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Wave functions of a time-dependent harmonic oscillator
with and without a singular perturbation
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We use the Lewis and Riesenfeld invariant method to obtain the exact Schro¨dinger wave functions for a
time-dependent harmonic oscillator with and without an inverse quadratic potential. As a particular case we
also obtain the wave functions for the Caldirola-Kanai oscillator.@S1050-2947~97!07710-X#
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I. INTRODUCTION

Widespread attention has been paid in the past few y
to the study of time-dependent harmonic oscillators@1–10#.
The time-dependent harmonic oscillator has attracted con
erable interest because it gives a good example of an ex
solved model, and has applications in different areas of ph
ics. For instance, in molecular physics, quantum chemis
quantum optics, plasma physics, and quantum field the
many quantum-mechanical effects are treated phenom
logically by means of the time-dependent parameters in
Hamiltonian of a general time-dependent oscillator@11–15#.

There are several methods to study time-dependent o
lators@3,7,8#. However, for these systems Lewis and Ries
feld ~LR! @1,2# have introduced an important quantum
mechanical invariant and found the exact quantum state
terms of the invariant eigenstates up to some explicitly tim
dependent phase. Since then, numerous variants and ap
tions of the LR invariant method have been introduced a
used@3–10#.

In this paper, we use the LR invariant method and
unitary transformation to obtain the exact Schro¨dinger wave
functions for a time-dependent harmonic oscillator with a
without an inverse quadratic potential. As a particular ca
we also find the wave functions for the well-know
Caldirola-Kanai oscillator.

This paper is organized as follows. In Sec. II we brie
review the LR invariant method for the time-dependent
cillator. In Sec. III we find the wave functions for the time
dependent harmonic oscillator with and without an inve
quadratic potential. We also find the wave functions for
Caldirola-Kanai oscillator. Finally, some concluding remar
are added in Sec. IV.

II. EXACT INVARIANTS AND THE SCHRO ¨ DINGER
EQUATION

Consider a time-dependent harmonic oscillator descri
by the Hamiltonian

H~ t !5@p2/2M ~ t !#1 1
2 M ~ t !w2~ t !q2, ~1!
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whose mass and angular frequency depend on time ex
itly, and the variablesp andq are canonical coordinates wit
@q,p#5 i\. From Eq.~1! we obtain the equation of motion

q̈1g~ t !q̇1w2~ t !q50, ~2!

where

g~ t !5~d/dt!ln@M ~ t !#. ~3!

Now it is known that an invariant for Eq.~1! is given by
@3,5#

I ~ t !5 1
2 @~q/p!21~rp2M ṙq!2#, ~4!

whereq(t) satisfies Eq.~2! andr(t) is a c-number quantity
satisfying the auxiliary equation

r̈1g~ t !ṙ1w2~ t !r5~1/M2r3!. ~5!

The invariantI (t) satisfies the equation

~dI/dt!5~]I /]t !1~1/i\!@ I ,H#50, ~6!

and can be considered Hermitian if we choose only the
solutions of Eq.~5!. Its eigenfunctions, denoted byfn(q,t),
are assumed to form a complete orthonormal set with tim
independent eigenvaluesln . Thus

Ifn~q,t !5lnfn~q,t !, ~7!

with ^fn ,fn8&5dn,n8.
Next consider the time-dependent Schro¨dinger equation

i\~]/]t !c~q,t !5H~ t !c~q,t !, ~8!

with

H~ t !52@\2/2M ~ t !# ~]/]q2!1 1
2 M ~ t !w2~ t !q2, ~9!

where p52 i\]/]q has been used. Lewis and Riesenfe
showed that the solutionscn(q,t) to the Schro¨dinger equa-
tion ~8! are related tofn(q,t) by the relation

cn~q,t !5eian~ t !fn~q,t !, ~10!
4300 © 1997 The American Physical Society
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where the phase functionsan(t) satisty the equation

\@dan~ t !/dt#5^fnu i\~]/]t !2H~ t !ufn&. ~11!

Then, since eachcn(q,t) satisfies the Schro¨dinger equation,
the general solution of Eq.~8! may be written as

c~q,t !5(
n

cneian~ t !fn~q,t !, ~12!

where the coeficientscn are time independent.

III. EXACT SCHRÖ DINGER WAVE FUNCTIONS

A. Harmonic oscillator with time-dependent mass
and frequency

To obtain the wave functions for the time-dependent
cillator ~1! we proceed as follows. Consider the unitary tran
formation

fn8~q,t !5Ufn~q,t !, ~13!

with

U5exp$2@ iM ~ t !ṙ/2\r#q2%. ~14!

Under this unitary transformation the eigenvalue equation~7!
is mapped into

I 8fn8~q,t !5lnfn8~q,t !, ~15!

with

I 85UIU152~\2/2! ~r2]2/]q2!1 1
2 ~q2/r2!. ~16!

If we now define a new variables5q/r, we can write the
eigenvalue equation in the form

@2~\2/2!~]2/]s2!1~s2/2!#wn~s!5lnwn~s! ~17!

or

I 8wn~s!5lnwn~s!, ~18!

where

fn8~q,t !5~1/r1/2!wn~s!5~1/r1/2!wn~q/r!. ~19!

The factorr1/2 is introduced into Eq.~18!, so that the nor-
malization condition

E f8n* ~q,t !fn8~q,t !dq5E wn* ~s!wn~s!ds51 ~20!

holds. Now Eq.~17! is an ordinary one-dimensional Schr¨-
dinger equation whose solution is given by

w~s!5F 1

p1/2\1/2n!2nG 1/2

expF2
s2

2\ GHnF S 1

\ D 1/2

sG , ~21!

where

ln5\~n1 1
2 !, ~22!
-
-

andHn is the usual Hermite polynomial of ordern. Thus, by
using Eqs.~13!, ~14!, ~19!, and~21! we find that

fn~q,t !5F 1

p1/2\1/2n!2nr
G 1/2

expF iM ~ t !

2\
S ṙ

r
1

i

M ~ t !r2D q2G
3Hn@~1/\!1/2~q/r!#. ~23!

There remains the problem of finding the phasesan(t) which
satisfy Eq.~11!. Carrying out the unitary transformationU,
the right-hand side of Eq.~11! becomes

\ȧn~ t !5K fn8U i\ ]

]t
1 i\

ṙ

r
q

]

]q
1 i\

ṙ

2r
2

I 8

Mr2Ufn8L , ~24!

where we have used the auxiliary equation~5! to eliminate
w2(t) from H(t). Next substituting Eq.~19! into Eq. ~24!,
we obtain that

\ȧn~ t !5^wnu2~ I 8/Mr2!uwn&; ~25!

using Eq.~18! and the normalization ofwn we find that

an~ t !52S n1
1

2D E
0

t 1

M ~ t8!r2 dt8. ~26!

Finally, using Eqs.~10! and ~23! we find that the exact so
lution of the Schro¨dinger equation~8! is

cn~q,t !5exp@ ian~ t !#@1/p1/2\1/2n!2nr#1/2

3expF iM ~ t !

2\
S ṙ

r
1

i

M ~ t !r2D q2GHnF S 1

\ D 1/2q

rG ,
~27!

where the phase functionsan(t) are given by Eq.~26!.
When the mass is constant, i.e.,M (t)5m, our new wave

function ~27! reduces to those obtained in Refs.@3,6,7#. On
the other hand, for the general case where the mass is
time dependent, the Schro¨dinger wave function~27! agrees
with that of Ref.@8# by settingr2(t)5g2(t)/wI . Here we
would like to observe that the result~27! is different from
those obtained in Ref.@6#. This is because the wave functio
obtained in Ref.@6# satisfies the Schro¨dinger equation only
when the mass is constant. However, for the case where m
and frequency are both time dependent the wave functio
Ref. @6# is not correct, i.e., it does not satisfy the Schro¨dinger
equation. We also note that whenM (t)5m and w(t)5w0
are both constant andr(t)5(1/mw0)1/2, which is a particular
solution of Eq.~5!, result~27! becomes the well-known wav
function for the time-dependent harmonic oscillator of ma
m and frequencyw0.

B. Caldirola-Kanai oscillator

For the case where the frequencyw(t)5w0 is constant
and the massM (t) is given by

M ~ t !5megt, ~28!

Hamiltonian~1! becomes
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H~ t !5~p2/2m!e2gt1 1
2 mw0

2egtq2, ~29!

with g5const @see Eq. ~3!#. Hamiltonian ~29! is the
Caldirola-Kanai oscillator which is one of the most typic
time-dependent quantum systems whose exact quan
states are well known@16–19#.

Let us now consider a particular solution of Eq.~5! given
by

r~ t !5@e2gt/2/~mV!1/2#, ~30!

with

V25w0
22~g2/4!. ~31!

Here we shall consider only the case whereV.0. Then
using Eqs.~28! and ~30! in Eq. ~26!, we find that the phase
functions are given by

an~ t !52V~n1 1
2 !t. ~32!

Thus by using Eqs.~28!, ~30!, and~32! in Eq. ~27!, we obtain
that

cn~q,t !5F ~mV!1/2

p1/2\1/2n!2nG 1/2

expFg4 2 iVS n1
1

2D G t
3expF2

m

2\S V1
ig

4 Degtq2GHnF S mV

\ D 1/2

qegt/2G ,
~33!

which is the exact wave function for the Caldirola-Kan
oscillator @16–18#.

C. Time-dependent harmonic oscillator
with an inverse quadratic potential

We now consider the time-dependent harmonic oscilla
described by the Hamiltonian

H~ t !5@p2/2M ~ t !#1 1
2 M ~ t !w2~ t !q21@g/2M ~ t !q2#, ~34!

whereg is an arbitrary constant which could be zero. Fro
Eq. ~34! we obtain the equation of motion

q̈1g~ t !q̇1w2~ t !q5~g/M2q3!, ~35!

where g(t) is defined by Eq.~3!. For this case, an exac
invariant is given by@5#

I ~ t !5 1
2 @~q/r!21~rp2M ṙq!21~r2g/q2!#, ~36!

whereq(t) andr(t) satisty, respectively, Eqs.~35! and ~5!.
In what follows we wish to solve the Schro¨dinger equa-

tion ~8! with H(t) given by @see Eq.~34!#

H~ t !52
\2

2M ~ t !

]2

]q2 1
1

2
M ~ t !w2~ t !q21

g

2M ~ t !q2 . ~37!

To this end, we proceed as in Sec. III A. Thus by using E
~13! and~14! the eigenvalue problem~7! with I (t) given by
Eq. ~36! is mapped into Eq.~15! whereI 8(t) is now given by
m

i

r

.

I 85UIU152
\2

2
r2

]2

]q2 1
1

2

q2

r2 1
r2g

2q2 . ~38!

In terms ofs we can rewrite the eigenvalue equation forI 8
as

F2
\2

2

]2

]q2 1
s2

2
1

q

2s2Gwn~s!5lnwn~s!, ~39!

where wn(s) is defined by Eq.~19!, and ln are constant
eigenvalues to be determined. Now the solutions for
time-independent Schro¨dinger equation~39! are @20#

wn~s!5S 4

\ D 1/4S 2G~n11!

G~a1n11! D
1/2S s2

\ D ~2a11!/4

3exp~2s2/2\!Ln
a~s2/\!, ~40!

with

ln5\~2n1a11!, ~41!

a5 1
2 @11~4g/\2!#, ~42!

where Ln
a denotes generalized Laguerre polynomials. H

we remark thatg.2\2/4m to avoid ‘‘the fall to the center’’
@3#. Then by using Eqs.~13!, ~14!, ~19!, and ~40!, we find
that

fn~q,t !5S 2G~n11!

G~a1n11! D
1/2S 1

\r2D ~a11!/2

qa1~1/2!

3expF iM ~ t !

2\ S ṙ

r
1

i

M ~ t !r2D q2GLn
aS 1

\

q2

r2D . ~43!

On the other hand, following the same steps as those of
III A, we convert Eq.~11! with H(t) given by Eq.~37! into
the form of Eq.~25! with I 8 given by Eq.~38!. Then using
Eqs.~39! and ~40! and the normalization ofwn we find that

a~ t !52~2n1a11!E
0

t 1

M ~ t8!r2
dt8. ~44!

Finally, using Eqs.~10! and~43! we find that the exact soluc
tion of the Schro¨dinger equation for the time-dependent o
cillator with an inverse quadratic potential is

cn~q,t !5eian~ t !S 2G~n11!

G~a1n11! D
1/2S 1

\r2D ~a11!/2

qa1~1/2!

3expF iM ~ t !

2\ S ṙ

r
1

1

M ~ t !r2D q2GLn
aS 1

\

q2

r2D , ~45!

where the phase functions are given by~44!.
When the mass is constant, i.e.,M (t)5m the new wave

function ~45! agrees with that obtained in Ref.@3#. We also
note that wheng50 the solutionscn of Eq. ~45! reduce to
the solutions of the harmonic oscillator with time-depend
mass and frequencyc2n11.
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D. Caldirola-Kanai oscillator with an inverse quadratic
potential

Let us now consider the Hamiltonian~34! with constant
frequency and massM (t) given by Eq.~28!. For this case we
obtain that

H~ t !5~p2/2m!e2gt1 1
2 mwoegtq21~ge2gt/2mq2!, ~46!

which is the Caldirola-Kanai oscillator with an inverse qu
dratic potential.

To obtain the wave function associated with Eq.~46! we
proceed as follows. Consider the particular solution of E
~5! given by Eq.~30!. Then, using Eqs.~28! and~30! into Eq.
~44!, we find that

an~ t !52V~2n1a11!t. ~47!

Thus by Eqs.~28!, ~30!, and~47! in Eq. ~45!, we obtain that

cn~q,t !5S 2G~n11!

G~a1n11! D
1/2S mV

\
egtD ~a11!/2

qa1~1/2!

3exp@2 iV~2n1a11!t#

3expF2
m

2\S V1
ig

2 Degtq2GLn
aS mV

\
q2egtD , ~48!

which is the exact wave function for Caldirola-Kanai osc
lator ~46!. Here we would like to remark that as far as w
know the Hamiltonian~46! and the wave function~48! have
not yet been exhibited in the literature.

IV. CONCLUDING REMARKS

In this paper we have used a unitary transformation
the LR invariant method in the Schro¨dinger picture to obtain
. A

.

-

.

d

the exact wave functions for the time-dependent harmo
oscillator with and without an inverse quadratic potenti
We also have seen that our results are in agreement
those obtained by other authors which have used diffe
approaches, such as the LR invariant method in the Hein
berg picture and the path integral method. Futhermore,
have obtained the wave functions for the Caldirola-Ka
oscillator with and without an inverse quadratic potenti
For this case, we would like to observe that the key poin
find the exact wave functions is the particular solution giv
by Eq. ~30! for the nonlinear equation~5!. Here let us recall
that there still remains the difficult task of solving the no
linear equation~5!.

In conclusion, we would like to make some comments.
we have already mentioned, the time-dependent harm
oscillator has been the subject of much investigation. In p
ticular, harmonic oscillators with time-dependent mass h
been employed in quantum optics in order to describe
electromagnetic field intensities in a Fabry-Pe´rot cavity @21#,
in quantum physics to study quantum tunelling effe
@22,23#, and in cosmology to study the behavior of a sca
field in an anisotropic universe@11,24#. We also mention that
the connection between quantum-mechanical solutions
classical solutions of the harmonic oscillator with and wit
out a singular perturbation has been studied by various
thors @4,8–10,20,25,26#. Furthermore, Kimet al. @27# used
the LR invariant method and the Heisenberg picture
proach to obtain the exact quantum motion of a tim
dependent forced harmonic oscillator. Thus it seems tha
would not be any problem to investigate the time-depend
forced oscillator using the procedure of the present pa
i.e., the LR invariant method and the Schro¨dinger picture
approach. We hope to report on this possibility in a futu
paper. Finally, we wish to point out that wave functions~27!
were also obtained in Ref.@28#.
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