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Aspects of entangled translucent eavesdropping in quantum cryptography
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We present a mathematical physics analysis of entangled translucent eavesdropping in quantum cryptogra-
phy, based on the recent work of Ekert, Huttner, Palma, and Peres@Phys. Rev. A50, 1047~1994!#. The key
generation procedure involves the transmission, interception, and reception of two nonorthogonal photon
polarization states. At the receiving end, a positive operator valued measure~POVM! is employed in the
measurement process. The eavesdropping involves an information-maximizing von Neumann–type projective
measurement. We propose a design for a receiver that is an all-optical realization of the POVM, using a
Wollaston prism, a mirror, two beam splitters, a polarization rotator, and three photodetectors. We present a
quantitative analysis of the receiver. We obtain closed-form algebraic expressions for the error rates and
mutual information, expressed in terms of the POVM-receiver error rate and the angle between the carrier
polarization states. We also prove a significant result, namely, that in the entangled translucent eavesdropping
approach, the unsafe error rate based on standard mutual information comparisons is equivalent to the maxi-
mum allowable error rate based on perfect mutual information for the eavesdropper. In this case, the above
unsafe error rate is in fact not overly conservative.@S1050-2947~97!01212-2#

PACS number~s!: 03.65.Bz, 89.70.1c, 42.50.2p, 42.79.Sz
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I. INTRODUCTION

For the purpose of secure key generation in quan
cryptography, one can employ a train of single photons h
ing two possible equally likely nonorthogonal polarizatio
statesuu& and uv&, which encode 0 and 1, respectively,
securely communicate a random bit sequence betwee
sender~Alice! and a receiver~Bob! in the presence of an
eavesdropper~Eve!. Recently, Ekertet al. @1# presented an
analysis of an entangled translucent eavesdropping sce
of key generation in quantum cryptography. In the pres
work we carry their analysis further for an approach that u
two nonorthogonal photon polarization states. The eav
dropping is translucent in the sense that the eavesdro
Eve perturbs the polarization of the carrier on its way to B
The eavesdropper uses a probe that causes the carrier
to become entangled with the probe states. For detec
Eve makes an information-maximizing von Neumann–ty
projective measurement and Bob uses a positive oper
valued measure~POVM!. Bennett’s two-state protocol@2# is
employed, in which a positive response of Bob’s POV
receiver, indicating the reception of a photon in
u-polarization or av-polarization state, is publicly commu
nicated to Eve without revealing which polarization was d
tected and the corresponding bits then constitute the prel
nary key secretly shared by Alice and Bob. B
corresponding to photons that do not excite theu- or
v-polarization state detectors are excluded from the key.
cause of the noncommutativity of nonorthogonal pho
polarization-measurement operators representing no
thogonal photon polarization states and also because
561050-2947/97/56~6!/4456~10!/$10.00
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trary quantum states cannot be cloned@3,4#, any attempt by
Eve to eavesdrop can in principle be detected by Bob
Alice.

Entangled translucent eavesdropping is, of course, o
one possible eavesdropping scenario. Ekertet al. @1# also
examine so-called opaque eavesdropping and also tran
cent eavesdropping without entanglement. Lutkenhaus@5#
recently provided a very extensive analysis~based on Shan
non information and collision probability! of security against
eavesdropping for a wide class of eavesdropping strategie
the case of the Bennett-Brassard two-basis protocol. For
two-state protocol, Fuchs and Peres@6# recently performed
extensive quantum-information theoretic analyses for a g
eral eavesdropping strategy in which Eve employs a PO
in order to extract as much information as possible. Clea
a POVM receiver can be used by Eve as well as by Bob. S
other recent analyses of various eavesdropping scenario
those of Gisin and co-workers@7,8# and Fuchset al. @9#. The
present work primarily limits itself to a few aspects of th
entangled translucent eavesdropping scenario of Ref.@1#.

We first present in Sec. II a design for the POVM receiv
to be used by Bob. The design is totally optical. Because
also interferometric, it demands precise phase alignm
however, it faithfully represents the perturbed statistics
sulting from entangled translucent eavesdropping. Additio
analysis pertaining to the device appears in Ref.@10#. Hutt-
ner et al. @11# recently presented a design and experimen
proof of principle for an optical setup implementing a s
called loss-induced generalized quantum measurement.
device is also an interferometric implementation of a POV
However, our design has fewer components and our theo
4456 © 1997 The American Physical Society
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56 4457ASPECTS OF ENTANGLED TRANSLUCENT . . .
ical analysis of the statistics and cryptographic applicati
of our device is more extensive.

In Sec. III we obtain closed-form algebraic expressio
for the error rate and mutual information in each commu
cation channel as a function of the POVM receiver error r
Q and the angleu between the carrier polarization states. A
explicit dependence on unknown entanglement paramete
the eavesdropper’s probe is removed.

In Sec. IV we obtain a significant result. We prove th
for the entangled translucent eavesdropping scenario, the
safe error rate based on standard mutual information c
parisons is equivalent to the maximum allowable error r
based on perfect information for the eavesdropper and b
are given by the square of the sine of half the complemen
the angle between the two nonorthogonal photon polariza
states of the carrier. The implication of this result is that
unsafe error rate is not in fact overly conservative for e
tangled translucent eavesdropping, as has been suggest
earlier work@1,12#.

In Sec. V we summarize our results and conclusions.
cluded in Appendixes A–D are essential mathematical de
opments that logically support the results in the main tex

II. POVM RECEIVER

The positive operator valued measure@13–20#, also
known as theprobability operator valued measure@14#, is
finding increasing use in quantum cryptography@13#. In the
work of Ekertet al. @1# on entangled translucent eavesdro
ping, the following set of POVM operators represents
possible measurements performed by Bob’s receiver:

Au5~11^uuv&!21~12uv&^vu!, ~1!

Av5~11^uuv&!21~12uu&^uu!, ~2!

A?512Au2Av . ~3!

Here ketsuu& anduv& represent the two possible nonorthog
nal normalized polarization states of the carrier, with pol
izations designated byu andv, respectively. The angle be
tween the corresponding polarization vectors isu, from
which it follows ~from the spin-1 behavior of the photo
under the rotation group! that the overlap between the tw
states is

^uuv&5cosu. ~4!

The stateuu& encodes bit value 0 and the stateuv& encodes
bit value 1. The POVM operators~1!–~3! are positive and
their sum is unity. They are appropriate for realizing Be
nett’s two-state protocol because

^vuAuuv&50 ~5!

and

^uuAvuu&50. ~6!

Therefore, when an ideal detector representing the ope
Au responds positively, it follows that a photon with
v-polarization state cannot have been received. Likew
when an ideal detector representing the operatorAv re-
s
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sponds, a photon with au-polarization state cannot hav
been received. The operatorA? represents inconclusive re
sponses of Bob’s receiver. Au-polarized photon can result in
a nonzero expectation value~and the associated respons!
only for the detectors representingAu or A? operators. A
y-polarized photon excites only theAy or A? detectors. The
advantage of the POVM over the von Neumann–type of p
jective measurement@2# is that for the POVM, the probabil-
ity of getting an inconclusive result is lower@1#.

For an arbitrary polarization stateuc& of a photon, given
by

uc&5auu&1buv&, ~7!

wherea and b are arbitrary real constants, the expectati
values of the POVM operators become

^cuAuuc&5a2~12cosu!, ~8!

^cuAvuc&5b2~12cosu!, ~9!

^cuA?uc&5~a1b!2 cosu. ~10!

For the case of a transmitted stateuu& in the two-state pro-
tocol, in the absence of perturbations, one has (a,b) 5(1,0)
in Eq. ~7! and Eqs.~8!–~10! become

^uuAuuu&5~12cosu!, ~11!

^uuAvuu&50, ~12!

^uuA?uu&5cosu, ~13!

consistent with Eq.~6!. Alternatively, if (a,b)5(0,1), then

^vuAuuv&50, ~14!

^vuAvuv&5~12cosu!, ~15!

^vuA?uv&5cosu, ~16!

consistent with Eq.~5!. Either alternative is equally likely in
the unperturbed two-state protocol. Although the POV
scheme in quantum cryptography is described mathem
cally in Ref. @1#, no concrete physical model is provided.
the present work, we provide a possible physical realizat
for the POVM receiver~also, see Ref.@11#!.

The circuit design for the POVM receiver that we propo
here is shown in Fig. 1@21–23#. It is an all-optical system.
The straight lines with arrows represent possible opti
pathways for a photon to move through the device. The p
labeleduc& is the incoming path for a photon represented
the arbitrary polarization state given by Eq.~7!. Also in Fig.
1, Du , Dv , andD? designate photodetectors representing
measurement operatorsAu , Av , and A? , respectively.
Shown also is a Wollaston prismW, which is aligned so that
an incident photon with polarization vectorêu1v would take
the path labeled by the stateuc1& and êu1v and not the path
labeled by polarization vectorêu2v and uc2&. Hereêu1v de-
notes a unit polarization vector corresponding to polarizat
state uu1v&5uu&1uv& and is perpendicular to the un



n

B

c
li
rl
n

r

on
b

o

M

ld

es
is-

e

re-
ed
ing.
ent
etail

of

ion

the

s to

4458 56BRANDT, MYERS, AND LOMONACO
polarization vectorêu2v corresponding to the polarizatio
state uu2v&5uu&2uv&. The statesuu1v& and uu2v& are
orthogonal and one has

^u1vuu2v&50, êu1v–êu2v50. ~17!

The device also has two beam splitters designated by1
and BS2 in Fig. 1. Beam splitter BS2 is taken to be a 50-50
beam splitter for a photon entering either of its entran
ports. Both paths from the Wollaston prism to the beam sp
ter BS2 have equal optical path lengths. The device is clea
interferometric. Also shown in Fig. 1 is a 90° polarizatio
rotator designated byR, which transforms a photon with
polarization vectorêu2v into one with polarization vecto
2êu1v . Also shown in Fig. 1 is a single mirrorM .

In Appendix A we obtain expressions for the phot
statesuc i& corresponding to each of the paths designated
uc i&, i 51,2,...,7 in Fig. 1. The states are

uc1&5221/2~a1b!~11cosu!1/2uêu1v&, ~18!

uc2&5221/2~a2b!~12cosu!1/2uêu2v&, ~19!

uc3&5~a1b!~cosu!1/2uêu1v&, ~20!

uc4&5 i221/2~a1b!~12cosu!1/2uêu1v&, ~21!

uc5&52221/2~a2b!~12cosu!1/2uêu1v&, ~22!

uc6&52a~12cosu!1/2uêu1v&, ~23!

uc7&5 ib~12cosu!1/2uêu1v&. ~24!

Here uêu6v& represent unit kets corresponding to photon p
larization vectorsêu6v. From Eq.~23! it follows that

^c6uc6&5a2~12cosu!, ~25!

and comparing Eq.~25! with Eq. ~8!, one sees that

^c6uc6&5^cuAuuc&, ~26!

consistent with Fig. 1 and the requirements for the POV
Also from Eq.~24! it follows that

^c7uc7&5b2~12cosu!, ~27!

FIG. 1. POVM receiver.
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and comparing Eq.~27! with Eq. ~9!, one sees that

^c7uc7&5^cuAvuc&, ~28!

again consistent with Fig. 1. Also, from Eq.~20! it follows
that

^c3uc3&5~a1b!2cosu, ~29!

and comparing Eq.~29! with Eq. ~10!, it follows that

^c3uc3&5^cuA?uc&, ~30!

again consistent with Fig. 1. Furthermore, using Eqs.~29!,
~25!, ~27!, ~4!, and~7!, one concludes that

^c3uc3&1^c6uc6&1^c7uc7&5^cuc& ~31!

or, equivalently,

uc3u21uc6u21uc7u25ucu2, ~32!

as required to conserve probability. Equations~26!, ~28!,
~30!, and~32! are just the probabilistic properties one wou
expect of a POVM acting as aprobability operator valued
measure.

One concludes that the POVM receiver of Fig. 1 satisfi
the appropriate statistics. Also, both beam-splitter transm
sion coefficients~A11! and ~A18! have the desirable featur
that they do not depend on the coefficientsa andb associ-
ated with an arbitrary incoming polarization state and the
fore the device can also faithfully represent the perturb
statistics arising from entangled translucent eavesdropp
The statistics corresponding to the entangled transluc
eavesdropping scenario are examined in considerable d
in the following section.

III. ERROR RATES AND MUTUAL INFORMATION

In the entangled translucent eavesdropping scenario
Ref. @1#, the two excited statesueu& and uev& of the eaves-
dropper’s probe are entangled with the carrier polarizat
statesuu& and uv&. Letting uf1& and uf2& denote the two
possible initial tensor-product states of the carrier with
ground stateue& of the probe, one has

uf1&5uu& ^ ue& ~33!

and

uf2&5uv& ^ ue&. ~34!

The effect of the entangled translucent eavesdropping i
convertuf1& or uf2& to uf18& or uf28&, respectively, where

uf18&5auu& ^ ueu&1buv& ^ uev& ~35!

and

uf28&5buu& ^ ueu&1auv& ^ uev&, ~36!

wherea andb are real constants@1#.
Without loss of generality, orthogonal basis statesux& and

uy&, defined by

ux&5F01G , uy&5F10G , ^xuy&50, ~37!



ca
l

g.
oe
tiv

d
n

.

be

ified

ng

obe
on

op-

ring

m-

rop-

56 4459ASPECTS OF ENTANGLED TRANSLUCENT . . .
are chosen to be arranged symmetrically about the two
rier statesuu& and uv& in the plane of the two-dimensiona
Hilbert space defined by the carrier states, as shown in Fi
For convenience here and in the following, our notation d
not explicitly distinguish between a ket and its representa
@24#. The angle betweenuu& and uy& is equal to the angle
betweenuv& and ux&; both angles are denoted bya, half the
complement of the angleu between the two polarization
statesuu& and uv&. One has therefore

uu&5Fcosa
sina G , ~38!

uv&5F sina
cosa G . ~39!

One notes that Eqs.~38! and~39! are consistent with Eq.~4!,
which can also be written in terms of the anglea:

^uuv&5sin~2a!. ~40!

The probe statesueu& and uev& are chosen to be oriente
symmetrically relative to the photon polarization states a
the orthogonal basis@1#. The angle between the stateueu&
and the basis stateuy& is equal to the angle betweenuev& and
ux&; these angles are denoted byg, as depicted in Fig. 3
Hence one has

ueu&5Fcosg
sing G , ~41!

uev&5F sing
cosg G . ~42!

FIG. 2. Two-dimensional Hilbert space of carrier states.

FIG. 3. Two-dimensional Hilbert space of probe states.
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The following normalizations are assumed:

^f1uf1&5^f2uf2&5^f18uf18&5^f28uf28&51 ~43!

and

^uuu&5^vuv&5^euueu&5^evuev&51. ~44!

Since the effect of the eavesdropper’s ideal probe can
represented by a unitary transformation~if environmental in-
teractions are ignored!, unitarity requires that

~^f1u1^f2u!~ uf1&1uf2&!5~^f18u1^f28u!~ uf18&1uf28&!.
~45!

Using Eq.~43!, we transform Eq.~45! to

Rê f1uf2&5Rê f18uf28&. ~46!

Therefore, substituting Eqs.~33!–~36! and~44! into Eq.~46!
and using Eqs.~40!–~42!, one concludes that

sin~2a!52ab1~a21b2!sin~2a!sin~2g!. ~47!

Also, substituting Eq.~35! into the third equality of Eq.~43!
and using Eqs.~38!–~42! and ~44!, one obtains

15a21b212ab sin~2a!sin~2g!. ~48!

Thus unitarity places the constraints given by Eqs.~47! and
~48! on the values of the entanglement parametersa, b, and
g of the eavesdropper’s probe, for the carrier states spec
by the anglea. We refer in the following to Eqs.~47! and
~48! as the unitarity relations involving the eavesdroppi
parameters.

To measure the carrier states entangled with her pr
states, Eve performs an information-maximizing v
Neumann–type measurement represented by projection
eratorsuy&^yu andux&^xu, which test for eigenvectorsuy& and
ux&, respectively@1,14,25#. In the following, it is convenient
to reuse the symbolsa andb as index variables for Alice’s
transmission and Bob’s reception~the context distinguishes
the usage!. With an additional index« for Eve, we writeu«a&
as the perturbed state that Eve relays to Bob after measu
«, when Alice transmitsa. The ranges of these indices are

a,«P$0,1%; bP$0,1,?%. ~49!

In Appendix B we obtain expressions for the probability a
plitude u«a& that Eve measures an« when Alice sends ana,
namely,

u00&5a cosguu&1b singuv&, ~50!

u10&5a singuu&1b cosguv&, ~51!

u01&5b cosguu&1a singuv&, ~52!

u11&5b singuu&1a cosguv&. ~53!

They are all of the general form given by Eq.~7!, with co-
efficients expressed for each case in terms of the eavesd
ping parametersa, b, andg.
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4460 56BRANDT, MYERS, AND LOMONACO
The probability that Eve detects an« and Bob detects ab
when Alice sends ana can be transcribed into the convenie
notation@26#

p~a,«,b![S B
b

E
«

u
u

A
a D . ~54!

By the rules of conditional probability, one has

S B
b

E
«

u
u

A
a D5S E

«
u
u

A
a D S B

b
u
u

E
«

A
a D , ~55!

where («
E

u
u

a
A) denotes the probability that Eve detects

« when Alice sends ana and (b
B

u
u

«
E

a
A) denotes the

conditional probability that Bob detects ab, given that Eve
detects an« when Alice sends ana. For the positive operato
valued measure~or probability operator valued measure! it is
true that

S B
b

u
u

E
«

A
a D5

^«auAbu«a&

^«au«a&
, ~56!

where

$Ab%[$A0 ,A1 ,A?%[$Au ,Av ,A?%. ~57!

Also it is clear that

S E
«

u
u

A
a D5^«au«a&, ~58!

expressed in terms of the relayed states~50!–~53!, relayed by
Eve to Bob. Substituting Eqs.~56! and~58! into Eq.~55! and
using Eq.~54!, one obtains

p~a,«,b!5S B
b

E
«

u
u

A
a D5^«auAbu«a&. ~59!

Thus, for example, the probabilityp(0,0,0) that Eve detect
a 0 and Bob detects a 0 when Alice sends a 0 isgiven by

p~0,0,0!5^00uA0u00&. ~60!

Then substituting Eqs.~50!, ~57!, and ~1! into Eq. ~60! and
using Eqs.~38!–~40!, we obtain

p~0,0,0!5a2@12sin~2a!#cos2a. ~61!

Analogously, using Eq.~59!, we obtain

p~0,0,1!5b2@12sin~2a!#sin2g, ~62!

p~0,0,?!5sin~2a!~a cosg1b sing!2, ~63!

p~0,1,0!5a2@12sin~2a!#sin2g, ~64!

p~0,1,1!5b2@12sin~2a!#cos2g, ~65!

p~0,1,?!5sin~2a!~a sing1b cosg!2, ~66!

p~1,0,0!5b2@12sin~2a!#cos2g, ~67!

p~1,0,1!5a2@12sin~2a!#sin2g, ~68!
p~1,0,?!5sin~2a!~b cosg1a sing!2, ~69!

p~1,1,0!5b2@12sin~2a!#sin2g, ~70!

p~1,1,1!5a2@12sin~2a!#cos2g, ~71!

p~1,1,?!5sin~2a!~b sing1a cosg!2. ~72!

The arguments used here in obtaining Eqs.~61!–~72! differ
from those of Ref.@1#; however, the results are in comple
agreement.

In Appendix C we obtain explicit expressions for the err
ratesQAE andQBE in the Alice-Eve and Bob-Eve channel
respectively, expressed in terms of the error rate in the Ali
Bob channel and the eavesdropping parameterg. These ex-
pressions are in agreement with Ref.@1#; however, two errors
in supporting equations in Ref.@1# are corrected in Appendix
C.

It is desirable to express all channel error rates explic
in terms of~i! the error rateQ in the Alice-Bob channel and
~ii ! the angleu between the two nonorthogonal photon p
larization states, or in terms of the anglea, which is half the
complement ofu ~see Fig. 2!. Clearly,

a5
1

2 S p

2
2u D . ~73!

In Appendix D we obtain the following explicit expression
for the error rateQAE(Q,u) in the Alice-Eve channel and th
error rateQBE(Q,u) in the Bob-Eve channel, respective
@21,27,28#:

QAE~Q,u!5 1
2 2~ 1

2 2Q!@12F~Q,u!2#1/2 ~74!

and

QBE~Q,u!5 1
2 2 1

2 @12F~Q,u!2#1/2, ~75!

where

F~Q,u!5
2@Q~12Q!#1/2 secu21

2@Q~12Q!#1/2 cosu21
. ~76!

Equations~74!–~76! parametrize the error rates in the Alice
Eve and Bob-Eve channels, respectively, in terms of
angleu between the two nonorthogonal photon polarizati
states of the carrier and the error rateQ in the Alice-Bob
channel.

Because the inconclusive results are removed, the Al
Bob channel, although operationally a binary erasure ch
nel, becomes effectively a binary symmetric channel; th
the maximal mutual information~channel capacity! I AB in
the Alice-Bob channel is given by the well-known expre
sion for a binary symmetric channel, namely@1,29,30#,

I AB~Q!511Q log2Q1~12Q!log2~12Q!, ~77!

expressed in terms of the error rateQ in the Alice-Bob chan-
nel. Since the Bob-Eve and Alice-Eve channels are also
fectively binary symmetric, one also has for the mutual
formation in the Bob-Eve channel
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56 4461ASPECTS OF ENTANGLED TRANSLUCENT . . .
I BE~QBE!511QBElog2QBE1~12QBE!log2~12QBE!
~78!

and for the mutual information in the Alice-Eve channel

I AE~QAE!511QAElog2QAE1~12QAE!log2~12QAE!,
~79!

whereQBE andQAE are given by Eqs.~75! and~74!, respec-
tively @21,27,28#. Thus the mutual information in each cha
nel is also expressed explicitly in terms of the angleu be-
tween the two nonorthogonal photon polarization states
the error rate in the Alice-Bob channel, with no explicit d
pendence on the generally unknown eavesdropping pa
eters.

IV. UNSAFE ERROR RATE

The error rate in the Alice-Bob channel, resulting fro
eavesdropping, is considered to be unsafe if the mutua
formation in the Alice-Bob channel does not exceed
minimum of the mutual information in the Alice-Eve cha
nel and of that in the Bob-Eve channel@1#. Equivalently, this
unsafe transmission criterion may be expressed as

I AB<min~ I AE ,I BE!. ~80!

It is suggested in Ref.@1# that this condition may be overly
cautious; however, we proceed to show that this is not
case for the entangled translucent eavesdropping scena

We define the unsafe error rateQu to be the smallest erro
rateQ in the Alice-Bob channel such that the equality in E
~80! is satisfied, namely,

Qu5smallest Q such that

I AB~Q!5min@ I AE„QAE~Q,u!…,I BE„QBE~Q,u!…#. ~81!

First note that by substitutingQ5sin2a into Eq. ~74! and
using Eqs.~76! and ~73!, one obtains

QAE~sin2a,u!5sin2a. ~82!

Next, substituting Eq.~82! into Eq. ~79!, one obtains

I AE„QAE~sin2a,u!…511sin2a log2~sin2a!

1cos2a log2~cos2a!. ~83!

However, from Eq.~77! it follows immediately that

I AB~sin2a!511sin2a log2~sin2a!1cos2a log2~cos2a!.
~84!

Comparing Eq.~83! with Eq. ~84!, one can conclude that

I AE„QAE~sin2a,u!…5I AB~sin2a!. ~85!

We next note, using Eqs.~75!, ~76!, and~73!, that

QBE~sin2a,u!50 ~86!

and therefore, substituting Eq.~86! into Eq. ~78!, we obtain

I BE„QBE~sin2a,u!…51. ~87!
d

m-

n-
e

e
.

.

Using Eq.~87!, we next observe that sinceI AE<1, one has

min@ I AE„QAE~sin2a,u!…,I BE„QBE~sin2a,u!…#

5I AE„QAE~sin2a,u!…. ~88!

Next, substituting Eq.~85! into Eq. ~88!, one has

min@ I AE„QAE~sin2a,u!…,I BE„QBE~sin2a,u!…#5I AB~sin2a!.
~89!

Therefore, comparing Eq.~89! with Eq. ~81!, one can con-
clude that@21,27,28#

Qu5sin2a. ~90!

The maximum allowable error rateQmax is the value of
the error rate in the Alice-Bob channel, for which the mutu
information in the Bob-Eve channel is unity, namely@1#,

Qmax5Q such that I BE„QBE~Q,u!…51. ~91!

This corresponds to perfect mutual information for t
eavesdropper. Comparing Eq.~91! with Eq. ~87!, one ob-
serves that

Qmax5sin2a, ~92!

in accord with Ref.@1#.
Finally, comparing Eq.~90! with Eq. ~92!, we obtain the

result

Qu5Qmax. ~93!

Thus, for entangled translucent eavesdropping, the un
error rate is in fact equal to the maximum allowable er
rate.

Using Eq.~73!, one can also express Eqs.~90!, ~92!, and
~93! in terms of the angleu between the two nonorthogona
photon polarization states, namely@21,27,28#,

Qu5Qmax5
1
2 ~12sinu!. ~94!

In this case, the unsafe error rate is not in fact overly c
servative.

V. CONCLUSION

In this work, we have presented a design for a recei
that is an all-optical realization of a POVM for use in qua
tum cryptography. The device, depicted in Fig. 1, interfe
metrically implements the statistics of all three POVM o
erators. Also, we have obtained closed-form algebr
expressions for the error rate and mutual information in e
channel, expressed in terms of the error rate in the Alice-B
channel and the angle between the two nonorthogonal p
ton polarization states of the carrier. The expressions
given by Eqs.~74!–~76!, ~78!, and ~79!. We also demon-
strated that, in the presence of entangled translucent ea
dropping, the unsafe error rate based on standard mutua
formation comparisons is equivalent to the maximu
allowable error rate based on perfect information for t
eavesdropper.
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APPENDIX A: POVM RECEIVER STATES

It follows from the geometry of Fig. 1 and the projectiv
property of polarized photon states@Eq. ~4!# that the state of
a photon taking the path designated by the stateuc1& is given
by

uc1&5(a^uu1b^vu!S uu&1uv&
uuu1v&u D uêu1v&, ~A1!

whereuêu1v& represents a unit ket corresponding to polari
tion vector êu1v . Also in Eq. ~A1!, the Dirac bracket, ap
pearing as an overall factor of the unit ket, is the probabi
amplitude that a photon takes the path under considera
Analogously, one has

uc2&5(a^uu1b^vu!S uu&2uv&
uuu2v&u D uêu2v&, ~A2!

whereuêu2v& represents a unit ket corresponding to polari
tion vectorêu2v . Expanding Eqs.~A1! and ~A2!, using Eq.
~4!, we obtain

uc1&5221/2~a1b!~11cosu!1/2uêu1v& ~A3!

and

uc2&5221/2~a2b!~12cosu!1/2uêu2v&. ~A4!

The detectorsDu , Dv , andD? are treated here as idea
We require

^c6uc6&5^cuAuuc&, ~A5!

in order that the expectation value ofAu , measured by the
detectorDu in Fig. 1, equal the probabilitŷc6uc6& that a
photon is incident on it. This makes the POVM effectively
probability operator valued measure. Analogously, we
quire

^c7uc7&5^cuAvuc& ~A6!

for the detectorDv and

^c3uc3&5^cuA?uc& ~A7!

for the detectorD? . Substituting Eq.~10! into Eq. ~A7!, we
obtain

^c3uc3&5~a1b!2cosu ~A8!

and therefore

uc3&5~a1b!~cosu!1/2uêu1v&. ~A9!

It can be shown, using the methods of Ref.@10#, that one
can effectively ignore the unused vacuum port of beam sp
ter BS1, in complete agreement with physical intuition. Fro
Fig. 1 one sees that in order for the stateuc3& of a photon to
h

-

y
n.

-

-

t-

result from a photon in stateuc1& hitting the beam splitter
BS1, the transmission coefficientT1 of beam splitter BS1
must be given by

T15
^c3uc3&

^c1uc1&
, ~A10!

and therefore substituting Eqs.~A8! and ~A3! in Eq. ~A10!,
one obtains

T1512tan2~u/2!, ~A11!

independent ofa andb. The corresponding reflection coe
ficient becomes

R15tan2~u/2!, ~A12!

and from Fig. 1 one sees that

^c4uc4&5R1^c1uc1&. ~A13!

Substituting Eqs.~A12! and ~A3! in Eq. ~A13!, one obtains

^c4uc4!5 1
2 ~a1b!2~12cosu!. ~A14!

Next, taking account of the reflection at BS1 that introduces a
factor of i , it therefore follows that

uc4&5 i221/2~a1b!~12cosu!1/2uêu1v&. ~A15!

Also one sees from the geometry of Fig. 1, together with E
~A4!, that, because of the polarization rotatorR, which ef-
fectively converts polarization in the directionêu2v into that
in the direction2êu1v , one has

uc5&52221/2~a2b!~12cosu!1/2uêu1v&. ~A16!

Next, from Fig. 1, one sees that because of beam spl
BS2, statesuc4& and uc5& combine and interfere to produc
statesuc6& and uc7&. In particular, because a 50-50 bea
splitter is assumed here for BS2 with reflection coefficient

R25 1
2 ~A17!

and transmission coefficient

T25 1
2 ~A18!

for both entrance paths, one has

uc6&5221/2uc5&1 i221/2uc4& ~A19!

and

uc7&5221/2uc4&1 i221/2uc5&. ~A20!

The implementation of the interferometric equations~A19!
and~A20! demands precise phase alignment in the interfe
metric circuit of Fig. 1. Next, substituting Eqs.~A15! and
~A16! into Eqs.~A19! and ~A20!, one obtains

uc6&52a~12cosu!1/2uêu1v& ~A21!

and

uc7&5 ib~12cosu!1/2uêu1v&. ~A22!
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APPENDIX B: RELAYED STATES OF THE CARRIER

The effect of Eve’s measurement process on the in
carrier and probe states can be represented by the te
product projection operators

P05I ^ ~ uy&^yu!5I ^ F10G@1 0#5I ^ F10 0
0G ~B1!

and

P15I ^ ~ ux&^xu!5I ^ F01G@0 1#5I ^ F00 0
1G . ~B2!

Here we have used Eq.~37! and I is the unit operator in the
carrier space.

The probability amplitudeu00& that Eve measures a 0 with
her information-maximizing measurement when Alice sen
a 0 may be determined from the projection

P0uf18&5u00& ^ uy&. ~B3!

Proceeding to evaluate the left-hand side of Eq.~B3!, using
Eqs.~B1!, ~35!, ~41!, and~42!, one obtains

P0uf18&5I ^ F10 0
0G S auu& ^ Fcosg

sing G1buv& ^ F sing
cosg G D .

~B4!

Equation~B4! reduces to

P0uf18&5~a cosguu&1b singuv&) ^ uy& ~B5!

and therefore, comparing Eq.~B5! with Eq. ~B3!, one obtains

u00&5a cosguu&1b singuv&. ~B6!

Similarly, the probability amplitudeu10& that Eve measures
1 when Alice sends a 0 isdetermined by

P1uf18&5u10& ^ ux&, ~B7!

from which it follows that

u10&5a singuu&1b cosguv&. ~B8!

Also, the probability amplitudeu01& that Eve measures a
when Alice sends a 1 isdetermined by

P0uf28&5u01& ^ uy&, ~B9!

which yields

u01&5b cosguu&1a singuv&. ~B10!

Finally, the probability amplitudeu11& that Eve measures a
when Alice sends a 1 isdetermined by

P1uf28&5u11& ^ ux& ~B11!

and therefore

u11&5b singuu&1a cosguv&. ~B12!
l
or-

s

Equations~B6!, ~B8!, ~B10!, and~B12! are the four possible
perturbed states resulting from the perturbation by Eve
states on their way from Alice to Bob.

APPENDIX C: ERROR RATES

If we denote byr , w, and i , respectively, the number o
generic measurement results that are right, wrong, and in
clusive, then the error rateq before inconclusive results ar
discarded is clearly given by

q5
w

w1r 1 i
. ~C1!

Also, the error rateQ after inconclusive results are discarde
is

Q5
w

w1r
~C2!

and the rateR of inconclusive results is

R5
i

w1r 1 i
. ~C3!

Using Eqs.~C1!–~C3!, we find that

Q5
q

12R
, ~C4!

as in Ref.@1#.
Bob’s error rateq, before inconclusive results are dis

carded, is

q5 (
«50,1

p~0,«,1!5 (
«50,1

p~1,«,0!. ~C5!

Substituting Eqs.~62! and ~65! into Eq. ~C5!, one obtains

q5b2@12sin~2a!#. ~C6!

Bob’s rateR of inconclusive results is

R5 (
«50,1

p~0,«,?!5 (
«50,1

p~1,«,?!, ~C7!

which with Eqs.~63! and ~66! becomes

R5@a21b212ab sin~2g!#sin~2a!. ~C8!

Therefore, substituting Eqs.~C6! and~C8! into Eq. ~C4! and
using the unitarity relation~48!, one obtains the error rateQ
in the Alice-Bob channel

Q5
b2

a21b2 . ~C9!

Equations~C6!, ~C8!, and~C9! all agree with Ref.@1#.
The error rateQAE in the Alice-Eve channel, after incon

clusive results are discarded, is given by
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QAE5

(
b50,1

p~0,1,b!

(
b50,1

@p~0,1,b!1p~0,0,b!#

. ~C10!

Equivalently, Eq.~C10! can be written as

QAE5

(
b50,1

p~0,1,b!

12 (
«50,1

p~0,«,?!

. ~C11!

We give the numerator in Eq.~C11! the nameqAE :

qAE5 (
b50,1

p~0,1,b!. ~C12!

Then substituting Eqs.~C12! and ~C7! into Eq. ~C11!, one
has

QAE5
qAE

12R
. ~C13!

Next, substituting Eqs.~64! and ~65! into Eq. ~C12!, one
obtains

qAE5~a2sin2g1b2cos2g!@12sin~2a!#. ~C14!

Equations~C12! and ~C14! correct Eq. ~35! of Ref. @1#,
which is erroneous. Next, substituting Eqs.~C14! and ~C8!
into Eq. ~C13! and using the unitarity relation~48!, one ob-
tains

QAE5Q cos2g1~12Q!sin2g, ~C15!

in agreement with Ref.@1#.
The error rateqBE in the Bob-Eve channel, before incon

clusive results are discarded, is

qBE5 (
a50,1

p~a,0,1!, ~C16!

or substituting Eqs.~62! and ~68!, we obtain

qBE5~a21b2!@12sin~2a!#sin2g. ~C17!

Also, one has for the error rate in the Bob-Eve channel, a
inconclusive results are discarded,

QBE5
qBE

12R
, ~C18!

or substituting Eq.~C17! and ~C8! and using the unitarity
relation ~48!, we obtain

QBE5sin2 g. ~C19!

Equations~C17! and ~C19! also agree with Ref.@1#.
r

APPENDIX D: USEFUL PARAMETRIZATION
OF ERROR RATES

From the unitarity relations~47! and ~48! it follows that

sin~2g!5~12a22b2!~a21b212a2b22a42b4!21

~D1!

and

15a21b212ab~a21b2!21@sin~2a!22ab#. ~D2!

Also, from Eq.~C9! one obtains

b56S Q

12QD 1/2

a. ~D3!

@A physical choice of sign in Eq.~D3! is determined below.#
Next, substituting Eq.~D3! into Eq. ~D2!, one gets

uau5~122Q!21~12Q!1/2$172@Q~12Q!#1/2 sin~2a!%1/2,
~D4!

and substituting Eq.~D4! into Eq. ~D3!, one also has

ubu5~122Q!21Q1/2$172@Q~12Q!#1/2 sin~2a!%1/2.
~D5!

Using Eqs.~D4!, ~D5!, and~D1!, one then obtains

sin~2g!

5
2Q~12Q!7@Q~12Q!#1/2 sin~2a!

@Q~12Q!#1/2 sin~2a!$2@Q~12Q!#1/2 sin~2a!71%
.

~D6!

In order to make a physical sign choice in Eq.~D6!, we first
require for the physical angleg that

sin2~2g!,1, ~D7!

which, together with Eq.~D6!, requires

u2Q~12Q!7@Q~12Q!#1/2 sin~2a!u

,u@Q~12Q!#1/2 sin~2a!$2@Q~12Q!#1/2

3sin~2a!71%u. ~D8!

But for the physical error rateQ one requires

0,Q,1 ~D9!

and for physical anglea one also requires

0<a<p/4. ~D10!

If one chooses the1 sign of 7 in Eq. ~D8!, then because o
Eqs.~D9! and ~D10!, Eq. ~D8! becomes

2@Q~12Q!#1/21sin~2a!,2@Q~12Q!#1/2 sin2~2a!

1sin~2a! ~D11!

or, equivalently,

sin2~2a!.1, ~D12!
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which is unphysical for physical anglea. Therefore, one
must choose the2 sign of 7 in Eqs.~D8! and~D6!, as well
as in Eqs.~D4! and ~D5!. Thus Eq.~D6! becomes

sin~2g!

5
2Q~12Q!2@Q~12Q!#1/2 sin~2a!

@Q~12Q!#1/2 sin~2a!$2@Q~12Q!#1/2 sin~2a!21%
.

~D13!

The angleg may be taken to be in the range

0<g<p/4. ~D14!

One also has the following trigonometric identities expres
in terms of Eq.~D13!:

cos2g5 1
2 1 1

2 @12sin2~2g!#1/2 ~D15!
ev

s,

n,

ry
d

and

sin2g5 1
2 2 1

2 @12sin2~2g!#1/2. ~D16!

Next, substituting Eqs.~D15!, ~D16!, and ~D13! into Eqs.
~C15! and ~C19! and using Eq. ~73!, it follows that
@21,27,28#

QAE~Q,u!5 1
2 2~ 1

2 2Q!@12F~Q,u!2#1/2 ~D17!

and

QBE~Q,u!5 1
2 2 1

2 @12F~Q,u!2#1/2, ~D18!

where

F~Q,u!5
2@Q~12Q!#1/2 secu21

2@Q~12Q!#1/2 cosu21
. ~D19!
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