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Vortex states for the quantized radiation field
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We study the properties of wave-packet states with vortex structure. In particular we present the character-
istics of a two-mode radiation field characterized by a configuration-space wave function

cv5(x2 iy)me2(x21y2)/2s2
. We show the generation of such states by the interaction ofL systems with

squeezed radiation in a two-mode cavity. The two modes are correlated due to entanglement, which also
produces the mixed state of each mode even though the state of the two-mode field is a pure state.
@S1050-2947~97!04011-0#

PACS number~s!: 42.50.Ar, 42.50.Dv
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I. INTRODUCTION

In recent years there has been phenomenal interest in
study of wave packets of a quantum system@1#. The Gauss-
ian wave packets occupy a central place in such studies
the case of radiation field, the Gaussian wave packets a
fact minimum-uncertainty states and describe both the co
ent states@2# and the squeezed states@3# of the radiation
field. In this paper we study the wave-packet states that h
a vortex structure, i.e., states described by

cv~x,y!;~x2 iy !me2 ~x21y2!/2s2
, ~1!

where m is an integer. Note thatucvu250 at x5y50. A
vortex of orderm exists at the origin since the circulation o
the argument ofcv along a closed contour containingx5y
50 is 2pm,

R ¹W ~argcv!•d lW52pm. ~2!

In Fig. 1 we illustrate the probability distribution associat
with Eq. ~1!. Berry @4# introduced the concept of a defect
vortex on the optical wave field, i.e., he considered the o
cal field distributionE(x,y) with the structure~1!. A large
body of literature has been devoted to the study of opt
vortices onclassicalwave fields@5#. In contrast, we conside
quantum systems characterized by the wave function g
by Eq.~1!. Our quantum system could be a two-dimensio
harmonic oscillator or a two-mode radiation field. We stu
in detail various properties of, say, a field in the state~1!. We
show how the state~1! can be generated in cavity QED e
periments.

The paper is organized as follows. In Sec. II we introdu
a state of a two-mode quantized field that has vortex-t
singularity in the configuration-space-like representation.
consider the transformation of the vortex structure to a
cular basis. In Sec. III we investigate various properties
the vortex state such as antibunching, squeezing, mode-m
correlations, and photon number distribution. A method
generation of the proposed vortex state is outlined in Sec.
In Sec. V we determine the single-mode reduced den
matrix. Although we study all this in the context of a two
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mode field, the results are applicable to all systems that c
be reduced to a system of two harmonic oscillators.

II. VORTEX STATES FOR THE QUANTIZED
RADIATION FIELD

In this section we give an operator version of Eq.~1!. This
will also shed light on the relation of Eq.~1! to other well-
known states as well as on the methods that can gener
such states. Note that the exponential part in Eq.~1! is re-
lated to the squeezed stateuc& for the two mode radiation
field defined by the direct product of the squeezeda-mode
stateuca& and the squeezedb-mode stateucb&,

uc&5exp@z$a†21b†22a22b2%#u0,0&

5exp@z$a†22a2%#u0&exp@z$b†22b2%#u0&

[uca&ucb&, ~3!

wherea,b are the bosonic annihilation operators for the two
field modes andz is the squeezing parameter. First we evalu
ate the expression̂x,yuc&, whereux,y& is the eigenvector of

FIG. 1. Intensity distribution for the vortex state given by Eq
~1! for s5& andm54.
4207 © 1997 The American Physical Society
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4208 56G. S. AGARWAL, R. R. PURI, AND R. P. SINGH
(a1a†)/& and (b1b†)/& with eigenvaluesx and y. To
that end, we use the disentangling theorem@3#

exp@z~a†22a2!#u0,0&

5expF j

2
a†2GexpH 2 ln[cosh~2z!] S a†a1

1

2D J
3expF j

2
a2G ; j5tanh~2z! ~4!

to write the exponential in Eq.~3! as a product of the expo
nentials and make use of the fact that the operatorsa andb
acting on their respective vacuum states give zero. It t
follows that

uca&5
1

Acosh~2z!
expF j

2
a†2G u0&, ~5!

with a similar expression forucb&. Now, on taking the scala
product of Eq.~5! with ux& and using the relation

^xun&5
exp~2x2/2!

A2nn!Ap
Hn~x!, ~6!

whereHn(x) is the Hermite ploynomial, it follows that

ca~x![^xuc&5
exp~2x2/2!

AApcosh~2z!
(

m50

` S j

4D m 1

m!
H2m~x!.

~7!

The sum in Eq.~7! can be evaluated by using the integr
representation

Hm~x!5
2m

Ap
E

2`

`

~x1 i t !nexp~2t2!dt ~8!

of the Hermite polynomial. It is found that

ca~x![^xuc&5
1

AsAp
exp~2x2/2s2!, ~9!

where

s5exp~2z!. ~10!

The expression for̂x,yuc& now follows by taking the scala
product of Eq.~3! with ux,y& and using Eq.~9! and the
similar expression forcb(y),

c~x,y![^x,yuc&5ca~x!cb~y!5
1

Aps
expF2

x21y2

2s2 G .
~11!

We next prove that thevortex state~1! can be expressed a

ucv&5A~a†2 ib†!muc&, ~12!

whereA is the normalization constant. Let us first evalua
cv(x,y). To that end, consider the expression
n

l

I 5^xuexp@aa†21ba†u0&

5exp@2b2/4a#^xuexp@a~a†1b/2a!2#u0&. ~13!

On expanding the exponential in Eq.~13! and using Eq.~6!
we get

I 5
exp@2b2/4a#

AAp
exp~2x2/2! (

m50

`

(
n50

2m
am

m! S b

a D 2m2n

3
~2m!!

~2m2n!!n!
A 1

2n Hn~x!. ~14!

The sum in Eq.~14! can be evaluated by using the integr
representation~8! of the Hermite polynomial. That leads t
the expression

I 5
1

AAp

1

A11j
exp@2x2/2s2#

3exp@2b2/2~11j!#exp@x&b/~11j!#. ~15!

The expression for the state~12! in the x,y representation
can now be found by noting that

^x,yucv&5
A

cosh~2j!

dm

dbm

3expF j

2
~a†21b†2!1b~a†2 ib†!GU

b50

.

~16!

On using Eq.~15! in Eq. ~16! it can be shown that

cv~x,y!5
A

sAp

2m/2

~11j!m
~x2 iy !m expF2

x21y2

2s2 G .
~17!

On imposing the normalization conditio
** ucv(x,y)u2dx dy51 we get

A5
22m/2~11j!m

Am!sm
, j5

s221

s211
. ~18!

Hence the normalized wave functioncv(x,y) for the vortex
state is given by

cv~x,y!5A 1

m!ps2m12 ~x2 iy !m

3expF2
x21y2

2s2 G ,
E E ucv~x,y!u2dx dy51. ~19!

The operator version of the vortex state is given by Eqs.~12!,
~3!, and ~18!. The position of the vortex can be shifted b
using
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56 4209VORTEX STATES FOR THE QUANTIZED RADIATION FIELD
c~x,y!5A 1

ps
expF2

~x2x0!21~y2y0!2

2s2 G . ~20!

In that case the vortex state can be defined by

ucv&5A8~a†2 ib†!muc&, ~21!

whereA8 is a normalization constant.

Vortex state in the circular basis

It is instructive to express the vortex state in the circu
basis defined by the operatorsc,d, where

c5
a1 ib

&
, d5

a2 ib

&
. ~22!

It should be noted that by use of a polarizing beam spli
that splits a circularly polarized light into two orthogon
plane-polarized components, one can go from basisc,d to
a,b. In the circular basis the expression~3! for uc& reads

uc&5exp@2z~c†d†2cd!#u0,0&c,d

5
1

cosh~2z! (
k50

`

jkuk,k&c,d , ~23!

where

j5tanh~2z![
s221

s211
~24!

and u j ,k&c,d is the Fock state of modesc andd with j pho-
tons in modec andk photons in moded. Hence the vortex
state~12! in the circular basis is given by

ucv&5A
2m/2

cosh~2z! (
k50

`

jkA~m1k!!

k!
um1k,k&c,d ,

~25!

whereA is given by Eq.~18!. Equation~25! shows that the
vortex state is obtained from the two-mode squeezed vac
~23! in the circular basis by the addition ofm photons of type
c @6,7#. For j50, i.e., in the case of no squeezing, it follow
from Eq. ~25! that

ucv&→um,0&c,d . ~26!

It is thus interesting that a Fock state of a circularly polariz
field is avortex state when viewed in the space of the linea
polarized orthogonal components. Note, however, that a cir
cularly polarized field in a coherent state isnot a vortex state.
In analogy with Eq.~17!, we can derive the expression fo
the vortex state in the basisuX,Y&[uX&uY&, whereuX&,uY&
are the eigenstates of (c1c†)/& and (d1d†)/&, respec-
tively. It is shown in the Appendix that
r

r

m

d
y

^X,Yucv&5
eimp/2

2m/2p1/4AG~m1 1
2 !

expFX22Y2

2 G
3expF2

~X2Yj!2

12j2 GHmS X2Yj

A12j2D . ~27!

The locus of points where the wave function vanishes is no
a straight line (X2jY)/A12j25x0 , wherex0 is a real zero
of the Hermite polynomialHm(x). For m odd,x050 is one
of the zeros. It is interesting to observe that the phase of
state in the new basis is just@(p/2) m#. The intensity distri-
bution ucv(X,Y)u2 is plotted in Fig. 2. A comparison of Figs.
1 and 2 shows the change in intensity distribution while g
ing from one basis to the other.

Next we examine various properties of the vortex state
the quantized field.

III. PROPERTIES OF VORTEX STATES

In this section we list the expressions for the mean valu
of the field operators and those for various quasiprobabiliti
and investigate the nonclassical properties of the field.

A. Mean valuesŠxjyk
‹v

First we give the expression for the average of the produ
of arbitrary powers ofx andy. By using Eq.~19! we get

^xjyk&v5
1

m!ps2m12 E
2`

` E
2`

`

~x21y2!mxjyk

3expF2
x21y2

s2 Gdx dy. ~28!

By letting x→2x andy→2y in Eq. ~28! it follows that

^xjyk&v5~21! j^xjyk&v , ^xjyk&v5~21!k^xjyk&v .
~29!

Hence

FIG. 2. Intensity distribution for the vortex state in the circula
basis fors5& andm54.
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4210 56G. S. AGARWAL, R. R. PURI, AND R. P. SINGH
^xjyk&v50, if j or k is odd. ~30!

For j andk even, the integrals in Eq.~28! can be evaluated
by the binomial expansion of (x21y2)m to get

^x2 j y2k&v5
s2~ j 1k!G~m1 j 1k11!G~ j 1 1

2 !G~k1 1
2 !

pG~ j 1k11!G~m11!
.

~31!

Hence it follows that the averages in the vortexucv& and the
nonsingular stateuc& ~which corresponds tom50! are re-
lated by

^x2 j y2k&v5
G~m1 j 1k11!

G~ j 1k11!G~m11!
^x2 j y2k&0 , ~32!

where

^x2 j y2k&05
s2~ j 1k!G~ j 1k11!G~ j 1 1

2 !G~k1 1
2 !

pG~ j 1k11!
~33!

is the average in the squeezed state. In particular

^x2&5
~m11!s2

2
. ~34!

It is clear from Eq.~34! that the variance of thex or y
distribution increases withm and hence the vortex state has
wider dispersion than a nonsingular state inx-y space. There
is squeezing inx if ( m11)s2,1.

Let us examine also the squeezing properties@8# of the
operatorpx conjugate tox. It is straightforward to see tha
^px&50 and

^px
2&5

m11

2s2 . ~35!

Thus there is squeezing inpx if m11,s2. However, the
uncertainty product given by

^Dxx
2&^Dpx

2&5
~m11!2

4
~36!

is independent ofs. The state form50 is the minimum-
uncertainty state. In the case ofm50, there is always
squeezing either inx or in px if sÞ1.

B. Photon correlations and photon statistics

The mean value of a product involving arbitrary powe
of x and y, determined in the preceding subsection, can
provide information about an arbitrary field observable. T
t
t

task is achieved by the mean value of the product of arbitr
powers of the field annihilation and creation operators. In
present case it is simple to determine the wave function
the coherent-state representation and hence the mean
of an antinormally ordered product. Thus,
Q(a,a* ;b,b* )[ z^a,bucv& z2/p2, then the mean value
^aja†kbpb†q& is given by

^aja†kbpb†q&5E E d2a d2b a jbpa* kb* q

3Q~a,a* ;b,b* !. ~37!

It can be shown that

Q~a,a* ;b,b* !5
~12j2!m11

2mp2m!
ua1 ibu2m

3expF j

2
~a21b21c.c.!2uau22ubu2G ,

~38!

wherej is given by Eq.~24!. Thus the mean values can b
obtained from the moments of the Gaussian distributi
Here we list some of the important mean values that yi
fluctuations and correlations:

^a†a&5^b†b&5
1

2~12j2!
@m1j2~m12!#, ~39!

^a†ab†b&5
1

4~12j2!2 @j4~m213m14!

14mj21m~m21!#, ~40!

^a†ab†b&2^a†a&^b†b&5
2m

4~12j2!2 @11j412mj2#,

~41!

^a†2a2&5^b†2b2&5^a†ab†b&1
~m11!@~m11!j21j4#

~12j2!2 .

~42!

We use the preceding results to investigate the photon st
tics of the field. First we determine the intensity fluctuati
in the a mode by evaluating the functiong(2) defined as

g~2!5
^a†2a2&2^a†a&2

^a†a&2 . ~43!

The state is nonclassical if the photon number distribution
sub-Poissonian, i.e., ifg(2),0. By using Eqs.~39!–~42! and
~24! the evaluation of Eq.~43! leads to
g~2!5
~m215m15/2!~s811!22~4m11!s2~s411!2~2m212m11!s4

2@m~s411!1~s221!2#2 . ~44!



b

or
t

s

el

. 4
e

.
u

-
tom
-
is

in
to

f
tor

uch
-

56 4211VORTEX STATES FOR THE QUANTIZED RADIATION FIELD
This shows that the individual modes may exhibit su
Poissonian statistics for certain values ofs andm, as shown
in Fig. 3~a!. We further note that the two modes are antic
related in the vortex state, as can be seen by calculating
correlation coefficient

C[
^a†ab†b&2^a†a&^b†b&

^a†a&^b†b&

52m@m~s421!21~s411!214s4#

3$2@m~s411!1~s221!2#2%21 ~45!

using Eqs.~37!, ~39! and ~24!. This anticorrelation aspect i
apparent from Fig. 3~b!.

C. Photon number distribution

The photon number distributionN(p,q) of the two modes
may be found by evaluating

^p,qucv&5E
2`

` E
2`

`

^p,qux,y&^x,yucv&dx dy,

N~p,q![ z^p,qucv& z2, ~46!

whereup,q& represents the Fock state of the two-mode fi
and^pux& and^x,yucv& are given by Eqs.~6! and~19!. The
distributionN(p,q) can be evaluated directly from Eq.~46!.
The results of numerical computations are shown in Fig
Note the zeros inN(p,q). These arise from the zeros of th
number distribution associated with the squeezed vacuum
well as the cutoff provided by the prefactor in Eq.~12!,

^p,qucv&[A^p,qu~a12 ib1!muc&. ~47!

For m52 we get

^p,qucv&5A@Ap~p21!^p22,quc&2Aq~q21!^p,q22uc&

22iApq^p21,q21uc&#, ~48!

which, for instance, will be zero forp51, q50.

IV. GENERATION OF THE VORTEX STATE

Here we outline a method of producing the vortex state
can be produced by a variety of state-reduction techniq
@9#. For example, consider a three-levelL system interacting

FIG. 3. ~a! Intensity correlation functiong(2) as a function ofs
for m52 ~solid curve!, m53 ~dot curve!, andm54 ~dash curve!.
~b! Anticorrelation coefficientC as a function ofs for m52 ~solid
curve!, m53 ~dot curve! andm54 ~dash curve!.
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with two circularly polarized fields on resonance~Fig. 5!.
That interaction is governed by the Hamiltonian

H}u1&^3u~a1 ib !1u3&^1u~a†2 ib†!

1u1&^2u~a2 ib !1u2&^1u~a†1 ib†!. ~49!

We let the system, prepared in the stateuc0&, evolve under
the influence of Eq.~49! and think of a conditional measure
ment, i.e., we determine the state of the field when the a
is detected in the stateu3&. For short times first-order pertur
bation theory shows that the state of the field
(a†2 ib†)uc0&. If we consider a succession ofm atoms
through a bimodal cavity and if we detect all the atoms
state u3&, then the state of the field is reduced
(a†2 ib†)muc0&, which is the desired vortex state.

We also note that the vortex state~1! is an eigenstate o
the z component of the angular-momentum opera
LZ[xpy2ypx[2 i\@x(]/]y)2y(]/]x)#, i.e.,

LZcv~x,y![2m\cv~x,y!. ~50!

This then suggests another possibility of realizing states s
as Eq.~1!, say, byusing coupling between harmonic oscilla
tors @10#.

FIG. 4. Photon number distributionN(p,q) as a function ofp
andq for s5& andm54.

FIG. 5. Scheme for producing the vortex state involving aL
system.
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V. THE REDUCED STATE FOR EACH MODE
IN THE VORTEX STATE

In this section we determine the reduced density matrixra
of thea mode defined byra[Trbucv&^cvu. The single-mode
state is a mixed state even though the two-mode state i
pure state. It might be noted that this is also the case with t
two-mode squeezed vacuum state defined by Eq.~3!.

A. Spatial coherence of thea mode

First we determine the correlation function in thex space
of mode a by evaluating the off-diagonal elemen
^x1uraux2&. It can be found by integrating the expression fo
^x1 ,yurux2 ,y&[^x1 ,yucv&^cvux2 ,y& over y,

^x1uraux2&5E
2`

`

^x1 ,yucv&^cvux2 ,y&dy, ~51!

where ^x,yucv& is given by Eq.~19!. Using Eq.~19!, Eq.
~51! reads

^x1uraux2&5S 12j

11j D m11 1

pm!
expF2

12j

11j
~x1

21x2
2!/2G I ,

~52!

FIG. 6. Correlation functionra(x,x8) as a function ofx andx8
for s5& andm54.

FIG. 7. Coordinate-space distributionra(x,x) as a function ofx
for s5& and m52 ~solid curve!, m53 ~dot curve!, and m54
~dash curve!.
a
e

r

where

I 5E
2`

`

dy~x12 iy !m~x21 iy !mexpF2
12j

11j
y2G

5
d2m

dlmdmm E
2`

`

dy exp@lx11mx2#exp@2 iy~l2m!#

3expF2
12j

11j
y2GU

l5m50

5A12j

11j

1

Ap

d2m

dlmdmm exp@lx11mx2#

3expF2S 11j

12j D2
~l2m!2

4 GU
l5m50

. ~53!

By changing the variablesl,m to u,v, where

u5S 11j

12j D S l2m

2 D , v5S 11j

12j D S l1m

2 D , ~54!

Eq. ~53! for I leads to

I 5S 12j

11j D m/2 Ap

22m S d2

dv2 2
d2

du2D m

3expFv~x11x2!A11j

12jGexpFu~x12x2!A11j

12jG
3exp@2u2#uu5v50

5S 12j

11j D m/2 Ap

22m S ~x11x2!2
11j

12j
2

d2

du2D m

3expF2S p2
x12x2

2
A11j

12j D
2G

3expF ~x12x2!2

4

11j

12jGU
u5v50

. ~55!

It is now possible to derive the expression for^x1uraux2&
from Eq. ~55!,

^x1uraux2&5
exp@2~x1

21x2
2!/2s2#

22ms2m11m!Ap

3 (
k50

m F ~21!k
s2km!

~m2k!!k!

3~x11x2!2~m2k!H2kS x12x2

2s D G . ~56!

The results of the numerical evaluation of Eq.~56! are plot-
ted in Fig. 6 for s252 and m54. The function
ra(x1 ,x2)[^x1uraux2& for m50, when there is no singular
ity, is clearly a two-dimensional Gaussian centered
x15x250. The plots ofra(x1 ,x2) for mÞ0 exhibit hills and
valleys. Forx15x25x Eq. ~56! reduces to
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ra~x,x![^xurux&5
exp@2x2/s2#

s2m11p (
k50

m F s2k

~m2k!!k!
x2~m2k!

3GS k1
1

2D G . ~57!

The behavior ofra(x,x) is exhibited in Fig. 7. It shows tha
the maximum exhibited byra(x,x) at x50 for m50 splits
into two for mÞ0, leading to a dip atx50. The bimodal
distribution arises from the entanglement ofa andb modes
@Eq. ~12!#.

We define spatial coherence functiong( l ) for the single
mode by

g~ l ![E ra~x,x1 l !dx, ~578!

which on using Eq.~55! can be reduced to

FIG. 8. Single-mode coherence functiong( l ) @Eq. ~57!# as a
function of l for s5& andm52 ~solid curve!, m53 ~dot curve!,
andm54 ~dash curve!.

FIG. 9. Momentum-space representation of the wave func
r(k,k) for s5& and m52 ~solid curve!, m53 ~dot curve!, and
m54 ~dash curve!.
g~ l !5
e2 l 2/4s2

~2s!2m11m!Ap
(
k50

m

~21!k
m!s2k

~m2k!!k!

3~4s2!m2k11/2G~m2k11/2!H2k~ l /2s!. ~58!

To see the nature of the correlation between two points ofx
spaceg( l ) has been displayed in Fig. 8 for various values o
m. The minimum in the coherence function can be taken
a signature of the vortex character. The spatial coheren
function g( l ) is related to the momentum-space represent
tion in the following manner:

g~ l !5E dx r~x,x1 l !

[E dx r~k1 ,k2!eik1xe2 ik2~x1 l !dk1dk2

[2pE r~k1 ,k2!d~k12k2!e2 ik2ldk1dk2

[2pE r~k,k!e2 ikldk. ~59!

The expression forr(k,k) can be obtained by taking Fourier
transform of Eq.~59! and using Eq.~58!. The final result is

r~k,k!54pe2s2k2

(
t50

m
s2t11k2t

~m2t !! t!
G~m2t1 1

2 !. ~60!

The behavior ofr(k,k) is shown in Fig. 9. The vortex state
leads to a bifurcation of momentum distribution.

B. Q function for the a mode

The Q function ^auraua& of ra for modea may be ob-
tained from

Qa~a,a* !5^auraua&/p5E Q~a,a* ,b,b* !d2b.

~61!

n
FIG. 10. Qa(x,y) as a function of real and imaginary parts of

a[x1 iy for s5& andm54.
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The evaluation of Eq.~61! can be done as follows. By usin
Eq. ~38!, Eq. ~61! can be written as

Qa~a,a* !5
~12j2!m11

2mp2m!
expF j

2
~a21a* 2!2uau2GI, ~62!

where

I5
d2m

dlmdmm exp@al1a* m#E
3expFj~b21b* 2!

2

1 i ~bl2b* m!2ubu2GU
l5m50

d2b. ~63!

The integral in Eq.~63! can be evaluated by substitutin
b5x1 iy to obtain
l

t
n
d

u
c
n
di
ib
e
n

w

rs
-

I5
p

A12j2

d2m

dlmdmm exp@~al1a* m!#

3expF2
~l2m!2

4~12j! GexpF2
~l1m!2

4~11j! GU
l5m50

, ~64!

which on simplification leads to

Qa~a,a* !5
~12j2!m11/2

2mp
expF2uau21

j

2
~a21a* 2!G

3(
k50

m
m!

~m2k!! ~k! !2S j

2D kUHkSA12j2

2j
a D U2

.

~65!

The form ~65! immediately leads to the expression of th
density matrix in the operator form
ra5
~12j2!m11/2

2mp
expS j

2
a†2D (

k50

m
m!

~m2k!! ~k! !2 S j

2D k

HkSA12j2

2j
a†D u0&^0uHkSA12j2

2j
aD expS j

2
a2D . ~66!
e
by

wn
We have plottedQa(x,y) in Fig. 10 as a function of the rea
and imaginary parts ofa[x1 iy for s252 andm54. The
function Qa(x,y) has a maximum centered ata50 for m
50. For nonzero values ofm, there is instead a valley a
a50, which is a signature of the singularity. The functio
Qa(x,y) is thus qualitatively different for states with an
without vortices.

VI. CONCLUSION

We have introduced wave-packet states with vortex str
ture. We study the properties of radiation fields in su
states, which we show can be produced by the interactio
L systems in a two-mode cavity containing squeezed ra
tion. We have also presented detailed results for the distr
tions associated with one of the modes. It should be born
mind that the results obtained in this paper are valid for a
quantum system that can be effectively described by a t
dimensional harmonic oscillator.

APPENDIX

In this appendix we derive the equation~27! for
^X,Yucv&, whereuX&,uY& are the eigenstates of the operato
(c1c†)/& and (d1d†)/&, respectively. The circular rep
resentation operatorsc andd are related to operatorsa andb
by Eq.~22!. Using Eqs.~22! and~23!, the expression~12! for
the vortex state reads
c-
h
of
a-
u-
in
y
o-

ucv&5A2m/2c†mexp@2z~c†d†2cd!#u0,0&c,d

[Ac†m2m/2exp@jc†d†#u0,0&c,d

[A2m/2(
k50

`

jkA~m1k!!

k!
um1k,k&c,d , ~A1!

whereA is the normalization constant given by Eq.~18! and
j is given by Eq.~24!. On using Eq.~48!, Eq. ~A1! leads to

^X,Yucv&52m/2A(
k50

` S j

2D k 1

k!
Hm1k~X!Hk~Y!

3expF2
X21Y2

2 G . ~A2!

The summation in Eq.~A2! can be performed by using th
integral representation of the Hermite polynomials given
Eq. ~8! to arrive at the expression

^X,Yucv&5A0exp@~X22Y2!/2#

3exp@2~X2jY!2/~12j2!#HmS X2jY

A12j2D ,

~A3!

whereA0 is the normalization constant, which can be sho
to be given by

A0
25

1

G~m11/2!2mAp
. ~A4!

Expression~A3! is the desired equation~27!.
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