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Reflection of light from a disordered medium backed by a phase-conjugating mirror

J. C. J. Paasschens,1,2 M. J. M. de Jong,1 P. W. Brouwer,2 and C. W. J. Beenakker2

1Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands
2Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands

~Received 12 May 1997!

This is a theoretical study of the interplay of optical phase conjugation and multiple scattering. We calculate
the intensity of light reflected by a phase-conjugating mirror when it is placed behind a disordered medium. We
compare the results of a fully phase-coherent theory with those from the theory of radiative transfer. Both
methods are equivalent if the dwell timetdwell of a photon in the disordered medium is much larger than the
inverse of the frequency shift 2Dv acquired at the phase-conjugating mirror. WhentdwellDv&1, in contrast,
phase coherence drastically affects the reflected intensity. In particular, a minimum in the dependence of the
reflectance on the disorder strength disappears whenDv is reduced below 1/tdwell . The analogies and differ-
ences with Andreev reflection of electrons at the interface between a normal metal and a superconductor are
discussed.@S1050-2947~97!06611-0#

PACS number~s!: 42.65.Hw, 42.25.Bs, 42.68.Ay, 78.20.Ci
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I. INTRODUCTION

Phase conjugation is the reversal of the sign of the ph
of a wave function. A phase-conjugated wave retraces
path of the original wave, thereby canceling all accumula
phase shifts. Phase conjugation was first discovered for e
tronic waves@1#, and later for optical waves@2,3#. For elec-
trons, phase conjugation takes place at the interface betw
a normal metal and a superconductor. An electron at ene
E above the Fermi energyEF is reflected at the angle o
incidence~retroreflected! as a hole at energyE below EF , a
process known as Andreev reflection@4#. A phase-
conjugating mirror for light consists of a cell containing
liquid or crystal with a large nonlinear susceptibilit
pumped by two counterpropagating beams at frequencyv0.
A wave incident at frequencyv01Dv is then retroreflected
at frequencyv02Dv, a process known as four-wave mixin
@5–7#.

The interplay of multiple scattering by disorder and pha
conjugation has been studied extensively in the electro
case, both experimentally and theoretically.~See Ref.@8# for
a review.! In the optical case the emphasis has been
weakly disordered media, which do not strongly scatter
waves @9#. Complete wave-front reconstruction is possib
only if the distorted wave front remains approximately p
nar, since perfect time reversal upon reflection holds only
a narrow range of angles of incidence for realistic syste
~For the hypothetical case of perfect time reversal at
angles, see Ref.@10#.! McMichael, Ewbank, and Vachss@11#
measured the intensity of the reconstructed wave front fo
strongly inhomogeneous medium~small transmission prob
ability T0), and found that it was proportional toT0

2—in
agreement with the theoretical prediction of Gu and Y
@12#. If T0!1, the intensity of the reconstructed wave
much smaller than the total reflected intensity. The total
flected intensity was not studied previously, perhaps beca
it was believed that the diffusive illumination resulting fro
a strongly inhomogeneous medium would render the ef
of phase conjugation insignificant. In this paper we show t
a strongly disordered medium backed by a phase-conjuga
561050-2947/97/56~5!/4216~13!/$10.00
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mirror has unusual optical properties, different both from t
weakly disordered case and from the electronic analog.

We distinguish two regimes, depending on the relat
magnitude of the frequency shift 2Dv acquired at the phase
conjugating mirror and the inverse of the dwell timetdwell of
a photon in the disordered medium.~For a medium of length
L and mean free pathl , with light velocity c, one has
tdwell.L2/cl.! In the coherent regime, Dv!1/tdwell , phase
conjugation leads to a constructive interference of multi
scattered light in the disordered medium. In theincoherent
regime, Dv@1/tdwell , interference effects are insignifican
In both regimes we compute the reflectancesR1 and R2 ,
defined as the reflected power at frequencyv06Dv divided
by the incident power at frequencyv01Dv. A distinguish-
ing feature of the two regimes is that~in a certain paramete
range! the reflectanceR2 decreases monotonically as a fun
tion of L/ l in the coherent regime, while in the incohere
regime it first decreases and then increases.

The outline of this paper is as follows. After having fo
mulated the problem in Sec. II, we discuss in Sec. III
solution using the Boltzmann equation, ignoring phase
herence. This is the theory of radiative transfer@13,14#. A
simple result is obtained if we neglect angular correlatio
between the scattering in the disordered medium and at
phase-conjugating mirror. We compare this approximat
with an exact solution of the Boltzmann equation. In Sec.
the phase-coherent problem is addressed, analytically u
random-matrix theory, and numerically using the method
recursive Green functions. Results of this section w
briefly presented in Ref.@15#. We conclude in Sec. V with a
comparison with the electronic analog of this problem.

II. FORMULATION OF THE PROBLEM

We study the system shown in Fig. 1. It consists of
disordered medium~length L, mean free pathl ), backed at
one end by a phase-conjugating mirror. The other end
illuminated diffusively at frequencyv15v01Dv, where
v0 is the pump frequency of the mirror. We are interested
4216 © 1997 The American Physical Society
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56 4217REFLECTION OF LIGHT FROM A DISORDERED . . .
the amount of light reflected at frequencyv1 and
v25v02Dv.

To reduce the problem to the scattering of ascalarwave,
we choose a two-dimensional geometry. The scatterers
sist of dielectric rods in thez direction, randomly placed in
thex-y plane. The electric field points in thez direction and
varies in thex-y plane only. Two-dimensional scatterers a
somewhat artificial, but can be realized experimentally@16#.
We believe that our results apply qualitatively to a thre
dimensional geometry as well, because the randomizatio
the polarization by the disorder renders the vector chara
of the light insignificant.

The z component of the electric field at the frequenc
v1 andv2 is given by

E6~x,y,t !5ReE6~x,y!exp~2 iv6t !. ~2.1!

The phase-conjugating mirror~at x50) couples the two fre-
quencies via the wave equation@5,17,18#

S H0 g*

2g 2H0
D S E1

E2*
D 5

2«Dv

v0
S E1

E2*
D . ~2.2!

The complex dimensionless coupling constantg is zero for
x,0 and for x.Lc , with Lc the length of the nonlinea
medium forming the phase-conjugating mirror. F
0,x,Lc it is proportional to the electric fieldsE1, E2 of the
two pump beams and to the third-order nonlinear susce
bility x3:

g52
3

2«0
x3E1* E2* [g0eic, 0,x,Lc . ~2.3!

The Helmholtz operatorH0 at frequencyv0 is given by

H052k0
22¹22«, ~2.4!

where «(x,y) is the relative dielectric constant of the m
dium. We take «51 except in the disordered regio
2L,x,0, where«511d«(x,y). The fluctuationsd« lead
to scattering with mean free pathl . We assumek0l @1,
wherek05v0 /c is the wave number of the light~velocity
c). The validity of Eq. ~2.2! requires Dv/v0!1 and
ugu[g0!1. The ratio of these two small parameters

d5
2Dv

g0v0
~2.5!

FIG. 1. Schematic drawing of the disordered medium backed
a phase-conjugating mirror~PCM!. Light incident at frequency
v01Dv is reflected at the two frequenciesv06Dv.
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is a measure of the degeneracy of the incident and the
flected wave, and can be chosen freely.

In the absence of disorder, an incoming plane wave in
direction (cosf,sinf) is retro-reflected in the direction
(2cosf,2sinf), with a different frequency and amplitude
The scattering matrix for retroreflection is given by@5,17–
20#

S E1

E2*
D out

5S 0 2 ia~f!e2 ic

ia~f!eic 0 D S E1

E2*
D in

, ~2.6a!

a~f!5@A11d2cotan~aA11d2/cosf!1 id#21,
~2.6b!

a5 1
2 g0k0Lc . ~2.6c!

The crucial difference with Ref.@10# is that the reflectance is
angle dependent and that the reflection matrix is n
Hermitian. This implies that not all phases will be cancel
in the conjugation process. In Fig. 2 we have plotted
reflectanceuau2 as a function of the angle of incidencef for
a5p/4 and two values ofd50.75 and 0.9. The value
a5p/4 is chosen such thata51 for normal incidence at
frequencyv0 ~i.e., for f50, d50). The two values ofd
have been chosen such that the angular average of the re
tance,

A5E
0

p/2

df cosfua~f!u2, ~2.7!

is .1 for d50.75 and,1 for d50.9. @The cosf weight
factor in Eq.~2.7! corresponds to diffusive illumination.# In
most of the numerical examples throughout this paper
will use these values ofa andd.

III. PHASE-INCOHERENT SOLUTION

A. Radiative-transfer theory

Within the framework of radiative-transfer theory@13,14#,
the stationary distributionI (x,y,f)}uEu2 of the light inten-
sity, at frequencyv and wave vector (k cosf,k sinf), is gov-
erned by the Boltzmann equation

y
FIG. 2. Reflectance of the phase-conjugating mirror as a fu

tion of the angle of incidence, computed from Eq.~2.6! for two
choices of parameters.
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S l cosf
]

]x
1 l sinf

]

]yD I ~x,y,f!

52I ~x,y,f!1
1

2pE0

2p

df8 I ~x,y,f8!. ~3.1!

We neglect absorption and assume isotropic scattering in
x-y plane, with mean free pathl . The phase-conjugating mir
ror couples the intensitiesI 6 of light at the two frequencies
v65v06Dv. We assume thatl is independent of fre-
quency. The symmetry of the system implies th
I (x,y,f)5I (x,ufu). In this section we takefP@0,p#. For
each frequency the Boltzmann equation takes the form

lcosf
]I 6~x,f!

]x
5 Ī 6~x!2I 6~x,f!, ~3.2a!

Ī 6~x!5
1

pE0

p

df I 6~x,f!. ~3.2b!

Equation~3.2! has to be supplemented by boundary co
ditions at the two endsx52L and x50 of the disordered
medium. We consider a situation that the system is illum
nated atx52L with diffusive light at frequencyv1 , hence

I 1~2L,f!5I 0 for cosf.0, ~3.3a!

I 2~2L,f!50 for cosf.0. ~3.3b!

At x50 the light is reflected by the phase-conjugating m
ror. The intensity is multiplied by

ua~f!u25
sin2~aA11d2/cosf!

d21cos2~aA11d2/cosf!
, ~3.4!

according to Eq.~2.6!. The reflection is accompanied by
change in frequencyv6→v7 , so that the boundary cond
tion is

I 6~0,f!5ua~f!u2 I 7~0,p2f! for cosf,0. ~3.5!

The flux j 6 associated with the intensityI 6 is defined by

j 65E
0

p

df cosfI 6~x,f!, ~3.6!

and is independent ofx @] j 6 /]x50 according to Eq.~3.2!#.
The reflectanceR2 is defined as the ratio of the outgoin
flux at frequencyv2 and the incoming flux at frequenc
v1 ,

R252 j 2 /I 0 . ~3.7!

The total outgoing flux is (R21R1)I 0, where

R1512 j 1 /I 0 ~3.8!

is the ratio of the outgoing flux and the incoming flux at t
same frequencyv1 .
he

t

-

i-

-

B. Neglect of angular correlations

A simple analytical treatment is possible if the angu
correlations between multiple reflections by the disorder a
the phase-conjugating mirror are neglected. Here we pre
this simplified treatment, and in the next subsection we co
pare with an exact numerical solution of the Boltzma
equation.

We first consider the disordered region by itself. T
plane-wave transmission probabilityut(f)u2 is the ratio of
transmitted to incident flux when the incident light is a pla
wave in the direction (cosf,sinf). The transmission prob
ability T for diffusive illumination is then given by

T5E
0

p/2

df cosfut~f!u2, ~3.9!

such thatT is the fraction of the flux incident from a diffu
sive source which is transmitted through the disordered
gion. This probability has been calculated in Ref.@21# from
the Boltzmann equation~3.2!. The result is

T5~112hL/p l !21, ~3.10!

whereh is a numerical coefficient which depends weakly
L/ l . In the ballistic limit (L/ l→0) h has the valuep2/8 and
in the diffusive limit (L/ l→`) h51. In this subsection~but
not in the next! we takeh51 for all L/ l for simplicity.

We use Eq.~3.10! to obtain the reflectanceR6 for the
case that the disordered medium is backed by a ph
conjugating mirror with reflectance

A5E
0

p/2

df
cosf sin2~aA11d2/cosf!

d21cos2~aA11d2/cosf!
. ~3.11!

SinceT and A are angular averages, we are neglecting
gular correlations. The light that comes out at frequencyv2

has been reflected an odd number of times at the mirror.
light that has been reflected once has traversed the med
twice, which leads to a contributionT2A to R2 . Light that
has been reflected three times by the mirror contribu
T2A3(12T)2, since it has been reflected two times by t
medium ~each time with probability 12T). Summing all
contributions, one finds

R25T2A1T2A3~12T!21T2A5~12T!41•••

5
T2A

12~12T!2A2
. ~3.12a!

Light that comes out at frequencyv1 has been reflected a
even number of times at the mirror. Zero reflections by
mirror contributes 12T to R1 , two reflections contributes
T2A2(12T), and four reflectionsT2A4(12T)3. Summing
the series, one finds

R1512T1
T2~12T!A2

12~12T!2A2
. ~3.12b!

The geometric series leading to Eq.~3.12! diverges if
(12T)A>1. This indicates that there is only a stationa
solution to the Boltzmann equation if both the gain at t
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mirror and the scattering in the medium are sufficien
weak. If A is increased at fixeda5p/4 by reducingd, the
reflectancesR6 diverge whend5dc . ~This divergence is
preempted by depletion of the pump beams in the pha
conjugating mirror, which we do not describe.! In the ap-
proximation of this subsection,dc is determined by

(12T)A51, or L/ l 5 1
2 p(A21)21. In the ballistic limit,

T51 andA,` for any d.0. In the diffusive limit,T50
andA51 for d50.78. Hence,dc increases from 0 to 0.78 a
L/ l increases from 0 tò .

C. Exact solution of the Boltzmann equation

The Boltzmann equation~3.2! can be solved exactly
without neglect of angular correlations, by adapting t
method of Ref.@21# to an angle-dependent boundary con
tion. We first rewrite Eq.~3.2! as

]

]x
ex/ l cosfI 6~x,f!5

1

l cosf
ex/ lcosf Ī 6~x!, ~3.13!

and then integrate once overx, using the boundary condi
tions ~3.3! and ~3.5!. The result is

I 1~x,f!5E
2L

x dx8

l cosf
e2~x2x8!/ l cosf Ī 1~x8!

1I 0e2~L1x!/ l cosf for cosf.0, ~3.14a!

I 1~x,f!52E
x

0 dx8

l cosf
e2~x2x8!/ l cosf Ī 1~x8!

1e2x/ l cosfua~f!u2I 2~0,p2f!

for cosf,0, ~3.14b!

I 2~x,f!5E
2L

x dx8

l cosf
e2~x2x8!/ l cosf Ī 2~x8!

for cosf.0, ~3.14c!

I 2~x,f!52E
x

0 dx8

l cosf
e2~x2x8!/ l cosf Ī 2~x8!

1e2x/ l cosfua~f!u2 I 1~0,p2f!

for cosf,0. ~3.14d!

Substitution of Eqs.~3.14c! and ~3.14a! into, respectively,
Eqs.~3.14b! and ~3.14d! yields

I 1~x,f!5E
x

0 dx8

l ucosfu
e2~x82x!/ l ucosfu Ī 1~x8!

1ex/ l ucosfuua~f!u2

3E
2L

0 dx8

l ucosfu
ex8/ l ucosfu Ī 2~x8!

for cosf,0, ~3.15a!
e-

e
-

I 2~x,f!5E
x

0 dx8

l ucosfu
e2~x82x!/ l ucosfu Ī 2~x8!

1ex/ l ucosfuua~f!u23S I 0e2L/ l ucosfu

1E
2L

0 dx8

l ucosfu
ex8/ l ucosfu Ī 1~x8! D

for cosf,0. ~3.15b!

Finally, integration overf leads to two coupled integra
equations for the average intensities,

Ī 1~x!5E
2L

0

dx8M1~x,x8! Ī 1~x8!

1E
2L

0

dx8M2~x,x8! Ī 2~x8!1Q1~x!I 0 ,

~3.16a!

Ī 2~x!5E
2L

0

dx8M1~x,x8! Ī 2~x8!

1E
2L

0

dx8M2~x,x8! Ī 1~x8!1Q2~x!I 0 .

~3.16b!

We have defined the following kernels and source terms

M1~x,x8!5
1

pE0

p/2 df

l cosf
e2ux2x8u/ l cosf

5
1

p l
K0~ ux2x8u/ l !, ~3.17a!

M2~x,x8!5
1

pE0

p/2 df

l cosf
e~x1x8!/ l cosfua~f!u2,

~3.17b!

Q1~x!5
1

pE0

p/2

df e2~L1x!/ l cosf, ~3.17c!

Q2~x!5
1

pE0

p/2

df e2~L2x!/ l cosfua~f!u2, ~3.17d!

whereK0 is a Bessel function.
Equation~3.16! is the analog for the present problem i

volving two coupled frequencies of the Schwarzschild-Mil
equation in the theory of radiative transfer@13,14#. We have
solved it numerically by discretizing with respect tox so that
the integral equation becomes a matrix equation. From
average intensitiesĪ 6(x) one finds the intensitiesI 6(x,f)
using Eqs.~3.14! and ~3.15!. The reflectancesR6 then fol-
low from Eqs.~3.6!–~3.8!. For numerical stability we have
imposed a cutoff on the rapidly oscillating functiona(f) at

grazing incidence, by settinga(f)50 for 0.497p,f, 1
2 p.
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In Figs. 3 and 4 we show results forĪ 6(x) and R6 for
a5p/4 andd50.75 and 0.9. Ford50.75 there is an effec
tive gain at the mirror (A.1), while for d50.9 there is an
effective loss (A,1). For an ordinary mirror one can sho

that Ī 6(0)5 1
2 I 0. Instead, we find thatĪ 2(0). Ī 1(0). 1

2 I 0

for d50.75, indicating gain, andĪ 2(0), Ī 1(0), 1
2 I 0 for

d50.9, indicating loss. In each case the density profiles
approximately linear in the bulk, with some bending near
boundaries atx52L and x50. For d50.75, bothR2 and
R1 diverge whenL/ l 528, while for d50.9 no such diver-

FIG. 3. Intensity profiles in the disordered medium, compu
from the exact numerical solution of the Boltzmann equation,
a5p/4 and two values ofd. ~a! is for a nearly ballistic system
(L/ l 51), ~b! is for a diffusive system (L/ l 515).

FIG. 4. ReflectanceR2 as a function ofL/ l , computed from the
exact solution of the Boltzmann equation fora5p/4 andd50.75
~dashed curve!, d50.90 ~solid curve!. The dotted curves are th
approximate result~3.12a!, in which angular correlations are ne
glected. The inset shows the exact reflectancesR6 for d50.75,
over a broader range ofL/ l ~logarithmic scale!. For d50.75 the
reflectances diverge atL/ l 528. No divergence occurs ford50.90.
re
e

gence occurs. As discussed earlier, the divergence indic
that for d50.75 andL/ l .28 there is no stationary solutio
to the Boltzmann equation. For fixedL/ l and a, the diver-
gence ofR6 occurs at a critical valuedc , such that a sta-
tionary solution requiresd.dc . The dependence ofdc on
L/ l at fixeda5p/4 is plotted in Fig. 5.

In Figs. 4 and 5 we also compare the exact numer
solution of the Boltzmann equation of this subsection w
the approximate analytical solution~3.12! of the preceding
subsection. As one can see, the agreement with the e
results is quite good.

IV. PHASE-COHERENT SOLUTION

A. Scattering matrices

We now turn to a phase-coherent description of the s
tering problem. To define finite-dimensional scattering m
trices we embed the disordered medium in a wavegu
~width W), containingN65Int(v6W/cp)@1 propagating
modes at frequencyv6 . A basis of scattering states consis
of the complex fields

E6,n
. ~x,y,t !5k6,n

21/2sinS npy

W Dexp~ ik6,nx2 iv6t !,

~4.1a!

E6,n
, ~x,y,t !5k6,n

21/2sinS npy

W Dexp~2 ik6,nx2 iv6t !.

~4.1b!

Heren51,2, . . . ,N6 is the mode index and the superscri
. (,) indicates a wave moving to the right~left!, with
frequencyv65v06Dv and wave number

k6,n5~v6
2 /c22n2p2/W2!1/2. ~4.2!

The normalization in Eq.~4.1! has been chosen such th
each wave carries the same flux.

With respect to the basis~4.1!, incoming and outgoing
waves are decomposed as

Ein5 (
n51

N1

u1,nE1,n
. 1 (

n51

N2

u2,nE2,n
. , ~4.3a!

Eout5 (
n51

N1

v1,nE1,n
, 1 (

n51

N2

v2,nE2,n
, . ~4.3b!

d
r

FIG. 5. A stationary solution to the Boltzmann equation requi
d.dc . The solid curve is the exact result fordc ~at fixeda5p/4,
as function ofL/ l ), the dotted curve follows from Eq.~3.12!, ob-
tained by neglecting angular correlations.
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The complex coefficients are combined into two vectors

u5~u1,1 ,u1,2 , . . . ,u1,N1
,u2,1* ,u2,2* , . . . ,u2,N2

* !T,

~4.4a!

v5~v1,1 ,v1,2 , . . . ,v1,N1
,v2,1* ,v2,2* , . . . ,v2,N2

* !T.

~4.4b!

The reflection matrixr relatesu to v,

v5ru , r5S r11 r12

r21 r22
D . ~4.5!

The dimension ofr is (N11N2)3(N11N2), the subma-
tricesr6,6 have dimensionsN63N6 . ForDv!v0 we may
neglect the difference betweenN1 andN2 and replace both
by N5Int(k0W/p).

In the absence of disorder the reflection matrix is entir
determined by the phase-conjugating mirror,

rPCM5S 0 2 iae2 ic

iaeic 0 D , ~4.6a!

amn5a~fn!dmn , fn5arcsin~np/k0W!. ~4.6b!

The elements of theN3N diagonal matrixa are obtained
from Eq.~2.6! upon substitution off by fn , being the angle
of incidence associated with moden. ~The difference in
angle between the two frequenciesv1 and v2 can be ne-
glected ifDv!v0.! The angular average~2.7! of the reflec-
tance corresponds to the modal average

A5
1

N
Tr aa†. ~4.7!

In the limit N→` the two averages are identical.
The disordered medium in front of the phase-conjugat

mirror does not couplev1 andv2 . Its scattering properties
at frequencyv are described by twoN3N transmission ma-
trices t21(v) and t12(v) ~transmission from left to right and
from right to left! plus twoN3N reflection matricesr11(v)
and r22(v) ~reflection from left to left and from right to
right!. Taken together, these four matrices constitute
2N32N scattering matrix

Sdisorder~v!5S r11~v! t12~v!

t21~v! r22~v!
D , ~4.8!

which is unitary~because of flux conservation! and symmet-
ric ~because of time-reversal invariance!. It is simple algebra
to express the scattering matrixr of the entire system in
terms of the scattering matricesrPCM and Sdisorder of the
phase-conjugating mirror and the disordered region se
rately. The result is

r115r11~v1!1t12~v1!ar22* ~v2!

3a@12r22~v1!ar22* ~v2!a#21t21~v1!, ~4.9a!

r225r11* ~v2!1t12* ~v2!ar22~v1!

3a@12r22* ~v2!ar22~v1!a#21t21* ~v2!, ~4.9b!
y

g

a

a-

r215 ieict12* ~v2!a@12r22~v1!ar22* ~v2!a#21t21~v1!,
~4.9c!

r1252 ie2 ict12~v1!a@12r22* ~v2!ar22~v1!a#21t21* ~v2!.
~4.9d!

We seek the reflectances

R25
1

N1
Tr r21r21

† , R15
1

N1
Tr r11r11

† ,

~4.10!

averaged over the disorder. We will do this analytically, u
ing random-matrix theory@22#, and numerically, using the
recursive Green function technique@23#. We consider two
different regimes, depending on the relative magnitude
Dv and 1/tdwell , wheretdwell.L2/cl is the mean dwell time
of a photon in the disordered medium. IftdwellDv!1 the
difference betweenSdisorder(v1) and Sdisorder(v2) is insig-
nificant, because the phase shifts accumulated in a timetdwell
are approximately the same for frequenciesv1 andv2 . We
call this thecoherentregime. If tdwellDv@1, on the con-
trary, phase shifts atv1 andv2 are essentially uncorrelated
so thatSdisorder(v1) and Sdisorder(v2) are independent. We
call this theincoherentregime.

B. Random-matrix theory

Without loss of generality the reflection and transmiss
matrices of the disordered region can be decomposed as@22#

r11~v6!5 iV6A12T6V6
T , ~4.11a!

r22~v6!5 iU6A12T6U6
T , ~4.11b!

t12~v6!5V6AT6U6
T , t21~v6!5U6AT6V6

T .
~4.11c!

Here U6 and V6 are N3N unitary matrices~we take
N15N25N in this subsection! andT6 is a diagonal matrix
with the transmission eigenvaluest6,nP@0,1# on the diago-
nal. The subscript6 refers to the two frequenciesv1 and
v2 . In this so-called ‘‘polar decomposition’’ the reflec
tancesR6 take the form

R25
1

N
Tr T2V~12A12T1 VTA12T2 V!21

•T1

3~12V†A12T2 V* A12T1!21V†, ~4.12a!

R15
1

N
Tr~12T1!1

1

N
Tr T1VTA12T2

3V~12A12T1 VTA12T2 V!21
•T1~12V†

3A12T2 V* A12T1!21V†A12T2 V*

2
1

N
Tr T1A12T1 ~12V†A12T2 V* A12T1!21

3V†A12T2 V* 2
1

N
Tr T1A12T1VTA12T2

3V~12A12T1 VTA12T2 V!21, ~4.12b!
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V5U2
† aU1 . ~4.12c!

To compute the averages^R6& analytically in the large-N
limit we make the isotropy approximation@22# that the ma-
tricesU6 andV6 are uniformly distributed over the unitar
groupU(N). This approximation corresponds to the negle
of angular correlations in the radiative-transfer theory~Sec.
III B !. For tdwellDv!1 we may identify U15U2 and
V15V2 . For tdwellDv@1 we may assume thatU1 , U2 ,
V1 , andV2 are all independent. In each case the integrat
*dUf (U) overU(N) with N@1 can be done using the large
N expansion of Ref.@24#. The remaining average overt6,n
can be done using the known densityr(t) of the transmis-
sion eigenvalues in a disordered medium@22#.

The calculation is easiest in the incoherent regi
(tdwellDv@1). The integration overU(N) can be carried ou
using the formula@24#

E dUE dV
1

N
Tr~A1UA2VA3U•••Ap!

3~B1UB2VB3U•••Bq!†

5dpqN
2p)

i 51

p

TrA iBi
†1O~N2p21!. ~4.13!

To apply this formula we expand the inverse matrices in
~4.12! in a power series inU6 and integrate term by term
over the independent matricesU1 andU2 . The result is, to
leading order inN,

E dU2E dU1 R25 (
p50

`

T2T1A2p11~12T2!p~12T1!p

5
T2T1A

12~12T2!~12T1!A2
, ~4.14a!

E dU2E dU1 R1512T11
T1

2 ~12T2!A2

12~12T2!~12T1!A2
,

~4.14b!

where we have defined the modal average

T65
1

N
Tr T65

1

N(
n51

N

t6,n . ~4.15!

The modal averageA was defined in Eq.~4.7!. The quantities
T6 still depend on the configuration of the scatterers, but
fluctuations around the average^T6& are smaller by an orde
1/N than the average itself. Moreover, the average^T6&
equals the transmission probabilityT from radiative-transfer
theory, Eq.~3.10!, again up to corrections of order 1/N. Re-
placingT6 in Eq. ~4.14! by T we obtain

^R2&5
T2A

12~12T!2A2
, ~4.16a!

^R1&512T1
T2~12T!A2

12~12T!2A2
, ~4.16b!
t

n

e

.

e

which is the result~3.12! of radiative-transfer theory with
neglect of angular correlations. The conclusion is that in
incoherent regime phase coherence has no effect on th
flectance of the system to leading order inN.

The situation is entirely different in the coherent regim
(tdwellDv!1). To see the difference it is instructive to fir
consider the simplified model that the matrixamn5a0dmn is
proportional to the unit matrix~a scalar!. BecauseU25U1

for tdwellDv!1, we then haveVmn5a0dmn . There is there-
fore no average overU(N) to perform. We only have to
average over one set of transmission eigenval
t1,n5t2,n[tn . This average amounts to the integrals

^R2&5
1

NE0

1

dtr~t!
ua0u2t2

u12a0
21a0

2tu2
, ~4.17a!

^R1&512
1

NE0

1

dtr~t!
t2ua0u4t~12t!

u12a0
21a0

2tu2
.

~4.17b!

The densityr(t) for l &L!Nl is given by@22#

r~t!5
N

2~s11!

1

tA12t
1O~s11!24, s5

2L

p l
.

~4.18!

The density has a cutoff for exponentially smallt, which is
irrelevant for^R6& if a0

2Þ1. Substitution of Eq.~4.18! into
Eq. ~4.17! yields the average reflectances

^R2&52T Re
a0* ~a0

221!

a0
22a0*

2
artanha0 , ~4.19a!

^R1&5122T Re
a0* ~a0

221!

a0
22a0*

2
artanha0* , ~4.19b!

where T is again the transmission probability~3.10! from
radiative-transfer theory. Both quantities have a smoothL
dependence, witĥR2& decreasing monotonically}1/L. In
contrast, radiative-transfer theory predicts a nonmonotonL
dependence forA.1, leading to a divergence at someL. For
A,1, radiative-transfer theory predicts a quadratic decre
of ^R2&}1/L2, for large L. The conclusion is that, in the
coherent regime, phase coherence modifies the reflectan
the phase-conjugating mirror to leading order inN.

The result~4.19! was obtained for the simplified model o
a scalar reflection matrixa. The truea in Eq. ~4.6! is diago-
nal but not a scalar. This complicates the calculation beca
V5U2

† aU1 then needs to be averaged overU(N) even
thoughU25U1 . The calculation is outlined in the Appen
dix. The complete result is a complicated function ofL/ l
~plotted in Fig. 6!. For L/ l @1 the result takes the form o
Eq. ~4.19!, where nowa0 is to be determined from the equa
tion

1

N
Tr

a

12a0 a
5

a0

12a0
2

. ~4.20!

In the limit N→` this becomes an integral equation fora0,
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E
0

p/2

df
cosfa~f!

12a0a~f!
5

a0

12a0
2

, ~4.21!

wherea(f) is given by Eq.~2.6!. As shown in Fig. 6, the
large-L asymptote~4.19!, ~4.20! is close to the complete re
sult for L* l . In the limit d→0 the solution to Eq.~4.21! is
given bya051.28420.0133i , for a5p/4. The correspond-
ing reflectances ~for L* l ) are ^R2&561.1l /L, and
^R1&51157.7l /L.

To make contact with the work on wave-front reconstru
tion @11,12#, we consider also the case of plane-wave—rat
than diffusive—illumination. A plane wave incident at fre
quencyv1 in moden is reflected into modesm51,2, . . . ,N
at frequencyv6 with probability ^u(r61)mnu2&. The calcula-
tion of this probability proceeds similarly as the calculati
of R2 . ~See Ref.@25# for the analogous calculation in th
case of Andreev reflection.! Using Eqs.~4.9!–~4.12! we can
write

r215 ieicV2* OV1
T , ~4.22a!

O5AT2V~12A12T1VTA12T2V!21AT1.
~4.22b!

For the coherent regime, we may again ident
V15V25V. The integration overU(N) can be performed
using @24#

E dV VnkVm jVni* Vml* 5
1

N221
~d ikd j l 1dmndkld j i !

2
1

N32N
~dkld j i 1dmnd ikd j l !.

~4.23!

We then find

E dV u~r21!mnu25
11dmn

N11
R21

Ndmn21

N32N
(
iÞ j

Oi i Oj j* .

~4.24!

FIG. 6. Average reflectanceŝR6& as a function ofL/ l for
a5p/4 andd50.6, 0.9, in the coherent regime. The full curves a
the analytical results forN@1, computed from Eq.~A18!. The dot-
ted curves are the largeL/ l limit given by Eqs.~4.19! and ~4.21!.
Data points are results from numerical simulations.
-
r

In the limit of large N we can write
( iÞ jOi i Oj j* 5uN21Tr Ou2. In the same way as before, fo
L@ l , this trace can be expressed in terms ofa0, wherea0
can be found from Eq.~4.6!: N21Tr O5T artanha0. The
result for the averages is then

^u~r21!nnu2&5T2uartanha0u2, ~4.25a!

^u~r21!mnu2&5N21^R2&, m Þn. ~4.25b!

The incident plane wave is reconstructed with an intens
}T2, in agreement with Refs.@11,12#. In the coherent re-
gime, off-diagonal (mÞn) and diagonal (m5n) reflection
probabilities differ by a large factor of orderNT.

In the incoherent regime, the matricesV1 and V2 are
independent. Integration overU(N) results in integrals of the
form *dV VnkVni* 5N21d ik . Then the off-diagonal and di
agonal reflection probabilities are both given by

^u~r21!mnu2&5N21^R2&, ~4.26!

so there is no peak in the reflected intensity at the angle
incidence. This holds for everyN andL.

For both the incoherent and the coherent regime we
for the reflection without frequency shift (v1→v1) the
probability

^u~r11!mnu2&5
11dmn

11N
^R1&. ~4.27!

Here we see a much smaller backscattering peak, where
diagonal reflection probability is only twice as large as t
off-diagonal reflection probability@26#. This factor is inde-
pendent of the phase-conjugating mirror, and exists enti
because of time-reversal symmetry@27#.

C. Numerical simulations

To test the analytical predictions of random-matrix theo
we have carried out numerical simulations. The Helmho
equation,

~2¹22«v6
2 /c2!E50, ~4.28!

is discretized on a square lattice~lattice constantd, lengthL,
width W). Disorder is introduced by letting the relative d
electric constant« fluctuate from site to site between 16d«.
Using the method of recursive Green functions@23# we com-
pute the scattering matrixSdisorder(v) of the disordered me-
dium at frequenciesv1 andv2 . The reflection matrixrPCM
of the phase-conjugating mirror is calculated by discretiz
Eq. ~2.2!. From Sdisorder(v6) and rPCM we obtain the reflec-
tion matrix r of the entire system, and hence the reflectan
~4.10!.

We tookW551d, d«50.5, a5p/4, and variedd andL.
For the coherent case we tookv15v251.252c/d, and for
the incoherent casev151.252c/d, v251.166c/d. These
parameters correspond toN1522, l 1515.5d at frequency
v1 . The mean free path is determined using Eq.~3.10!,
which holds up to small corrections of orderN21. In the
incoherent case we haveN2520, l 2520.1d. This leads to
Dv50.043c/d and a dwell time for L/ l .3 of
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tdwell.L/cl.150d/c. Hence we havetdwellDv.6.5, which
should be well in the incoherent regime. For comparis
with random-matrix theory, we take the large-N limit and
use the valuel 1 for l .

The numerical results are shown in Figs. 6~coherent re-
gime! and 7~incoherent regime!, for d50.6 and 0.9. As we
can see, the agreement with the analytical theory is q
satisfactory. The rapid rise of^R6& in the incoherent regime
for the smallestd is accompanied by large statistical fluctu
tions, which make an accurate comparison more diffic
Still, the striking differences between the coherent and in
herent regimes predicted by the random-matrix theory
confirmed by the simulations.

We have also studied the backscattering peak for pla
wave illumination. We considered a square sam
(W5L5251d) with a5p/4, d50.9. We calculated the re
flection probabilities u(r 21)mnu2 for normal incidence
(n51) in both the coherent and the incoherent regimes.
numerical results for a single realization of the disorder
shown in Fig. 8. The arrow denotes the analytical ensem
average~4.25! of the backscattering peak in the large-N
limit, which is consistent with the numerical data. Notice t
absence of a backscattering peak in the incoherent regim

FIG. 7. Average reflectanceŝR6& as a function ofL/ l for
a5p/4 andd50.6, 0.9, in the incoherent regime. The curves a
the analytical results forN@1, computed from Eq.~3.12!. Data
points are results from numerical simulations.~Statistical error bars
are shown when they are larger than the size of the marker.!

FIG. 8. Histograms for the modal distributionu(r21)m1u2 of the
reflection probability with frequency shift for normal incidenc
The results are for a single realization of the disorder
W5L5251d (L/ l 516.2), a5p/4, and d50.9. The arrow indi-
cates the theoretical value^u(r21)11u2& from Eq. ~4.25!, represent-
ing the ensemble average in the large-N limit.
n
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V. COMPARISON WITH ANDREEV REFLECTION

We have studied the reflection of light by a disorder
dielectric medium in front of a phase-conjugating mirro
This problem has an electronic analog@17,18#. The elec-
tronic disordered system consists of a metal, in which el
tron or hole excitations are scattered elastically by rando
placed impurities. Retroreflection at the phase-conjuga
mirror is analogous to Andreev reflection at the interfa
with a superconductor. The Fermi energyEF plays the role
of the pump frequencyv0, while the excitation energyE
corresponds to the frequency shiftDv. In spite of these simi-
larities, the optical effects found in this paper have no el
tronic analog. It is instructive to see where the analo
breaks down.

To this end we compare the wave equation~2.2! with the
Bogoliubov–de Gennes equation@28#

S H D

D* 2H D S u

v D 5E S u

v D , ~5.1!

which determines the electron and hole wave functionsu and
v. The Hamiltonian

H52
\2

2m
¹21V2EF ~5.2!

contains the electrostatic potentialV(r ), which plays the role
of the dielectric constant.@More precisely,k0

2(«21) corre-
sponds to2(2m/\2)V.# The role of the nonlinear suscept
bility is played here by the pair potentialD(r ), which is only
nonzero in the superconductor, where it equalsD0e2 ic.
Comparing Eqs.~5.1! and ~5.2! for the electronic case with
the optical equations~2.2! and ~2.4! one notices many simi-
larities, and some differences which amount to a redefinit
of quantities. There is, however, one essential difference:
matrix operator in Eq.~5.1! is Hermitian, while that in Eq.
~2.2! is not, because of an extra minus sign in one of
off-diagonal elements. This minus sign is the origin of t
difference between Andreev reflection and optical phase c
jugation.

In the optical case a disordered medium becomes tra
parent (R251) @9,10# for unit reflectance at the phase
conjugating mirror (a51). This does not happen in the ele
tronic case, whereR2 is reduced by disorder even for ide
Andreev reflection. The reflection matrix of the norma
metal–superconductor~NS! interface, obtained from Eq
~5.1! for V[0, E!D0!EF , is given by@1#

rNS5S 0 2 ie2 ic

2 ieic 0 D . ~5.3!

Comparison with Eq.~4.6! for rPCM shows that Andreev re
flection is independent of the angle of incidence; the matria
in Eq. ~4.6! is replaced by the unit matrix in Eq.~5.3!. This is
a substantial simplification of the electronic problem, co
pared with the optical analog. The matrixrNS is unitary, in
contrast torPCM, so that the appearance of gain or loss at
phase-conjugating mirror has no electronic counterpart.

t
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reflectanceR2512R1 is a monotonically decreasing func
tion of L/ l in the electronic case@8#, both in the coheren
regime,

R25~214L/p l !21 if E!\/tdwell andL* l , ~5.4!

and in the incoherent regime,

R25~114L/p l !21 if E@\/tdwell . ~5.5!

The result~5.5! is what one obtains from Eq.~3.12! for
the caseA51 of unit reflectance at the interface.@The trans-
mittanceT5(112L/p l )21 of the disordered medium is th
same for electrons and photons.# The result~5.4!, however, is
not what one would expect from the optical analog. Inde
Eq. ~4.17! with a051 would giveR251 for all L in the case
of unit reflectance at the phase-conjugating mirror. The r
son that the analogy with Andreev reflection breaks down
the difference of a minus sign in the wave equations~2.2!
and ~5.1!, which reappears in the reflection matrices~4.6!
and~5.3! for phase conjugation, and ultimately in the refle
tances in the coherent regime:

R25
1

N
TrS tt†

11rr †D 2

Þ1 for electrons, ~5.6a!

R25
1

N
TrS tt†

12rr †D 2

51 for photons if a[1.

~5.6b!

Here t and r are the transmission and reflection matrices
the disordered medium, which satisfytt†1rr †51.

In conclusion, we have shown that the presence o
phase-conjugating mirror behind a random medium dra
cally changes the total reflected intensity, even when the
dium is so disordered that wave-front reconstruction is in
fective. On increasing the frequency differenceDv between
the incident radiation and the pump beams, aminimumin the
disorder dependence of the reflected intensity appears.
certain parameter range, the disordered medium reflects
radiation on reducingDv. Experimental observation of thi
‘‘darkening’’ would be a striking demonstration of phas
shift cancellations in a random medium.
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APPENDIX: CALCULATION OF THE REFLECTANCES
IN THE COHERENT REGIME

In Sec. IV we computed the average reflectances^R6& for
the incoherent regime. For the coherent regime we prese
only a derivation for scalar reflection matrixa. This appen-
dix contains the calculation of̂R6& for arbitrary ~diagonal!
matrix a. Our calculation is based on the diagramma
method for integration over the unitary group of Re
@29,24#. Integrals over the unitary group are needed for
computation of^R6& because of the polar decompositio
,

a-
is

-

f

a
i-
e-
f-

a
ss

’’

ed

.
e

~4.11! of the transmission and reflection matrices. We find
convenient to use a slightly modified version of the diagra
matic technique, in which we apply the diagrammatic ru
without making explicit use of the polar decomposition. W
first outline the calculation of̂R6& in which the diagram-
matic method is used for the integration of the matricesU
andV in Eq. ~4.11!, and then discuss the modification of th
diagrammatic method.

We start the calculation of̂R6& with the elimination of
the reflection matrixr11(v0) and the transmission matrice
t12(v0) and t21(v0) from the reflectancesR1 and R2 @cf.
Eqs.~4.9! and~4.10!#, in favor of the matrixr5r22(v0). The
result is

^R1&5
1

N
Tr@s8~a,a!2s~1,a!2s~a,1!1s8~1,1!

1h~1!1h~1!* #, ~A1a!

^R2&5
1

N
Tr $s~a,a!2s8~1,a!2s8~a,1!1s~1,1!

1a21a21* @12h~1!2h~1!* #%, ~A1b!

where we defined

s8~x,y!5^x~12rar * a!21ryy* r* ~12a* ra* r* !21x* &,
~A2a!

s~x,y!5^x~12rar * a!21a21yy* a21* ~12a* ra* r* !21x* &,
~A2b!

h~x!5^x~12rar * a!21&. ~A2c!

To perform the average overr , one may use the polar de
composition@cf. Eq. ~4.11!#

r5 iUA12TUT, ~A3!

where U is a unitary matrix andT is the diagonal matrix
containing theN transmission eigenvaluest j on the diago-
nal. The matrixU is a member of the circular unitary en
semble~CUE!, i.e., it is uniformly distributed in the unitary
group. The transmission eigenvaluest j have density@22#

r~t!5~2N/p!Im g~1/t212 i 0,s!, ~A4a!

g~z,s!5cotanh@z2sg~z,s!#, s52L/p l . ~A4b!

To integrate the matrixU over the unitary group, the ma
tricess, s8, andh are first expanded as a power series inU.
The integration ofU is then done using the general expre
sion for the average of a polynomial function ofU @30#,

^Ua1b1
•••Uambm

Ua1b1
* •••Uanbn

* &

5dm,n (
P,P8

Vc1 , . . . ,ck)j 51

n

daj ,aP~ j !
dbj ,bP8~ j !

. ~A5!

Here the summation is over all permutationsP andP8 of the
numbers 1, . . . ,n. The numbersc1 , . . . ,ck denote thecycle
structure of the permutationP21P8. ~The permutation
P21P8 can be uniquely written as a product of disjoint c
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clic permutations of lengthsc1 , . . . ,ck , with n5( j 51
k ck .)

To compute^R6& in the limit of largeN, it is sufficient to
know the coefficientsVc1 , . . . ,ck

to leading order inN. These
are given in Refs.@29,24#, together with a diagrammati
method which enables one to restrict the summation oveP
andP8 to those permutationsP andP8 of which the contri-
bution to ^R6& is of maximal order inN.

Although the computation of̂ R6& is straightforward
now, the actual calculation is rather cumbersome. We fin
convenient to modify the approach of Refs.@29,24# so that it
can be applied directly to the average over the matrixr ,
without making explicit use of the polar decomposition~A3!.
This is possible because the general structure~A5! already
follows from the invariance of the distribution ofU under
transformations

U˜VUV 8, ~A6!

whereV is an arbitrary unitary matrix. The fact thatU itself
is unitary is necessary to compute the value of the coe
cientsVc1 , . . . ,ck

, but it is not relevant for the general stru

ture ~A5!. Since the matrixr is both unitary and symmetric
its distribution is invariant under transformations

r˜VrV T ~A7!

that respect the symmetry ofr . The same group of transfor
mations leaves invariant the circular orthogonal ensem
~COE!, consisting of uniformly distributed unitary and sym
metric matrices. A diagrammatic technique for averages o
the COE is presented in Ref.@24#. As before, the genera
structure of the average of a polynomial of a matrix from t
COE is entirely determined by the invariance under
transformations~A7!, and therefore applies to the reflectio
matrix r as well. It reads@24,31#

^ra1a2
•••ra2n21a2n

ra1a2
* •••ra2m21a2m

* &

5dn,m(
P

Vc1 , . . . ,ck)j 51

2n

daj ,aP~ j !
, ~A8!

where now the summation is over permutationsP of the
numbers 1, . . . ,2n. We may writeP as

P5S )
j 51

n

s j D PePoS )
j 51

n

s j8D , ~A9!

where the permutationss j ands j8 operate on the number
2 j 21 and 2j , and the permutationPe (Po) permutes even
~odd! numbers only. The numbersc1 , . . . ,ck in Eq. ~A8! are
the cycle structure of the permutationPe

21Po . The specific
values of the coefficientsVc1 , . . . ,ck

for an average ofr are of
course different from those for the COE.

Now that we have identified the formal equivalence of
average over the~nonunitary! symmetric reflection matrixr
and a unitary symmetric matrix from the COE, we can
rectly apply the diagrammatic rules of Refs.@29,24# to an
average over the matrixr , provided we know the coefficient
Vc1 , . . . ,ck

for the ensemble of reflection matricesr of a dis-
it

-

le

er

e

-

ordered waveguide. To find these coefficients, we use
fact that they factorize, to leading order inN,

Vc1 , . . . ,ck
5)

j 51

k

Vck
, ~A10!

just as they do for the COE. This follows directly from th
fact that, to leading order inN, the averagê ) jTr(rr †)cj&
factorizes into) j^Tr(rr †)cj& @32#. It remains to find the co-
efficientsVc . Hereto we consider the function

h0~z!5K z

12rr * z2L . ~A11!

We first computeh0(z) from the diagrammatic technique
with a priori unknown coefficientsVc . We then compare
our result with a calculation of Trh0(z) from the density of
transmission eigenvalues~A4!. The relevant diagrams for th
diagrammatic calculation are shown in Fig. 9~for a detailed
explanation of the diagrammatic notation of Fig. 9, we re
to Ref. @24#!. The result is a self-consistency equation f
h0(z) that involves the generating functionF of the coeffi-
cientsVc ,

h0~z!5
z1

12zF@Tr h0~z!#
, ~A12!

F~x!5(
j 5c

`

Vcx
2c21. ~A13!

Here 1 is the N3N unit matrix. Direct computation of
Tr h0(z) from the densityr(t) of transmission eigenvalue
gives

Tr h0~z!5E
0

1

dt
r~t!z

12z2~12t!
. ~A14!

Together, Eqs.~A10!–~A14! determine the coefficients
Vc1 , . . . ,ck

needed for the diagrammatic evaluation of^R6&.
In the limit of L→`, the density of transmission eigenvalu
tends to Nd(t). Hence h0(z)5z/(12z2) and
F(x)5(AN214x22N)/2x. The corresponding coefficient
Vc5c21N122c(2c22

c21 ) are precisely those of the COE@24#.
For finite L, the densityr(t) is no longer ad function, and
hence the coefficientsVc deviate from those of the COE.

The fact that we can use the diagrammatic rules dire
for the average overr simplifies the calculation considerably
A central role in the calculation is played by the functio

FIG. 9. Diagrams for the calculation ofh0(z).
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h(x) defined in Eq.~A2!. The diagrams for the calculation o
h(x) are similar to those of Fig. 9, and the result is a se
consistency equation forh(x),

h~x!5x~12aF@Tr h~a!# !21. ~A15!

Notice the formal equivalence with Eq.~A12!. The function
F was defined in Eq.~A13!. Using the diagrammatic tech
nique for the computation ofs and s8, we find the linear
relations

s~x,y!5h~x!@a21yy* a21* 1KTr s8~a,y!

1L Tr s~a,y!#h~x!* , ~A16a!

s8~x,y!5h~x!@K Tr s~a,y!1L Trs8~a,y!#h~x!* ,
~A16b!

where we have defined

h5Tr h~a!, ~A17a!

K5 (
i , j 51

`

Vi 1 j 21h2i 22~h* !2 j 225
hF~h!2h* F~h!*

h22h* 2
,

~A17b!

L5 (
i , j 51

`

Vi 1 jh
2i 21~h* !2 j 215

h* F~h!2hF~h!*

h22h* 2
.

~A17c!

The relevant diagrams leading to Eqs.~A16! and ~A17! are
shown in Fig. 10. They are similar to those of Ref.@29#,
where the case of a chaotic cavity was considered, instea
a disordered waveguide. Together, Eqs.~A15!–~A17! form a
closed set of equations, from whichs(x,y), s8(x,y), andh(x)
can be calculated. The average reflectances^R6& are ob-
tained upon substitution ofs(x,y), s8(x,y), andh(x) into Eq.
~A1!. The final result is expressed as a function
h5Tr h(a),

N^R1&5
~ I 21J2!K22J~12IL !

~12IL !22~KI !2

12 Re Tr@12aF~h!#21, ~A18a!

N^R2&5
~ I 1LJ2!~12IL !1KIJ~KI 22!

~12IL !22~KI !2
1JuF~h!u2,

~A18b!

where we defined
d.

ls
-

of

f

I 5 Tr a@12aF~h!#21@12a* F~h!* #21a* , ~A19a!

J5Tr@12aF~h!#21@12a* F~h!* #21. ~A19b!

These expressions simplify in the large-L/ l limit, when
r(t) takes the form~4.18!. Substitution in Eq.~A14! gives

Tr h0~z!5
Nz

12z2S 12
z artanhz

11s D1O~11s!2,

s52L/p l ~A20!

and hence allows us to findF(z) from Eq.~A12!. Expanding
the expressions~A18! for ^R6& and the self-consistenc
equation~A15! to lowest order in (11s)21 we find the re-
sults ~4.19! and ~4.20!, with the effective reflectancea05z.

FIG. 10. Diagrams for the calculation ofs(x,y) ands8(x,y).
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