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Statistical inference, distinguishability of quantum states, and quantum entanglement
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~Received 23 June 1997!

We argue from the point of view of statistical inference that the quantum relative entropy is a good measure
for distinguishing between two quantum states~or two classes of quantum states! described by density matri-
ces. We extend this notion to describe the amount of entanglement between two quantum systems from a
statistical point of view. Our measure is independent of the number of entangled systems and their dimension-
ality. @S1050-2947~97!01112-8#

PACS number~s!: 03.65.Bz, 89.70.1c, 89.80.1h
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Recent work has taught us that Bell’s inequalities are
always a good criterion for distinguishing entangled sta
~i.e., those possessing a degree of quantum correlati!
from disentangled states@1#. This discovery has initiated
much work in quantum information theory~e.g., @2,3#! par-
ticularly concerning the search for a measure of the amo
of entanglement contained within a given quantum state@4–
6#. In a recent Letter@6# we presented conditions that an
measure of entanglement has to satisfy. This was motiv
by the fact that local actions, combined only with classi
communications, should not be able to increase the am
of entanglement@4–6#. In @6# we defined our measure as th
minimal distance of an entangled state to the set of dis
tangled states. This distance function~not necessarily a met
ric! could, for example, be satisfied by the quantum relat
entropy ~to be defined later! and by the Bures metric~for
definition see, e.g.,@7#!. Our measure of entanglement w
derived from the abstract idea of closest approximat
rather than from intuitive physical grounds. In this paper
start from an entirely different point of view and derive
measure of entanglement from the idea of distinguishing
quantum states starting from classical information theory@8#.
We find that these insights lead to the same measure o
tanglement as in@6# ~but now the quantum relative entropy
picked out from among the possible measures of ‘‘d
tance’’!. This corroborates the results of@6# and puts them on
a firm statistical basis allowing experimental tests to de
mine the amount of entanglement.

In order to understand our argument in the quantum c
we must first describe its classical counterpart. Suppose
we are asked to distinguish between two probability dis
butions, taken for simplicity to be discrete. Say that we ha
either a fair coin with a 50-50 head-tail probability distrib
tion or an unfair coin with 70-30 head-tail probability distr
bution. We are allowed to toss asinglecoin N times and we
want to know which one it is. To be more general, let us s
that we have a dichotomic variable with the distribution
probabilitiesp(1)5p andp(0)512p. The probability that
from N experiments~trials! we obtainn 1’s and (N2n) 0’s
is given by the binomial distribution

PN~n!5S N
n D pn~12p!N2n. ~1!

This can be written as
561050-2947/97/56~6!/4452~4!/$10.00
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PN~n!5exp$ ln PN~n!%5expH ln S N
n D pn~12p!N2nJ .

~2!

However, using Stirling’s approximation for large numbe
the exponent can be considerably simplified:

ln S N
n D pn~12p!N2n52NH n

N
ln

n

N
1S 12

n

ND ln S 12
n

ND
1

n

N
ln p1S 12

n

ND ln ~12p!J .

~3!

Now the quantityn/N is our measuredfrequency of 1’s and
likewise 12n/N is themeasuredfrequency of 0’s inN tri-
als. The probabilities that we infer from this distribution a
given by the maximum likelihood estimate@8# pin f(1)5n/N
andpin f(0)512n/N. These are, in general, different fromp
and 12p. The crucial question we wish to ask, therefore,
What is the probability that afterN trials our inferred prob-
abilities areq and 12q if the experiment was done using
system having ‘‘true’’ probabilitiesp and 12p? In the light
of the coin example we ask: What is the probability
wrongly inferring that we have a fair coin when in fact th
70-30 unfair one was used in the experiments? Clearly,
answer is given by replacingn/N by q in Eq. ~3!. The result
in the large-N limit is

PN~p→q!5e2NS~quup!, ~4!

where

S~quup!:5$q ln q1~12q! ln ~12q!

2q ln p2~12q! ln ~12p!% ~5!

is the so-called relative entropy, or the Kullback-Leibler d
tance@5,6,8,9# between the binary distributionsp andq. In
general, it is easy to see that the probability to confus
distribution$p%1

M with $q%1
M in N measurements is given b

PN~p→q!5expS 2N(
i

qi ln qi2qi ln pi D . ~6!
4452 © 1997 The American Physical Society
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As the relative entropy is an asymmetric quantity a natu
question to ask is: Why is the probability of confusingp with
q different from the probability of confusingq with p? The
following simple ‘‘coin’’ example will explain this. Suppose
we have a fair coin and a completely unfair coin~two heads,
for example!. Suppose we have to decide which one it is, b
we are allowed to doN experiments on onlyone, of course
unknown-to-us, coin. So say we are tossing the unfair c
Then as heads is the only possible outcome, we will ne
confuse the unfair coin with the fair one, as after each t
the inferred probabilities will bep(head)51 andp(tail)50.
This is in fact corroborated by our formula in Eq.~6! as
e2`50. On the other hand, suppose we are tossing the
coin: Then after the first outcome, which could equally
heads or tails, we have a probability of 1/2 of confusing
coins ~i.e., if the head shows up we will make the wron
inference, whereas if the tail shows up it will be the rig
inference!. This also follows from Eq.~6! as e2 ln 251/2
~note that here the formula is correct even forN small!.

The central aim for us in this paper is to generalize t
idea to distinguish~or, equivalently confuse! two quantum
states that are completely described by their density matri
To that end, suppose we have two statess andr. How can
we distinguish them? We can choose a positive operator
ued measure~POVM! ( i 51

M Ai51 that generates two distri
butions via

pi5tr Ais, ~7!

qi5tr Air ~8!

and use classical reasoning to distinguish these two distr
tions. However, the choice of POVM’s is not unique. It
therefore best to choose that POVM which distinguishes
distributions most, i.e., for which the relative entropy is lar
est. Thus we arrive at the quantity

S1~suur!:5 supFAS (
i

tr Ais ln tr Ais

2 tr Ais ln tr Air D G ,
where the supremum is taken over all POVM’s. The abov
not the most general measurement that we can make, h
ever. In general, we haveN copies ofs andr in the state

~9!

~10!

We may now apply a POVM( iAi51 acting onsN andrN.
Consequently, we define a different type of relative entro
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SN~suur!:5 supFAS 1

N(
i

tr Ais
N ln tr Ais

N

2 tr Ais
N ln tr Air

ND G . ~11!

Now it can be shown that@10#

S~suur!>SN , ~12!

where

S~suur!:5tr~s ln s2s ln r! ~13!

is the quantum relative entropy@5,6,9–12# ~for a summary of
the properties of quantum relative entropy see@13#!. Equality
is achieved in Eq.~12! if and only if s andr commute@14#.
However, for anys andr it is true that@15#

S~suur!5 lim
N→`

SN .

In fact, this limit can be achieved by projective measu
ments that are independent ofs @16#. From these consider
ations it would naturally follow that the probability of con
fusing two quantum statess and r ~after performingN
measurements onr) is ~for largeN)

PN~r→s!5e2NS~suur!. ~14!

We would like to stress here that classical statistical reas
ing applied to distinguishing quantum states leads to form
~14!. There are, however, other approaches. Some take
~14! for their starting point and then derive the rest of t
formalism thenceforth@15#. Others, on the other hand, a
sume a set of axioms that are necessarily satisfied by
quantum analog of the relative entropy~e.g., it should reduce
to the classical relative entropy if the density operators co
mute, i.e., if they are ‘‘classical’’! and then derive Eq.~14! as
a consequence@10#. In any case, as we have argued he
there is a strong reason to believe that the quantum rela
entropyS(suur) plays the same role in quantum statistics
the classical relative entropy plays in classical statistics
simple example with a ‘‘quantum coin’’ will clarify this
point further@17#. Let us suppose that we have to distingui
between a pure, maximally entangled Bell sta
uf1&5(u00&1u11&)/A2 and a mixture r5(u00&^00u
1u11&^11u)/2. Again, we have to decide which state we ha
by performingN experiments of our choice on it. In this cas
we choose to perform projections onto the sta
uf1&5(u00&1u11&)/A2. Then if the stater is in our posses-
sion, we will be successful only 50% of the time@the other
50% of the time we will obtain the orthogonal Bell sta
uf2&5(u00&2u11&)/A2#. So, if we perform a single experi
ment we have a 1/2 chance of making the wrong inferen
If, on the other hand, we haveuf1&, we will never confuse it
with r since we are projecting onto the state itself that
ways gives a positive result. This is in direct analogy w
the classical coin example and is, in addition, confirmed
Eq. ~14!. In general, however, the states that we have
distinguish will not be as simple as those above. Then
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would have to find the most optimal measurement to dis
guish between given states in order to reproduce Eq.~14!
from Eq. ~11!.

Now we wish to use the above reasoning to quantify
tanglement. Entanglement may be understood asthe distin-
guishability of a given state from all entirely disentangl
ones. The question is then, in the spirit of the above disc
sion, as follows: What is the probability that we confuse
given state with a disentangled one after performing a t
of N measurements? The less the state is entangled
easier it is to confuse it with a disentangled one and v
versa. Thus the probability to confuses with a disentangled
state, having performedN experiments onrPD, is of the
form

e2NE~s!, ~15!

where E(s) is the entanglement~obviously, if E50, then
the state is indistinguishable from a disentangled one sin
is disentangled itself!. In comparison with Eq.~14!, we de-
fine E(s) to be

E~s!:5min
rPD

S~suur!, ~16!

whereD is the set of all disentangled states. So for the
tanglement ofs we use the quantum relative entropy wi
that disentangledr which is the mostindistinguishablefrom
s. Obviously, the greater the entanglement of a state,
smaller the chance of confusing it with a disentangled s
in N measurements. Note that Eq.~16! is the same measur
as that suggested in our previous Letter@6#. There we
showed that the Bures metric, when used instead ofS(suur),
would also be a good measure of entanglement. Howe
the Bures distance is a symmetric quantity and arises f
different statistical consideration from those used above~see
@7# for an overview!. Thus, depending on the way we deci
to make our measurements, we obtain different ways of c
paring the results~i.e., different ‘‘distances’’ between prob
ability distributions!, which in turn determine our entangle
ment measure@more correctly, the quantity that is to replac
S(suur) in Eq. ~16!#. The convention that we use here a
sumes performing measurements onr. We could, of course,
envisage making measurements ons, in which case our
measure of entanglement would beE(s):5minrPDS(ruus).
However, fors being, for example, a maximally entangle
Bell state, this quantity would be infinite. This agrees w
our statistical interpretation that a Bell state, when meas
ments are performed on it, could never be confused wit
disentangled state and Eq.~15! gives probability zero of con-
fusion. However, in order to avoid dealing with physica
undesired infinite amount of entanglement we keep to
convention given in Eq.~16!.

We see that the above treatment does not refer to
number~or indeed dimensionality! of the entangled systems
This is a desired property as it makes our measure of
tanglement universal. However, in order to perform minim
zation in Eq.~16! we need to be able to define what we me
by a disentangled state of, say,N particles. As pointed out in
@6#, we believe that this can be done inductively. Namely,
two quantum systemsA1 and A2 we define a disentangle
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state as one that can be written as a convex sum of di
tangled states ofA1 andA2 as @3,6,18#

r125(
i

pi r i
A1^ r i

A2 , ~17!

where( i pi51 and thep’s are all positive. Now, forN en-
tangled systemsA1 ,A2 , . . . ,AN , the disentangled state is

r12•••N5 (
perm$ i 1i 2••• i N%

r i 1i 2••• i N
rAi 1

Ai 2
•••Ai n^ rAi n11

Ai n12
•••Ai N,

~18!

where ( perm$ i 1i 2••• i N%r i 1i 2••• i N
51, all r ’s are positive, and

( perm$ i 1i 2••• i N% is a sum over all possible permutations of t

set of indices$1,2, . . . ,N%. To clarify this let us see how this
looks for four systems

r12345(
i

pi r i
A1A2A3^ r i

A41qi r i
A1A2A4^ r i

A31r i r i
A1A3A4

^ r i
A21si r i

A2A3A4^ r i
A11t i r i

A1A2^ r i
A3A41ui r i

A1A3

^ r i
A2A41v i r i

A1A4^ r i
A2A3 , ~19!

where, as usual, all the probabilitiespi ,qi , . . . ,v i are posi-
tive and add up to unity. Equations~18! and~19!, at least in
principle, define the disentangled states for any numbe
entangled systems. In practice, unfortunately, this might s
not be enough to minimize the relative entropy to obtain
amount of entanglement. So far a good criterion for deco
position into the above form exists for two particles on
when either both are spin 1/2 or one is spin 1/2 and the o
one is spin 1@3,18# ~however, some progress has been ma
by Horodecki@19#!. The above definition of a disentangle
state is justified by extending the idea that local actions c
not increase the entanglement between two quantum sys
@4–6#. In the case ofN particles we haveN parties~Alice,
Bob, Charlie, . . . , Wayne! all acting locally on their sys-
tems. The general action that also includes communicat
can be written as@6#

r→ (
i 1 ,i 2 ,...,I N

Ai 1
^ Bi 2

^ ••• ^ Wi N
r Ai 1

†
^ Bi 2

†
^ ••• ^ Wi N

†

~20!

and it can be easily seen that this action does not alter
form of a disentangled state in Eqs.~18! and ~19!. In fact,
Eq. ~18! is the most general state invariantin form under the
transformation given by Eq.~20!. We suggest this as a defi
nition of a disentangled state forN>3, i.e., it is the most
general state invariant in form under local POVM and cla
sical communications. This definition ofN-particle entangle-
ment means that we say that we do not haveN-particle en-
tanglement even if subsets of theN particles are individually
entangled. We define it this way so that it answers the qu
tion, are allN particles entangled, rather than the question
there any entanglement at all between the particles. If
wanted to answer the latter question, then clearly the de
tion of a disentangledN-particle state would be one tha
could be written as
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r5(
i

pir i
A

^ r i
B

^ ••• ^ r i
W . ~21!

We have in this work derived our previously propos
measure of entanglement from an entirely different persp
tive. The amount of entanglement is now seen as the qua
that determines ‘‘the least number of measurements tha
needed to distinguish a given state from a disentangled on
This therefore strengthens the argument for using Eq.~16! as
a universal measure of entanglement. In addition, it open
m

h

v

.

.

1.
c-
ity
is
.’’

p

the possibility both to understand the meaning of entang
ment from a different, more operational, point of view and
measure the amount of entanglement for more than
quantum systems.
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