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Renormalized perturbation theory by the moment method for degenerate states
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We apply renormalized perturbation theory by the moment method to an anharmonic oscillator in two
dimensions with a perturbation that couples unperturbed degenerate states. The method leads to simple recur-
rence relations for the perturbation corrections to the energy and moments of the eigenfunction. We generalize
the approach and systematize its application to excited states.@S1050-2947~97!10310-9#
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I. INTRODUCTION

Perturbation theory without a wave function is one of t
simplest and most efficient ways to calculate of perturbat
corrections of large order to the energies of quantu
mechanical problems. Swenson and Danforth@1# developed
the first such method, which was based on the applicatio
the hypervirial and Hellmann-Feynman theorems. Later K
ingbeck @2# rederived the main equations in a clearer w
and the method became popular because of its simplicity
because it yields perturbation corrections to a representa
energy eigenvalue in terms of the quantum numbers~for re-
views see some of the references below@3,4#!. At present
this approach is only applicable to completely separa
problems.

Ader @5# developed a perturbation theory for nondegen
ate states based on recurrence relations for the momen
the wave function, and applied it to central-field problems
the framework of the 1/D expansion,D being the number of
spatial dimensions. Blankeubecleret al. @6# generalized the
recurrence relations in order to treat anharmonic oscilla
in one and two dimensions nonperturbatively.

Fernández and Castro@7# proposed a perturbative versio
of this approximation that proved useful to treat the hyd
gen atom in magnetic and electric fields@4,7,8–11#, and
pointed out its application to coupled anharmonic oscillat
@9#.

Rediscovering this method, Killingbecket al. @12# and
Killingbeck and Jones@13# applied it to one- and two-
dimensional anharmonic oscillators, respectively. Witw
@14–17# recently used this approach extensively, in com
nation with the renormalization method proposed by Killin
beck @18,19#, to calculate accurate eigenvalues of anh
monic oscillators and other quantum-mechanical mod
Those applications of perturbation theory by the mom
method rely, in some way or another, on symmetry to av
the explicit treatment of degeneracy. For instance, Wit
@15# stated that a successful application of the mom
method requires a certain relationship between coefficien
the potential-energy function of a particular anharmonic
cillator in two dimensions. Such symmetry conditions r
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strict considerably the applicability of the method.
Fernández@20# and Ferna´ndez and Morales@21# showed

how to apply perturbation theory by the moment method
degenerate states, and calculated the splitting of severa
ergies of the hydrogen atom in electric and magnetic fie
Later, Ferna´ndez and Ogilvie@22# applied this approach to
anharmonic oscillators to illustrate the treatment of degen
ate states coupled by the perturbation, thus overcoming
difficulties pointed out by Witwit@15#. They obtained ana-
lytic expressions for the corrections to the energy of the lo
est states of the two-dimensional anharmonic oscillator

H5H01lH8,

H052
]2

]x22
]2

]y2 1x21y2, H85ax41by412cx2y2.

~1!

The energy eigenvaluesEN
(0)52(N11), N50,1, . . . of the

unperturbed HamiltonianH0 are (N11)-fold degenerate.
When a5b the operatorH is invariant under the exchang
x↔y, and because of this high symmetry the perturbat
does not couple the unperturbed states, which can there
be treated as if they were nondegenerate. Previous sim
treatments of this model were restricted to this particu
case@13,15–17#. On the other hand, if we allowaÞb the
perturbation breaks the degeneracy at first order of pertu
tion theory, giving rise to a richer and more interesting a
plication of the moment method.

It is our purpose to round off the application of perturb
tion theory without a wave function to anharmonic oscill
tors by means of an approach that gives a renormalized s
for the most general and difficult cases of degenerate sta

II. PERTURBATION THEORY BY THE MOMENT
METHOD

Because the perturbation series in powers ofl for the
anharmonic oscillator~1! is divergent@23#, we look for a
convergent renormalized series@18,19#, writing
4304 © 1997 The American Physical Society
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H52
]2

]x22
]2

]y2 1m2~x21y2!1l@H82b~x21y2!#,

~2!

where

m2511lb. ~3!

In the application of perturbation theory we considerm to be
independent ofl and invoke Eq.~3! just at the end of the
calculation@18,19#. Here we choosel51.

In order to apply perturbation theory by the mome
method we first derive a recurrence relation for the mome
of an eigenfunctionC of the Hamiltonian operatorH. Such
a recurrence relation is a convenient substitute for the Sc¨-
dinger equation and follows from

^H f uc&2E^ f uC&50, ~4!

whereE is the eigenvalue and the function* is chosen so
that the moment̂* uc& exists. In the case of the renormalize
Hamiltonian operator~2! we substitute

f m,n5xmynexpF2
m

2
~x21y2!G , m,n50,1, . . . ~5!

for f in Eq. ~4! thus obtaining a recurrence relation for th
momentsFm,n5^ f mnuC&. Substitution of the series

E5(
i 50

`

E~ i !l i , Fm,n5(
i 50

`

Fm,n
~ i ! l i ~6!

into the recurrence relation for the moments gives us an
pression from which we obtain all the coefficientsE( i ) and
Fm,n

( i ) , @22#. In the present case the perturbation is a particu
case of

H85(
r ,s

cr ,sx
rys ~7!

that leads to

2~m1n2N!mFm,n
~p! 5m~m21!Fm22,n

~p! 1n~n21!Fm,n22
~p!

1(
j 51

p

E~p!Fm,n
~p2 j !2(

r ,s
cr ,sFm1r ,n1s

~p21!

1b@Fm12,n
~p21! 1Fm,n12

~p21! #. ~8!

The aim of renormalization is to determine a value ofb
that renders the sequence of partial sums

SQ~b!5(
i 50

Q

E~ i !~b!l i ~9!

convergent asQ→` @18,19#.

III. NUMERICAL RESULTS

We have systematically extended the procedure de
oped by Ferna´ndez and Ogilvie@22# and written a compute
code for the application of perturbation theory by the m
t
ts

o

x-

r

l-

-

ment method. Given the potential parametersa, b, and c,
and the renormalization parameterb for a quantum number
N, the program computes the coefficients of the perturba
series. We contrasted the eigenvalues thus obtained
those coming from diagonalization of the Hamiltonian m
trix in a sufficiently large basis of eigenfunctions ofH0
~Rayleigh-Ritz method! for the required accuracy. In all th
cases considered here the agreement between variationa
renormalized perturbation results was remarkable.

An efficient calculation of the energy eigenvalues
means of perturbation theory requires a routine for the e
mation of the optimum value ofb. In the present paper we
have investigated several prescriptions for it. A succes
approach is based on the principle ofminimum sensitivity:
sinceE is independent ofb one consequently requires tha

]SQ

]b
50. ~10!

From straightforward differentiation of the equations of t
theory given above one easily obtains the derivative of e
term of the partial sum~10!. We obtained the roots of Eq
~10! by means of bracketing plus secant methods@24#.

Alternatively, we may choose the value ofb that mini-
mizes the sum of the squares of the last two or three per
bation corrections in a given partial sum. This approach d
not require the calculation of derivatives and, when co
bined with an efficient one-dimensional minimization routi
@24#, it turns out to be faster than the previous procedu
giving similar results. Here we chose the latter strategy.

The rate of convergence of the renormalized series is
markable as shown in Fig. 1 for four different cases, and
Q<40 ~we have joined the points by lines to guide the ey!.
It is clear that the partial sums withQ540 are sufficiently
accurate for most purposes.

In Table I we show results for some of the lowest states
the oscillator ~1! with parametersa51, b52, and c51.
More precisely, Table I displays the actual quantum num
for the anharmonic oscillatorv, the quantum numberN for

FIG. 1. Convergence of the renormalized series towards theex-
act variational resultsEvar given by the Rayleigh-Ritz method. Th
figure shows error, which is equal to log10u(SQ2Evar)/Evaru, vs Q for
the following four cases:~a! a51.0, b52.0, c51.0, v50, ~b! a
51.0, b52.0, c51.0, v539, ~c! a51.0, b55.0, c51.0, v50, ~d!
a51.0, b55.0, c51.0, v539, wherev is the quantum number o
the anharmonic oscillator.
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the separable, unperturbed problem, the energy eigenv
computed with the perturbation series through order 40,
error in the computed perturbative result with respect to
variational eigenvalue, and the optimum value ofb deter-
mined by minimization. We conclude that the method yie
eigenvalues that are accurate enough for most practical
poses. The accuracy of the results for a given set of pote
parameters appears to be almost independent of the qua
number, so that one expects similar results for higher sta
On the other hand, the accuracy of the method decrease
the anharmonicity of the potential increases, as expected
a perturbative approach~see below!.

In Table II we show the eigenvalues of the anharmo
oscillator with potential parametersa51, b55, andc51,
which lead to a more asymmetric potential~for the present
model, the asymmetry is proportional toub2au!. Compari-
son of both tables reveals the decrease in accuracy alr
mentioned before.

TABLE I. Lowest-energy eigenvalues of the anharmonic os
lator with potential parametersa51.0, b52.0, andc51.0. v de-
notes the actual quantum number and the error is given
log10u(S402Evar)/Evaru, whereEvar is the corresponding eigenvalu
computed by the Rayleigh-Ritz variational method.

v N S40 Error b

0 0 3.143 959 310 272 210.89 12.4056
10 4 20.189 989 356 111 212.02 14.5267
20 5 30.655 399 874 247 211.49 16.4276
30 6 37.604 833 946 509 211.08 17.0545
39 8 44.702 589 229 227 212.49 17.1684
e
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The present results show that perturbation theory by
moment method is a powerful and straightforward appro
for the calculation of accurate energies of nonsepara
quantum-mechanical systems with polynomial perturbatio
The main advantage of the moment method is the simpli
of its recurrence relations and the absence of explicit in
grals for the matrix elements. This feature becomes m
desirable in the case of a nonpolynomial potential-ene
function if one expands it in a Taylor series around its mi
mum before the application of perturbation theory. Pres
results suggest that perturbation theory by the mom
method may be practical to treat highly excited states
more complicated perturbations, as those taking place
more realistic models for the study of vibrations in pol
atomic molecules@25#.
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TABLE II. The same as in Table I fora51.0, b55.0, andc
51.0.

v N S40 Error b

0 0 3.525 046 025 155 26.61 20.9818
10 4 21.493 038 209 415 27.88 25.1122
20 6 32.057 608 308 247 29.43 25.8197
30 8 43.450 550 577 336 28.62 27.9505
39 9 49.915 488 242 353 27.81 27.0820
A

et-
-

@1# R. J. Swenson and S. H. Danforth, J. Chem. Phys.57, 1734
~1972!.

@2# J. Killingbeck, Phys. Lett.65A, 87 ~1978!.
@3# F. M. Fernández and E. A. Castro,Hypervirial Theorems, Lec-

ture Notes in Chemistry Vol. 43~Springer, Berlin, 1987!.
@4# G. A. Arteca, F. M. Ferna´ndez, and E. A. Castro,Large Order

Perturbation Theory and Summation Methods in Quantum M
chanics, Lecture Notes in Chemistry Vol. 53~Springer, Berlin,
1990!.

@5# J. P. Ader, Phys. Lett.97A, 178 ~1983!.
@6# R. Blankenbecler, T. DeGrand, and R. L. Sugar, Phys. Rev

21, 1055~1980!.
@7# F. M. Fernández and E. A. Castro, Int. J. Quantum Chem.26,

497 ~1984!.
@8# G. A. Arteca, F. M. Ferna´ndez, A. M. Meso´n, and E. A. Cas-

tro, Physica A128, 253 ~1984!.
@9# F. M. Fernández and E. A. Castro, Int. J. Quantum Chem.28,

603 ~1985!.
@10# F. M. Fernández, J. F. Ogilvie, and R. H. Tipping, J. Phys.

20, 3777~1987!.
@11# E. J. Austin, Int. J. Quantum Chem.18, 449 ~1984!.
-

D

@12# J. Killingbeck, M. N. Jones, and M. J. Thompson, J. Phys.
18, 793 ~1985!.

@13# J. Killingbeck and M. N. Jones, J. Phys. A19, 705 ~1986!.
@14# M. R. M. Witwit, J. Phys. A24, 3053~1991!.
@15# M. R. M. Witwit, J. Phys. A24, 4535~1991!.
@16# M. R. M. Witwit, J. Math. Phys.33, 4196~1992!.
@17# M. R. M. Witwit, J. Math. Phys.36, 187 ~1995!.
@18# J. Killingbeck, J. Phys. A14, 1005~1981!.
@19# J. Killingbeck, J. Phys. B14, L461 ~1981!.
@20# F. M. Fernández, J. Phys. A25, 492 ~1992!.
@21# F. M. Fernández and J. A. Morales, Phys. Lett. A165, 314

~1992!.
@22# F. M. Fernández and J. F. Ogilvie, Phys. Lett. A178, 11

~1993!.
@23# B. Simon, Ann. Phys.~N.Y.! 58, 76 ~1970!.
@24# W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. V

terling,Numerical Recipes~Cambridge University Press, Cam
bridge, 1986!.

@25# V. Spirko, J. Cı´zek, and L. Ska´la, J. Chem. Phys.102, 8916
~1995!.


