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Second-harmonic generation and the conservation of orbital angular momentum
with high-order Laguerre-Gaussian modes

J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett
School of Physics and Astronomy, University of St. Andrews, Fife KY16 9SS, Scotland
(Received 16 June 1997

Laguerre-Gaussian modes of various order are frequency doubled. The azimuthal phase structure of the
second-harmonic light is measured directly by interfering the beam with its mirror image. We show that the
orbital angular momentum per photon is doubled, so conserving the orbital angular momentum in the light
beam. The frequency-doubled output beam is shown to have a Gegenbauer-Gaussian amplitude distribution at
the beam waist. The beam can be described as a summation of Laguerre-Gaussian modes that interfere so that
it changes form with propagation, but the distribution at the beam waist is reproduced in the far field.
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It was predicted in 1992 that monochromatic beams withsame form for both the fundamental and second-harmonic
an azimuthal phase terel'?, of which Laguerre-Gaussian beams, and was shown to be consistent with conservation of
laser modes are an example, have a well-defined orbital amrbital angular momentum within the light beams. In our
gular momentum of# per photon[1]. This orbital angular earlier work the azimuthal phase structure of the frequency-
momentum is associated with the azimuthal component ofloubled mode was not measured directly. It was deduced by
the Poynting vectof2] and is quite distinct from the spin converting the second-harmonic mode into the correspond-
angular momentum associated with circular polarization. Théng Hermite-Gaussian mode by means of a cylindrical lens
transfer of this orbital angular momentum to a microscopicmode convertef10].
particle has been demonstrated recelly Microscopic par- In this paper we confirm our earlier results by the direct
ticles held within a Laguerre-Gaussian laser beam have beaneasurement of the azimuthal phase structure of the
rotated and the orbital angular momentum quantified by drequency-doubled beams and extend the results to include
comparison of this rotation to that induced by the spin angufrequency doubling of the multiringedp>0, Laguerre-
lar momentum. The results confirm that the orbital angulaiGaussian modes. We show that this results in beams that
momentum id# per photon(4,5]. Other work has explored possess a well-defined orbital angular momentum, but are
theoretically the interaction of these beams with atomic sysnot simple Laguerre-Gaussian modes.
tems[6,7]. At the beam waistz=0, the amplitude of a Laguerre-

Laguerre-Gaussian mod¢8] are characterized by two Gaussian mode simplifies to
indicesl andp, wherel is the number of Z cycles in phase -
around the circumference arh1 the number of radial  uy(r,¢,z=0)xe " Moe 14— 1)P(rv2/wg)'L,(2r?/wp).
nodes. The amplitude'p of such a mode in cylindrical coor- 2

dinates is given b
g y For p=0, the associated Laguerre polynomial is a constant

[ D2 21012 and independent of. In second-harmonic generation, the
—ikr</2R -
Up(r .2)ocexpl —ikr/2R)expl — 1w’ amplitude of the frequency-doubled field is proportional to
xXexd —i(2p+1+1)y] the square of the incident fieldl1]. It follows that for a

) P, p=0 mode the second-harmonic beam is also a Laguerre-
Xexp(—il ¢)(=1)P(rv2/w) L (2r9/w?), (1)  Gaussian mode that has undergone the following transforma-
tions: k—2k, frequency doublingwy—wg/v2, reduction

wherer is the distance from the beam axis the azimuthal of the beam waistp=0—p=0, the amplitude distribution
angle,z the distance from the beam waiktthe wave num-  remains single ringed; arid- 21, the angular momentum per
ber of the light,w the radius for which the Gaussian term photon is doubled. Whep>0 the square of the incident
falls to 1k of its on-axis valuez, is the Rayleigh range, field can no longer be described in terms of a single
L'p(x) an associated Laguerre polynomial, andp{2 Laguerre-Gaussian mode. However, the azimuthal phase
+1)¢ is the Gouy phase, wherg=arctang/z). structure is still of the form exf(@).

In 1996 we reported the mode transformation that occurs The experimental arrangement for generating the
when ap=0 Laguerre-Gaussian mode is frequency doubledrequency-doubled beams, as well as the subsequent analysis
[9]. Modes withp=0 have a single-annular-ring intensity of their intensity and phase structure, is shown in Fig. 1. An
distribution. They frequency double to give a pure Laguerreintracavity cross wire is used to generate a variety of
Gaussian mode also with= 0, but with an azimuthal index Hermite-Gaussian modes with indicesandn from a diode-
of 2I, that is, with twice the orbital angular momentum per pumped Nd:YAG lasefwhere YAG denotes yttrium alumi-
photon. This mode transformation is readily understood imum garnet operating at 1064 nm producing a linearly po-
terms of the spiraling of the Poynting vector, which has thelarized output power o100 mW. Each mode is converted
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FIG. 1. Experimental apparatus for the generation and analysi:
of the second-harmonic beams.

into the corresponding Laguerre-Gaussian mode by means

a cylindrical lens mode converter, giving the transformations

[=m—n and p=min(mn) [10]. The Laguerre-Gaussian

modes are then frequency doubled using a 10-mm-long crys

tal of potassium titanyl phosphat&TP), angle tuned to give 1=2,

phase matching for the second harmonic at 532 nm. Thp=1

efficiency of the process is maximized by focusing the inci-

dent beam such that its Rayleigh range is comparable to th

length of the crystal12]. Filters placed after the crystal al-

low either the fundamental or the second-harmonic beam t

be selected and imaged onto a charge coupled device arr:

detector. The azimuthal phase structure of the beams can |

measured directly using a mode analyz&8] based on a

Dove prism, which allows the interference pattern betweer /=1,

the beam and its own mirror image to be obtained. The azip=2

muthal phase component of the beam gives rise to forket

interference fringes and tHeindex of the beam can be in-

ferred directly from the number of fringes on either side of

the fork by dividing the number of additional fringes by 2.
Figure 2 shows the forked interferograms obtained for a ) _ i

variety of fundamental Laguerre-Gaussian beams and thejr FIG. 2. Forked interferograms derived from a variety of

second-harmonic counterparts. As in our previous wWeilk aguerre-Gaussian beams and their second-harmonic counterparts.

these results confirm that the azimuthal indeof the beam

is doubled in the second-harmonic process. However, hengolynomial, consequently, we refer to the amplitude distri-

the azimuthal phase has been measured directly and we obution of a frequency-doubled Laguerre-Gaussian mode at

serve that the doubling dfin the second-harmonic process the beam waist as a Gegenbauer-Gaussian distribution.

holds for Laguerre-Gaussian modes of any orddr afidp. Pure Laguerre-Gaussian modes propagate without chang-
Again, this is consistent with the conservation of orbital an-ing their form, with a beam divergence dictated by the size
gular momentum within the light beams. of the beam waist and the corresponding Rayleigh range. As

The less than perfect mode converter introduces residualiscussed, the second-harmonic beanpfseiO can no longer
astigmatism into the beam, which manifests itself as a slighbe described as a simple Laguerre-Gaussian mode. Insight as
ellipticity in the observed images. Corrected radial profilesto how it can be described can, however, be gained from the
for the fundamental and second-harmonic beams are olexperimental evidence: We find that the distribution of inten-
tained by scaling the images to make them symmetrical andity in the far field is the same as that in the plane of the
averaging the profiles over 80 azimuths. These profiles argonlinear process a=0. For a monochromatic beam the
then fitted to the predicted field distributions of a Laguerre-far-field amplitude distribution is simply the Fourier trans-
Gaussian and its square, respectively, with the amplitude arfdrm of the distribution at the beam waigt4]. When the
beam diameter as the fit variables. Figure 3 shows that thBourier transform of light consisting of the square of
corrected profiles are in good agreement with those prekaguerre-Gaussians ais taken, it is found that the resulting
dicted. The square of a Laguerre polynomial is a Gegenbaudlistribution can be described as a superposition of a number
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FIG. 3. Corrected radial intensity profiles for the fundamental
and second-harmonic beams compared with theory, together with
photographs of the observed images recorded in the plane of the
frequency-doubling crystal.

z=80mm
of Laguerre-Gaussian modes all with the same indeh#
with p??)=0,2, ...,2. Forz=0, this summation reduces
to the square of a Laguerre-Gaussian of the same form as ir
Eq. (2).

Just as a Laguerre-Gaussian mode is a solution of the
paraxial Helmholtz equation, so, too, is any sum of
Laguerre-Gaussian modes, and as the second-harmonic bea
propagates, interference occurs between the constituen
modes. Although the modes all have the same Rayleigh
range, thep indices give rise to a differing Gouy phase shift
between the modes, which leads to an intensity distribution
that changes form with propagation. It is only in the far field, FIG. 4. Observed and modeled intensity distribution of a
where all the Gouy phase shifts differ by multiples af,2 frequency-doubled Laguerre-Gaussign=1, 1=0) mode as it
that the Gegenbauer-Gaussian distribution is reproduced. Wegopagates from the beam waist.
see that the behavior of the=0 modes analyzed in our
previous papef9] is simply a limiting case of the general beam. The algorithm is limited only by the array size of the
behavior; wherp=0 there is only one Laguerre polynomial Fourier transforms, which restricts the maximum allowed di-
involved and so only one Laguerre-Gaussian distribution. vergence and physical diameter of the beam. Figure 4 shows

Rather than investigate the explicit summation ofthe observed and predicted intensity distributions for a
Laguerre-Gaussian modes to determine the beam distributidrequency-doubled Laguerre-Gaussian mode \pithl and
as it propagates, we have implemented an algorithm basdd=0 as it propagates from the beam waist to the far field. We
on the Fourier expansion of the bearnkispace into a series see that the intensity distribution of the second-harmonic
of plane waveqd15]. The propagation of each plane-wave beam reproduces itself in the far field, but varies at all inter-
component to a subsequent plane results in a well-definethediate positions. We observe similar behavior for all
change in phase. After propagation a summation of the indifrequency-doubled Laguerre-Gaussian modes witD.
vidual plane-wave components followed by an inverse trans- In this paper we extend our earlier work on the frequency
form gives the new phase and amplitude distribution of thedoubling of Laguerre-Gaussian modegte 0 and show that

7=
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the previously investigated casef 0 is a limiting case of process means that these beams have a radial intensity dis-
the general behavior. The azimuthal phase of the frequencyribution in which a higher proportion of the energy is closer
doubled modes is measured directly and the azimuthal phage the beam axis than in Laguerre-Gaussian modes. Such
index is shown to become doubled for all modes. This corleams therefore allow the use of lower-aperture optical com-
responds to a doubling of the orbital angular momentum peponents_ in experiments involving the orbital angular momen-
photon during the second-harmonic generation process. THEM of light.
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