenario. Elatral. [1] also
states|u) and |v), which encode 0 and 1, respectively, to examine so-called opaque eavesdropping and also translu-
securely communicate a random bit sequence between @ent eavesdropping without entanglement. LutkenHdis
sender(Alice) and a receivefBob) in the presence of an recently provided a very extensive analyfissed on Shan-
eavesdroppe(Eve). Recently, Ekereet al. [1] presented an non information and collision probabilityf security against
analysis of an entangled translucent eavesdropping scenamavesdropping for a wide class of eavesdropping strategies in
of key generation in quantum cryptography. In the presenthe case of the Bennett-Brassard two-basis protocol. For the
work we carry their analysis further for an approach that useswo-state protocol, Fuchs and Pefé&3 recently performed
two nonorthogonal photon polarization states. The eavesextensive quantum-information theoretic analyses for a gen-
dropping is translucent in the sense that the eavesdropperal eavesdropping strategy in which Eve employs a POVM
Eve perturbs the polarization of the carrier on its way to Bob.in order to extract as much information as possible. Clearly,
The eavesdropper uses a probe that causes the carrier stadeBOVM receiver can be used by Eve as well as by Bob. Still
to become entangled with the probe states. For detectiomther recent analyses of various eavesdropping scenarios are
Eve makes an information-maximizing von Neumann-—typethose of Gisin and co-workef#&,8] and Fuchst al.[9]. The
projective measurement and Bob uses a positive operat@resent work primarily limits itself to a few aspects of the
valued measur@OVM). Bennett's two-state protocf2] is  entangled translucent eavesdropping scenario of [R&f.
employed, in which a positive response of Bob’'s POVM  We first present in Sec. Il a design for the POVM receiver
receiver, indicating the reception of a photon in ato be used by Bob. The design is totally optical. Because it is
u-polarization or av-polarization state, is publicly commu- also interferometric, it demands precise phase alignment;
nicated to Eve without revealing which polarization was de-however, it faithfully represents the perturbed statistics re-
tected and the corresponding bits then constitute the prelimisulting from entangled translucent eavesdropping. Additional
nary key secretly shared by Alice and Bob. Bits analysis pertaining to the device appears in REf]. Hutt-
corresponding to photons that do not excite the or  neret al.[11] recently presented a design and experimental
v-polarization state detectors are excluded from the key. Beproof of principle for an optical setup implementing a so-
cause of the noncommutativity of nonorthogonal photoncalled loss-induced generalized quantum measurement. The
polarization-measurement operators representing nonodevice is also an interferometric implementation of a POVM.
thogonal photon polarization states and also because arbitowever, our design has fewer components and our theoret-
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ical analysis of the statistics and cryptographic applicationsponds, a photon with a-polarization state cannot have

of our device is more extensive. been received. The operatéy, represents inconclusive re-
In Sec. Il we obtain closed-form algebraic expressionssponses of Bob's receiver. épolarized photon can result in

for the error rate and mutual information in each communi-a nonzero expectation valuand the associated response

cation channel as a function of the POVM receiver error rateonly for the detectors representi, or A, operators. A

Q and the angl® between the carrier polarization states. All »-polarized photon excites only th®, or A, detectors. The

explicit dependence on unknown entanglement parameters ativantage of the POVM over the von Neumann—type of pro-

the eavesdropper’s probe is removed. jective measuremeif2] is that for the POVM, the probabil-
In Sec. IV we obtain a significant result. We prove thatity of getting an inconclusive result is lowgt].

for the entangled translucent eavesdropping scenario, the un- For an arbitrary polarization state) of a photon, given

safe error rate based on standard mutual information comby

parisons is equivalent to the maximum allowable error rate

based on perfect information for the eavesdropper and both |y = alu)+ Blv), (7)

are given by the square of the sine of half the complement of

the angle between the two nonorthogonal photon polarizatiowhere « and 8 are arbitrary real constants, the expectation

states of the carrier. The implication of this result is that thevalues of the POVM operators become

unsafe error rate is not in fact overly conservative for en-

tangled translucent eavesdropping, as has been suggested by (YAl g)=a?(1—cos), (8)
earlier work[1,12].
In Sec. V we summarize our results and conclusions. In- (YA, | )= B2%(1—cos), 9
cluded in Appendixes A—D are essential mathematical devel-
opments that logically support the results in the main text. (Y| A )= (a+ B)? cosh. (10
Il. POVM RECEIVER For the case of a transmitted statg in the two-state pro-

- tocol, in the absence of perturbations, one hag3) =(1,0)
The positive operator valued measuf#3-20, also iy Eq. (7) and Eqgs(8)—(10) become
known as theprobability operator valued measufé4], is

finding increasing use in quantum cryptograph]. In the (ulAylu)=(1-co9), (11
work of Ekertet al.[1] on entangled translucent eavesdrop-
ping,. the following set of POVM operators represents the (ulA,|uy=0, (12)
possible measurements performed by Bob’s receiver:
Au=(1+(ulv)) (1[0} o), ® (UlAslu) =cosf, 13
A, = (1+(ulv)) " L(1—|u)(ul) ?) consistent with Eq(6). Alternatively, if (@,8)=(0,1), then
Ar=1—-A,—A,. &) (v|Ayv)=0, (14)
Here ketqu) and|v) represent the two possible nonorthogo- (v]A,Jv)=(1-cos), (15)
nal normalized polarization states of the carrier, with polar-
izations designated by andv, respectively. The angle be- (v|Asv)=coss, (16)

tween the corresponding polarization vectors és from _ _ _ o _ .
which it follows (from the spin-1 behavior of the photon consistent with Eq(5). Either alternative is equally likely in
under the rotation groypthat the overlap between the two the unperturbed two-state protocol. Although the POVM

states is scheme in quantum cryptography is described mathemati-
cally in Ref.[1], no concrete physical model is provided. In
(ulv)=cos. (4)  the present work, we provide a possible physical realization
) for the POVM receivefalso, see Ref.11]).
The statgfu) encodes bit value 0 and the stdig encodes The circuit design for the POVM receiver that we propose

bit value 1. The POVM operatorl)—(3) are positive and pere js shown in Fig. £21-23. It is an all-optical system.
their sum is unity. They are appropriate for realizing Ben-The straight lines with arrows represent possible optical
nett's two-state protocol because pathways for a photon to move through the device. The path
_ labeled|y) is the incoming path for a photon represented by
(v|Ayfv)=0 ®  ihe arbitrary polarization state given by Eg). Also in Fig.
1,D,, D,, andD, designate photodetectors representing the
measurement operatord,, A,, and A,, respectively.
(u|A,|uy=0. (6)  Shown also is a Wollaston priskl, which is aligned so that
an incident photon with polarization vectey, , would take
Therefore, when an ideal detector representing the operattine path labeled by the stajtg,) ande,,, and not the path
A, responds positively, it follows that a photon with a labeled by polarization vecta, , and|,). Hereg,, , de-
v-polarization state cannot have been received. Likewisenotes a unit polarization vector corresponding to polarization
when an ideal detector representing the operatprre-  state [u+v)=|u)+|v) and is perpendicular to the unit

and
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and comparing Eq27) with Eq. (9), one sees that
(Wl ) =C(WlA ), (28)

again consistent with Fig. 1. Also, from E(RO) it follows
that

(Y3l h3) = (a+ B)*cos, (29
and comparing Eq(29) with Eq. (10), it follows that
(| )= (| Aol ), (30

again consistent with Fig. 1. Furthermore, using Eg$),
(25), (27), (4), and(7), one concludes that

FIG. 1. POVM receiver. (3| a) + (sl W) + (Wl b7y = (W] ) (31

or, equivalently,

Iy

Y

polarization vectore,_, corresponding to the polarization
state|u—v)=|u)—|v). The statedu+v) and|u—v) are |3 2+ || 2+ | 0] 2= | )2, (32)
orthogonal and one has
A A as required to conserve probability. Equatiof2$), (28),
(u+vlu-v)=0, €,,-6_,=0. (17 (30), and(32) are just the probabilistic properties one would
expect of a POVM acting as probability operator valued
The device also has two beam splitters designated by BSmeasure.
and BS in Fig. 1. Beam splitter BSis taken to be a 50-50  One concludes that the POVM receiver of Fig. 1 satisfies
beam splitter for a photon entering either of its entrancehe appropriate statistics. Also, both beam-splitter transmis-
ports. Both paths from the Wollaston prism to the beam splitsjon coefficientA11) and (A18) have the desirable feature
ter BS, have equal optical path lengths. The device is clearlythat they do not depend on the coefficieatend 8 associ-
interferometric. Also shown in Fig. 1 is a 90° polarization ated with an arbitrary incoming polarization state and there-
rotator designated bR, which transforms a photon with fore the device can also faithfully represent the perturbed
polarization vectore,_, into one with polarization vector statistics arising from entangled translucent eavesdropping.
— €+, . Also shown in Fig. 1 is a single mirrdvl. The statistics corresponding to the entangled translucent
In Appendix A we obtain expressions for the photon eavesdropping scenario are examined in considerable detail
states| ;) corresponding to each of the paths designated byn the following section.
|i), 1=1,2,...,7 in Fig. 1. The states are
I1l. ERROR RATES AND MUTUAL INFORMATION

lp)=2"Y4a+p)(1+cooH)¥&,.,), (18 _ ,
In the entangled translucent eavesdropping scenario of
| =271 a— B)(1—cosH) 3, ,), (190  Ref.[1], the two excited statefe,) and|e,) of the eaves-
dropper’s probe are entangled with the carrier polarization
|¢h3) = (a+ B)(cosH) 38, ,), (200  states|u) and |v). Letting |¢;) and|¢,) denote the two
possible initial tensor-product states of the carrier with the
|¢4)=i2*1’2(a+ﬂ)(l—cosﬁ)”zléwU), (2D ground statee) of the probe, one has
Us)=—2 Y B)(1-cos)¥48,,,), (22 [d)=lupele) 33
- and
| he)=— a(1—cosH)A&,.,), (239
A [p2)=v)®]e). (34)
|47 =1B(1—cos)8,..,). (24)

The effect of the entangled translucent eavesdropping is to

Here|&,.,) represent unit kets corresponding to photon po-CONVert|¢s) or |¢,) to [$1) or |¢3), respectively, where
larization vectors,.,. From Eq.(23) it follows that

|¢1)=alu)®|ey) +blv)®]e,) (35
<¢/6| l//6>: a2(1_00§): (25) and
and comparing Eq25) with Eq. (8), one sees that |psy=blu)y®|e,)+alv)®le,), (36)
(gl s) = (Y| Al ), (26)  wherea andb are real constan{d].

Without loss of generality, orthogonal basis stgtésand
consistent with Fig. 1 and the requirements for the POVM\y), defined by
Also from Eq.(24) it follows that

(W7l 7y = B*(1—cosd), (27) |X)=

ﬂ* |y>=m- (xly)=0, (37)
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) The following normalizations are assumed:

3% %

4 ! ! ! !

r (bal by =(dol b2) = (il 6D =(d5l)=1 (43
O ot
6 v and
u (uluy=(vlv)=(ee)=(e,le,)=1. (44)
x)
Since the effect of the eavesdropper’s ideal probe can be

represented by a unitary transformati@environmental in-

teractions are ignoredunitarity requires that

FIG. 2. Two-dimensional Hilbert space of carrier states. (ba]+ (B2} (| 1) +]b2)) = (1] +<¢2|)(|¢1>+|¢2>()45)
are chosen to be arranged symmetrically about the two Cabsing Eq.(43), we transform Eq(45) to
rier statesiu) and|v) in the plane of the two-dimensional o

Hilbert space defined by the carrier states, as shown in Fig. 2. R —Re ! | b1,
For convenience here and in the following, our notation does g1l d2)=Ret1l2)

not explicitly distinguish between a ket and its representativerherefore, substituting Eqé33)—(36) and(44) into Eq. (46)

[24]. The angle betweefu) and|y) is equal to the angle and using Eqs(40)—(42), one concludes that
betweenv) and|x); both angles are denoted ly half the

complement of the angl@ between the two polarization
stategu) and|v). One has therefore

(46)

sin(2a)=2ab+ (a2+b?)sin(2a)sin(2y). (47

Also, substituting Eq(35) into the third equality of Eq(43)

cosy and using Eqs(38)—(42) and (44), one obtains
|U>: Sina ’ (38)
1=a’+b?+2ab sin(2a)sin(2y). (48)
sin
lv)y= C(I)SC; . (399  Thus unitarity places the constraints given by EdS) and

(48) on the values of the entanglement paramedgens, and

v of the eavesdropper’s probe, for the carrier states specified
by the anglex. We refer in the following to Eqs(47) and

(48) as the unitarity relations involving the eavesdropping
parameters.

To measure the carrier states entangled with her probe
states, Eve performs an information-maximizing von
JVeumann—type measurement represented by projection op-
eratorgy){y| and|x){(x|, which test for eigenvectoty) and

One notes that Eq$38) and(39) are consistent with Eq4),
which can also be written in terms of the angle

(ulv)=sin(2a). (40

The probe statefe,) and|e,) are chosen to be oriented
symmetrically relative to the photon polarization states an

the orthogonal basifl]. The angle between the state,)
and the basis statg) is equal to the angle betwegg,) and
[x); these angles are denoted lyy as depicted in Fig. 3.
Hence one has

cosy
_ | siny
ly) leu>

|x)

FIG. 3. Two-dimensional Hilbert space of probe states.

|x), respectively{1,14,23. In the following, it is convenient

to reuse the symbola and 8 as index variables for Alice’s
transmission and Bob’s receptigthe context distinguishes
the usage With an additional index for Eve, we writelea)

as the perturbed state that Eve relays to Bob after measuring
g, when Alice transmitsy. The ranges of these indices are

Be{0,1,3.

In Appendix B we obtain expressions for the probability am-
plitude |e@) that Eve measures anwhen Alice sends am,
namely,

a,ee€{0,1}; (49

|00)=a cosy|u)+b siny|v), (50
|10)=a siny|u)+b cosy|v), (51)
|01)=b cosy|u)+a siny|v), (52
|11)=b siny|u)+a cosy|v). (53

They are all of the general form given by E@T), with co-
efficients expressed for each case in terms of the eavesdrop-
ping parameters, b, andy.
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The probability that Eve detects arand Bob detects g p(1,0,2=sin(2a)(b cosy+a siny)?, (69)

when Alice sends an can be transcribed into the convenient
notation[26] p(1,1,00=b?[1-sin(2a)]sirty, (70)
D(ae,B)= Z . } sl (54 p(1,1,)=a%1-sin(2a)]cogy, (71
p(1,1,2=sin(2a)(b siny+a cosy)?. (72)

By the rules of conditional probability, one has
The arguments used here in obtaining E&4)—(72) differ

B E | A E | A(B | E A .
g e | ol | &g | & a (55  from those of Ref[1]; however, the results are in complete
agreement.
where € | A) denotes the probability that Eve detects an In Appendix C we obtain explicit expressions for the error
| a

_ | ratesQae and Qg in the Alice-Eve and Bob-Eve channels,
& when Alice sends anr and (; | S %) denotes the respectively, expressed in terms of the error rate in the Alice-
conditional probability that Bob detects given that Eve Bob channel and the eavesdropping parametéfhese ex-
detects arr when Alice sends an. For the positive operator pressions are in agreement with Réf]; however, two errors
valued measuréor probability operator valued measyngis in supporting equations in Rdfl] are corrected in Appendix
true that C.

It is desirable to express all channel error rates explicitly
in terms of(i) the error rate in the Alice-Bob channel and

B | E A\ (ealAgea)
(ﬂ | & a) -~ (ealea) (56 (i) the angled between the two nonorthogonal photon po-
larization states, or in terms of the angtewhich is half the
where complement off (see Fig. 2. Clearly,
{Agt={A0, A1, A} ={A, A, A (57 1/
Also it is clear that

In Appendix D we obtain the following explicit expressions
=(salea), (58  for the error rateQg(Q, 0) in the Alice-Eve channel and the
error rateQgg(Q, ) in the Bob-Eve channel, respectively
expressed in terms of the relayed std&®—(53), relayed by  [21,27,28§:
Eve to Bob. Substituting Eq$56) and(58) into Eq. (55) and

E | A

e | «a

using Eq.(54), one obtains Qae(Q,0)=3-(3—-Q)[1-F(Q,0?** (74
B E A
p(a,s,ﬁ)=(ﬁ . I a) —(salAjea). (59 2N
. Qee(Q,0)=3—3[1-F(Q,6)°]"?, (75)
Thus, for example, the probability(0,0,0) that Eve detects
a 0 and Bob detesta 0 when Alice sergla 0 isgiven by where
p(0,0,0=(00 Ao|00). (60) 2[Q(1-Q)]"? se®—1

o _ F(Q,0)= Z[Q(l_Q)]llz 9-1 (76)

Then substituting Eqg50), (57), and (1) into Eq. (60) and [Q(1-Q)]™ co

sing Eqs.(38)—(40), we obtain . . : .
using Eqs.(38)-(40), w I Equationg74)—(76) parametrize the error rates in the Alice-

p(0,0,0)=a1—sin(2a)]cofa. (62) Eve and Bob-Eve channels, respectively, in terms of the
angle 0 between the two nonorthogonal photon polarization
Analogously, using Eq(59), we obtain states of the carrier and the error r&ein the Alice-Bob
channel.
p(0,0,1) =b?[1-sin(2a)]sirty, (62 Because the inconclusive results are removed, the Alice-
Bob channel, although operationally a binary erasure chan-
p(0,0,2=sin(2a)(a cosy+b siny)?, (63)  nel, becomes effectively a binary symmetric channel; thus
the maximal mutual informatiorichannel capacibyl g in
p(0,1,0=a’[1-sin(2a)]siry, (64)  the Alice-Bob channel is given by the well-known expres-
sion for a binary symmetric channel, naméy29,3(,
p(0,1,)=b?[1—sin(2a)]coy, (65)
Ag(Q)=1+Q l0g,Q+(1-Q)logy(1-Q),  (77)
p(0,1,7 =sin(2a)(a siny+b cosy)?, (66)

expressed in terms of the error r&ein the Alice-Bob chan-
p(1,0,00=b?[1—sin(2a)]cosy, (67) nel. Since the Bob-Eve and Alice-Eve channels are also ef-

fectively binary symmetric, one also has for the mutual in-
p(1,0,1)=a?[1—sin(2a)]sirty, (68)  formation in the Bob-Eve channel
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Using Eq.(87), we next observe that sindgz<1, one has

min | Ae(Qag(Sire, 0)),1ge(Qge(sirta, 6))]
and for the mutual information in the Alice-Eve channel

=1 Ae(Qne(sirta, ). (88)
IAe(Qar) =1+ Qaelog;Qae+ (1—Qap)0gx(1—Qap), o ,
(79 Next, substituting Eq(85) into Eq. (88), one has

whereQge andQ,g are given by Eqs(75) and(74), respec-  min[ | ag(Qag(sirfa, 0)),1 ge(Qge(sirfa, 6))]=1 Ag(sirfa).
tively [21,27,28. Thus the mutual information in each chan- (89
nel is also expressed explicitly in terms of the anglee- ) _

tween the two nonorthogonal photon polarization states andherefore, comparing Eq89) with Eq. (81), one can con-
the error rate in the Alice-Bob channel, with no explicit de- clude thaf21,27,2§
pendence on the generally unknown eavesdropping param-

eters.

l5e(Qge) =1+ Qgelog,Qee+ (1—Qgp)logy(1— QBE()78)

Q,=sirfa. (90)

The maximum allowable error ra®,,,, is the value of
the error rate in the Alice-Bob channel, for which the mutual
The error rate in the Alice-Bob channel, resulting from information in the Bob-Eve channel is unity, nameéby,
eavesdropping, is considered to be unsafe if the mutual in-
formation in the Alice-Bob channel does not exceed the Qmax=Q such thatlge(Qpe(Q,0))=1. (91
minimum of the mutual information in the Alice-Eve chan- _ ] ]
nel and of that in the Bob-Eve chanré]. Equivalently, this This corresponds to perfect mutl_JaI information for the
unsafe transmission criterion may be expressed as eaveSd;(r)]pFer. Comparing EQ1) with Eq. (87), one ob-
serves tha

IV. UNSAFE ERROR RATE

I a<min(l ag,lgE)- (80) ,
Qmax= sirfa, (92

It is suggested in Ref.1] that this condition may be overly
cautious; however, we proceed to show that this is not thén accord with Ref[1].
case for the entangled translucent eavesdropping scenario. Finally, comparing Eq(90) with Eq. (92), we obtain the

We define the unsafe error ragg, to be the smallest error result
rateQ in the Alice-Bob channel such that the equality in Eq.
(80) is satisfied, namely,

Qu=Qmax- (93

Thus, for entangled translucent eavesdropping, the unsafe
error rate is in fact equal to the maximum allowable error
rate.

Using Eq.(73), one can also express E@80), (92), and
(93) in terms of the angl® between the two nonorthogonal
photon polarization states, nam¢Ba1,27,2§,

Qu:Qmax:%(l_Sine)- (99

In this case, the unsafe error rate is not in fact overly con-
servative.

Q,=smallestQ such that

I as(Q)=min[1 Ag(Qae(Q, ), 5e(Qpe(Q,6))]. (81)

First note that by substitutin@=sirPa into Eq. (74) and
using Egs(76) and(73), one obtains

QAE(SinZCY,a):SinZa. (82)
Next, substituting Eq(82) into Eq. (79), one obtains
IAE(QAE(SirTZa,G))=1+Sin2a |ng(Sin2a)

+coda logy(coga). (83
However, from Eq(77) it follows immediately that

| ag(SirPa) =1+ sirPa log,(sirfa)+ coSa log,(coSa).
(84)

Comparing Eq(83) with Eq. (84), one can conclude that
| Ae(Qae(sirPa, 0)) =1 xg(sirfa). (89

We next note, using Eq$75), (76), and(73), that
Qge(sirfe, 6)=0 (86)
and therefore, substituting E(6) into Eq. (78), we obtain
I5e(Qpe(SiPae, 6))=1. (87

V. CONCLUSION

In this work, we have presented a design for a receiver
that is an all-optical realization of a POVM for use in quan-
tum cryptography. The device, depicted in Fig. 1, interfero-
metrically implements the statistics of all three POVM op-
erators. Also, we have obtained closed-form algebraic
expressions for the error rate and mutual information in each
channel, expressed in terms of the error rate in the Alice-Bob
channel and the angle between the two nonorthogonal pho-
ton polarization states of the carrier. The expressions are
given by Eqs.(74)—(76), (78), and (79). We also demon-
strated that, in the presence of entangled translucent eaves-
dropping, the unsafe error rate based on standard mutual in-
formation comparisons is equivalent to the maximum
allowable error rate based on perfect information for the
eavesdropper.
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APPENDIX A: POVM RECEIVER STATES T,= AT (A10)

It follows from the geometry of Fig. 1 and the projective

property of polarized photon statfsq. (4)] that the state of and therefore substituting Eqe:8) and(A3) in Eq. (A10),

a photon taking the path designated by the dta{¢ is given one obtains

by T,=1—tarf(6/2), (A11)
lu)+v)) . independent ofxr and 8. The corresponding reflection coef-

where|g, , ,) represents a unit ket corresponding to polariza- R, =tarf(6/2), (Al12)

tion vectore,.,. Also in Eq. (A1), the Dirac bracket, ap- ,
pearing as an overall factor of the unit ket, is the probability2d from Fig. 1 one sees that
amplitude that a photon takes the path under consideration.
" g P (Wl way=Ra( ). (A13)

Analogously, one has
lu)— [) Substituting Eqs(A12) and (A3) in Eqg. (A13), one obtains
'¢2>:(“<”'+B<”')(W)'e““>’ (A2 (alt)=H(at B1-cow). (ALY

wherel|g,_,) represents a unit ket corresponding to polariza-Next, taking account of the reflection at Bat introduces a

tion vectorg,_, . Expanding Eqs(Al) and(A2), using Eq.  factor ofi, it therefore follows that

(4), we obtain fn—1/2 2
|gg)=12""qa+B)(1—cost)"e,+,). (A1H)

=2"Ya+ B)(1+cox) e A3
[42) (atB) S8 (A3) Also one sees from the geometry of Fig. 1, together with Eq.

and (A4), that, because of the polarization rotaiy which ef-
A fectively converts polarization in the directi@y_, into that
l)=2"Ya— B)(1—cosh)A&,_,). (A4) in the direction—@,,,, one has
The detectorD,, D,, andD, are treated here as ideal. |hs)=—2"YHa—B)(1—cosH)VY&,,,). (A16)
We require

Next, from Fig. 1, one sees that because of beam splitter
(el o) = (| A ¥), (A5)  BS,, statesy,) and|s) combine and interfere to produce
states|yg) and |y). In particular, because a 50-50 beam
in order that the expectation value Af,, measured by the splitter is assumed here for B®ith reflection coefficient
detectorD,, in Fig. 1, equal the probability | i) that a

photon is incident on it. This makes the POVM effectively a R=3 (A17)
probability operator valued measure. Analogously, we re- L -
quire and transmission coefficient
1

(Wl ) =(wlA | ) (A6) To=2 (A18)
for the detectoD . and for both entrance paths, one has

(Wl ) = (DIl ) A7) o) =2 ) +i2 ) (AL9)
for the detectoD,. Substituting Eq(10) into Eq. (A7), we and
obtain [y =272 ) +i127 1 ). (A20)

(Y3l 3)=(a+B)?coss (A8)  The implementation of the interferometric equaticiAd.9)

and(A20) demands precise phase alignment in the interfero-
metric circuit of Fig. 1. Next, substituting Eq§A15) and
(A16) into Egs.(A19) and (A20), one obtains

and therefore

| sy = (a+ B)(coH) &, ,). (A9)

It can be shown, using the methods of Réf0], that one
can effectively ignore the unused vacuum port of beam splitynq
ter BS, in complete agreement with physical intuition. From
Fig. 1 one sees that in order for the sthtg) of a photon to lg7)=1B(1—coh) VA&, ,). (A22)

| sy = — a(1—cosn) ¥4, ,) (A21)
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APPENDIX B: RELAYED STATES OF THE CARRIER

The effect of Eve’'s measurement process on the initia
carrier and probe states can be represented by the tens

product projection operators

Po=l1a(lyXyh)=1®

1 1 0
0 [1 O]=I® 0 0 (B1)
and

0
Pi=la(|x)}(x)=1®|

00
[0 1]=|®[0 - B2

Here we have used E(37) and| is the unit operator in the
carrier space.
The probability amplitudé00) that Eve measusea 0 with
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Equations(B6), (B8), (B10), and(B12) are the four possible
Perturbed states resulting from the perturbation by Eve of
states on their way from Alice to Bob.

or-

APPENDIX C: ERROR RATES

If we denote byr, w, andi, respectively, the number of

generic measurement results that are right, wrong, and incon-

clusive, then the error ratg before inconclusive results are
discarded is clearly given by

w

S WrrE CD

q

Also, the error rat&) after inconclusive results are discarded
is

her information-maximizing measurement when Alice sends

a 0 may be determined from the projection

Pol¢1)=[00)@]y).

Proceeding to evaluate the left-hand side of Bf), using
Egs.(B1), (35), (41), and(42), one obtains

(B4)

(B3)

siny

alu)y® cosy

+blv)®

cosy
siny

, 1 0
Po|¢1>:|®0 0

Equation(B4) reduces to

Pol¢1)=(a cosylu)+b simlv))@ly)  (B5)
and therefore, comparing E@5) with Eq. (B3), one obtains
|00y=a cosy|u)+b siny|v). (B6)

Similarly, the probability amplitud€10) that Eve measures a
1 when Alice sensd a 0 isdetermined by

Pil¢1) =110 ®[x), (B7)
from which it follows that
|10)=a siny|u)+b cosy|v). (B8)

Also, the probability amplitud¢01) that Eve measures a 0
when Alice send a 1 isdetermined by

Pol¢2)=10D)®]y), (B9)
which yields
|01)=b cosy|u)+a siny|v). (B10)

Finally, the probability amplitudél1) that Eve measures a 1
when Alice send a 1 isdetermined by

Pil#2) =111 ®[x) (B11)
and therefore

|11)=b siny|u)+a cosy|v). (B12)

- C2
Q=W ©

and the rateR of inconclusive results is
R= | C3
TwHr+i (€3

Using Egs.(C1)—(C3), we find that
q

Q=1"g (CH

as in Ref.[1].
Bob’s error rateq, before inconclusive results are dis-
carded, is

q= >, p(0s,)= > p(le,0). (C5)
e=0,1 e=0,1

Substituting Egs(62) and(65) into Eg. (C5), one obtains

q=b?[1—sin(2a)]. (C6)

Bob’s rateR of inconclusive results is
R= 2 p(0e,2= 3 p(le.2), (o)

which with Eqgs.(63) and (66) becomes
R=[a?+b?+2ab sin(2y)]sin(2a). (C8)

Therefore, substituting Eq§C6) and(C8) into Eq.(C4) and
using the unitarity relatioig48), one obtains the error rat@
in the Alice-Bob channel

b2
Q= b2 €9
Equations(C6), (C8), and(C9) all agree with Ref[1].
The error rate g in the Alice-Eve channel, after incon-
clusive results are discarded, is given by
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> p(0,18)
B=0,1

Qae= (C10

> [p(0,18)+p(0,08)]
B=0,1

Equivalently, Eq.(C10 can be written as

> p(0,18)
B=0,1

Qae= (C11

1- 2> p(0e,?)
£=0,1
We give the numerator in EqC11) the nameqag:

dae= >, P(0,18). (C12
B=0,1

Then substituting Eq9.C12) and (C7) into Eq. (C11), one
has

_Qae
QAE_l_R-

(C13
Next, substituting Eqs(64) and (65) into Eq. (C12), one
obtains

gag=(a%sirty+b%cogy)[1-sin2a)]. (Cl4
Equations(C12 and (C14 correct Eq.(35 of Ref. [1],
which is erroneous. Next, substituting Eq€.14) and (C8)
into Eq.(C13 and using the unitarity relatio(8), one ob-
tains

Qae=Q coSy+(1-Q)sir’y, (C19

in agreement with Ref.1].

The error rategge in the Bob-Eve channel, before incon-

clusive results are discarded, is

Qpe= 2, P(a0.1), (C16)
or substituting Eqs(62) and(68), we obtain
qee=(a%+b?)[1—sin(2a)]siry. (C17
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APPENDIX D: USEFUL PARAMETRIZATION
OF ERROR RATES

From the unitarity relation$47) and(48) it follows that

sin(2y)=(1—a?—b?)(a’+b?+2a%b?—a*—b*) !

(D1)
and
1=a?+b%+2ab(a’?+b?) sin(2a)—2ab]. (D2)
Also, from Eq.(C9) one obtains
Q 1/2
b=+ (m a. (D3)

[A physical choice of sign in ED3) is determined belovy.
Next, substituting Eq(D3) into Eqg.(D2), one gets

la|=(1-2Q) " (1-Q)"41+2[Q(1-Q)]**sin(2a)}*,
(D4)

and substituting Eq(D4) into Eq. (D3), one also has

[bl=(1-2Q) " Q¥{172[Q(1 - Q)]*? sin(2a)}*"
(D5)

Using Eqgs.(D4), (D5), and(D1), one then obtains
sin(2y)

- 2Q(1-Q)*[Q(1-Q)]*? sin(2a)
" [Q(1—Q)1™sin(2a){2[Q(1- Q)1 sin(2a) + 1}
(D6)

In order to make a physical sign choice in ER6), we first
require for the physical angle that

Also, one has for the error rate in the Bob-Eve channel, afte?nd for physical anglex one also requires

inconclusive results are discarded,

Ose

Qee=1_g (C18

or substituting Eq(C17) and (C8) and using the unitarity

relation (48), we obtain
QBE: S|n2 Y.

Equations(C17) and(C19 also agree with Ref.1].

(C19

sirf(2y)<1, (D7)
which, together with Eq(D6), requires
12Q(1-Q)F[Q(1-Q)]** sin(2a)|
<|[Q(1-Q)]**sin(2a){2[Q(1-Q)]"?

X sin(2a) ¥ 1}. (D8)

But for the physical error rat€ one requires
0<Q<1 (D9)
O<as<m/4. (D10

If one chooses the- sign of = in Eq. (D8), then because of
Egs.(D9) and(D10), Eq. (D8) becomes

2[Q(1-Q)]"*+sin(2a) <2[Q(1-Q)]"* sir*(2a)
+sin(2a) (D12)
or, equivalently,

sirf(2a)>1, (D12
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which is unphysical for physical angla. Therefore, one and
must choose the- sign of = in Egs.(D8) and(D6), as well

as in Egs.(D4) and(D5). Thus Eq.(D6) becomes sify=3—3[1-sirf(2y)]"2 (D16)
sin(27y) Next, substituting Eqs(D15), (D16), and (D13) into Egs.
(C19 and (C19 and using Eq.(73), it follows that

_ 2Q(1-Q)-[Q(1-Q)]*?sin(2a)
[Q(1-Q) ] sin(2){2[Q(1- Q)] sin(2a) ~ 1} *
(D13)

[21,27,28

Que(Q 0)=3—(3-QI1-F(Q,0*]** (D17

The angley may be taken to be in the range and

0< y< /4. (D14) Qee(Q,0)=3—3[1-F(Q,6)°1", (D18)

One also has the following trigonometric identities expressed'nere

in terms of Eq.(D13): 2[Q(1-Q)]¥2 sedd—1

2[Q(1-Q)]"* cow—1"

F(Q,0)= (D19

coSy= 3+ i[1-sirP(2y)]*? (D15)
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