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Renormalized perturbation theory by the moment method for degenerate states
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We apply renormalized perturbation theory by the moment method to an anharmonic oscillator in two
dimensions with a perturbation that couples unperturbed degenerate states. The method leads to simple recur-
rence relations for the perturbation corrections to the energy and moments of the eigenfunction. We generalize
the approach and systematize its application to excited s{&&650-294{@7)10310-9

PACS numbds): 03.65.Ge

[. INTRODUCTION strict considerably the applicability of the method.
Fernandez[20] and Fernadez and Morale§21] showed
Perturbation theory without a wave function is one of thehow to apply perturbation theory by the moment method to
simplest and most efficient ways to calculate of perturbatiorfiegenerate states, and calculated the splitting of several en-
corrections of large order to the energies of quantumergies of the hydrogen atom in electric and magnetic fields.
mechanical problems. Swenson and Danfétthdeveloped Later, Fernadez and Ogilvig22] applied this approach to
the first such method, which was based on the application Gtnharmonic oscillators to illustrate the treatment of degener-
the hypervirial and Hellmann-Feynman theorems. Later Kill-ate states coupled by the perturbation, thus overcoming the
ingbeck[2] rederived the main equations in a clearer waydifficulties pointed out by Witwif15]. They obtained ana-
and the method became popular because of its simplicity anitic expressions for the corrections to the energy of the low-
because it yields perturbation corrections to a representativ@St states of the two-dimensional anharmonic oscillator
energy eigenvalue in terms of the quantum numiginsre-
views see some of the references bel@w]). At present H=Hy+xH",
this approach is only applicable to completely separable
problems. 2 5
Ader [5] developed a perturbation theory for nondegener- H,= — et +x2+y?, H'=ax*+by*+2cx%y2,
ate states based on recurrence relations for the moments of y
the wave function, and applied it to central-field problems in (1)
the framework of the T} expansionP being the number of . )
spatial dimensions. Blankeubeclet al. [6] generalized the The energy eigenvalugsy’=2(N+1), N=0,1,... of the
recurrence relations in order to treat anharmonic oscillator§nperturbed HamiltoniarH, are (N+1)-fold degenerate.
in one and two dimensions nonperturbatively. Whena=b the operatoH is invariant under the exchange
Fernandez and Castrp7] proposed a perturbative version X<y, and because of this high symmetry the perturbation
of this approximation that proved useful to treat the hydro-does not couple the unperturbed states, which can therefore
gen atom in magnetic and electric fielf4,7,8—11, and be treated as if they were nondegenerate. Previous simpler
pointed out its application to coupled anharmonic oscillatorgreatments of this model were restricted to this particular
[9]. case[13,15-17. On the other hand, if we allowm#b the
Rediscovering this method, Killingbeckt al. [12] and  perturbation breaks the degeneracy at first order of perturba-
Killingbeck and Joneq13] applied it to one- and two- tion theory, giving rise to a richer and more interesting ap-
dimensional anharmonic oscillators, respectively. Witwitplication of the moment method.
[14-17 recently used this approach extensively, in combi- It is our purpose to round off the application of perturba-
nation with the renormalization method proposed by Killing- tion theory without a wave function to anharmonic oscilla-
beck [18,19, to calculate accurate eigenvalues of anhariors by means of an approach that gives a renormalized series
monic oscillators and other quantum-mechanical modelsfor the most general and difficult cases of degenerate states.
Those applications of perturbation theory by the moment
method rely, in some way or another, on symmetry to avoid
the explicit treatment of degeneracy. For instance, Witwit
[15] stated that a successful application of the moment
method requires a certain relationship between coefficients in Because the perturbation series in powersadfor the
the potential-energy function of a particular anharmonic osanharmonic oscillatof1) is divergent[23], we look for a
cillator in two dimensions. Such symmetry conditions re-convergent renormalized serigk8,19, writing
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In the application of perturbation theory we consigeto be -10
independent ok and invoke Eq.3) just at the end of the -11
calculation[18,19. Here we choosa =1. i
In order to apply perturbation theory by the moment
method we first derive a recurrence relation for the moment '1310 15 20 o5 30 B oQ w0
of an eigenfunction¥ of the Hamiltonian operatdd. Such

a recurrence relation is a convenient substitute for the Schro

dinger equation and follows from FIG. 1. Convergence of the renormalized series towardexhe

act variational result€, ,, given by the Rayleigh-Ritz method. The
(Hf|y)—E(f|¥)=0, (4) figure shoyvs error, which is equal to lg{{Sy-Eya)/Eval, vSQ for
the following four cases(a) a=1.0,b=2.0,c=1.0,v=0, (b) a
whereE is the eigenvalue and the functighis chosen so =1.0,b=2.0,c=1.0,0=39,(c) a=1.0,b=5.0,¢=1.0,0=0, (d)
that the momentf| ) exists. In the case of the renormalized 28=1.0,b=5.0,c=1.0,0=39, wherev is the quantum number of
Hamiltonian operatof2) we substitute the anharmonic oscillator.

ment method. Given the potential parametarsh, andc,
» mn=01,... (5  and the renormalization paramefgifor a quantum number
N, the program computes the coefficients of the perturbation
for f in Eq. (4) thus obtaining a recurrence relation for the series. We contrasted the eigenvalues thus obtained with
momentsF ,, ,={(f ./ ¥). Substitution of the series those coming from diagonalization of the Hamiltonian ma-
trix in a sufficiently large basis of eigenfunctions bf,
< <o (Rayleigh-Ritz methodfor the required accuracy. In all the
E=i20 EON, Fm,n:iZO Flon\' (6)  cases considered here the agreement between variational and
renormalized perturbation results was remarkable.

into the recurrence relation for the moments gives us an ex- An efficient calculation of the energy eigenvalues by
pression from which we obtain all the coefficierg®) and ~ Means of perturbation theory requires a routine for the esti-

fon= xmy”exp{ - % (x2+y?)

F%)n, [22]. In the present case the perturbation is a particula atior) of th_e optimum value gb. ]n .the present paper we
: ave investigated several prescriptions for it. A successful
case of ; o . o
approach is based on the principle mfnimum sensitivity
sinceE is independent o8 one consequently requires that
H = 2 Cr,sxryS (7)
rs (9
ey 10
that leads to B
2(m+n—N)uF® =m(m-1)FP, +n(n—1)FP From straightforward differentiation of the equations of the

o theory given above one easily obtains the derivative of each
o B term of the partial sun{10). We obtained the roots of Eq.
+]241 E(p)Fﬁ,ﬁn”—rEs Cr,sFmrl}ws (10) by means of bracketing plus secant methii§.
' Alternatively, we may choose the value gfthat mini-
+,8[F§Tﬁ’;§2,+ F%P’HPZ]_ (8)  mizes the sum of the squares of the last two or three pertur-
bation corrections in a given partial sum. This approach does
The aim of renormalization is to determine a valug®f not require the calculation of derivatives and, when com-
that renders the sequence of partial sums bined with an efficient one-dimensional minimization routine
[24], it turns out to be faster than the previous procedure,

e . giving similar results. Here we chose the latter strategy.
SQ(’B):iZO EV(BN 9) The rate of convergence of the renormalized series is re-
markable as shown in Fig. 1 for four different cases, and for
convergent ag— < [18,19. Q=40 (we have joined the points by lines to guide the)eye

It is clear that the partial sums wit@=40 are sufficiently
accurate for most purposes.
In Table | we show results for some of the lowest states of
We have systematically extended the procedure devekhe oscillator (1) with parametersa=1, b=2, andc=1.
oped by Fernadez and Ogilvig22] and written a computer More precisely, Table | displays the actual quantum number
code for the application of perturbation theory by the mo-for the anharmonic oscillatar, the quantum numbex for

Ill. NUMERICAL RESULTS
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TABLE |. Lowest-energy eigenvalues of the anharmonic oscil- TABLE Il. The same as in Table | foa=1.0, b=5.0, andc
lator with potential parametes=1.0, b=2.0, andc=1.0.v de- =1.0.
notes the actual quantum number and the error is given by

10910/(Si9— Eva)/Eval, WhereE,,, is the corresponding eigenvalue v N Sio Error B
computed by the Rayleigh-Ritz variational method.
0 0 3.525046 025155 —6.61 20.9818
v N Sio Error B8 10 4 21.493038209415 -—7.88 25.1122
20 6 32.057 608 308 247 —9.43 25.8197
o 0 3.143959310272  —10.89  12.4056 30 8  43450550577336 —862  27.9505
10 4 20189989356111 -1202  14.5267 39 9 49915488242353 -—7.81  27.0820
20 5 30.655399 874247 —11.49 16.4276
30 6 37.604 833946509 —11.08 17.0545
39 8

44702589 229 227  —12.49 17.1684 The present results show that perturbation theory by the
moment method is a powerful and straightforward approach
for the calculation of accurate energies of nonseparable
the separable, unperturbed problem, the energy eigenval@antum-mechanical systems with polynomial perturbations.
computed with the perturbation series through order 40, thd he main advantage of the moment method is the simplicity
error in the computed perturbative result with respect to thé@f its recurrence relations and the absence of explicit inte-
variational eigenvame, and the optimum Va|ue[3)ﬁeter- grals for the matrix elements. This feature becomes most
mined by minimization. We conclude that the method yieldsdesirable in the case of a nonpolynomial potential-energy
eigenvalues that are accurate enough for most practical pufunction if one expands it in a Taylor series around its mini-
poses. The accuracy of the results for a given set of potentidhum before the application of perturbation theory. Present
parameters appears to be almost independent of the quantugfults suggest that perturbation theory by the moment
number, so that one expects similar results for higher state§lethod may be practical to treat highly excited states and
On the other hand, the accuracy of the method decreases B¥re complicated perturbations, as those taking place in
the anharmonicity of the potential increases, as expected f¢nore realistic models for the study of vibrations in poly-
a perturbative approadisee below. atomic molecule$25].

In Table Il we show the eigenvalues of the anharmonic
oscillator with potential parametes=1, b=5, andc=1,

. . ACKNOWLEDGMENT

which lead to a more asymmetric potent{fdr the present

model, the asymmetry is proportional o—a|). Compari- One of the authoréM.R.) thanks Comisio de Investiga-
son of both tables reveals the decrease in accuracy alreadiones Cienficas(CIC) de la Provincia de Buenos Aires for

mentioned before. financial support.

[1] R. J. Swenson and S. H. Danforth, J. Chem. PBy%.1734  [12] J. Killingbeck, M. N. Jones, and M. J. Thompson, J. Phys. A

(1972. 18, 793(1985.
[2] J. Killingbeck, Phys. Lett65A, 87 (1978. [13] J. Killingbeck and M. N. Jones, J. Phys.1®, 705(1986.
[3] F. M. Fernadez and E. A. Castrdjypervirial TheoremsLec-  [14] M. R. M. Witwit, J. Phys. A24, 3053(1991).

ture Notes in Chemistry Vol. 48Springer, Berlin, 1981 [15] M. R. M. Witwit, J. Phys. A24, 4535(1991).

[4] G. A. Arteca, F. M. Fernadez, and E. A. Castrdarge Order [16] M. R. M. Witwit, J. Math. Phys33, 4196(1992.
Perturbation Theory and Summation Methods in Quantum Me[17] M. R. M. Witwit, J. Math. Phys36, 187 (1995.
chanics Lecture Notes in Chemistry Vol. 5&pringer, Berlin, [18] J. Killingbeck, J. Phys. A4, 1005(1981).

1990. [19] J. Killingbeck, J. Phys. B4, L461 (198)).
[5]J. P. Ader, Phys. Letb7A, 178(1983. 20] F. M. Ferriadez, J. Phys. /25, 492 (1992.

[6] R. Blankenbecler, T. DeGrand, and R. L. Sugar, Phys. Rev. I% .
21] F. M. Fernamdez and J. A. Morales, Phys. Lett. ¥65 314
21, 1055(1980. 1 4 5

, (1992.
71 Zéy ('1222”“‘162 and E. A. Castro, Int. J. Quantum Che@8. ) - /" co ez and 3. F. Ogilvie, Phys. Lett. A78 11
[8] G. A. Arteca, F. M. Fernadez, A. M. Mesa, and E. A. Cas- (199,3'
tro, Physica A128 253 (1984. [23] B. Simon, Ann. Phys(N.Y.) 58, 76 (1970.
[9] F. M. Ferrimdez and E. A. Castro, Int. J. Quantum Chea. [24] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
603 (1985. terling, Numerical RecipeéCambridge University Press, Cam-
[10] F. M. Fernadez, J. F. Ogilvie, and R. H. Tipping, J. Phys. A bridge, 1986.
20, 3777(1987. [25] V. Spirko, J. Czek, and L. Skim, J. Chem. Phys102 8916

[11] E. J. Austin, Int. J. Quantum Cherh8, 449 (1984). (1995.



