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Reflection of light from a disordered medium backed by a phase-conjugating mirror
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This is a theoretical study of the interplay of optical phase conjugation and multiple scattering. We calculate
the intensity of light reflected by a phase-conjugating mirror when it is placed behind a disordered medium. We
compare the results of a fully phase-coherent theory with those from the theory of radiative transfer. Both
methods are equivalent if the dwell timg,¢; of a photon in the disordered medium is much larger than the
inverse of the frequency shift®w acquired at the phase-conjugating mirror. Whgpe A w=<1, in contrast,
phase coherence drastically affects the reflected intensity. In particular, a minimum in the dependence of the
reflectance on the disorder strength disappears wheris reduced below ¥j,.,. The analogies and differ-
ences with Andreev reflection of electrons at the interface between a normal metal and a superconductor are
discussed[S1050-294{®7)06611-0

PACS numbds): 42.65.Hw, 42.25.Bs, 42.68.Ay, 78.20.Ci

[. INTRODUCTION mirror has unusual optical properties, different both from the
weakly disordered case and from the electronic analog.

Phase conjugation is the reversal of the sign of the phase We distinguish two regimes, depending on the relative
of a wave function. A phase-conjugated wave retraces thenagnitude of the frequency shift\2» acquired at the phase-
path of the original wave, thereby canceling all accumulate@onjugating mirror and the inverse of the dwell timg,e of
phase shifts. Phase conjugation was first discovered for eleg; photon in the disordered mediuffror a medium of length
tronic waveq1], and later for optical wavel2,3]. For elec- | and mean free path, with light velocity ¢, one has
trons, phase conjugation takes place at the interface betweq.gwe”:LZ/CL) In the coherent regimeA w< 1/7q,q, phase
a normal metal and a superconductor. An electron at energypnjugation leads to a constructive interference of multiply
E above the Fermi energfr is reflected at the angle of gcattered light in the disordered medium. In theoherent
incidence(retroreflectegias a hole at energlf belowEr, a  regime Aws 1/7q,e, interference effects are insignificant.
process known as Andreev reflectioM]. A phase- |y poth regimes we compute the reflectanées and R_,
conjugating mirror for light consists of a cell containing a gefined as the reflected power at frequengy- A » divided
liquid or crystal with a Iarge_ nonlinear susceptibility, by the incident power at frequenaey,+Aw. A distinguish-
pumped by two counterpropagating beams at frequency ing feature of the two regimes is than a certain parameter
A wave incident at frequencyo+ A w is then retroreflected  range the reflectanc®_ decreases monotonically as a func-
at frequencywo— Aw, a process known as four-wave mixing tjon of L/I in the coherent regime, while in the incoherent
[5-7]. regime it first decreases and then increases.

The interplay of multiple scattering by disorder and phase The outline of this paper is as follows. After having for-
conjugation has been studied extensively in the electronigyylated the problem in Sec. II, we discuss in Sec. Il its
case, both experimentally and theoreticalyee Ref[8] for  gojution using the Boltzmann equation, ignoring phase co-
a review) In the optical case the emphasis has been Oference. This is the theory of radiative transfes,14. A
weakly disordered media, which do not strongly scatter thajmple result is obtained if we neglect angular correlations
waves[9]. Complete wave-front reconstruction is possiblepetween the scattering in the disordered medium and at the
only if the distorted wave front remains approximately pla-phase-conjugating mirror. We compare this approximation
nar, since perfect time reversal upon reflection holds only ifith an exact solution of the Boltzmann equation. In Sec. IV
a narrow range of angles of incidence for realistic systemsge phase-coherent problem is addressed, analytically using
(For the hypothetical case of perfect time reversal at alkandom-matrix theory, and numerically using the method of
angles, see Ref10].) McMichael, Ewbank, and Vach$$1]  recursive Green functions. Results of this section were
measured the intensity of the reconstructed wave front for driefly presented in Ref15]. We conclude in Sec. V with a
strongly inhomogeneous mediumall transmission prob-  comparison with the electronic analog of this problem.
ability Tg), and found that it was proportional t76§—in
agreement with the theoretical prediction of Gu and Yeh
[12]. If Ty<1, the intensity of the reconstructed wave is Il. FORMULATION OF THE PROBLEM
much smaller than the total reflected intensity. The total re-
flected intensity was not studied previously, perhaps because We study the system shown in Fig. 1. It consists of a
it was believed that the diffusive illumination resulting from disordered mediunflengthL, mean free path), backed at
a strongly inhomogeneous medium would render the effecone end by a phase-conjugating mirror. The other end is
of phase conjugation insignificant. In this paper we show thatlluminated diffusively at frequencyo ;= wqo+Aw, where
a strongly disordered medium backed by a phase-conjugatingg is the pump frequency of the mirror. We are interested in
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FIG. 1. Schematic drawing of the disordered medium backed by ] ] ]
a phase-conjugating mirrofPCM). Light incident at frequency FIG. 2. Reflectance of the phase-conjugating mirror as a func-
wo+Aw is reflected at the two frequencies*Aw. tion of the angle of incidence, computed from Eg.6) for two

choices of parameters.

the amount of light reflected at frequency, and
w_=wy—Aw. is a measure of the degeneracy of the incident and the re-
To reduce the problem to the scattering ofcalarwave, flected wave, and can be chosen freely.

we choose a two-dimensional geometry. The scatterers con- In the absence of disorder, an incoming plane wave in the
sist of dielectric rods in the direction, randomly placed in direction (cosg,sing) is retro-reflected in the direction
the x-y plane. The electric field points in tiedirection and  (—cosp,—sing), with a different frequency and amplitude.
varies in thex-y plane only. Two-dimensional scatterers are The scattering matrix for retroreflection is given 17—
somewhat artificial, but can be realized experimentglg].  20]

We believe that our results apply qualitatively to a three-
dimensional geometry as well, because the randomization of £\ out
the polarization by the disorder renders the vector character ( +) _
of the light insignificant. &

The z component of the electric field at the frequencies
w, andw_ is given by

0 —ia(¢)e‘“f’)(5+)i”
ia(p)e'’ 0 g (209

a(¢)=[ 1+ 6°cotari{ a1+ 8°/cosp)+i8] 2,

E.(X,y,t)=Ref.(x,y)exp —iw-t). (2.1 (2.6b
The phase-conjugating mirrgat x=0) couples the two fre- =1k 26
quencies via the wave equatif$,17,1§ @~ 2Yofoke: (2.69
Ho v* &, 2¢Aw [ €4 The crucial difference with Ref10] is that the reflectance is
_ _ = . 2.2 angle dependent and that the reflection matrix is non-
Y Ho ((:t (O] gt

Hermitian. This implies that not all phases will be canceled
. . . . in the conjugation process. In Fig. 2 we have plotted the
The complex dimensionless coupling constanis zero for 5 X o
x<0 and forx>L,, with L, the length of the nonlinear reflectancgal? as a function of the angle of incidengefor
medium forming the phase-conjugating mirror. For a:”;j iinghévsvgnvsljléﬁsthog__f'f?; ﬁggmgﬁh;ggngglzf
0<x<L. itis proportional to the electric field§,, £, of the fc:e_ 7uTenc (ie., for =0 5__0) The two values ofs
two pump beams and to the third-order nonlinear suscepti: q Ywo (€., IR

. } have been chosen such that the angular average of the reflec-
bility x3:
tance,
3 4
Lo gxsg*lfg; =y, 0<x<L.. (23 2

: A= [ "o cosplacs? @7

The Helmholtz operatot{, at frequencyw, is given by
Ho=—kg2V2—e, (2.4 is>1 for 6=0.75 and<1 for 6=0.9.[The cos) weight

factor in Eq.(2.7) corresponds to diffusive illuminatiohln
where g(x,y) is the relative dielectric constant of the me- Most of the numerical examples throughout this paper we
dium. We takee=1 except in the disordered region Will use these values ot andé.
—L<x<0, wheree=1+ de(X,y). The fluctuationsde lead
to scattering with mean free path We assumekyl>1, . PHASE-INCOHERENT SOLUTION
where ko= wg/c is the wave number of the lighivelocity '
c). The validity of Eq. (2.2 requires Aw/wg<1 and

A. Radiative-transfer theory
|v|=7vo<1. The ratio of these two small parameters

Within the framework of radiative-transfer thedr,3,14,
A the stationary distributiom(x,y, ¢)<|£|? of the light inten-
5= (2.5 sity, at frequency»s and wave vectorK cosp,k sing), is gov-

YoWo erned by the Boltzmann equation
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B. Neglect of angular correlations

J J
| cosp 5“ Sln(ﬁW)I(X’y’d)) A simple analytical treatment is possible if the angular
1 2 correlations between multiple reflections by the disorder and
__ = / the phase-conjugating mirror are neglected. Here we present
=y @)+ 2 d¢’ 1(xy.¢"). (3D this simplified treatment, and in the next subsection we com-
pare with an exact numerical solution of the Boltzmann
We neglect absorption and assume isotropic scattering in thgguation.
x-y plane, with mean free path The phase-conjugating mir- ~ We first consider the disordered region by itself. The
ror couples the intensitiels, of light at the two frequencies plane-wave transmission probability( ¢)| is the ratio of
w.=wy*Aw. We assume that is independent of fre- transmitted to incident flux when the incident light is a plane
quency. The symmetry of the system implies thatwave in the direction (cagsing). The transmission prob-
[(x,y,®)=1(x,|¢|). In this section we take [0,7]. For  ability T for diffusive illumination is then given by
each frequency the Boltzmann equation takes the form

w2
T= f d¢ cosp|t(¢)|?, 3.9
Nalxd) — | e cosplt(9) (39
lcosp———=1.(x)~1.(X,¢), (3.29
such thatT is the fraction of the flux incident from a diffu-

1 sive source which is transmitted through the disordered re-

T.(0)= —fﬁd¢ 1.(X, &) (3.2b gion. This probability'has been calculat_ed in Refl] from

mJo the Boltzmann equatio(8.2). The result is
Equation(3.2) has to be supplemented by boundary con- T=(1+29L/ml)~ Y, (3.10

ditions at the two endg=—L andx=0 of the disordered
medium. We consider a situation that the system is illumi
nated atx= —L with diffusive light at frequency , , hence

‘where is a numerical coefficient which depends weakly on
L/I. In the ballistic limit (L/I|—0) % has the valuer?/8 and

in the diffusive limit (L/| —») 7»=1. In this subsectiobut

L. (—L.d)=1, f >0, 3.3 not in the next we taken=1 _for all L/1 for simplicity.

+( ¢)=lo for cosp (3.33 We use EQq.(3.10 to obtain the reflectancR.. for the
case that the disordered medium is backed by a phase-

I-(=L.,4)=0 for cosp>0. (3.3 conjugating mirror with reflectance
At x=0 the light is reflected by the phase-conjugating mir- i : 2
ror. The intensity is multiplied by A:f d¢cos¢ sif(ay1+ 6 /CO%)_ (3.11)
0 5%+ coS( a1+ 8%/cosp)
H / 2
la(¢)|?= SirP( @1+ 5°/cosp) (3.4  SinceT andA are angular averages, we are neglecting an-

8+ co(a1+ 6% cosp)’ gular correlations. The light that comes out at frequesacy
has been reflected an odd number of times at the mirror. The
according to Eq(2.6). The reflection is accompanied by a light that has been reflected once has traversed the medium
change in frequency . — -, so that the boundary condi- twice, which leads to a contributioR®A to R_ . Light that
tion is has been reflected three times by the mirror contributes
T2A%(1-T)?, since it has been reflected two times by the
1.(0,¢)=l|a(¢)|* 1:(0,m—¢) for cosp<0. (3.5  medium (each time with probability & T). Summing all
contributions, one finds
The fluxj. associated with the intensity. is defined by
RO=T?A+T?A¥(1-T)*+ T°A%(1-T)*+ - -
ji:f d¢ CO&ﬁlt(Xv(ﬁ)v (36) T2A
0 = (3.1239
1—(1—T)>?A?

and is independent of [d] .- /9x=0 according to Eq(3.2)]. )
The reflectanceR_ is defined as the ratio of the outgoing Light that comes out at frequenay, has been reflected an
flux at frequencyw_ and the incoming flux at frequency €VeN number of times at the mirror. Zero reflections by the

mirror contributes + T to R, , two reflections contributes

w,, . .
T2A%(1-T), and four reflectionsT?A*(1—T)3. Summing
Ro=—j_/l,. (3.70  the series, one finds
. . 201 _T\A2
The total outgoing flux isR_+ R, )1,, where R.—1-T+ T(1-TA . (3.128
_ 1—(1-T)>?A?
R.,=1—j. /I, (3.9

The geometric series leading to E(.12 diverges if
is the ratio of the outgoing flux and the incoming flux at the (1—-T)A=1. This indicates that there is only a stationary
same frequencw, . solution to the Boltzmann equation if both the gain at the
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mirror and the scattering in the medium are sufficiently o dx ., p _
weak. If A is increased at fixed= /4 by reducings, the (X, )= Tcosa| © (" =0ofeostl | ()

X

reflectancesR. diverge whens= ;. (This divergence is
preempted by depletion of the pump beams in the phase-
conjugating mirror, which we do not describén the ap-
proximation of this subsection,. is determined by
(1-T)A=1, or L/I=37(A—1)"1. In the ballistic limit, 0 dx
T=1 andA< for any 6>0. In the diffusive limit, T=0 f—L”COS‘fM
andA=1 for §=0.78. Henceg, increases from 0 to 0.78 as

L/l increases from O tee.

+ ex/l\cos¢||a(¢)|2x |Oe—L/I\cos¢|

x'/l|cosp| | I (X ))

for cosp<0. (3.15hH
C. Exact solution of the Boltzmann equation Finally, integration over¢ leads to two coupled integral

The Boltzmann equatiori3.2 can be solved exactly, €duations for the average intensities,

without neglect of angular correlations, by adapting the
method of Ref[21] to an angle-dependent boundary condi-

tion. We first rewrite Eq(3.2) as

iexll cos¢| +(X,¢) —

x/Icos¢ I X
oX +(X),

| cosp cosd; (313

and then integrate once over using the boundary condi-

tions (3.3) and(3.5). The result is

|+(X ¢) f I Coaﬁ e*(x x")/1 cos ¢ | (X )
+1ge~ ET0/cosh for cosp>0, (3.148
0 dx’
— _ —(x=x")/I cosp
=[] w0 00

+e o |a(¢)|? _(0,m— )

for cosp<0, (3.14b

e—(x—x')/l COS¢|_,(X')

L(x.¢>=f_x

Ll cosp

for cosp>0, (3.149

e —(x=x"H/l cos¢|

0 dx’
,<x,¢>=—f - " (x)

x| cos¢
+e X1 %a(¢)|? | (0,7~ ¢)
for cosp<0. (3.149

Substitution of Egs(3.149 and (3.143 into, respectively,
Egs.(3.14h and(3.149 yields

0 dx’
L (x, )= f Teosg © "0
X
+ex/|\cos¢||a( ¢)|2
0 dx
x'/|cos |
XJ—L”CO&M © - ()

for cosp<O0, (3.153

_ 0 _
i +<x>=f7de'vvll<x,x') ()

0 _
+f dX' Mo(X,x") I _(X")+Q1(X)1g,
-L

(3.163
_ 0 _
I _(x)=f_de’M1(x,x’)l _(x")

0 _
+f dxX' Mo(xX,x") I (X" ) +Qua(X)Ig.
-L
(3.16h

We have defined the following kernels and source terms:

@2 d ,

M (X, X = _f i C:)Z;b —|x=x"|/l cosp

= L Kellx—x|11), (3173
rl
2 d )
Mo = = [T e a2,

(3.170
Qi(x)= %foﬂzw e (LH0llcos, (3.179

1 (w2
Q== g et a7, (3179

whereK is a Bessel function.

Equation(3.16 is the analog for the present problem in-
volving two coupled frequencies of the Schwarzschild-Milne
equation in the theory of radiative transfé3,14. We have
solved it numerically by discretizing with respectt®o that
the integral equation becomes a matrix equation. From the

average intensitie$ . (x) one finds the intensitiek. (X, ¢)
using Egs.(3.14 and (3.15. The reflectanceR.. then fol-
low from Egs.(3.6)—(3.8). For numerical stability we have
imposed a cutoff on the rapidly oscillating functiaf¢) at

grazing incidence, by settiraf ¢) =0 for 0.4977< $p<31.
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-1 -0.8 -0.6 -04 -0.2 0 FIG. 5. A stationary solution to the Boltzmann equation requires
z/L 8> 5. . The solid curve is the exact result fég (at fixed a= 7/4,
as function ofL/l), the dotted curve follows from Ed3.12), ob-
1-2h M) L/t=15 tained by neglecting angular correlations.
10T s
i gence occurs. As discussed earlier, the divergence indicates
RS 0.8 that for 5=0.75 andL/I >28 there is no stationary solution
m0.6 to the Boltzmann equation. For fixdd| and «, the diver-
I 1 gence ofR. occurs at a critical valué,, such that a sta-
0.4 tionary solution require®$> .. The dependence a¥; on
I L/l at fixed a=w/4 is plotted in Fig. 5.
0.2 In Figs. 4 and 5 we also compare the exact numerical
0.0 solution of the Boltzmann equation of this subsection with

-1 -08-06-04-02 0 the approximate analytical solutia®.12) of the preceding
z/L subsection. As one can see, the agreement with the exact

: L : : results is quite good.
FIG. 3. Intensity profiles in the disordered medium, computed q 9

from the exact numerical solution of the Boltzmann equation, for
a=m/4 and two values ob. (a) is for a nearly ballistic system IV. PHASE-COHERENT SOLUTION

_ We now turn to a phase-coherent description of the scat-

In Figs. 3 and 4 we show results fdr.(x) andR. for  tering problem. To define finite-dimensional scattering ma-
a=m/4 and6=0.75 and 0.9. Fo6=0.75 there is an effec- trices we embed the disordered medium in a waveguide
tive gain at the mirror A>1), while for 5=0.9 there is an  (width W), containingN.. = Int(w-W/cm)>1 propagating
effective loss A<<1). For an ordinary mirror one can show modes at frequency.. . A basis of scattering states consists
that | . (0)=3I,. Instead, we find that _(0)> | ,(0)>31, of the complex fields
for §=0.75, indicating gain, and _(0)<1 ,(0)<3l, for nmy
6=0.9, indicating loss. In each case the density profiles are Eiyn(x,y,t)zkﬁlr’,zsin(—) explik: X—iw.t),
approximately linear in the bulk, with some bending near the w 413
boundaries ak=—L andx=0. For §=0.75, bothR_ and '

R, diverge wherL/I =28, while for 5=0.9 no such diver- n
E< — kY2 Yy : .
+ Xy, D)=k sin W exp(—iks pX—iw.t).
0.5 N (4.1b
0.4 — Heren=1,2,... N. is the mode index and the superscript
10.3 . > (<) indicates a wave moving to the riglieft), with
aed 02 ' frequencyw. = wy* Aw and wave number

k. o= (w2/c?—n?m?/W3)Y2, 4.2)
0.1 - ’ -
0.0 The normalization in Eq(4.1) has been chosen such that

each wave carries the same flux.
With respect to the basiét.1), incoming and outgoing
waves are decomposed as

1

FIG. 4. Reflectanc®_ as a function ot./I, computed from the

' . N, N_
exact solution of the Boltzmann equation fer 7/4 and §=0.75 i - -

(dashed curve 6§=0.90 (solid curve. The dotted curves are the EIanZl U+YHE+,n+n§1 u*v“E*,n’ (4.33
approximate result3.123, in which angular correlations are ne-

glected. The inset shows the exact reflectarResfor §=0.75, N, N_

over a broader range df/l (logarithmic scalg For 6=0.75 the Eout— 2 vy oES E v_aES .. (4.3
reflectances diverge at'l =28. No divergence occurs fa@t=0.90. n=1 ' "ona=1 ] '
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The complex coefficients are combined into two vectors

— T

U=(Uy 1,Us g, o Up N, U uE o, )T,
(4.439

_ T

V=(U4 1,040, ... ,v+’N+,v’i’1,v’i’2, vt ah
(4.4b

The reflection matrix relatesu to v,
V=ru, fr= . (4.5
r_,. r__

The dimension of is (N, +N_)X(N,+N_), the subma-
tricesr.. . have dimensionbl. X N.. . ForAw<wy we may

neglect the difference betweéh. andN_ and replace both
by N=Int(koW/ ).

In the absence of disorder the reflection matrix is entirelyO

determined by the phase-conjugating mirror,

0 —iae ¥
FPeM= | 4ol v 0 ; (4.6a
apn=alén) émn, Pn=arcsiina/koW). (4.6

The elements of th&l X N diagonal matrixa are obtained
from Eq.(2.6) upon substitution of by ¢,,, being the angle
of incidence associated with mode (The difference in
angle between the two frequencies and w_ can be ne-
glected ifA w<<wg.) The angular averag@.7) of the reflec-
tance corresponds to the modal average

A= 4.7

1_|_ +
NTaa.

In the limit N—o the two averages are identical.
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r_.=ie'"ti (o )a1-ryw,)ars(w_)a] 'ty(w.),

(4.90
ro_=—ie o, )a1-riw_)aryw,)a] t5(w_).
(4.99
We seek the reflectances
1 ¢ 1 +
R,:N—+Tr r.r_,, R+=N—+Tr [ A
(4.10

averaged over the disorder. We will do this analytically, us-
ing random-matrix theory22], and numerically, using the
recursive Green function techniqi23]. We consider two
different regimes, depending on the relative magnitude of
Aw and ke, Whererg,e=L?/cl is the mean dwell time

f a photon in the disordered medium. 4, Aw<<1 the
difference betweerSyisorgef @ +) and Syisorgef @) 1S iNSig-
nificant, because the phase shifts accumulated in atjng
are approximately the same for frequenaiesandow _ . We
call this thecoherentregime. If 74,eiA@>1, on the con-
trary, phase shifts ab, andw _ are essentially uncorrelated,
S0 thatSyisorgef @) and Syisorgef @) are independent. We
call this theincoherentregime.

B. Random-matrix theory

Without loss of generality the reflection and transmission
matrices of the disordered region can be decomposgaas

r(ws)=iViy1-T.VI, (4.113
Mopw+)=iU.y1-T. UL, (4.11b

to(w.)=U.TLVL.
(4.110

il w2) =V T UL,

The disordered medium in front of the phase-conjugating

mirror does not couple , andw_ . Its scattering properties
at frequencyw are described by twbl X N transmission ma-
tricest,;(w) andt ) w) (transmission from left to right and
from right to lefy plus twoNX N reflection matrices ;1(w)
and r)(w) (reflection from left to left and from right to
right). Taken together, these four matrices constitute
2N X 2N scattering matrix

r(w)
toi(w)

which is unitary(because of flux conservatipand symmet-
ric (because of time-reversal invarianch is simple algebra
to express the scattering matnixof the entire system in
terms of the scattering matricascy and Syisorger Of the

t
12 ) ) ’ 4.9

Mo )

Stisordef @) = (

phase-conjugating mirror and the disordered region sepa-

rately. The result is
Mev=ru(w,)+t(ow)ars (o)
Xa[l-ryp(w,)ars (o )a] 'ty(w,), (4.99
ro_=rij(o_)+tio-)arw,)

><a[l—f’ﬁg(wf)arzz(w+)a]7lt§1(w7), (4.9p

Here U. and V. are NXN unitary matrices(we take
N, =N_=N in this subsectionandT .. is a diagonal matrix
with the transmission eigenvalues ,,[0,1] on the diago-
nal. The subscript- refers to the two frequencies, and
w_. In this so-called “polar decomposition” the reflec-
dancesR. take the form

1
TTT_Q1-J1-T, Q"V1-T_ Q) L. T,

R,ZN

X(1-Q"W1-T_ 0*J1-T,) Q'  (4.123

1 1
R = Tr(1-T)+Tr T.Q™V1-T_

XQ1-V1-T, Q"V1-T_ Q) 2T, (1-Q'
XV1-T_ Q*J1-T,) Q"J1-T_ O*

1
- NTrT+\/1—T+ 1-o'i-1_0*Jy1-T1,)¢

1
xQW1-T_ Q* - N7 T V1-T.Q"J1-T_

XQ1-J1-T, QV1-T_ Q) 1, (4.12b
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Qzu‘[au+_ (4.120 which is the result(3.12 of radiative-transfer theory with
neglect of angular correlations. The conclusion is that in the
To compute the averagéR..) analytically in the largeN  incoherent regime phase coherence has no effect on the re-

limit we make the isotropy approximatid22] that the ma- flectance of the system to leading ordemn
tricesU.. andV. are uniformly distributed over the unitary =~ The situation is entirely different in the coherent regime
groupZ(N). This approximation corresponds to the neglect(7gweid @w<<1). To see the difference it is instructive to first
of angular correlations in the radiative-transfer the@gc.  consider the simplified model that the matey,,= a6y iS
1B). For rgwaAw<1l we may identify U, =U_ and proportional to the unit matrixa scalay. BecausdJ_=U_
V,=V_. For rgyed @>1 we may assume thai, , U_, for Tgweild @<<1, we then havé) ,,=ayn,. There is there-
V., andV_ are all independent. In each case the integratiorfiore no average ovet/{(N) to perform. We only have to
JSdUf(U) overU(N) with N>1 can be done using the large- average over one set of transmission eigenvalues
N expansion of Refl24]. The remaining average ovet. , T+ n=T_ n=7y. This average amounts to the integrals
can be done using the known densitr) of the transmis-

sion eigenvalues in a disordered medi[22]. R )= 1 ld |ap|?7? 417
The calculation is easiest in the incoherent regime (Ro)= NJo 7p(7) 11—al+alr?’ (4.179
(TgwenA @>1). The integration ove(N) can be carried out 070
using the formuld 24] R)-1 1fld o r—|ag|*r(1— 1)
=1l— = TP\T) ————— 5 5 . -
1 : NJo ™™ 1= a2+ aze)?
dU | dVSTr(ALUAVAGU: - -Ap) (4.17
X (B1UB,VB3U- - -By)" The densityp(7) for I<SL<NI is given by[22]
=4 N—Pﬁ TrAB +O(N"P71) (4.13 p(r)=L;+0(s+1)*4 s=2—L
PaT t ' ' 2(s+1) 1=+ ; al
(4.18

To apply this formula we expand the inverse matrices in Eq.
(4.12 in a power series iJ. and integrate term by term The density has a cutoff for exponentially smallwhich is
over the independent matrices, andU_ . The result is, to irrelevant for(R..) if a3# 1. Substitution of Eq(4.18 into

leading order inN, Eq. (4.17) yields the average reflectances

G 2p+1 33(3(2)_1)

f dU,J dU, R.=> T_T,AP*L(1-T_)P(1-T,)P (R-)=2T Re———artanha,, (4.193
T_T.A .2
- 4.14 ag(ag—1)

1_(1_T_)(1_T+)A21 ( 3 <R+>=1—2T Rewartanhas, (4.19h

0~ &g
4 B T3 (1-T_)A? where T is again the transmission probabilitg.10 from

du- Ui Re=1-T, + 1-(1-T_)(1-T,)A?’ radiative-transfer theory. Both quantities have a smdoth

(4.14b dependence, witiR_) decreasing monotonically 1/L. In
contrast, radiative-transfer theory predicts a nonmonotbnic

where we have defined the modal average dependence foh>1, leading to a divergence at sotneFor
\ A<1, radiative-transfer theory predicts a quadratic decrease
1 1 of (R_)x1/L?, for large L. The conclusion is that, in the
To=—TrTo=—2 7.,. (4.15

coherent regime, phase coherence modifies the reflectance of
the phase-conjugating mirror to leading ordemn

The modal averagl was defined in Eq4.7). The quantities The result(4.19 was obtained for the simplified model of

T. still depend on the configuration of the scatterers, but thé scalar reflection matria. The truea in Eq. (4.6) is diago-
fluctuations around the average.. ) are smaller by an order Nhal but not a scalar. This complicates the calculation because
1/N than the average itself. Moreover, the avergge) Q=UlaU, then needs to be averaged ovéN) even
equals the transmission probabilifyfrom radiative-transfer thoughU_=U, . The calculation is outlined in the Appen-
theory, Eq.(3.10, again up to corrections of orderNl/Re- ~ dix. The complete result is a complicated function Lof

-~ N Np=1

placingT- in Eq. (4.14 by T we obtain (plotted in Fig. 6. For L/I>1 the result takes the form of
Eq. (4.19, where noway is to be determined from the equa-
(R T2A 3 tion
R )= ———, (4.16
2p2
1-(1-T)“A 1 a ag
—Tr (4.20

_ = 2"
TZ(l_T)AZ N 1 qp a 1_ao
A (4.160

(Ry)=1-T+ , . _ _ _
1—(1-T)2%A2 In the limit N—o<c this becomes an integral equation fy,
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In the Ilimit of large N we can write
zi#jo“oﬁ:m-lTr Ol2. In the same way as before, for
L>1, this trace can be expressed in termsagf wherea,
can be found from Eq(4.6): N~ 1Tr O=T artanta,. The
result for the averages is then

(|(r—)nnl?)=T?artantag|?, (4.253

Q- Dmdd=N"YR), m #n.  (4.250

The incident plane wave is reconstructed with an intensity
L/t «T?, in agreement with Refd.11,17. In the coherent re-
gime, off-diagonal (h#n) and diagonal ih=n) reflection
probabilities differ by a large factor of ord®&'T.

In the incoherent regime, the matrices. andV_ are
independent. Integration oveX N) results in integrals of the

FIG. 6. Average reflectance®R..) as a function ofL/l for
a=ml4 and5=0.6, 0.9, in the coherent regime. The full curves are
the analytical results faN>1, computed from EqA18). The dot-
ted curves are the larde/l limit given by Egs.(4.19 and (4.2)).

Data points are results from numerical simulations. form fdV VnV5=N"'y. Then the off-diagonal and di-
agonal reflection probabilities are both given by
f " S0P 80 4.2 (0= DmdH=N"XR_), (4.26
0 1-aca(¢) 1-a?

so there is no peak in the reflected intensity at the angle of

e i P incidence. This holds for everyd andL.
Y;?geéia;gn:;tglt\é(ez 1bg))/, I(Efz(é?)s (ﬁcs)sseht(z)vm;ncgllﬁblg{;ﬁg For both the incoherent and the coherent regime we find
sult for L=1. In the limit 5—0 the solution to Eq(4.2)) is for the. reflecﬂon without frequency shiftw(, —w.) the
given bya,=1.284-0.0133, for a= /4. The correspond- Probability
ing reflectances (for L=l) are (R_)=61.1/L, and
(Ry)=1+57.7/L. ((r+ Dm®=
To make contact with the work on wave-front reconstruc- 1+N

tion[11,12, we consider also the case of plane-wave—rather .
than diffusive—illumination. A plane wave incident at fre- 1€ré we see a much smaller backscattering peak, where the

: : ; _ diagonal reflection probability is only twice as large as the
guencyw , in moden is reflected into modes=1,2,... N . . I . I
at freque;cym with probability | (r . . ) mr 2). The calcula- off-diagonal reflection pro_bab|I|_ty26]._Th|s factor is |nde—'
tion of this probability proceeds similarly as the calculation pendent of the phase-conjugating mirror, and exists entirely

of R_. (See Ref[25] for the analogous calculation in the because of time-reversal symme{gy].

case of Andreev reflectionUsing Eqs.(4.9—(4.12 we can
write C. Numerical simulations

1+ 6mn

(R). (4.27

e T To test the analytical predictions of random-matrix theory
ro,=ie'"viov}, (4223 we have carried out numerical simulations. The Helmholtz
equation,

0] \/T__Q(l \/1 T+Q \/1 T—Q) \/ﬂ(422b (_VZ_gw?:/CZ)g:O' (4_28)

For the coherent regime, we may again identifyis discretized on a square lattilattice constantl, lengthL,

V., =V_=V. The integration ovet/(N) can be performed Width W). Disorder is introduced by letting the relative di-
using[24] electric constang fluctuate from site to site betweent15e.

Using the method of recursive Green functi¢gs] we com-
1 pute the scattering matri$gisorgef @) of the disordered me-
f dV VolViVaiVimi= 5 (8ik8ji + Smndki 5ji) dium at frequencies . andw_ . The reflection matrixX pcy
N°—1 of the phase-conjugating mirror is calculated by discretizing
EQ. (2.2). From Syisorgef @) andrpcy We obtain the reflec-
_ ;(5“5“ + 8B i) tion matrixr of the entire system, and hence the reflectances
N3—N jr mme (4.10.
4.23 We tookW=51d, §¢=0.5, = 7/4, and varied5 andL.

' For the coherent case we toak. = w_=1.25Z/d, and for
the incoherent case,=1.252/d, w_=1.16&/d. These
parameters correspond M, =22,1,=15.5 at frequency
o, . The mean free path is determined using E810),

j dv |(r_.) |2:1+5mn - N Simn— 12 0.0* . yvhich holds up to small corrections of ordhr_‘l. In the
mN+1 N3—N i7" W incoherent case we haw_ =20, | _=20.1d. This leads to
(4.24 Aw=0.04%/d and a dwell time for L/I=3 of

We then find
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1.5 V. COMPARISON WITH ANDREEV REFLECTION

We have studied the reflection of light by a disordered
dielectric medium in front of a phase-conjugating mirror.
This problem has an electronic analgy7,18. The elec-
tronic disordered system consists of a metal, in which elec-
tron or hole excitations are scattered elastically by randomly
placed impurities. Retroreflection at the phase-conjugating
mirror is analogous to Andreev reflection at the interface
with a superconductor. The Fermi energy plays the role
0 1 2 3 4 5 6 of the pump frequency,, while the excitation energ¥

L/t corresponds to the frequency shifty. In spite of these simi-
larities, the optical effects found in this paper have no elec-

FIG. 7. Average reflectanceR.) as a function ofL/l for  tronic analog. It is instructive to see where the analogy
a=m/4 and5=0.6, 0.9, in the incoherent regime. The curves arepregks down.
thg analytical results 1‘0N>1Z corr?puted' from .Eq(3.12). Data To this end we compare the wave equati@r) with the
points are results from numerical S|mulat|o(_Stat|st|caI error bars Bogoliubov—de Gennes equatif@s]
are shown when they are larger than the size of the marker.

N
: . . ; . =E , (5.2
should be well in the incoherent regime. For comparison A* —HJ\v v
with random-matrix theory, we take the lartedimit and
use the valué, forI. which determines the electron and hole wave functioasd

The numerical results are shown in Figs(d®herent re- . The Hamiltonian
gime) and 7(incoherent regime for §=0.6 and 0.9. As we
can see, the agreement with the analytical theory is quite 52
satisfactory. The rapid rise @¢R..) in the incoherent regime H=- ﬁVZJrV— Er (5.2
for the smalles® is accompanied by large statistical fluctua-
tions, which make an accurate comparison more difficult.

Still, the striking differences between the coherent and incocontains the electrostatic potentig(r), which plays the role
herent regimes predicted by the random-matrix theory ar@f the dielectric constanfMore preciselyk3(e —1) corre-
confirmed by the simulations. sponds to— (2m/#2)V.] The role of the nonlinear suscepti-

We have also studied the backscattering peak for planesility is played here by the pair potential(r), which is only
wave illumination. We considered a square samplenonzero in the superconductor, where it equalge™'Y.
(W=L=251d) with a= /4, 5=0.9. We calculated the re- Comparing Eqs(5.1) and(5.2) for the electronic case with
flection probabilities |(r_,)mn? for normal incidence the optical equation&2.2) and(2.4) one notices many simi-
(n=1) in both the coherent and the incoherent regimes. Théarities, and some differences which amount to a redefinition
numerical results for a single realization of the disorder aredf quantities. There is, however, one essential difference: the
shown in Fig. 8. The arrow denotes the analytical ensembl@atrix operator in Eq(5.1) is Hermitian, while that in Eq.
average(4.25 of the backscattering peak in the larye- (2.2) is not, because of an extra minus sign in one of the
limit, which is consistent with the numerical data. Notice theoff-diagonal elements. This minus sign is the origin of the
absence of a backscattering peak in the incoherent regimedifference between Andreev reflection and optical phase con-

1.0

-_._I--J-'J

(R+)

0.5

Tawel=L/cl=150d/c. Hence we have A 0=6.5, which ( H A )(u

jugation.
0.005 In the optical case a disordered medium becomes trans-
0004 € parent R_=1) [9,10] for unit reflectance at the phase-
5=0.9 conjugating mirror &= 1). This does not happen in the elec-
o 0.003 tronic case, wher®_ is reduced by disorder even for ideal
T 0.002 coherent regime Andreev reflection. The reflection matrix of the normal-
gn metal—superconductofNS) interface, obtained from Eq.
\;..L 0.001 (5.1 for V=0, E<A,<Eg, is given by[1]
— 0
0.001 incoherent regime 0 —je v
" I'ns (—iei‘/’ 0 ) (5.3
0
0 25 50 75 100
m Comparison with Eq(4.6) for rpcy shows that Andreev re-

FIG. 8. Histograms for the modal distributidfr _ ,)qs|2 of the  fl€ction is independent of the angle of incidence; the maitrix
reflection probability with frequency shift for normal incidence. N EQ.(4.6) is replaced by the unit matrix in E¢6.3). This is
The results are for a single realization of the disorder atd substantial simplification of the electronic problem, com-
W=L=251d (L/I=16.2), a= /4, and 5=0.9. The arrow indi- ~pared with the optical analog. The matrixs is unitary, in
cates the theoretical valu§(r_)4|%) from Eq.(4.25, represent- ~ contrast tarpcy, SO that the appearance of gain or loss at the
ing the ensemble average in the lafgdimit. phase-conjugating mirror has no electronic counterpart. The
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reflectanceR_=1—R, is a monotonically decreasing func- (4.11) of the transmission and reflection matrices. We find it
tion of L/l in the electronic casg8], both in the coherent convenient to use a slightly modified version of the diagram-
regime, matic technique, in which we apply the diagrammatic rules
) without making explicit use of the polar decomposition. We
R-=(2+4L/ml)~t if E<h/7gpenandL=l, (5.4  first outline the calculation ofR.) in which the diagram-
matic method is used for the integration of the matritks
andV in Eq. (4.13), and then discuss the modification of the
Ro=(1+4L/m)~t if E>Hlrguen. (5.5  diagrammatic method. , o
We start the calculation ofR.) with the elimination of
The result(5.5) is what one obtains from Ed3.12 for  the reflection matrix ,;(wg) and the transmission matrices
the caséA=1 of unit reflectance at the interfad@he trans-  t;(wg) andt,(wy) from the reflectance®, and R_ [cf.
mittanceT = (1+2L/#l) ! of the disordered medium is the Egs.(4.9) and(4.10], in favor of the matrix =r,,(wg). The
same for electrons and photoh§he result(5.4), however, is  result is
not what one would expect from the optical analog. Indeed,
Eq. (4.17) with ag=1 would giveR_=1 for all L in the case
of unit reflectance at the phase-conjugating mirror. The rea-
son that the analogy with Andreev reflection breaks down is

and in the incoherent regime,

(Ry)= %Tr[s’(a,a)—s(l,a)—s(a,1)+s’(1,1)

the difference of a minus sign in the wave equati¢®<) +h(1)+h(1)*], (Ala)
and (5.1, which reappears in the reflection matricdgs6) 1
and(5.3) for phase conjugation, and ultimately in the reflec- R)=—T —g(la)—s(al)+s(1.1
tances in the coherent regime: (R-) N r{saa-s(1a-s(al+s1D
1 w |2 +a ta ™*[1-h(1)—h(1)*]}, (Alb)
R.==—Tr #1 for electrons, (5.63 ]
N\ 1+prT where we defined
1 wt |2 s (x,y)={(x(1—rar*a) lryy*r*(1—a*ra*r*) Ix*),
Ro=gTr — =1 for photons ifa=1. (A23)
—rr

(5.6  s(x,y)=(x(1-rar*a) la lyy*a *(1—a*ra*r*) Ix*),
y yy

A2b

Heret andr are the transmission and reflection matrices of ( )

the disordered medium, which satighy+rr T=1. h(x)=(x(1—rar*a)~1). (A20)

In conclusion, we have shown that the presence of a
phase-conjugating mirror behind a random medium drastiTo perform the average oveér one may use the polar de-
cally changes the total reflected intensity, even when the mesomposition[cf. Eq. (4.11)]
dium is so disordered that wave-front reconstruction is inef-
fective. On increasing the frequency differente between r=iUy1-TUT, (A3)
the incident radiation and the pump beammiaimumin the ] ) ] ] ) )
disorder dependence of the reflected intensity appears. In\ghereU is a unitary matrix andr is the diagonal matrix
certain parameter range, the disordered medium reflects le§gntaining theN transmission eigenvalues on the diago-
radiation on reducing\ . Experimental observation of this Nal- The matrixU is a member of the circular unitary en-
“darkening” would be a striking demonstration of phase- semble(CUE), i.e., it is uniformly distributed in the unitary

shift cancellations in a random medium. group. The transmission eigenvalugshave density22]
ACKNOWLEDGMENTS p(7)=(2N/7)Im g(1/7—1-i 0,5), (Ada)
This work was supported by the “Stichting voor Funda- g(¢,s)=cotani{—sg(¢,s)], s=2L/xl. (A4b)

menteel Onderzoek der MaterigFOM) and by the “Ned-

erlandse organisatie voor Wetenschappelijk Onderzoek” . To int?grate the mgtrik) over the unitary group, the ma-
(NWO). tricess, s', andh are first expanded as a power seriedin

The integration ofU is then done using the general expres-
sion for the average of a polynomial function Gf[30],
(Uayo, *Uap, U g Uk 5 )

n

APPENDIX: CALCULATION OF THE REFLECTANCES
IN THE COHERENT REGIME

In Sec. IV we computed the average reflectar{ées) for n
the incoherent regime. For the coherent regime we presented —s 2 v H s (A5)
only a derivation for scalar reflection matri This appen- MO O Gy TR APa) by Bpr(j)

dix contains the calculation diR..) for arbitrary (diagonal

matrix a. Our calculation is based on the diagrammaticHere the summation is over all permutatidghendP’ of the
method for integration over the unitary group of Refs.numbers 1...,n. The numberg,, ... c, denote theeycle
[29,24. Integrals over the unitary group are needed for thestructure of the permutationP 'P’. (The permutation
computation of(R.) because of the polar decomposition P~ 1P’ can be uniquely written as a product of disjoint cy-
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clic permutations of lengths,, ... ,c., with n=2}‘:1ck.)
To compute(R-.) in the limit of largeN, it is sufficient to N =z w2 _fm

know the coefficienty/; . to leading order ilN. These h@ Fitrh (2)] * h@
are given in Refs[29,24, together with a diagrammatic

method which enables one to restrict the summation &ver (@ Y @ R

andP’ to those permutationB andP’ of which the contri- Fitr h (2)] T " wn o

bution to(R..) is of maximal order irN.

Although the computation of R.) is straightforward v, SIS VWSS

now, the actual calculation is rather cumbersome. We find it trhi) T h{d rh{
convenient to modify the approach of R€f29,24 so that it _ _
can be applied directly to the average over the matrix FIG. 9. Diagrams for the calculation (z).

without making explicit use of the polar decompositi@s). } i o
This is possible because the general structé®) already ordered waveguide. To find these coefficients, we use the
follows from the invariance of the distribution &f under fact that they factorize, to leading order i

transformations

k
= Ve, Al10
U-)VUV ’ , (AG) LR, Ck J];[l Ck ( )

whereV is an arbitrary unitary matrix. The fact thatitself ~ just as they do for the COE. This follows directly frTOT the
is unitary is necessary to compute the value of the coeffifact that, to leading ogdcer i, the averaggTl,; Tr(rr 7))
cientsVe .. . but it is not relevant for the general struc- factorizes intollj(Tr(rr ')%) [32]. It remains to find the co-

ture (A5). Since the matrix is both unitary and symmetric, efficientsV;. Hereto we consider the function
its distribution is invariant under transformations
ho(2)={ ———— ). (A1)

r—vrv T (A7) ° <1—rr*z2>
that respect the symmetry of The same group of transfor- We first computeho(z) from the diagrammatic technique,
mations leaves invariant the circular orthogonal ensembl¥/ith @ priori unknown coefficients/.. We then compare
(COB), consisting of uniformly distributed unitary and sym- Our res'ult'wnh a calculation of Tig(z) from '_[he density of
metric matrices. A diagrammatic technique for averages ovefansmission eigenvalu¢a4). The relevant diagrams for the
the COE is presented in Ref24]. As before, the general diagrammatic calculation are shown in Fig(fér a detailed
structure of the average of a polynomial of a matrix from the€Xplanation of the diagrammatic notation of Fig. 9, we refer
COE is entirely determined by the invariance under the® Ref.[24]). The result is a self-consistency equation for
transformationgA7), and therefore applies to the reflection No(2) that involves the generating functidh of the coeffi-

matrix r as well. It read$24,31] cientsV,
<r ceer r* ceor* > zl
ajay" " Nag, qag agay” agy jay ho(2) = T=ZFTr hy2)]’ (A12)
2n
=5 Vv P A8 -
sy °1""’°k11:[1 %P (A9 F(X) =2 VoL, (AL3)
i=c

where now the summation is over permutatidhsof the

numbers 1. ..,2n. We may writeP as Here 1 is the NXN unit matrix. Direct computation of

Tr ho(z) from the densityp(7) of transmission eigenvalues

n n gives
P:( I1 oj> Pepo(j[[l o] ) , (A9)

j=1 p(7)z

1
Tr hO(Z): JO dr m (A14)

where the permutations; and o/ operate on the numbers
2j—1 and J, and the permutatioR, (P,) permutes even Together, Egs.(A10)—(Al4) determine the coefficients
(odd) numbers only. The numbecs, ... cx in Eq.(A8)are Ve, ... ¢, needed for the diagrammatic evaluation(&..).
the cycle structure of the permutati®, *P,. The specific  In the limit of L—c, the density of transmission eigenvalues
values of the coefficientd. . foranaverage of areof tends to N&(7). Hence ho(z)=2/(1-2z?) and
course different from those for the COE. F(x)=(\/N2+4x2— N)/2x. The corresponding coefficients
Now that we have identified the formal equivalence of anV,=c N'~2¢(5_1,) are precisely those of the COR4].
average over thénonunitary symmetric reflection matrix For finite L, the densityp(7) is no longer a5 function, and
and a unitary symmetric matrix from the COE, we can di-hence the coefficientg. deviate from those of the COE.
rectly apply the diagrammatic rules of Ref29,24 to an The fact that we can use the diagrammatic rules directly
average over the matrix provided we know the coefficients for the average oversimplifies the calculation considerably.
Ve ¢, for the ensemble of reflection matricesof a dis- A central role in the calculation is played by the function

------
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h(x) defined in Eq(A2). The diagrams for the calculation of
h(x) are similar to those of Fig. 9, and the result is a self-

consistency equation fdr(x),

h(x)=x(1—aF[Tr h(a)]) ™. (A15)

Notice the formal equivalence with EGA12). The function

F was defined in Eq(A13). Using the diagrammatic tech-

nique for the computation of ands’, we find the linear
relations

s(x,y)=h(x)[a lyy*a * +KTr s'(a,y)

+L Tr s(a,y) ]h(x)*, (Al6a)

s'(x,y)=h(X)[K Tr s(a,y)+L Trs'(a,y)]h(x)*,
(A16b)

where we have defined

h=Tr h(a), (Al7a)

. ~_ hF(h)—h*F(h)*
— 2i—2 2j—2_
K—i;viﬂ_lh' (W) 2=
(A17b)
- . . h*F(h)—hF(h)*
— 2i—1 2j—1_
_i,jE:]-ViJrjhl (h*)J = h2_h*2

(A170)

The relevant diagrams leading to E¢A8.16) and (A17) are
shown in Fig. 10. They are similar to those of RE29],

4227
x* x*h() yra*!  heo" a* y*
1)
N =) X 3
X sxy) Y X hx) Y asg@y Y
h()* a* y*
h(x) L 2 sy Y
h(x)* y*
X gxy) X hx) K 2 s@y Y
h(x)
X h(X) ay) y

w1 I@@I

h(a) h(a)
a) h{a) )

h(a)"

Il W ISRD-

L

where the case of a chaotic cavity was considered, instead of FIG- 10. Diagrams for the calculation efx,y) ands’(x,y).

a disordered waveguide. Together, E¢sl5)—(A17) form a
closed set of equations, from whisfx,y), s'(x,y), andh(x)
can be calculated. The average reflectandes) are ob-
tained upon substitution &x,y), s'(x,y), andh(x) into Eq.

(Al). The final result is expressed as a function of

h=Tr h(a),
(124K =2J3(1-1L)
MR = k2
+2 Re Tf1—aF(h)] 7}, (A18a)
(1+LJI%(1—-1L)+KIJ(KI—2)
)= h)|?
N(R_) 10— (KI)? +IF()7,
(A18b)

where we defined

|=Tral—aF(h)] {1-a*F(h)*] 'a*, (A19a)

J=Ti1—-aF(h)] {1—-a*F(h)*] 1 (A19b)

These expressions simplify in the largé limit, when
p(7) takes the form4.18. Substitution in Eq(Al14) gives

z artantz
1+s

Nz(

1-22|

Tr ho(2)= +0(1+5)?

s=2L/l (A20)
and hence allows us to firffd(z) from Eq.(A12). Expanding
the expressiongA18) for (R.) and the self-consistency
equation(A15) to lowest order in (#s) ! we find the re-
sults(4.19 and(4.20, with the effective reflectancey=z.
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