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Decay of excited molecules in absorbing planar cavities
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The decay rate of an excited molecuyltom embedded in a dispersive and absorbing planar cavity is
derived by using a recently obtained compact form of the Green’s function for a multilayer. As a by-product,
a hint is provided for a straightforward extension of the results obtained for lossless cavities of other shapes to
the corresponding absorbing cavities. The decay rate in an absorbing cavity consists of the spontaneous
emission rate and of the nonradiative rates caused by the near-field interaction of the molecule with the cavity
medium and, for nearby molecules, with the cavity mirrors. Only the spontaneous emission rate is satisfactorily
described in the macroscopic approach adopted. The theory is applied to an analysis of the effects of the weak
cavity absorption on the decay rate in a dielectric microcavity formed by two metallic mirrors. As expected,
dissipation in the cavity medium spoils the conditions for controlled spontaneuos emission and strongly
suppresses the intensity of spontaneous emission. However, its effect on the spontaneous emission rate is much
less pronouncedS1050-294{@7)03411-2

PACS numbds): 42.50.Lc, 42.60.Da, 33.50j

I. INTRODUCTION neous dielectrics based on a photon Green’s-function formal-
ism. In addition to not accounting for the near-field interac-
The development of various light-emitting microdevicestions of the molecule, their approach rests heavily on the
based on controlled spontaneous emisgiBB) has raised calculation of a Green’s function of the system. In a very
the problem of a theoretical description of spontaneous retecent related work, Nha and JftE7] generalized the theory
laxation of excited molecule@toms in realistic, i.e., disper- ©Of molecular decay by Wylie and Sipé] to finite but trans-
sive and absorbing cavities. Macroscopic electrodynamics igarent(empty planar cavites. In this paper, using a recently
clearly a natural framework in which to deal with such sys-obtained compact form of the Green’s function for a
tems. However, it is only very recently that, based on thenultilayer[18], we reconsider and complement our approach
result of the canonical field quantization for a microscopicin [13] and develop a theory of the molecular decay in an
model of a dielectrid1,2], a scheme has been proposed forabsorbing planar cavity or, generally, a multilayer. In this
guantization of the macroscopic field in dispersive and abWay, we simultaneously extend the theory of Wylie and Sipe
sorbing inhomogeneous systef®s-5]. So far, this program [7] to finite and absorbi.ng cavities, as .V\./ell as the theory of
has been fulfilled only for waves propagating along the norBarnettet al. [12,14] to finite planar cavities.
mal to simple multilayers, i.e., effectively one-dimensional The paper is organized as follows. In Sec. Il we establish
systemd4,5]. Since the coupling of the molecule to all pos- & relationship between the classical theory[b8] and the
sible waves supported by the system has to be considered ®FED approach described and define the normalized rate.
describe its decay correctly, the appropriate macroscopic ag-n"roughout the paper we exploit this equivalence of the
proach to this goal is therefore quantum-mechanical linearthormalized rate in the two approaches and useinly) the
response theory in conjuction with the fluctuation-dissipatiortlassical language to identify various contributions to the
theorem, familiar from the theory of spontaneous emission ifotal rate. In order to clarify the method of calculation em-
the presence ofabsorbing boundarie$6,7], or the classical ployed in Sec. 1V, in Sec. lll we briefly rederive a few basic
theory developed in the context of molecular fluorescencéesults concerning the decay of a molecule embedded in an
and energy transfer at interfad@s-11]. At zero temperature absorbing dielectric host. In Sec. IV we derive the molecular
these methods give the same result for @ermalized mo- decay rate in absorbing planar cavities and discuss the rela-
lecular decay rate and can be easily extended to fully absorptonship between this result and the results obtained previ-
tive systems including also the cavity interjdr2—14. ously. As an application of the theory, in Sec. V we consider
So far, only the SE rat¢12] and the total decay rate the decay of an excited molecule embedded in a dielectric

[14,15) of the molecule in an infinite absorbing cavitye- microcavity formed by two metallic mirrors under the cir-
dium) have been considered in more detail. In our previougumstances of controlled SE and discuss the effects of cavity
work [13] we pointed out that a straightforward extension of@bsorbtion on various contributions to the total molecular
a classical result for the molecular decay rate in a transparefiecay rate. Our conclusions are summarized in Sec. VI.
layer[10,11] should describe the molecular decay rate in a

fully absorbing multilayered system. In the subseql_Jent de- Il. PRELIMINARIES
velopment, however, we have restricted our attention to a
transparent cavity case. Recently, Lee and Yamarjishii Consider an excited molecule at a positignn a cavity.

presented a theory on the SE rate in absorbing inhomogén the classical approach, the molecule is simulated by a
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point dipolep oscillating at the frequency of the transitian  |etting c— o in this solution, i.e.Es=lim._... E. Obviously,
The associated current  densityj(r,t)=—iwpd(r  the differenceE;=E—Eg represents the dipole transverse

—ro)exp(—iwt) gives rise to the electric field in the system (retarded field. Indeed, since Gauss'’s law holds for b&h
of the form E(r,t)=E(r,rq;w)exp(-iwt). The molecular and Eg, the field E; obeys the generalized transversality

decay ratd’ is then related vid'=W/#A w to the power condition
W(ro)= 5 Imp* - E(Fo,ro;0) (2.0 V-e(r@)Er(rroiw) =0, 29

as appropriate for inhomogeneous syst¢@is. According

lost by the dipole in supporting its own field. Introducing the Eq. (2.2, the Green’s function for the transverse fi&g
Green’s function of the system through9] is therefore given by18]

2, 2 2
. - P w P
G(r.ro;@)-p, (2.2 GT(f,I’o;w):G(r,fo;w)__wz lim Z G(r,rp; ),
c—o

we have (2.6)

oN| e

E(r,ro;w):

where the last term represents the Green's function for the

2.3 quasistatic field55. By definition, Gt comprises the contri-
' butions of all polaritonigretardedd modes in the system.

2
w P
[ (rg)= Wp* IMG(rg,rg; ) p,

where we have assumed tl’ﬁ(l’o,l’o;w) is the diagonal 11l. DECAY RATE IN AN INFINITE CAVITY
dyadic. -

The quantum-mechanical decay rate is obtained in the The Green’s functiorG® for an infinite medium is ob-
usual way starting from the moleculéetal) field interaction  tained by a straightforward generalization of the free-space
Hamiltonian of the standard forfii4] H;,= —p-E(r,), us-  Green’s function and read22]
ing the Fermi golden rule, and employing the fluctuation-
dissipation theorem. At zero temperature, one arrives at Eq.

(2.3) with p—2py; , wherepy; is the corresponding transition Gor,ro; )= i SRR~ (1-ikR)— 4_7TT5(R)
dipole matrix elemenf20]. Therefore, with this replacement k? R 3
in mind, we refer to Eq(2.3) as the QED rate as well. o an

In generalI" consists of the ratE g associated with losses e I-RR e'ER 3.1)
WS; owing to the quasistatic interaction of the molecule with R ' '

its environment and the rafé; related to molecular losses

W due to its transvers@etardedl interaction with the sur- \where] is the unit dyadicR=r—ry, R=R/R, and
roundings. The quantitied/s (I's) andW+ (I't) can be ob-

tained separately from the above formulas through the qua-

sistatic and transverse parts, respectively, of the total dipolel .\ 1" ( ) +ik"(w)= Ve (o) w_ +i «
field (Green’s function As usual, we refer td'; as the (@) (@) (@)=Ve(w) c (@) +ix(w)] c’
spontaneous emission rafése and define the normalized (3.2
molecular decay rat& with respect to the SE rate in the . . : o
corresponding infinite cavit;FgE, ie. F=F/F$=W/\N$. with # and « being, respectively, the refractive index and the

Clearly, both the classical and the QED approach lead to thgxtw’\ctlon (.:oeff|C|ent of the medium. Sinez (ro’ro’“’) IS
same result fol given by the isotropic tensor, E3.1) has to be averaged ov& to
find its limit for R—0 correctly. With{RR)=(1/3)I, one

- ~ " therefore has
p-ImG(rg,rg;w)-p

f(ro): (24) ~
A ikR|_

- —=38R)+——1I. (3.
3k? ( )+3 Rl =9

p-IMG(ro,ro;0) P’ .
) GOrg,rp; )= lim
where nowp describes the direction of the transition. Note R—0
that eventual local-field corrections do not afféctor cen-
trosymmetric cavity media and in this work, therefore, weln the spirit of the macroscopic field approach, we remove
ignore the difference between the local field actually actingthe singularity that appears in the quasistatic component of
on the molecule and the macroscopic field used in the aboviée dipole field by letting og_.o(R)— 1Ny, where V,,
derivation. =(477/3)R3m is an appropriately chosen spherical volume
A cavity represents an inhomogeneous system that can @ound the molecule. It is clear from E.1) that making
described by the position-dependent complex dielectric functhis substitution is equivalent to averaging the quasistatic
tion &(r,w) defined in a piecewise fashion. One usuallydipole field (Green’s function over V,, as suggested by
solves for the full dipole field&E (Green’s functiorG) in such ~ Barnettet al.[14]. The total dipole power los®/ is there-
a system. The dipole quasistatic fisdd is then obtained by fore given through Eq(2.1) by




o’lp?
3cd
(3.9

w|p|2
2R3

W= W+ Wo=Im { + 7(w)

s(w)

where the first term describes the molecular quasistatiar-

field) loss in the medium, whereas the second one gives the

familiar transversefar-field) loss of the molecule, i.e., the
spontaneous emission power. The quan®fy can be con-
sidered as an effective molecule-medium distarieg; this

interpretation is also suggested by a very recent microscopic

result for the molecular near-field lo§s5]. Clearly, W2 is
due to the excitation of longitudinal modes in the medium
and vanishes for nonabsorbing”&0) media. Sincep and
R enter symmetrically into the expression #°, note that
Eq. (3.4) could have been obtained by averag\n§ overp
instead of averaginG® over R. This method of calculating
WP will prove useful in Sec. IV.

We stress that the need of averaging the Green'’s functio
overR concerns its quasistat{fongitudina) component and

therefore the above procedure is unnecessary if solely the SE

rate is to be obtained. Indeed, the application of the recip
(2.6) to Eq.(3.2) leads to

~ <—>

- 1 3R|i | -
GT(r,ro:w)=E—2 [(1—-ikR)e 1]
-RR -

+ e'kR, 3.
R (3.5
Expanding this for smalR, one directly finds
2o
ImGT(rO ro;w)= k' (w)§ (3.6

Through Eq.(2.3) this gives for the SE rate in absorbing
media

4w3|pfi |2

T 3.7

I'ge=n(w)
as obtained by Barnett al. [12].

IV. DECAY RATE IN A PLANAR CAVITY

Consider an absorbing planar cavity) (formed by two
generally multilayered lossy mirrors with an excited mol-
ecule embedded in it, as depicted in Fig. 1. A detailed deri
vation of a convenient plane-wave expansion of the Green
function for such a multilayer was presented in R€fg|.

Here we quote only the Green’s function element relevant to

the present problem.

A. Green’s function

Denoting the(conserveglwave vector parallel to the sys-
tem surfaces bk = (k, k), we write the wave vector of an
upward (downward propagating wave in amth layer as
K =k=* 8,2, where
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FIG. 1. System considered schematicadly= n,2 are the dielec-

tric functions of the layers.

n

Bi="\k—I2=p{+ip!, B=0, B=0

(4.1

$he Green’s-function element relating an observation point

in the cavity to a source poimt in the cavity then reads

- 4 . -
G(rro;w) === 228(r—ro)+ 2 Gy(r.ro;w),
k] q=p,s

0<z, z5<d
dk

7 D,
X[E J(k 1) z)S ( K,w;2y) 6(z—zp)

elBid

Gé(f,fo;w)=z

(k ) z){;' (=K, @;29) 8(z9g—2)]

x el (P=po), (4.2
Herer=(p,2), {,=1, {,=—1, and
— 2iB;d
Dgj=1-riril, e, (4.3

with ri.=rf ) being the reflection coefficients of the up-
per (lower) cavity mirror. These coefficients obey the usual
recurrence relations 8]. The functions‘,‘;j and£q>j describe
the z dependence of the electric field in the cavity ofja
=p polarized or aj=s polarized plane wave of unit strength
incident on the system from its upp@ownward and lower

'supward side, respectively. They are given by

£ (k,;2) =8 (k)e Az +rigr(k)ehi?,
z =z, z'=d;-z
- 1 e
== (= Bik+k2), &(k)=kxz (4.9
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whereégj are the orthonormdktomplex polarization vectors
associated with the downwafdpward propagating wave in
the cavity.

explicitly. This can be easily verified by noting that, in this
case, the operation Re cuts the above integrél at
Equation(4.7) is of a form well known from the theory of
molecular fluorescence and energy transfer in transparent
layers[10,11]. In [13] we obtained it by making a direct
) , , i generalization of these classical results for simple systems
We insert the Green's functio@.2) into Eq.(2.1) [or Eq.  anq conjectured that it also described the molecular power
(2.3] and letr—ro, remembering, however, that the terms |oss in ‘an arbitrary absorbing multilayered system. The
in W corresponding to the infinite-cavity case must be avelrypresent derivation justifies this approach provided, however,
aged ovep. Then, as before, the singular term in the Green’sh¢ the infinite-cavity part of the total loss is handled more

B. Molecular decay rate

function gives the molecular quasistatic bulk m@. One
can therefore write

W(z0) = W2+ W(zo), 4.5

whereW is given through the nonsingular part of the Green’s
function and, in most cases, gives the only contribution t

the molecular loss.
Omitting hereafter the index denoting the cavity, we
have

d2k glAd
> E—

— 3
W(zo)=V\/$Re—f — a
4m J k'Ba=ps "Dy

X E; (K, w20)-Pp E5(—K,w;29)-p,  (4.6)

WhereVV$ is classically given by Eq(3.4) or quantum me-
chanically by% wI'ge of Eq. (3.7). Developing€’s alongk,
z, and kxz and performing the angular integratiork (
= cospX+ Singy), we obtain

— 3 (= dkk
W(zg)=WhRe | ;—B[

Lo+
X (1-rFe?Fu)

1 2 -
—E—z(l—rEeZ'ﬁZO)
D, K

1 oo . R

+—(1+rie2"820)(1+rie2'523) p2

Ds
2

2k - 5
+D_?(1“%2'320)(1“392'320)pf}, 7
p

wherep, and p, describe the orientation of the transition
dipole relative to the cavity mirrors. To extract the remaining

infinite-cavity partW® from W, we setr? =0 in Eq. (4.7).
This gives

— 3 (»dkk
WO=WSRe— ~—{
4 Jo k'B

BZ
—E'f'l

. 2K
e 25|
4.8

Of course, upon prescribed averagif(@?)=2/3 and(p?)

(0]

carefully. Actually, according to the above discussion, Eq.
(4.7 correctly describes the molecular loss not only for
transparent cavities bit) for a freely rotating(unoriented
molecule, where averaging/ over p is needed, andii) if
solely the SE power is considered, in which cage
—lim._,., W is to be calculated. A generally valid result is,
however,

W(z) = Wi+ W{(zo), (4.9
whereWs¢ comes from the moleculddipole) field scattered
from the cavity walls and is obtained by substracting Eq.
(4.8) from Eq. (4.7). This finally leads to the normalized
molecular decay ratE=W/\N$ in the cavity:

T(z0) =T+ 1+T%%z,), (4.103
where
- 3k(w) [ ¢ |3
2= [ 2 8'(‘fu°;| ; w—Rm) (4.100

is the normalized molecular decay rate due to the quasistatic
losses in the bulk of the cavifyi4] and

Fs62) =R 3 fw dk k
z5)=Re— | =—
° 4Jo K'B

B> 1

~ —(2rPrP e?pd_P g2ih27
k? D
p

. 1 ) A
—rﬂez'ﬁ23)+—(Zririez'ﬁdﬂiez'ﬁzo
S
21 . -
Pf+ =5 —(2rPrB e? Pt P e?h%
k2 D,

Lo+
+r3e?hn)

+ rﬂeZiﬁZE)ﬁf] (4.109

is the normalized total cavity-induced decay rate of the mol-
ecule. .

Clearly, W°=WAT'*® fully describes the effect of field
confinement in the cavity on the decay rate as well as mo-
lecular losses due to its interaction with the cavity mirrors.

=1/3], the quantitw® becomeshy, as expected. Note that The corresponding quasistatic loss#& are obtained from
WP, as it stands, diverges for absorbing cavities owing to theEq. (4.100 in the c— limit. As seen, these losses are due
appearance of a nonphysical quasistatic contibution at th# the excitation ofp-polarized waves with the large wave

upper limit of integration in Eq(4.8). Therefore, taking its

vectorsk (B,=ik) and, according to Eq(4.1), cannot be

transverse pal’#\/"—lim_g%,\/\/0 also leads to the correct re- explicitly separated from the retarded lossesAff. There-

sult. For a transparertk is rea) cavity, however,\/\/°=\/\/$

fore, further extraction of the SE contribution 6 can be
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done only numerically fo_r realistic cavities. This can be per- Iﬁ(k,z)z 1_|r(l|28—4ﬁ’fzi+2i Imr9 g2z 4.13
formed, e.g., by calculating the transverse part of @dLO - .
numerically: o
and the symbo{ = — *} denotes the expression in the cor-
N N 3 w3 responding bracket with changed subscripts and superscripts.
Fse(zp)=1+T1392y) — 3 lim = I'*9zy), (4.1) Since for a transparent cavity we have, for example,
C—®
where the last term on the right-hand side represents the 1 1 1—r4}?, k<k
normalized molecular quasistatic rdf&=WYW? (see the Re—1;(k,zg)= — X . ~
; g=WTWh ( B a(kizo 1Bl | 2Imrde 265, K>k,

Appendiy. Alternatively, one may simply omifg and cut
the integral in Eq(4.109 at a wave vectoK that is larger A A
than the wave vector of any polaritonic mode in the systemin this casew naturally splits into a pat®V’ describing the
We note, however, that/g’ is significant only for molecules molecular decay into the propagatifgis rea) waves in the
close k'zy<1) to a lossy mirror. It has been discussed in acavity and a partw” coming from the molecular interaction
number of papers concerning molecular energy transfer atith the evanescen{B is imaginary waves in the cavity.
interfaces, e.g., in the context of molecular fluorescence negr =\’ precisely reproduces the normalized SE rate as de-
a mirror [10,11] or in surface physic$23], and its proper rived by De Martiniet al. by explicitly employing the quan-
account demands a microscopic description of the corretized radiation field in an emptys(=1) cavity with lossless
sponding mirrorinterface. For molecules at larger distances mirrors [24]. De Martini et al. have demonstrated that
from the mirrors Wg* may, in a very good approximation, be correctly reproduces the SE rate in a number of special cases
neglected and for a lossless system it vanishes. considered previously. In a dielectrie ¥ 1) cavity, how-
Equation(4.10 is the main result of this work. It extends eyer, in addition to the decay rate due to the coupling of the
the early classical results for the molecular decay rate in Zholecule to the unbountbhotonlike Waves,f’ also gives

transparent layer$10,1] to fully absorbing multilayered o yolecular decay rate due to its coupling to the waveguide
systems. Also, |tqprowdes a generalllzatlon of the COMeSPONCH 0des of the cavityA”=\7V” describes the decay rate of the
ng QIfED resultlrs =0 qndsz l_)_denved tily Wy::&and S'?e molecule due to its interaction with the waves guided by the
[7] to finite and absorbing cavities as well as thet £0) of  4yiry mirrors and, for a nearby molecule, due to its quasi-
Barnettet al. [14] to finite planar cavities. To make contact

, . ; static interaction with the mirrors. Clearly, this picture re-
with other QED theories, we return to EG7) and, as in  naing hasically valid also ifweakly) absorbing cavities,
[13], use the identity

although the mode pattern is smeared si@ds complex for
all waves and, accordingly, a sharp distinction between

1 o L o propagating and evanescent waves is lost.
Dg=5[(1- rde?f%o)(1+rie?Fo)+(1+rie”f?) We end this section with a remark concerning the molecu-
lar decay rate in absorbing cavities of other shapes. First, we
X(l_r(ieZiBzg)] note that generally, according to EQ.3),

to rewrite Eq.(4.7) in terms ofW= VV/W? as

\7V(z)—§Reme
R 0 F’ﬁ

p-IMGS(ro,ro;w)-p,  (4.14

o) = ==
2 C( 0) 2k,((1))
T(TZF‘F‘)*(k,zO)—I—FS(k,ZO) ﬁf

whereG*Cis the Green’s function for the field scattered from
K2 the cavity walls. For an absorbing planar cavity,
+~—2F§(k,zo)ﬁf], G%(ro,ro;w) is easily recognized in Eq4.100 using p?
k =p- (XX+yy)-p andp?=p-2z-p. It differs from the corre-
sponding Green’s function element for a transparent, or
1 o empty, cavity only in that this timk is complex[18]. This is
F"',(k,zo) = m[l ;(k,zo)ll— rPe?hn |24+ 51, a general property of the Green'’s function. Indeed, since ma-
P terial parameters of a system enter the Green’s function only
through k’s for various regionsG obtained for a lossless
1 - system is extended to describe the corresponding dispersive
Fo(k,zo)= m['ﬁ(kyzo)|1+rgez'ﬁzo [2+{x =5}, and absorbing system simply by replacing the relevant real
P k’s with their complex counterparts. Now, numerous consid-
erations of the decay rate in transparent cavities of various
1 N s 212 B shapes ended with E¢4.103 and the form Eq(4.14 for
Fslkizo)= 2|DS|7[IS (kzo) |1 r2 e o [P {x - %], I'%. Therefore, with the above replacement@i® and an
(4.12  obvious modification of the prefactor in E¢.14), these
results describe the decay rate in the corresponding absorb-
where ing systems as we[l25].
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V. DISCUSSION B'd=mm— ¢ (k)— ¢ (k), k=kg, (5.4

In this section we analyze the effects of cavity absorptionWith m being an integethalf integey. Owing to the appear-
on various contributions to the total decay rate in a dielectric 9 9 9ey. 9 bp

cavity. As is the case in practical applications of controlledﬁgﬁg Oé¢§é'g:i55|?g:lzrrli\;lrlr:-hoerdsgrsglrin sr:fﬁ;:]i;ﬁergt?ﬁg?os"
SE, we assume a weakly absorbing cavik<7), i.e., we ' ' p_ 1aty. .=, o ol
consider a molecular transition not coinciding with an ab-tion) cavity, one hasky=0 and By,=k’. This gives the
sorption resonance in the cavity. In this case, one may stifftning C,O”d't'on for the cavitgly =[M — #(0)/7]A/27, so
differentiate between the(dominantly propagating ' that dy’s are shifted from the standard half- or quarter-
=p") and the(dominantly evanescentg”>g’) waves in wavelength values in an absorbing system. The mode widths
the cavity. According to Eq4.1), these two classes of waves a'€ found in a standard wd6]. Owing to the decrease of
are described by the wave vectdrsk’ andk>k’, respec- the average reflectivity of the cavity mirrors by the factor
tively, wherek’ =z’ w/c. In the configurations with/s" exp(— aqnd), they are increased in an absorbing cavity. Since
> ne, whereE=0 or E=n denotes the external layer with a the peak values of the corresponding resonances are simul-
larger index of refraction, propagating waves can be furthepr_‘eOUSIy d_ecreased, the dissipation in the cavity spoils con-
recognized as photonlikunbound externallywaves with ditions for either enhanced.or suppressed SE. L
the wave vectors €k<kg and cavity-guided waveéeva- The wave vectors of guided modes and their widths are
nescent externallydescribed byke<k<k’. In such sys- 9iven by zeroky, of D4 in the corresponding regions of the
tems, the evanescent waves actually represent the wav€8mplexk plane. For wavegwde.modes It Is convenient to
guided by the cavity mirrors since they are also bound exteruse the representatiarf =exp(—2i¢1), as appropriate for
nally. Referring to Eq(4.10), the decay rate can therefore be the total reflection of the waves in the cavity. Therefore,
written as owing to the dissipation in the system, the phagés are
complex. This leads to the usual mode equation of a planar

~ n R ~ "
F(ZO) = th( Zo) + FCGVV( ZO) + FMGW(ZO); (51) waveguiae

where the separate contributions of photonliké), cavity- ,8d=m7r+5‘1(k)+5‘1(k), k>keg, (5.5
guided wave§CGW), and mirror-guided wave@ViGW) are

determined by the integrals in E¢4.100 over the corre- Wwherem is an integer. Using the recurrence relations for
sponding wave vector ranges. In writing H§.1) we have reflection coefficientd18], the solutions for CGW's and
ignoredT'3 as it is not completely specified in the presentMGW's can be found using standard methods of integrated

approach. Note also thdygyy incorporates the decay rate optics in the regiong’>g" and 8"> ', ,regpectivejy. For
I owing to the quasistatic molecule-mirror interaction. ~ K €10S€ to akgm, one can usd (k) =D q(Kqm) (k—kqm),
All modes supported by the system show up as resohereDq=dDg/dk. Accordingly,

nances inD,|~? and|D ~? considered as functions of the
wave vectork. For photonlike waves, we set 1 |Dé(qu)|_2

= Nt T ! (56)
. q |Dq|2 (k_kqm)2+(kqm)2
rd(k)=£&lri(k)|e*?=®, ¢=1, &=-1. (6.2
so that the waveguide-mode part of the SE spectrum consists
This transformgD| 2 into a familiar(Airy) form [26] gen-  of a series of Lorentzian peaks. As before, since absorption

eralized, however, for absorption in the system: causes increase d(ém, guided-wave resonances are sup-
pressed in absorbing cavities.
1 (1—|r9rd|ead)—2 We illustrate these considerations by numerically analyz-
=1+

(5.33 ing the decay rate in a symmetric dielectric cavity formed by
two metallic (Ag) mirrors and surrounded by aisee the
inset in Fig. 2 taken as a simple system that supports all
kinds of modes. Figure 2 illustrates the mode pattern of such
a transparent and an absorbing cavity. It is obtained from Eq.

4lr9rd|e (4.12 by calculating the normalized molecular power distri-

(1[0 ]e )2 (5.3b  bution overk defined ag13]

D~ 1+Fsif(Bd+ by’

where

determines the cavity finessg= (/2)F, for a wave. Here Mk _E'|ﬁ| dW(Zo)
a=2B"=(wl/c)?s"IB’ is the absorption coefficient of the Wik,zo)= k dk 5.7

cavity for the wave and¢>q=¢>‘i+¢i is the cumulative

phase half shift of the wave due to two successive reflectionSince for propagating waves in a transparent cavity one may

in the cavity. R setk=kx sind, this definition leads to the usual SE intensity
The effects of the cavity absorption dr,, can be de- distribution W(9,z,) over the polar angles)</2 in the

duced from the properties of the above generalized Airycavity. In general, however, it gives a suitably weighted

function. Thus the wave vectoll,, (ﬂ&m) of the cavity k-space power spectrum of the molecule. In order to pick up

resonaniantiresonantmodes are found as solutions of all modes, we have assumed a freely rotating molecule lo-
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FIG. 2. Normalized power loss distribution of a freely rotating ~ FIG. 3. Dependence of the decay raigs (solid line) and T’
molecule in the cavity shown in the inset. The upper and lower(dashed lingon the molecule position, in the transparenfupper
curves correspond to the=1.5 (transparentand n=1.5+i0.05 line) and the absorbingower line) cavity described in Fig. 2. The
(absorbing cavities, respectively. Witm,,=0.05+i5.858 at the cavity length isd=0.872.

SE vacuum wavelength =582 nm[27] and the thickness of the ) ) .

mirrors I,,=0.06\, the transparent cavity finesse fig0)~31. In ~ Symmetric and symmetric coupling of surface plasmon-
terms of the SE wavelength=\/1.5 in the cavity, the cavity polariton (SP modes of the mirror$29]. We denote these
length isd=0.872x and the molecule position i&=0.186\. The modes by SE (TMl) and SR (TMo) accord!ng to the sym-
wave vectork is expressed in units &, = w/c. metry of their fields across the system. Since zheompo-

nent of the SP field dominates, this part of the spectrum is
mainly due to the(average perpendicular dipole transiton
moment. The SPmode has a smaller wave vector and is cut
off at small cavity lengths. For largd, the SP. and SR

odes become degenerate as the SP of the mirrors become

cated at the first maximumantinode of Rd:LL+(O,zo)
=ReF;,(0,2p) in the second-order enhancemén} cavity.
Since, for a freely rotating molecul®y(k,zy) =TI'(k,z,), the
curves actually represent the corresponding probabilities o ecoupled. Accordingly, the SRmode persists for all cavity

the decay '_nto X modg of th'eAsystem. o ) lengths and, as discussed previoddl$,18, provides an ef-
Three different regimes iW(k,zo) anticipated in EQ. ficient decay channel for molecules close to a mirror that
(5.1) are clearly resolved in the figure. In the region O pay spoil the conditions for controlled SE. In this respect,
<k/k.=<1, one deals withW(k,z,). As mentioned above, one must not be confused by Fig. 2 in judging the contribu-
in the case of the transparent cavity, this part of the spectrumion of the SP modes to the total SE rate since the weighting
corresponds to the totéabove and below the molecll®-  factor () in Eq.(5.7) is very small in thisk region. Actually,
tensity distributionW(,z,) over the radiation modes in the for the system presented, nearly half the SE rate is due to the
cavity expressed in the figure as a function»psing. The  coupling of the molecule to the SP modes. As before, the
system is adjusted so as to obtain enhanced SE in the normeafifect of the cavity absorption on this part of the spectrum is
direction. As seen, only the fundamental cavity mode existseen in the increased widths of the modes and an overall
for this cavity length. Note thatV,(0,z,) is 80 times larger ~ (strong suppression of SE intensity.
than the SE intensity of the freely rotating molecule in the  The role of various terms in Eq5.1) is best seen in Fig.
infinite cavity [W,(9) = 1/2]. For a transparent cavity, Eq. 3> Where we have plotted the position dependence of the
(4.12 correctly describes the SE spectrum for an oriented!€cay rate in the transparent and the absorbing cavity of Fig.
molecule too. Accordingly, for an oriented molecule, this 2 for the perpendicular and the parallel transition dipole ori-
part of the spectrum should be multiplied by ($2)ince it~ entations. Whered;(zo) is the largest in the middle of the
comes only from the parallel dipole transition moment. Thecavity, the total decay rat€, (zo) is actually the smallest at
effect of absorption in the cavity oW,(k,zo) is seen in the this position. This is due to the increasing couplin.g of the
increase of the fundamental-mode width and a strong sugholecule to the SP modes as it moves from the cavity center.
pression of SE intensity. On the other hand, since the molecule-SP coupling is weak
The waveguide-mode part of the spectrum can be undefor this transition dipole orientationl’,(zo) is the largest
stood on the basis of the properties of a symmetric metalaround the usuat,=\/4 andz,=3\/4 molecule positions.
clad planar waveguidg28] taking into account the finite At short molecule-mirror distances, the rates are governed by
thickness of the claddingmirrors). It is dominated by the the quasistatic molecule-mirror interaction inadequatly ac-
two TM modes in the regiot/k.>1.5 formed by the anti- counted for in the point-dipole model for the molecule and
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FIG. 4. Dependence of the total decay rﬁtajsolid line) and the /A
SE ratelqgE (dotted ling on the cavity lengthd for the systems
described in Fig. 2. The inset shows the rhfefor the decay into ~ FIG. 5. Same as in Fig. 4, but for the perpendicular dipole
propagating waves in the cavity only. The upper and lower curve®rientation.
refer to the transparent and absorbing cavities, respectively. The

molecule position izy=d/2. applications, deserves further exploration.

. . . . The smalld behavior ofl’;(d/2) andlﬂ(d/Z) can be un-
the macroscopic approach to the cavity mirfilfy For this derstood by invoking the mirror symmetry of the system and

reason,l’, () andI'y(zo) in the transparent cavity diverge yhe properites of the SP modes. Owing to the central position
whenz, approaches a mirror. The corresponding curves folyt she molecule, the parallel dipole couples only to the SP

the absorbing cavity tend to negative values owing to OULhode whose parallelsmal) field component is symmetric

omission of the quasistatic bulk rakg. Using EQ.(4.10D,  4cross the system. Since this mode is cut off at sthathe

in the Appendix we show that the total quasistatic e 5 I,(d/2) is weakly affected by the cavity mirrors for
+T'§(2o) is, of course, positive. However, as one may con-gimost all relevant cavity lengths. This is clearly seen in Fig.
clude from the figured=\), the effective range of the qua- 4, where the total raté,(d/2) is slightly larger than the rate
sistatic'molecu'le—mirror interaction is of the order xfLO. F‘{(d/2)=FLh(d/2)+F£GW(dIZ) for the decay into propagat-
Accordingly, this theory adequately describes the moleculajng waves in the cavity onlysee the ins¢t Contrary to this,
decay in the whole cavity space excluding the layers of th‘ﬁ(d/Z) increases sharply at smaltli{:)\_) cavity lengths,

thickness~1/k’ at the mirrors. As seen in the figure, the | iq T} (d/2) demonstrates the usual suppressed SE behav-

effect of the cavity absorption oh, (2o) and1(Z) IS Very oy (see the inset in Fig.)5 This behavior off', (d/2) is a

small through this cavity region, except, of course, for the :
~ consequence of the sharp increasel’ d/2) at small
enhancement by2. q P Row(d/2)

molecule-mirror distances caused by the strong coupling of
) T % the perpendicular dipole to the SFPnode with the symmet-
illustrated in Figs. 4 and 5, where we have plotigd/2) for  ic perpendicularlarge field component.

the parallel and perpendlculg( transition dipole orientations, ¢ before, ford—0, the ratel,(d/2) becomes inad-
respectively, in the two cavities of Fig. 2. One again ob-¢q, ately described in the present approach owing to the pre-
serves that, disregarding the appearancd'f the cavity vailing quasistatic molecule-mirror interaction. In addition to
absorption affect$’, andI'; only slightly and, as concluded this interaction, the perpendicular dipole is strongly coupled
earlier, tends to spoil the conditions for controlled SE. Atto the surface plasmon mode of the system, i.e., to the qua-
largerd’s, the curves exhibit the familiar enhanced or sup-sistatic counterpart of théremaining SP, mode. This
pressed SE behavior characteristic for a cavity with realistiqayses continuous increasefo(d/Z) in the range presented
mirrors [24,13. However, it is worth noticing thal’,(d/2) in Fig. 5. Of course, the corresponding SE rates should al-
>3 at the first peak, i.e., the predicted rate is larger than thevays remain finite and positive. To check this, we have used
rate in the corresponding cavity with ideafl(= ;) mirrors.  Eq. (4.11) to calculatel's(d/2) andI's«(d/2). This method

A more detailed analysis reveals that bdfl,(d/2) and of calculating the SE rate becomes numerically unstable for
I'cew(d/2) contribute to this peak and that, because ofd—0 as one has to substract the two uncorrelated divergent
Teaw(d/2), it increases rather strongly with the cavity re- terms. Nevertheless, the dotted curves in Figs. 4 and 5

fraction index, e.g., fon=23[(d/2)=10 at the first peak. Clearly indicate the proper behavior ofs(d/2) and

Therefore, this somewhat surprising result is a combined’sg(d/2). In turn, this calculation proves that, indeed, to de-
medium-cavity effect that perhaps, in view of technologicaltermine the SE rate in a system one may avoid the involved
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calculation of the corresponding transverse Green’s functiome plan to address this situation in a forthcoming paper
by using instead the full Green’s function and, when necesalong with the frequency dependence of the SE rate in a
sary, by extracting its transverse part numerically, as prodispersive and absorbing microcavity.
posed in this work.
APPENDIX: QUASISTATIC RATE
VI- SUMMARY From Eqgs.(4.100 and (4.11) we have
Using a recently obtained compact form of the Green’s
function for an absorbing multilayer, in this work we have 3 1 = dkké 1 _ .
derived the decay rate of an excited moleda®m embed- I'$(z)=-—1m— ———= —[(r_e” kzg 1y, e %%
ded in a planar cavityor, generally, a multilay@rby rigor- 49 & Jo (0/C)”D
ously taking into account cavity dispersion and absorption. ok A kg kgt
In this respect, the presented theory generalized numerous —arr.e 2kd)pf+2(r_e Hh fr e
previous considerations of the molecular decay rate in loss- +2r_r+e—2kd)ﬁi], (A1)
less or empty planar cavities. From comparison with these
works, a hint emerged for a straightforward extension of theyhereD=1—r _r, exp(~2kd) andr . are obtained from®.

results obtained for lossless cavities of various shapes to thg, settingg, =ik for all relevant layers. These reflection co-

corresponding absorbing cavities. efficients, therefore, obey the recurrence relafib]
In addition to the spontaneous emission rate, the total de-
cay rate in an absorbing cavity consists of the contributions rij +rj,ke‘2kdi gj— &
coming from the quasistatitnear-field interaction of the liik=1 7 v a2kd Tij=— . (A2)
1+I’ijr]-,ke ] 8j+8i

molecule with the cavity medium and, for nearby molecules, _
also with the cavity mirrors. These contributions were inad-The above result is valid for smalk{d<1) cavity lengths.

equately described in the point-dipole model for the mol-g, larger cavity lengths and for a molecule clodéz,

ecule and the macroscopic approach to the mirrors adopted: 1 o 5 mirror, only that mirror matters. In this case, Eq.
However, this approach suffices to determine the spontane{Al) simplifies to

ous emission rate of the molecule correctly and we have
proposed(and checkeda simple method for numerical ex-

: o . 3 1 (= dkk
traction, when necessary, of the spontaneous emission ratefsg, y— > |y = f f (K w)e—2K20(p2+ 252
from the otherwise inadequate total decay rate. In this way, 5(z0) 4y & Jo (wlc)® (k) (Pi+2p1).
the spontaneous emission rate in an absorbing inhomoge- (A3)

neous system can be calculated without having the transverse i .

field quantized or, equivalently, without knowing the corre-Wnerer andz, are the reflection coefficients of the corre-

sponding transverse Green’s function. s_pondlng mirror a_md the molecule-mirror dl_stance, respec-
The theory was applied to an analysis of the effects of thdively. A microsopic approach tb’ leads to this result with

weak cavity absorption on the decay rate in a dielectric mi& nonlocal expression far [23]. With Eq. (4.10b), the total

crocavity formed by two metallic mirrors. A detailed discus- duasistatic rate is therefore

sion of the various contributions to the decay rate was pre-

sented. Dissipation in the cavity strongly reduced the . 3

molecular power distribution over the available retarded I's(zg)=— Im[ -

modes, i.e., the SE intensity. However, except for an overall 2

enhancement by the quasistatic bulk rate, the total decay rate

away from the _mirrors was weakly affected by the dissipa- xl deyyzr(yIZZO,w)e‘y

tive processes in the cavity. The same holds for the SE rate. 2 Jo

As the strong dissipation in the cavity may effectively de-

stroy its finesse, this may no longer be true for the moleculaBince Ry, is necessarily smaller thar,, in an absorbing

transitions in resonance with those of the cavity medium andavity I's is mainly determined by the bulk ral@.

7]2

]

1 (pf+2p?)
(K'Rp?  (2k'z9)?

] . (A4)
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