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Statistical inference, distinguishability of quantum states, and quantum entanglement
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We argue from the point of view of statistical inference that the quantum relative entropy is a good measure
for distinguishing between two quantum statestwo classes of quantum stateescribed by density matri-
ces. We extend this notion to describe the amount of entanglement between two quantum systems from a
statistical point of view. Our measure is independent of the number of entangled systems and their dimension-
ality. [S1050-294®@7)01112-9

PACS numbg(s): 03.65.Bz, 89.70c, 89.80:+h
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Recent work has taught us that Bell's inequalities are not N
always a good criterion for distinguishing entangled states Pn(n)=exp{In PN(”)}ZeXp{ln (n)p”(l—p)N”].
(i.e., those possessing a degree of quantum correlations 2)
from disentangled statelsl]. This discovery has initiated
much work in quantum information theore.g.,[2,3]) par-  However, using Stirling’s approximation for large numbers,
ticularly concerning the search for a measure of the amounthe exponent can be considerably simplified:
of entanglement contained within a given quantum dtate
6]. In a recent Lettef6] we presented conditions that any n
measure of entanglement has to satisfy. This was motivatedn In (1— N)
by the fact that local actions, combined only with classical
communications, should not be able to increase the amount n n
of entanglementt4—6). In [6] we defined our measure as the +tyihpt ( 1- N) In (1—10)) :
minimal distance of an entangled state to the set of disen-
tangled states. This distance functigt necessarily a met- 3
ric) could, for example, be satisfied by the quantum relative ) )
entropy (to be defined laterand by the Bures metrifor ~ Now the quantityn/N is our measuredrequency of 1's and
definition see, e.g[7]). Our measure of entanglement was likewise 1-n/N is the measuredrequency of 0's inN tri-
derived from the abstract idea of closest approxima’[iorﬁ.ls. The prObabilitieS that we infer from this distribution are
rather than from intuitive physical grounds. In this paper wegiven by the maximum likelihood estimaf&] p;n+(1)=n/N
start from an entirely different point of view and derive a andpi,:(0)=1—n/N. These are, in general, different frqm
measure of entanglement from the idea of distinguishing tw@nd 1—p. The crucial question we wish to ask, therefore, is:
quantum states starting from classical information th¢gfy =~ What is the probability that afteX trials our inferred prob-
We find that these insights lead to the same measure of edbilities areq and 1—q if the experiment was done using a
tanglement as if6] (but now the quantum relative entropy is System having “true” probabilitiep and 1—p? In the light
picked out from among the possible measures of “dis-of the coin example we ask: What is the probability of
tance”). This corroborates the results[@&] and puts them on  wrongly inferring that we have a fair coin when in fact the
a firm statistical basis allowing experimental tests to deter70-30 unfair one was used in the experiments? Clearly, the
mine the amount of entanglement. answer is given by replacing/N by q in Eq. (3). The result

In order to understand our argument in the quantum cas# the largeN limit is
we must first describe its classical counterpart. Suppose that
we are asked to distinguish between two probability distri- Pn(p—q)=e NSdlp), (4)
butions, taken for simplicity to be discrete. Say that we have
either a fair coin with a 50-50 head-tail probability distribu- where
tion or an unfair coin with 70-30 head-tail probability distri-

bution. We are allowed to tosssinglecoin N times and we S(ql|p):={qIng+(1—q) In (1—q)
want to know which one it is. To be more general, let us say
that we have a dichotomic variable with the distribution of —qInp—(1-q) In (1-p)} (5

probabilitiesp(1)=p andp(0)=1—p. The probability that
from N experimentgtrials) we obtainn 1's and (N—n) 0’'s
is given by the binomial distribution

is the so-called relative entropy, or the Kullback-Leibler dis-
tance[5,6,8,9 between the binary distributions andg. In
general, it is easy to see that the probability to confuse a
distribution{p}" with {g}}" in N measurements is given by

N _
Pn(n)= n)p”(l—lo)” ". @)

P —exg -N2 g Ing—q Inp;|. (6
This can be written as N(P—a) exp( E. i N Gi=qiIn pi ©
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As the relative entropy is an asymmetric quantity a natural 1

question to ask is: Why is the probability of confusingyith Sn(allp):= SUF{A(NZ tr Aig" Intr Ajg™
g different from the probability of confusing with p? The '

following simple “coin” example will explain this. Suppose

we have a fair coin and a completely unfair céiwo heads, —tr AoV Intr AiPN)
for exampl@. Suppose we have to decide which one it is, but

we are allowed to ddN experiments on onlpne of course Now it can be shown thdtl0]
unknown-to-us, coin. So say we are tossing the unfair coin.
Then as heads is the only possible outcome, we will never -

confuse the unfair coin with the fair one, as after each trial Stollp)=Sy, 12
the inferred probabilities will b@(head)=1 andp(tail) =0.  \\here

This is in fact corroborated by our formula in E() as

e “=0. On the other hand, suppose we are tossing the fair S(al|p):=tr(c In o0 In p) (13)
coin: Then after the first outcome, which could equally be

heads or ta”s, we have a prObablllty of 1/2 of ConfUSing tth the quantum relative entrom5,6,9_la (for a summary of
coins (i.e., if the head shows up we will make the wrong the properties of quantum relative entropy E&8). Equality
inference, whereas if the tail shows up it will be the rightis achieved in Eq(12) if and only if o andp commute[14].

inferencg. This also follows from Eq.(6) ase™ "?=1/2 However, for anyo andp it is true that[15]
(note that here the formula is correct even foismall).

The central aim for us in this paper is to generalize this S(a||p)= lim Sy.
idea to distinguish(or, equivalently confugetwo quantum N—s o0
states that are completely described by their density matrices.
To that end, suppose we have two stateandp. How can  In fact, this limit can be achieved by projective measure-
we distinguish them? We can choose a positive operator vaments that are independent @f[16]. From these consider-
ued measur¢POVM) =M |A;=1 that generates two distri- ations it would naturally follow that the probability of con-
butions via fusing two quantum states and p (after performingN

measurements op) is (for largeN)

. (11)

pi=tr Ao, (7 Py(p— o) =e NSollo), (14)

qi=tr Ajp (8) We would like to stress here that classical statistical reason-
ing applied to distinguishing quantum states leads to formula

and use classical reasoning to distinguish these two distribf14- There are, however, other approaches. Some take Eq.
tions. However, the choice of POVM's is not unique. It is (14) for their starting point and then derive the rest of the

therefore best to choose that POVM which distinguishes th&rmalism thenceforttj15]. Others, on the other hand, as-
distributions most, i.e., for which the relative entropy is larg-SUme @ set of axioms that are necessarily satisfied by the
est. Thus we arrive at the quantity guantum analog of the relative entrof®g., it should reduce

to the classical relative entropy if the density operators com-
mute, i.e., if they are “classicalj’and then derive Eq14) as
Sy(a||p):= su;{A(E tr Ao Intr Ao a consequencfl0]. In any case, as we have argued here,
i there is a strong reason to believe that the quantum relative
entropyS(a||p) plays the same role in quantum statistics as
the classical relative entropy plays in classical statistics. A
simple example with a “quantum coin” will clarify this
point further[17]. Let us suppose that we have to distinguish
tween a pure, maximally entangled Bell state
y=(]00)+]12))/y2 and a mixture p=(|00)(00
+]11)(11])/2. Again, we have to decide which state we have
by performingN experiments of our choice on it. In this case
_ we choose to perform projections onto the state
oﬂ_w’ ) |¢T)=(|00)+|11))/\2. Then if the state is in our posses-
total of N terms sion, we will be successful only 50% of the tirfitae other
50% of the time we will obtain the orthogonal Bell state
|~ )=(]00)—|11))/2]. So, if we perform a single experi-
ment we have a 1/2 chance of making the wrong inference.
If, on the other hand, we have ™), we will never confuse it
P=pop®. - ®p. with p since we are projecting onto the state itself that al-
m (10 ways gives a positive result. This is in direct analogy with
the classical coin example and is, in addition, confirmed by
We may now apply a POVNE;A, =1 acting ono™ andp. Eq. (14). In general, however, the states that we have to
Consequently, we define a different type of relative entropydistinguish will not be as simple as those above. Then we

—trAjocIntr Aip)

where the supremum is taken over all POVM’s. The above i\fg
not the most general measurement that we can make, ho
ever. In general, we have copies ofg andp in the state
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would have to find the most optimal measurement to distinstate as one that can be written as a convex sum of disen-
guish between given states in order to reproduce (E4. tangled states of; andA, as[3,6,1§
from Eq. (11).

Now we wish to use the above reasoning to quantify en- =3 Al Ay 1
tanglement. Entanglement may be understoothasdistin- P12= 24 Pi P ®P; 7 (17
guishability of a given state from all entirely disentangled
ones The question is then, in the spirit of the above discuswhere=;p;=1 and thep’s are all positive. Now, folN en-

sion, as follows: What is the probability that we confuse atangled system#, ,A,, ... Ay, the disentangled state is
given state with a disentangled one after performing a total

of N measurements? The less the state is entangled, the _ > AA A A A LA
easier it is to confuse it with a disentangled one and vice’12 ~N™ & Figipr iy 2 @ pTineatinz i,
versa. Thus the probability to confusewith a disentangled (18
state, having performetl experiments orpe D, is of the

form whereEpemﬁliz...iN}riliz...iN=1, all r’'s are positive, and

2 pern{iyiy iy} is a sum over all possible permutations of the

—NE(o
e NE, (19 get of indiceq1,2, ... N}. To clarify this let us see how this

. ) , looks for four systems
where E(o) is the entanglemenbviously, if E=0, then

the state is indistinguishable from a disentangled one since it AAA A AAA, A AAA
is disentangled itself In comparison with Eq(14), we de- 131234:2i Pi o ®p g o @ p B o
fine E(o) to be

A AsAzA, A A A AzA AA
. ®pi2+sipi234®pi1+ti pil 2®Pi34+uipi13
E(o):=minS(a||p), (16)
peD ®pf2A4+vi piA1A4®piA2A3. (19
whereD is the set of all disentangled states. So for the enwhere, as usual, all the probabilities,q; , . . . v; are posi-

tanglement ofc we use the quantum relative entropy with tive and add up to unity. Equatiori8) and(19), at least in
that disentangleg which is the mostndistinguishablefrom  principle, define the disentangled states for any number of
o. Obviously, the greater the entanglement of a state, thentangled systems. In practice, unfortunately, this might still
smaller the chance of confusing it with a disentangled stat@ot be enough to minimize the relative entropy to obtain the
in N measurements. Note that E36) is the same measure amount of entanglement. So far a good criterion for decom-
as that suggested in our previous Let{&l. There we position into the above form exists for two particles only,
showed that the Bures metric, when used instea®(of|p),  when either both are spin 1/2 or one is spin 1/2 and the other
would also be a good measure of entanglement. Howevenne is spin 13,18] (however, some progress has been made
the Bures distance is a symmetric quantity and arises frorby Horodecki[19]). The above definition of a disentangled
different statistical consideration from those used aligee state is justified by extending the idea that local actions can-
[7] for an overview. Thus, depending on the way we decide not increase the entanglement between two quantum systems
to make our measurements, we obtain different ways of con4—6]. In the case ofN particles we haveéN parties(Alice,
paring the resultsi.e., different “distances” between prob- Bob, Charlig. .., Wayne all acting locally on their sys-
ability distributiong, which in turn determine our entangle- tems. The general action that also includes communications
ment measurégmore correctly, the quantity that is to replace can be written a§6]
S(a||p) in Eq. (16)]. The convention that we use here as-
sumes performing measurementsgn/Ne could, of course,
envisage making measurements an in which case our iy
measure of entanglement would Béo):=min,_pS(p|| 7). (20)
However, foro being, for example, a maximally entangled
Bell state, this quantity would be infinite. This agrees withand it can be easily seen that this action does not alter the
our statistical interpretation that a Bell state, when measurgorm of a disentangled state in Eq4.8) and (19). In fact,
ments are performed on it, could never be confused with &d. (18) is the most general state invariantform under the
disentangled state and EJ5) gives probability zero of con- transformation given by Eq20). We suggest this as a defi-
fusion. However, in order to avoid dealing with physically nition of a disentangled state fiv=3, i.e., it is the most
undesired infinite amount of entanglement we keep to thgeneral state invariant in form under local POVM and clas-
convention given in Eq(16). sical communications. This definition dI-particle entangle-
We see that the above treatment does not refer to theent means that we say that we do not halvparticle en-
number(or indeed dimensionali}yof the entangled systems. tanglement even if subsets of tNeparticles are individually
This is a desired property as it makes our measure of erentangled. We define it this way so that it answers the ques-
tanglement universal. However, in order to perform minimi-tion, are allN particles entangled, rather than the question, is
zation in Eq.(16) we need to be able to define what we meanthere any entanglement at all between the particles. If we
by a disentangled state of, sdy particles. As pointed out in wanted to answer the latter question, then clearly the defini-
[6], we believe that this can be done inductively. Namely, fortion of a disentangledN-particle state would be one that
two guantum systemé,; and A, we define a disentangled could be written as

® oW, pAleBl o - oW
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A B w the possibility both to understand the meaning of entangle-
P=Z Pipi ®pi ®- - ®p;j . (21) ment from a different, more operational, point of view and to
! measure the amount of entanglement for more than two
guantum systems.
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