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Wave functions of a time-dependent harmonic oscillator
with and without a singular perturbation
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We use the Lewis and Riesenfeld invariant method to obtain the exactdiuofeo wave functions for a
time-dependent harmonic oscillator with and without an inverse quadratic potential. As a particular case we
also obtain the wave functions for the Caldirola-Kanai oscilldi81.050-294®7)07710-X]

PACS numbes): 03.65.Ca, 03.65.Fd, 03.65.Ge

[. INTRODUCTION whose mass and angular frequency depend on time explic-
itly, and the variablep andq are canonical coordinates with

Widespread attention has been paid in the past few yeafs],p]=i%. From Eqg.(1) we obtain the equation of motion
to the study of time-dependent harmonic oscillafdrs 10]. ) )
The time-dependent harmonic oscillator has attracted consid- g+ y(t)g+w?(t)q=0, 2
erable interest because it gives a good example of an exactly
solved model, and has applications in different areas of phys¥here
ics. For instance, in molecular physics, quantum chemistry, _
guantum optics, plasma physics, and quantum field theory, V() =(d/dYIn[M()]. ©)
many quantum-mechanical effects are treated phenomeno- Now it is known that an invariant for Eq1) is given by
logically by means of the time-dependent parameters in th93,5]
Hamiltonian of a general time-dependent oscilldtht—15.

There are several methods to study time-dependent oscil- L(t)=%[(a/p)2+ (pp—Mpq)?], (4)
lators[3,7,8. However, for these systems Lewis and Riesen-
feld (LR) [1,2] have introduced an important quantum- whereq(t) satisfies Eq(2) andp(t) is ac-number quantity
mechanical invariant and found the exact quantum states isatisfying the auxiliary equation
terms of the invariant eigenstates up to some explicitly time-

dependent phase. Since then, numerous variants and applica- p+y()p+wA(t)p=(1/M?p3). )
tions of the LR invariant method have been introduced and ) ) o )
used[3-10!. The invariantl (t) satisfies the equation

In this paper, we use the LR invariant method and an (dI/dt)y=(al/at)+ (1/if)[1,H]=0, (6)

unitary transformation to obtain the exact Salinger wave

functions for a time-dependent harmonic oscillator with andand can be considered Hermitian if we choose only the real
without an inverse quadratic potential. As a particular casegp|utions of Eq(5). Its eigenfunctions, denoted bg,(q,t),

we also find the wave functions for the well-known zre assumed to form a complete orthonormal set with time-

Caldirola-Kanai oscillator. _independent eigenvalugs,. Thus
This paper is organized as follows. In Sec. Il we briefly
review the LR invariant method for the time-dependent os- | dn(q,t)=Npbn(q,t), )

cillator. In Sec. lll we find the wave functions for the time-

dependent harmonic oscillator with and without an inversenith (¢, ¢n/)= 6 o }

quadratic potential. We also find the wave functions for the Next consider the time-dependent Salinger equation
Caldirola-Kanai oscillator. Finally, some concluding remarks

are added in Sec. |V. iﬁ((?/(?t) lﬁ(q,t):H(t)lﬂ(q,t), (8)
with
Il. EXACT INVARIANTS AND THE SCHRO DINGER . rz2 2y 1 2 2
EQUATION H(D) = ~[A2/2M(1)] (9/992) + FM(DWA(D G, (9)
Consider a time-dependent harmonic oscillator describehere p=—i#d/dq has been used. Lewis and Riesenfeld
by the Hamiltonian showed that the solutiong,(q,t) to the Schrdinger equa-
tion (8) are related tap,(q,t) by the relation
H(t)=[p%2M(t)]+ ;M (Hw(t)g?, (1) n(a,t)=e'“"Ven(q,t), (10
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where the phase functions,(t) satisty the equation

Al dan(t)/dt]=(by|ifi(3/3t) —H(1)| br).

Then, since eacly,(q,t) satisfies the Schdinger equation,
the general solution of Eq8) may be written as

1y

://<q,t>=§ €V ei(q,t), (12)

where the coeficients, are time independent.

lll. EXACT SCHRO DINGER WAVE FUNCTIONS

A. Harmonic oscillator with time-dependent mass
and frequency

To obtain the wave functions for the time-dependent os
cillator (1) we proceed as follows. Consider the unitary trans

formation
¢n(a,t)=Udn(q,1), (13

with
U=exp{—[iM (t)p/2%p]q%}. (14)

Under this unitary transformation the eigenvalue equafn
is mapped into

I" n(q,1) =Nnedp(q,1), (15
with
" =U\Ut =—(h%12) (p%0%199%)+ % (q%1p?). (16)

If we now define a new variable=q/p, we can write the
eigenvalue equation in the form

[—(7212)(8°190%) + (0%12) Jon(0) =Nnen(a)  (17)
or
I" en(0)=An@n(0), (18)
where
oA, =(1p") on(0)=(1Ip") pn(alp).  (19)

The factorp? is introduced into Eq(18), so that the nor-

malization condition

f ¢'§(q,t)¢rﬁ(q,t)dQ=J ¢n(0)en(o)do=1 (20

holds. Now Eq.(17) is an ordinary one-dimensional Schro
dinger equation whose solution is given by

12 o2 1\ 12
ex —% g g

)\n:ﬁ(n"_%),

1

7T1/2h1/2n!2n ! (21)

e(o)=

Hy

where

(22
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andH,, is the usual Hermite polynomial of order Thus, by
using Eqgs(13), (14), (19), and(21) we find that

Y TiM[p i
exp[ 2h \;+M(t)p2)q2}

(23

¢n(Q,t)=

7Tl/2hl/2n!2np
XHu[(1/7)Y(qlp)].
There remains the problem of finding the phaag&) which

satisfy Eq.(11). Carrying out the unitary transformatids
the right-hand side of Eq11) becomes

bV
2p Mp?

9 p d
Iha+|h—q—+|ﬁ énl, (24

p dq

ﬁixn<t>=< b,

where we have used the auxiliary equati@p to eliminate

w2(t) from H(t). Next substituting Eq(19) into Eq. (24),

we obtain that

ﬁ&n(t):<¢n|_(| ,/MP2)|€Dn>;

using Eq.(18) and the normalization op,, we find that

ft :
———dt’.
oM(t")p?

Finally, using Eqs(10) and (23) we find that the exact so-
lution of the Schrdinger equation(8) is

(29

(26)

1
an(t)=— n+§

¥n(0,0) =exdi an(t) [ 1/ 7R Y1 2"p]H2
iM(D)[ p i 1\12q
exp[ 2h \E+M<t>p2>q2}H”[<%) E}’

where the phase functions,(t) are given by Eq(26).

When the mass is constant, i.m(t) =m, our new wave
function (27) reduces to those obtained in R€f8,6,7]. On
the other hand, for the general case where the mass is also
time dependent, the Schtimger wave function(27) agrees
with that of Ref.[8] by settingp?(t)=g_(t)/w,. Here we
would like to observe that the resuf27) is different from
those obtained in Ref6]. This is because the wave function
obtained in Ref[6] satisfies the Schrdinger equation only
when the mass is constant. However, for the case where mass
and frequency are both time dependent the wave function of
Ref.[6] is not correct, i.e., it does not satisfy the Sairmer
equation. We also note that whém(t)=m andw(t)=w,
are both constant ans{t) = (1/mw,)*%, which is a particular
solution of Eq.(5), result(27) becomes the well-known wave
function for the time-dependent harmonic oscillator of mass
m and frequencyw,,.

B. Caldirola-Kanai oscillator

For the case where the frequeneyt) =w, is constant
and the mas# (t) is given by
M(t)=me", (28

Hamiltonian(1) becomes
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H(t)=(p%2m)e™ "'+ imwie”q?, 29 2 # 19> p?
(tH=(p ) 2Mwee™q (29 |’=U|U+=—?P2(9—qz+§q_2+g_qu- (38
with y=const [see Eg. (3)]. Hamiltonian (29) is the p
Caldirola-Kanai oscillator which is one of the most typlca| In terms ofo we can rewrite the eigenva'ue equation for
time-dependent quantum systems whose exact quantugy
states are well knowhl6-19.
Let us now consider a particular solution of Ef) given B2 92 o2
- =t =+
2092 2 20

by en(0)=Npen(o), (39

a2 1
p()=[e"""(mQ)*7], (30 where ¢,(o) is defined by Eq.(19), and \, are constant
with eigenvalues to be determined. Now the solutions for the
time-independent Schdinger equatior(39) are[20]

QZIWg_(VZM)- (31 A\V4 2D (n+1) |12 g2\ (2a+ D
Here we shall consider only the case whé&le-0. Then enlo)= %) I'la+n+1) (7)
using Eqgs.(28) and (30) in Eq. (26), we find that the phase ) a 2
functions are given by xexp(— o2k )Ly(a°lh), (40
an(t)=—Q(n+Ht. (32  with
Thus by using Eqg29), (30), and(32) in Eq. (27), we obtain Ap=fi(2n+a+1), (41
that
a=3[1+(4g/h?)], (42)
(mQ)llZ 1/2 y 1
(g, t)= W ex;{z—iﬂ n+§ t where L& denotes generalized Laguerre polynomials. Here
7" n!i2 we remark thaty> —#2/4m to avoid “the fall to the center”
m iy mQ\ 12 [3]. Then by using Eqs(13), (14), (19), and (40), we find
_ T larty2 R yt/2
Xexr{ >7 QO+ A Hn“ 7 ge’™<|, that
1/2 (a+1)/2
B - (i) g
’ 2
which is the exact wave function for the Caldirola-Kanai T'(atn+1) h
oscillator[16—-18. iM (t)/b i ) 12
X % —+ > Lﬁ g—z . 43
C. Time-dependent harmonic oscillator \p M(t)p p

with an inverse quadratic potential .
On the other hand, following the same steps as those of Sec.

We now consider the time-dependent harmonic oscillatof;; o we convert Eq.(11) with H(t) given by Eq.(37) into
described by the Hamiltonian the form of Eq.(25) with |’ given by Eq.(38). Then using

H(t):[pZ/ZM(t)]+%M(t)Wz(t)q2+[g/2M(t)qz], (34) Eq5(39) and (40) and the normalization Qﬁn we find that

whereg is an arbitrary constant which could be zero. From _ t 1 ,
Eq. (34) we obtain the equation of motion a(t)= (2n+a+1)J0M(tl)pzdt : (44)
g+ y(Hg+w(t)g=(g/M?q°), (385  Finally, using Eqs(10) and(43) we find that the exact soluc-

) ] ) tion of the Schrdinger equation for the time-dependent os-
where y(t) is defined by Eq(3). For this case, an exact cillator with an inverse quadratic potential is
invariant is given by[5]
1/2 1 (a+1)/2
( ) qa+(1/2)

fp?
1 g2
Lﬁ(g ;>, (45)

2I'(n+1)
T(a+n+1)
iM(t)('B 1 ,
20 \p " M(t>p2>q

L(t)=2[(alp)2+ (pp—Mpq)2+(p%g/g®)], (36)  wy(q,t)=e'onV

whereq(t) andp(t) satisty, respectively, Eq$35) and (5).
cod

In what follows we wish to solve the Schiimger equa-
tion (8) with H(t) given by[see Eq.(34)]

2 § 9 where the phase functions are given (dy).

2M(t)g?” 37) When the mass is constant, i.8(t)=m the new wave
function (45) agrees with that obtained in R¢8]. We also

To this end, we proceed as in Sec. lll A. Thus by using Egsnote that wherg=0 the solutionsy,, of Eq. (45 reduce to

(13) and(14) the eigenvalue problertv) with I(t) given by  the solutions of the harmonic oscillator with time-dependent

Eq. (36) is mapped into Eq.15) wherel ' (t) is now given by  mass and frequencys,, 1.

H(t)=— - lM(t)wz(t)qz+

2M(t) 9g2 ' 2
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D. Caldirola-Kanai oscillator with an inverse quadratic the exact wave functions for the time-dependent harmonic
potential oscillator with and without an inverse quadratic potential.
We also have seen that our results are in agreement with
. : those obtained by other authors which have used different
frg;qger:ﬁytand magd (t) given by Eq.(28). For this case we approaches, such as the LR invariant method in the Heinsen-
obtain tha berg picture and the path integral method. Futhermore, we
H(t)=(p2/2m)e~ "+ tmw.e”g?+ (ge~ /2mad), 46 haye obtalr!ed the wave functl_ons for the Cal'dlrola-Ka.na|
(H=(p ) 2MWee™q"+ (g @) 48 oscillator with and without an inverse quadratic potential.
which is the Caldirola-Kanai oscillator with an inverse qua-For this case, we would like to observe that the key point to
dratic potential. find the exact wave functions is the particular solution given
To obtain the wave function associated with E4g) we  BY EQ- (30) for the nonlinear equatio(®). Here let us recall
proceed as follows. Consider the particular solution of Eq_that there still remains the difficult task of solving the non-

(5) given by Eq.(30). Then, using Eqs28) and(30) into Eq.  linear equatior(s).

Let us now consider the Hamiltonig84) with constant

(44), we find that In conclusion, we would like to make some comments. As
’ we have already mentioned, the time-dependent harmonic
an(t)=—Q(2n+a+ 1)t. (47  oscillator has been the subject of much investigation. In par-

_ _ ticular, harmonic oscillators with time-dependent mass have
Thus by Eqs(28), (30), and(47) in Eq. (45), we obtain that been employed in quantum optics in order to describe the
electromagnetic field intensities in a Fabryrftecavity[21],

1/2 (a+1)12 : - !
dn(g,t)= 2I'(n+1) @eyt) : g+ 12 in quantum physics to study quantum tunelling effects
m I'(a+n+1) h [22,23, and in cosmology to study the behavior of a scalar
. field in an anisotropic univerdd.1,24. We also mention that
xexd —iQ(2n+a+1)t] the connection between quantum-mechanical solutions and
m iy mQ classical solutions of the harmonic oscillator with and with-
xexp{— % QO+ > e”g? Lﬁ(queyt , (48 out a singular perturbation has been studied by various au-

thors[4,8-10,20,25,2p Furthermore, Kimet al. [27] used
which is the exact wave function for Caldirola-Kanai oscil- thé LR invariant method and the Heisenberg picture ap-
lator (46). Here we would like to remark that as far as we Proach to obtain the exact quantum motion of a time-

know the Hamiltoniar(46) and the wave functiond8) have  dependent forced harmonic oscillator. Thus it seems that it
not yet been exhibited in the literature. would not be any problem to investigate the time-dependent

forced oscillator using the procedure of the present paper,

i.e., the LR invariant method and the Sctiimger picture

approach. We hope to report on this possibility in a future
In this paper we have used a unitary transformation angbaper. Finally, we wish to point out that wave functid23)

the LR invariant method in the Schdimger picture to obtain  were also obtained in Reff28].
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[1] H. R. Lewis, Jr., Phys. Rev. LetR7, 510 (1967); J. Math. [15] C. F. Lo, Phys. Rev. A5, 5262(1992.

Phys.(N.Y.) 9, 1976(1968. [16] R. W. Hasse, J. Math. Phy&\.Y.) 16, 2005(1975.

[2] H. R. Lewis, Jr. and W. B. Riesenfeld, J. Math. Ph{fd.Y.)  [17] V. V. Dodonov and V. J. Mon’Ko, Nuovo Cimento B4, 265
10, 1458(1969. (1978.

[3] D. C. Khandekar and S. V. Lawande, J. Math. PlisY.) 16, [18] A. D. Jannussis, G. N. Brodimas, and A. Streclas, Phys. Lett.
384 (1975. A 74, 6 (1979.

[4] J. G. Hartley and J. R. Ray, Phys. Rev24, 2873(1981). [19] H. Dekker, Phys. Re[80, 1 (1981).

[5] 1. A. Pedrosa, J. Math. PhyeN.Y.) 28, 2662(1987. [20] P. Camiz, A. Gerardi, C. Marchioro, E. Presutti, and E. Scac-

[6] C. M. A. Dantas, |. A. Pedrosa, and B. Baseia, Phys. Rev. A ciatelli, 3. Math. Phys(N.Y.) 12, 2040(1972.

; f” F1|3i0(199‘J2;|_B|raé. J'Cphf’]szj' 33T(1|9:92é 4 L . [2JR-K. Colegrave and M. S. Abdalla, Opt. A8, 495 (1981);
[71K. H. Yeon, J. H. Kim, C. J. Um, T. F. George, and L. N. J. Phys. Al4, 2269(1981): 15, 1549(1982.

8] Ea:](d?i/, shﬁ' lzirsnv. ::d 18032(125;‘)' Phvs. Rev. B0 4268 [22] S. Baskontas and A. Jannussis, J. Phy25A1299(1992.
Can ' o » FHYS: T [23] S. Baskontas, A. Jannussis, and R. Mignani, J. Phy&7A

(1995.
[9] J. Y. Ji, J. H. Kim, S. P. Kim, and K. S. Son, Phys. Rev62 2189(1994.

3352(1995 [24] I. A. Pedrosa and V. B. Bezerra, Mod. Phys. Lett1? 1111
[10] S. P. Kim, J. Phys. /27, 3927(1994). (1999. _
[11] B. K. Berger, Phys Rev. 02, 368 (1975 [25] K. H. Cho and S. P. Kim, J. PhyS 27, 1392(1994)
[12] H. R. Lewis and K. R. Symon, Phys. Flui@g, 192(1984.  [26]J. G. Hartley and J. R. Ray, Phys. Rev2B, 382(1982.
[13] B. R. Holstein, Am. J. Phys$7, 714 (1989. [27] H. C. Kim, M. -H. Lee, J. -Y Ji, and J. K. Kim, Phys. Rev. A
[14] N. A. Lemos and C. P. Natividade, Nuovo Ciment®8 211 53, 3767(1996.

(1989. [28] I. A. Pedrosa, Phys. Rev. B5, 3219(1997).



