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Vortex states for the quantized radiation field
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We study the properties of wave-packet states with vortex structure. In particular we present the character-
istics of a two-mode radiation field characterized by a configuration-space wave function
¥, = (x—iy)Me~0*+¥912e* \we show the generation of such states by the interaction sfystems with
squeezed radiation in a two-mode cavity. The two modes are correlated due to entanglement, which also
produces the mixed state of each mode even though the state of the two-mode field is a pure state.
[S1050-294®@7)04011-0

PACS numbd(s): 42.50.Ar, 42.50.Dv

I. INTRODUCTION mode field, the results are applicable to all systems that can

In recent years there has been phenomenal interest in tr?ee reduced to a system of two harmonic oscillators.

study of wave packets of a quantum systiglth The Gauss-
ian wave packets occupy a central place in such studies. In Il. VORTEX STATES FOR THE QUANTIZED
the case of radiation field, the Gaussian wave packets are in RADIATION FIELD
fact minimum-uncertainty states and describe both t_he_ coher- | this section we give an operator version of EY). This
ent stateg2] and the squeezed statg3] of the radiation iy 150 shed light on the relation of Eq) to other well-
field. In this paper we study the Wav_e-packet states that havl?nown states as well as on the methods that can generate
a vortex structure, i.e., states described by such states. Note that the exponential part in @.is re-
2. 2 2 lated to the squeezed stdi@) for the two mode radiation
Y, (X,y)~ (x—iy)Me™ X2 (1) field defined by the direct product of the squeezethode

state| ;) and the squeezeatmode statd ir,),
wherem is an integer. Note thafy,|>=0 at x=y=0. A

vortex of ordem exists at the origin since the circulation of |¢//):exp:§{aT2+ bf2—a2— bZ}]|0,o>
the argument oi}, along a closed contour containing=y
=0 is 27m, =exf ¢{a"?—a%}]|0)exd ¢{b™?—b?}]|0)
N =[a) Yo, 3
fﬁ V(argy,) -dl=2mm. 2 ) o
wherea,b are the bosonic annihilation operators for the two-

field modes and is the squeezing parameter. First we evalu-

In Fig. 1 we illustrate the probability distribution associated gte the expressiofx,y|¢), where|x,y) is the eigenvector of
with Eqg. (1). Berry[4] introduced the concept of a defect or

vortex on the optical wave field, i.e., he considered the opti
cal field distribution&(x,y) with the structure(1). A large
body of literature has been devoted to the study of optica
vortices onclassicalwave fieldg5]. In contrast, we consider
guantum systems characterized by the wave function give
by Eq.(1). Our quantum system could be a two-dimensional
harmonic oscillator or a two-mode radiation field. We study
in detail various properties of, say, a field in the s{dje We
show how the statél) can be generated in cavity QED ex-
periments.

The paper is organized as follows. In Sec. Il we introduce
a state of a two-mode quantized field that has vortex-typt
singularity in the configuration-space-like representation. We
consider the transformation of the vortex structure to a cir-
cular basis. In Sec. Il we investigate various properties o
the vortex state such as antibunching, squeezing, mode-moi
correlations, and photon number distribution. A method of
generation of the proposed vortex state is outlined in Sec. IV.
In Sec. V we determine the single-mode reduced density FIG. 1. Intensity distribution for the vortex state given by Eq.
matrix. Although we study all this in the context of a two- (1) for c=v2 andm=4.

1050-2947/97/56)/42079)/$10.00 56 4207 © 1997 The American Physical Society



4208 G. S. AGARWAL, R. R. PURI, AND R. P. SINGH 56

(a+a')/v2 and b+b')/v2 with eigenvaluesx andy. To | =(x|exd aa'?+ pa'|0)
that end, we use the disentangling theolié&h
=ex{ — BY4a](x|exd a(a’+ Bl2)?]|0).  (13)

ex {(a™*-a%]|0,0
On expanding the exponential in E@.3) and using Eq(6)

1
=ex;{§a’r2 exp[ —In[cosh2¢)]| ata+ > } we get
eXF[ BZ/ a] * am B 2m-n
£ = ——F=—en—x2) X Z ( )
xex;{iaz ; €=tanh(2)) (4) V7
to write the exponential in Eq3) as a product of the expo- xﬂ \/I H,(X) (14
(2m—n)!in! NV 2n Mo

nentials and make use of the fact that the operaacaadb

acting on their respective vacuum states give zero. It then
follows that The sum in Eq{(14) can be evaluated by using the integral

representatior8) of the Hermite polynomial. That leads to
the expression

S b
|¢a> \/W exp{z a |0>v )

= ——
with a similar expression fdwj,). Now, on taking the scalar YW V1+¢
product of Eq.(5) with |x) and using the relation xexd — B22(1+ &) lexdxv2B/(1+¢€)]. (15

1

exd —x%/20°]

exp(— x2/2)

(X|ny= —————"H,(x) (6) The expression for the staté2) in the x,y representation
NN can now be found by noting that
whereH, (x) is the Hermite ploynomial, it follows that A dm
(X, y[ )= cosh2) A"
b= (= 2B s g)m ().
X)=(X|))= ——— — X
a [Jmcost{27) M=o \4 ml 2" . xex;{g (aT2+bT2)+ﬁ(aT—ib*)}
7 B=0
The sum in Eq(7) can be evaluated by using the integral (16)
representation On using Eq(15) in Eq. (16) it can be shown that
2m (= m/2 2.2
Hp(X)=— J (x+it)"exp( —t?)dt (8) 2 m r{ X“ty
Cw A - ex
Var Yo (X,y) = o (L g)m( y) 552
of the Hermite polynomial. It is found that (17)
1 On imposing the normalization condition
_ _ 2dx dy=1 we get
Ya(X)=(X| )= exp(—x%/25?), @ Iyl
L= o
B 27m/2(1+ g)m B 0.2_1
where ST dmiom T (18)
o=exp(2{). (10

Hence the normalized wave functiah (x,y) for the vortex

The expression fofx,y| ) now follows by taking the scalar State is given by
product of Eq.(3) with |x,y) and using Eqg.(9) and the

similar expression foir,(y), Do (X,y) = /% (x—iy)™
v m!' 7o

B B 1 F{ x2+y? i
lﬂ(X,Y)=<X:Y|¢>—lﬂa(X)lﬂb(Y)—mex T 252 | Xex;{— 203’ ,
(11)
We next prove that theortex state(1) can be expressed as f f [, (X,y)]2dx dy=1. (19)
) =A@ =ib")™ 4), (12)

The operator version of the vortex state is given by E4@),
whereA is the normalization constant. Let us first evaluate(3), and (18). The position of the vortex can be shifted by
¥,(X,y). To that end, consider the expression using
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1 (X=X0) 2+ (y—Yo)?

P(Xy)= P exp{ - 552 . (20

In that case the vortex state can be defined by
ly,)=A"(@"—ib") ™), (21

whereA’ is a normalization constant.

Vortex state in the circular basis

It is instructive to express the vortex state in the circular

basis defined by the operatarad, where

a+ib a—ib
c= , d= . (22
V2 V2

4209

FIG. 2. Intensity distribution for the vortex state in the circular

It should be noted that by use of a polarizing beam splittepasis foro=v2 andm=4.

that splits a circularly polarized light into two orthogonal

plane-polarized components, one can go from bagisto
a,b. In the circular basis the expressi@) for |i) reads

ly)=exd2¢(c'd"—cd)]]0,0) 4

1 o]
= —_ k
= costzg) & £ 1K, (23)
where
g?—1
E=tanh20)= 77 (24

and|j k)¢ q is the Fock state of modesandd with j pho-
tons in modec andk photons in modal. Hence the vortex
state(12) in the circular basis is given by

om2 - \/m
|¢/U>ZAMIZO & T|m+k1k>c,da

(29)

whereA is given by Eq.(18). Equation(25) shows that the

vortex state is obtained from the two-mode squeezed vacuum

(23) in the circular basis by the addition of photons of type

imm/2

X2_Y2
XY,y = ex;{ }
{ ) omi2, 1/4 /F(m+ %) 2

" p[_(x—\(g)2 X—=Y¢ ”
ex 1—g o) 7)

The locus of points where the wave function vanishes is now
a straight line K— £Y)/\/1— £2=x,, wherex, is a real zero
of the Hermite polynomiaH ,(x). Form odd, x,=0 is one
of the zeros. It is interesting to observe that the phase of the
state in the new basis is justs/2) m]. The intensity distri-
bution|,(X,Y)|? is plotted in Fig. 2. A comparison of Figs.
1 and 2 shows the change in intensity distribution while go-
ing from one basis to the other.

Next we examine various properties of the vortex state of
the quantized field.

Ill. PROPERTIES OF VORTEX STATES

In this section we list the expressions for the mean values
of the field operators and those for various quasiprobabilities
and investigate the nonclassical properties of the field.

A. Mean values(xJyX),

First we give the expression for the average of the product

c [6,7]. Foré=0, i.e., in the case of no squeezing, it follows Of arbitrary powers ok andy. By using Eq.(19) we get

from Eq. (25) that

|#0,)—IM.0)c g (26)

It is thus interesting that a Fock state of a circularly polarized

)= [ [ e y2miyh
Vmimed2 || XYY

X2+ y?
X ex - 2
g

dx dy. (28

field is avortex state when viewed in the space of the linearly

polarized orthogonal componentdote, however, that a cir-

cularly polarized field in a coherent statenist a vortex state.

In analogy with Eq.(17), we can derive the expression for

the vortex state in the basiX,Y)=|X)|Y), where|X),|Y)
are the eigenstates ot ¢c')/v2 and d+d")/v2, respec-
tively. It is shown in the Appendix that

By letting x— —x andy— —y in Eq. (28) it follows that

(YR, = (=X, (xy9), = (= 1DKxiy"), .
(29

Hence
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(xXly¥),=0, if j ork is odd. (30)

For j andk even, the integrals in Eq28) can be evaluated
by the binomial expansion ofk¢+y?)™ to get

20O (m+j+k+ )T (j+ 3T (k+ 3)

2iy2ky
Y™, AT +k+ DT (m+1)

(31

Hence it follows that the averages in the vortex) and the
nonsingular statei) (which corresponds ton=0) are re-
lated by

. T(m+j+k+1) .
2jy2ky — 2jy,2k
Oy, 1“(j+k+1)r(m+1)<X %o,

(32

where

F2UTOT(j+k+ DT (j+ HT(k+ 1)
al(j+k+1)

(Y=

33)

is the average in the squeezed state. In particular

B (m+1)0?

(x?) — (34)

It is clear from Eq.(34) that the variance of th& or y

distribution increases wittm and hence the vortex state has a

wider dispersion than a nonsingular stateiy space. There
is squeezing i if (m+1)o?<1.
Let us examine also the squeezing properf#sof the

operatorp, conjugate tox. It is straightforward to see that

(py)=0 and

m+1
20° "

(p2)= (35

Thus there is squeezing in, if m+1<o?. However, the
uncertainty product given by

2
(axyapy= "1

(36)

is independent otr. The state fom=0 is the minimum-
uncertainty state. In the case ofi=0, there is always
squeezing either i or in p, if o#1.

B. Photon correlations and photon statistics
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task is achieved by the mean value of the product of arbitrary
powers of the field annihilation and creation operators. In the
present case it is simple to determine the wave function in
the coherent-state representation and hence the mean value
of an antinormally ordered product. Thus, if
Q(a,a*;B8,8*)=[a,B|¢,)|/72, then the mean value
(a'a™pbPb') is given by

<aja“‘bpbm>=f f d?a d?B ol BPa*kp*d

XQ(a,a*;B,8*). (37)

It can be shown that

(1_52)m+1

oty

Q(a,a*;B,8*)=

><ex;{§(ozzjL B2+c.c)—|al®>—|B/?|,
(38)

where¢ is given by Eq.(24). Thus the mean values can be
obtained from the moments of the Gaussian distribution.
Here we list some of the important mean values that yield
fluctuations and correlations:

<aTa>=<bTb>=#[m+§2(m+2)] (39
2(1-¢&9) ’
1
(aTabTb) = m[f“(mzﬁ- 3m+ 4)
+4mé2+m(m—1)], (40)

(afabb)—(a'a)(b'b)= g7 gl 1+ £+ 2me?],

&
(41

2., 44

(a%a?)= (b7 = alabl) + Tt
2

We use the preceding results to investigate the photon statis-
tics of the field. First we determine the intensity fluctuation
in the a mode by evaluating the functiogt®) defined as

2 <aT2a2> _ <aTa>2
g =

W . (43)

The mean value of a product involving arbitrary powersThe state is nonclassical if the photon number distribution is
of x andy, determined in the preceding subsection, cannosub-Poissonian, i.e., §(¥<0. By using Eqs(39)—(42) and
provide information about an arbitrary field observable. That24) the evaluation of Eq43) leads to

_(M*+5m+5/2)(s®+1)—2(4m+1)¢?(o*+1) — (2m*+2m+ 1) o*

g(2>
2[m(o*+1)+(0?—1)%]?

(44
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FIG. 3. (a) Intensity correlation functiog® as a function ofr
for m=2 (solid curvg, m=3 (dot curve, andm=4 (dash curve
(b) Anticorrelation coefficienC as a function ofr for m=2 (solid
curve, m=3 (dot curve andm=4 (dash curve

This shows that the individual modes may exhibit sub-
Poissonian statistics for certain valuesscoAndm, as shown

in Fig. 3(@). We further note that the two modes are anticor-
related in the vortex state, as can be seen by calculating the
correlation coefficient

(aTabTb>—(aTa>(bTb> FIG. 4. Photon number distributiod(p,q) as a function ofp
(aTa)(b'b) andq for c=v2 andm=4.

=-—m[m(c*—1)2+ (0*+1)%+40?] with two circularly polarized fields on resonan¢gig. 5).
That interaction is governed by the Hamiltonian

C=

x{2[m(g*+1)+(0?—1)2]3 1 (45)
using Eqs(37), (39) and(24). This anticorrelation aspect is He|1)(3|(a+ib)+|3)(1](a"—ib™)
apparent from Fig. ®). +]1)(2|(a—ib)+|2){1](aT+ib™). (49

C. Phot ber distributi .
oton humber distribution We let the system, prepared in the stptg), evolve under

The photon number distributidd(p,q) of the two modes the influence of Eq(49) and think of a conditional measure-

may be found by evaluating ment, i.e., we determine the state of the field when the atom
Y is detected in the statB). For short times first-order pertur-
, — qlx,y)(x, dx dy, bation theory shows that the state of the field is
(p.alg) f_mf_m(p aPxy)xyli) Y (a"™—ibM)|yg). If we consider a succession oh atoms

through a bimodal cavity and if we detect all the atoms in
N(p,q)=|(p.qal¢,)?, (46)  state |3), then the state of the field is reduced to
~ (@"=ib™)M ), which is the desired vortex state.
where|p,q) represents the Fock state of the two-mode field e also note that the vortex stat® is an eigenstate of
and(p[x) and(x,y|#,) are given by Eqs(6) and(19). The  the z component of the angular-momentum operator
distributionN(p,q) can be evaluated directly from E@G6). L,=xpy—yp,=—if[x(alay) —y(alax)], i.e.,
The results of numerical computations are shown in Fig. 4.
Note the zeros ilN(p,q). These arise from the zeros of the
number distribution associated with the squeezed vacuum as
well as the cutoff provided by the prefactor in Eq2),

Lz‘/’v(ny)E_mﬁ%(X,Y)- (50)

This then suggests another possibility of realizing states such
(p,ql¢,)=A(p,ql(a* —ib™)™| ). (47 as Eq.(1), say, byusing coupling between harmonic oscilla-
tors [10].
Form=2 we get

(p.ql¢,)=AlVp(p—1){(p—24|¢)— va(a—1)(p,a—2|4)
—2i\pa(p—1a-1|¥)], (48)

which, for instance, will be zero fgp=1, q=0.

>

|2>

IV. GENERATION OF THE VORTEX STATE

3
Here we outline a method of producing the vortex state. It 2>
can be produced by a variety of state-reduction techniques FIG. 5. Scheme for producing the vortex state involving: a
[9]. For example, consider a three-levekystem interacting  system.
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where
o l_
I= fwdy(xl—iy)m(xwy)mexr{ - ngz}

d2m . .
= I f_ dy exgAXy+ uxz]exd —iy(A—u)]

xex;{ - 5y2
e

1-¢1  d?m
= 1+ gﬁ d)\mdequ)\xl+ﬂx2]

1+ A— )2
XeX[{—(rg —% (53)
g A=u=0
FIG. 6. Correlation functiom,(x,x") as a function ok andx’ By changing the variables,u to u,v, where
for c=v2 andm=4.
V. THE REDUCED STATE FOR EACH MODE u= E) )\__’U‘) , v= E H—M , (54)
IN THE VORTEX STATE 1-¢ 2 1-¢ 2

In this section we determine the reduced density malfix gq. (53) for | leads to
of thea mode defined by,=Try| i, )(,|. The single-mode
state is a mixed state even though the two-mode state is a
pure state. It might be noted that this is also the case with the |=
two-mode squeezed vacuum state defined by(8q.

1-¢
1+¢

m/2\/;<d2 dZ)m

22m | dp?  du?

1+ ¢ 1+¢
A. Spatial coherence of thea mode Xexp v(X,+Xy) ré exp u(X;—Xp) 1T§
First we determine the correlation function in thepace )
of mode a by evaluating the off-diagonal element Xexd —u]lu=,-0
(X1]palX2). It can be found by integrating the expression for 1-g\m2 7 14&  d2\m
(x1,Ylp|X2,y)=(x1,Y|4,){¥,|x2,y) overy, = m) 57 ((X1+X2)21T§— W)
<X1|Pa|X2>:f (X1, Y|, )| X2, y)dy, (51) X1—Xp [1+§&|?
—o xXexpg —| p— —
2 1-¢
where (x,y|#,) is given by Eq.(19). Using Eq.(19), Eq. VY
(51) reads X ex;{% # . (55)
1_§ m+1 1 1_§ g u=v=0
_ - 2,2
(xalpalx2) = 1+¢ rm! exp{ 1+§(X1+X2)/2}|’ It is now possible to derive the expression o |p,|x,)
(52 from Eg. (55),
0.25
~ exd — (X3+x3)/20?]
0.20 <Xl|pa|X2>_ 22m0_2m+1m! \/;
m 2K
- 0.15 Lk om!
;; szo[( Y (m—k)!k!
< 0.10
X1~ Xy
X (Xq+Xp) 2M=KH ( ” 56
tos (Xa+ %) w5 || (56
0.00 L L L The results of the numerical evaluation of E§6) are plot-
-4.0 -2.0 0.0 2.0 4.0

ted in Fig. 6 for =2 and m=4. The function
pa(X1,X2)=(X1|pa|X2) for m=0, when there is no singular-

FIG. 7. Coordinate-space distributipp(x,x) as a function ok ity, is clearly a two-dimensional Gaussian centered at
for o=v2 andm=2 (solid curvé, m=3 (dot curvd, andm=4  X;=X,=0. The plots ofp,(X1,X,) for m# 0 exhibit hills and
(dash curvg valleys. Forx; =x,=x Eq. (56) reduces to

X
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1.0 —12/402 m 2k
e m! o
Y=g E 1)k
(20,)2m+1m| \/— =0 m k)lkl
X (40?)™ K2 (m—Kk+ 1/2)Hp (1/207). (58)
0.5 To see the nature of the correlation between two points of
spacey(l) has been displayed in Fig. 8 for various values of
= m. The minimum in the coherence function can be taken as
= a signature of the vortex character. The spatial coherence
function y(l) is related to the momentum-space representa-
0.0 tion in the following manner:
7(|)=J dx p(x,x+1)
_ . . A — ik Xa—iko(x+1)
%500 S0 0.0 5.0 10.0 _f dx p(ky, kp)ere 27 Ndkydk,
[
FIG. 8. Single-mode coherence functigifl) [Eq. (57)] as a EZ?TJ p(kq,ky) 8(k;—ky)e 2 dk,dk,

function of| for c=v2 andm=2 (solid curvg, m=3 (dot curve,

andm=4 (dash curvg EZWJ p(k,k)e_”"dk. 59

_\2) 2 2k
pa(X,X)=(x|p|x)= exr[szlla ] E [ i x2(m=k) The expression fop(k,k) can be obtained by taking Fourier
o (m—k)!k! transform of Eq.(59) and using Eq(58). The final result is

(57) m 0_2t+ lk2t

_ 7172k2
p(k,k)=4me tzEO =T

XTI

1
ket E) : T(m—t+ ). (60)

The behavior of,(x,x) is exhibited in Fig. 7. It shows that The behavior ofp(k,k) is shown in Fig. 9. The vortex state
the maximum exhibited by,(x,x) atx=0 for m=0 splits  leads to a bifurcation of momentum distribution.
into two for m#0, leading to a dip ak=0. The bimodal

distribution arises from the entanglementaoindb modes B. Q function for the a mode
[Eqg. (12)]. The Q function of p, for modea may be ob-
We define spatial coherence functigfil) for the single tained f(rgorrlj fon (a|pa|a) of pa y

mode by

Qa(a,a*)=<a|pala>/w=f Q(a,a*,B,8*)d*B.
y(|)sf pa(X,x+1)dx, (57" (62)

which on using Eq(55) can be reduced to

20.0 T T T

15.0

10.0

plkk)

5.0

0.0
-2.0 -1.0 0.0 1.0 2.0

FIG. 9. Momentum-space representation of the wave function
p(k,k) for c=v2 andm=2 (solid curvg, m=3 (dot curve, and FIG. 10. Q,(x,y) as a function of real and imaginary parts of
m=4 (dash curvg a=x+iy for c=v2 andm=4.
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The evaluation of Eq(61) can be done as follows. By using - gzm
Eq. (38), Eq. (61) can be written as I= \/?gz Wex;{(a)\Jra m)]
Qa(a,a*)= (1_§2)m+1exp{ (a®+a*?)—|al?|Z, (62 (A= u)? (A +p)?
ala, " )= —Sm—g 5 - ) _n P = 7
om0 2 Xexp{ 4(1_5)}ex% 21+9) )\:M:O, (64
where
which on simplification leads to
2m
I= —wrmexXd ak+ a*,u]f 2ym+1/2
da™dp™ 1-
# Qa(a,a*)=—( ng) exr{—|a|2+§(a2+a*2)
e EBZHB2) i
"2 g _m g \/ng ) ?
+i(BN=B* )= |BI? d?g. (63
A=u=0 (65)

The integral in Eq.(63) can be evaluated by substituting The form (65 immediately leads to the expression of the
B=x+iy to obtain density matrix in the operator form

. (66)

(1_ §2)m+l/2 g
_ > 2
Pa= oM exr{ > at

o m! £\k 1-&2
2, <m—k>!<k!>?(§) Hk( N2z @

oo A5 a

exr{ gaz

We have plotted),(x,y) in Fig. 10 as a function of the real |,y =A2M2cTMexd 2¢(ctd"—cd)]|0,0) 4
and imaginary parts ofi=x+iy for o?=2 andm=4. The o tmem2 -
function Q,(x,y) has a maximum centered at=0 for m =Ac'2™exd éc'd']0,0)c,q
=0. For nonzero values af, there is instead a valley at oc (Mt K)!
a=0, which is a signature of the singularity. The function =A2M2Y gk kl - Im+k,K) g, (Al
Q.(x,y) is thus qualitatively different for states with and k=0 |
without vortices. whereA is the normalization constant given by E48) and
£ is given by Eq.(24). On using Eq(48), Eq. (Al) leads to
* k
VI. CONCLUSION §°1
<><,Y|¢U>=2’“’2Ak§0(§ i Hme X HK(Y)
We have introduced wave-packet states with vortex struc- X24 Y2
ture. We study the properties of radiation fields in such Xex;{— (A2)
states, which we show can be produced by the interaction of 2

A systems in a two-mode cavity containing squeezed radidgFhe summation in Eq(A2) can be performed by using the
tion. We have also presented detailed results for the distribuintegral representation of the Hermite polynomials given by
tions associated with one of the modes. It should be borne ikqg. (8) to arrive at the expression
mind that the results obtained in this paper are valid for any B s U2
quantum system that can be effectively described by a two- (X:Y[#)=Acexi (X* = Y*)/2]
dimensional harmonic oscillator. X—
&Y
i@
APPENDIX (A3)
whereA, is the normalization constant, which can be shown
In this appendix we derive the equatiof®7) for g pe given by
(X,Y|4,), where|X),|Y) are the eigenstates of the operators
(c+c"/v2 and d+d")/v2, respectively. The circular rep- 2 1
. Aj=————.
resentation operatorsandd are related to operatoesandb 0 (m+1/2)2"/7
by Eq.(22). Using Eqs(22) and(23), the expressiofil2) for
the vortex state reads ExpressionA3) is the desired equatiof27).

Xexd — (X—&Y)?/(1-&9)Hp,

(A4)
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