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Preparation of nonclassical states in cavities with a moving mirror

S. Bose, K. Jacobs, and P. L. Knight
Optics Section, The Blackett Laboratory, Imperial College, London SW7 2BZ, England

~Received 22 April 1997!

We describe how a quantum system composed of a cavity field interacting with a movable mirror can be
utilized to generate a large variety of nonclassical states of both the cavity field and the mirror. First we
consider state preparation of the cavity field. The system dynamics will prepare a single mode of the cavity
field in a multicomponent Schro¨dinger-cat state, in a similar manner to that in a Kerr medium. In addition,
when two or more cavity modes interact with the mirror, they can be prepared in an entangled state, which may
be regarded as a multimode generalization of the even and odd coherent states. We show also that near-number
states of a single mode may be prepared by performing a measurement of the position of the mirror. Second we
consider state preparation of the mirror and show that this macroscopic object may be placed in a Schro¨dinger-
cat-like state by a quadrature measurement of the light field. In addition, we examine the effect of the damping
of the motion of the mirror on the field states inside the cavity and compare this with the effect of cavity field
damping.@S1050-2947~97!01911-2#

PACS number~s!: 42.50.Dv, 42.50.Vk, 03.65.Bz
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I. INTRODUCTION

Recently, Manciniet al. @1# have shown how a cavity
with a movable mirror~treated as a quantum harmonic osc
lator! can be used to synthesize Schro¨dinger-cat states@2,3#
of the cavity field. In fact, as we will see here, this syste
can lead to the production of an extensive class of nonc
sical states of the cavity field, including entangled states
two or more cavity modes. One of the aims of this paper is
describe how these can be achieved. Furthermore, in Ref@1#
only the effect of photon leakage from the cavity was co
sidered as a relevant source of decoherence. We examin
opposite extreme, namely, when the decoherence induce
the field due to the damping of the mirror’s motion is t
dominant source of decoherence and photon leakage i
most absent. We calculate the effect of this type of decoh
ence on the states of the cavity field and explicitly dem
strate that, due to the oscillatory nature of the system,
decoherence rate is much lower than expected. Moreover
show that apart from trying to improve the mirror’s isolatio
increasing its frequency also helps to reduce the rate of
type of decoherence considered here. This fact comes
benefit in the generation of at least one type of nonclass
state of the cavity field. These results definitely brighten
prospects of observing nonclassical states of the field in
the cavity given that damping of the mirror’s motion is i
evitable. It is also shown that even when the effect of mir
damping on the cavity field is dominant, it does not dest
all the nonclassical features of the cavity field.

In Ref. @1#, the main focus was the generation of noncla
sical states of the cavity field. We give here a thorough tre
ment of the quantum dynamics of the mirror as well.
particular, we point out ways in which this mirror motion ca
also be put in a nonclassical state. Of course, if these ar
be observed, then very good isolation of our system from
environment is necessary. However, the very fact that
system allows in principle the production of nonclassi
states of a macroscopic object such as the mirror~after suf-
ficient isolation! should be interesting in itself.
561050-2947/97/56~5!/4175~12!/$10.00
s-
f

o

-
the
in

al-
r-
-
e

we

he
s a
al
e
e

r
y

-
t-

to
e
is
l

II. DYNAMICS OF THE UNDAMPED SYSTEM

Numerous authors have previously treated the system
cavity field and a movable mirror both quantum mecha
cally @1,4# and classically@5,6# and both theoretically@1,4,5#
and from an experimental point of view@6,7#. We here as-
sume the movable mirror to be a quantum harmonic osc
tor with frequencyvm and annihilation operator denoted b
b, interacting with a cavity field mode of frequencyv0 and
annihilation operator denoted bya. The relevant Hamil-
tonian @1# is

H5\v0a†a1\vmb†b2\ga†a~b1b†!, ~1!

where

g5
v0

L
A \

2mvm
, ~2!

and L and m are the length of the cavity and mass of t
movable mirror respectively.

The time evolution operator corresponding to the abo
Hamiltonian was evaluated by Manciniet al. @1# ~for com-
pleteness we give a proof in Appendix A! and is given by

U~ t !5exp@2 ira †at#exp@ ik2~a†a!2~ t2sin t !#

3exp@ka†a~hb†2h* b!#exp@2 ib†bt#, ~3!

whereh5(12e2 i t), k5g/vm is the scaled coupling param
eter, r 5v0 /vm , and t represents a scaled time, being t
actual time multiplied byvm . We note that values fork of
the order of unity are experimentally feasible~v0;1016 s21,
vm;1 kHz, L;1 m, andm;10 mg! @1,5,6#. We see from
the above equation that there is now an explicit Kerr-li
term in U(t), so that physically one might expect the cavi
field to have an evolution similar to that in a Kerr-like no
linearity. In view of the large variety of nonclassical stat
that can be produced by a Kerr medium@8–10#, this system
clearly offers prospects for the production of nonclassi
4175 © 1997 The American Physical Society
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4176 56S. BOSE, K. JACOBS, AND P. L. KNIGHT
states of light@1,7#. Indeed, it is known that, like the Ker
nonlinearity, this system of a moving-mirror cavity also e
hibits optical bistability@5,6#.

Let us assume that initially both the mirror and the cav
field are in coherent states. To see that this is reasonabl
first note that the long-time steady state of the cavity mod
the vacuum and that the most stable pointer state@11# for the
mirror ~being a single harmonic oscillator! is a coherent state
@12#. The steady state therefore consists of the cavity m
in the vacuum state and the mirror in a coherent state.
cavity mode can now be placed in a nonvacuum cohe
state by driving it with a coherent input field on a time sca
that is much shorter than the time scale of the mirror moti
Thus we write the initial state at timet50 as

uC~0!&5ua&c^ ub&m , ~4!

where ua&c and ub&m are initial coherent states of the fie
and the mirror, respectively.

The time evolution of the system in the interaction pictu
~that is, omitting the free evolution of the field! leads to a
state at timet given by

uC~ t !&5e2uau2/2(
n50

`
an

An!
eik2n2~ t2sin t !un&c^ ufn~ t !&m ,

~5!

where un&c denotes a Fock state of the cavity field with e
genvaluen and theufn(t)&m are coherent states of the mirro
given by

ufn~ t !&m5ube2 i t1kn~12e2 i t !&m . ~6!

Two features of the mirror dynamics emerge from the ab
equations.

~i! After a time t52p the mirror returns to its origina
state. At all times betweent50 andt52p the mirror state is
entangled with the field state with the entanglement be
maximum whent5p. The time dependence of the entang
ment is shown in Fig. 1 as a plot of the purity, or ‘‘linea
entropy’’ @13#, which is given by 12Tr@rM(t)2#, where
rM(t) is the reduced density matrix of the mirror.

~ii ! The mirror, always being in a mixture of cohere
states during its evolution, is described by entirely posit
Wigner functions and therefore has a fully classical dyna
ics as illustrated in Fig. 2. In this figure, and in all the su
sequent figures that show the mirror’s Wigner functionx
shall stand forb1b† andy for i (b2b†). They are therefore
dimensionless quantities. The mirror undergoes an osc
tion of a different amplitude~but at the same frequency! for
each number state of the field. The net effect is a kind
breathingof the mirror state; the mirror state undergoes
oscillatory increase and decrease of its position and mom
tum spread. However, this is very different from the we
known breathing of squeezed states, as the mirror state
mixture of coherent states.

Thus, during undamped evolution, no nonclassical stat
the mirror is generated. However, because of the entan
ment of the mirror with the field, it is possible to genera
nonclassical states of the mirror by performing conditio
measurements on the field. We discuss this in Sec. IV.
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III. GENERATION OF NONCLASSICAL STATES
OF THE CAVITY FIELD

We divide the discussion of the generation of nonclass
states of the cavity field into three categories:~a! Multicom-
ponent cat states generated att52p due to dynamics alone
~i.e, without any external intervention! ~among these, a
method of generating the two-component Schro¨dinger-cat
state has been discussed in Ref.@1#!; ~b! entangled states o
two or more light modes generated att52p due to the dy-
namics alone; and~c! nonclassical states produced due
conditional measurements on the mirror. Of course the
cussion here is by no means exhaustive and there remain
possibility of generating even more interesting states.

A. Multicomponent cats

At time t52p the state of the cavity field, as obtaine
from Eq. ~5!, is given by

uz&c5e2uau2/2(
n50

`
an

An!
ei2pk2n2

un&c . ~7!

Depending on the value of the parameterk, the stateuz& can
be made equivalent to a variety of multicomponent cat sta
For k50.5,

uz2&c5e2uau2/2(
n50

`
an

An!
ein2~p/2!un&c

5e2uau2/2F S 11 i

2 D u1a&c1S 12 i

2 D u2a&cG , ~8!

which is a two-component Schro¨dinger cat state. For
k51/A6, we get the three-component cat state

uz3&c5c1u2a&c1c2uaei ~p/3!&c1c3uae2 i ~p/3!&c , ~9!

FIG. 1. Linear entropyS of the mirror state, in the absence o
any damping, plotted here as a function of time and for vario
values of the scaled coupling parameterk. We have taken the initial
coherent state amplitude of the cavity mode to bea52 and that of
the mirror to beb52. The entanglement of the mirror with cavit
field increases from a value of zero to a maximum att5p and
subsequently falls back to zero att52p. Both the scaled timet and
the linear entropyS are dimensionless quantities.
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56 4177PREPARATION OF NONCLASSICAL STATES IN . . .
FIG. 2. Wigner functionW(x,y) of the mirror at various timest of the system in the absence of damping. We have taken the in
coherent state amplitude of the cavity mode to bea52 and that of the mirror to beb52. The scaled coupling parameter has been se
k50.3. The small negativity in~c! and ~e! is just a truncation error.x, y, andW(x,y) are all dimensionless quantities.
e-
l

hat
wherec25c35(11ei (p/3))/2@11cos(p/3)# andc15122c2
~not normalized!. For k51/2&,

uz4&c5
ei ~p/4!

2
~ ua&c2u2a&c)1

1

2
~ u ia&c1u2 ia&c),

~10!
which is a four-component cat state~not normalized!. Thus,
by adjusting the ratio of the coupling and the mirror fr
quency and thereby varyingk, one can in principle obtain al
these types of cat states at timet52p. The Wigner functions
of the cat states produced by different values ofk are shown
below in Fig. 3. In this figure and all subsequent figures t
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4178 56S. BOSE, K. JACOBS, AND P. L. KNIGHT
depict the Wigner function of the cavity field,x5a1a† and
y52 i (a2a†). They are therefore dimensionless quantitie
Exactly the same type of states has been noted before
arising in the Kerr medium@8–10#. It is indeed worth noting

FIG. 3. Wigner functions of the state of the cavity field att52p
plotted here for various values of the scaled coupling parameterk.
We have taken the initial coherent state amplitude of the cav
mode to bea52 and that of the mirror to beb52. The quadratures
x andy and the Wigner functionW(x,y) are given here in dimen-
sionless form.
.
as

that creating such states in a cavity such as ours has intr
advantages because there is an extensive set of tomogr
methods@14–20# that can be implemented to reconstruct t
Wigner function in a cavity.

B. Entangled states of two or more cavity modes

Two modes of light, each separately interacting with t
movable mirror and with no direct coupling between the
can end up being in an entangled state at timet52p depend-
ing on the value of the parameterk. Let there be two differ-
ent modes of light inside the cavity att50. For simplicity we
assume them to have the same frequency and hence
value of the parameterk, but mutually orthogonal polariza
tion directions. We assume them to be initially fully dise
tangled and prepared in coherent states. Let the initial s
of the composite system of the mirror and the light be

uC~0!&5ua1&c1^ ua2&c2^ ub&m , ~11!

where ua1&c1 and ua2&c2 are states of the first and secon
modes, respectively, whileub&m is the initial state of the
mirror. The state of the two light modes evolves att52p to
the state~not normalized!

uzE&5 (
n,m50

` a1
na2

mei2pk2~n1m!2

An!Am!
un&c1^ um&c2 . ~12!

The state can be rewritten as

uzE&5 (
m50

` a2
m

Am!
eik2m22pum&c2^ uj~m,k!&c1 , ~13!

where

uj~m,k!&c15 (
n50

`
~a1eik24pm!n

An!
ei2pk2n2

un&c1 . ~14!

As is evident from the above equation,uj(m,k)&c2 are states
of the same type as the stateuz&c given by Eq.~7! with an
amplitudea1eik24pm. Hence, for certain values ofk ~such as
0.5 or 1/A6 or 1/2&), number states of one mode becom
correlated with multicomponent cat states of the other mo
However, ifk is such that 2k2nm is an integer for alln and
m, then the stateuj(m,k)&c2 becomes independent ofm and
uzE& becomes a disentangled state. Some simplification
Eq. ~14! for k50.5 results in the entangled state

uzE&5~11 i !u1a1&c1^ u1a2&c2

1~12 i !u2a1&c1^ u2a2&c2 , ~15!

which may be regarded as an example of a two-mode
state@21# or an example of an entangled coherent state@22#.
Note that production of entangled states in a Kerr mediu
when the two modes of light have a direct interaction b
tween them, has been discussed before@23#; however, this
case is different in the sense that the modes become
tangled because they both individually interact with the sa
movable mirror.

There is no restriction on the number of modes that can
entangled using the above procedure~only each mode to be

y
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56 4179PREPARATION OF NONCLASSICAL STATES IN . . .
entangled has to be resonant with the cavity!. It is interesting
to demonstrate how eigenstates of the opera
(ac1ac2•••acN)p, where ac1 ,ac2 , . . . ,acN are annihilation
operators ofN different modes of light andp is an integer,
can be created in the cavity. As it is possible for reson
modes to have frequencies that are integer multiples of e
other, let us consider the case when there areN different
modes of light in the cavity, with their frequencie
vc1 ,vc2 , . . . ,vcN being related byvc j5h jvc1 , whereh j
are integers. Then, from Eq.~2! it follows that the value of
their k parameters will be related bykj5h j k1 . Hence, if the
initial state of the cavity modes and the mirror is

uC~0!&5ua1&c1^ ua2&c2^ ••• ^ ua1&cN^ ub&m , ~16!

the final~at timet52p! composite state of the cavity mode
will be

uzEN
&5 (

n1 ,n2 , . . . ,nN50

`

ei2pk1
2
~h1n11h2n21•••1hNnN!2

3)
j 50

N a j
nj

Anj !
unj&c j . ~17!

As the termei2pk1
2(h1n11h2n21•••1hNnN)2

cannot be split up
into a product of the formf 1(n1) f 2(n2)••• f N(nN), for arbi-
trary values ofk1 , uzEN

& can, in general, be an entangle

state depending on the value ofk1 . Now consider the case
when 2pk1

25p/p. We have

~ac1ac2•••acN!puzEN
&

5 (
n1 ,n2 , . . . ,nN5p

`

ei2pk1
2
~h1n11h2n21•••1hNnN!2

3)
j 50

N a j
nj

Anj2p!
unj2p&c j . ~18!

Redefiningnj in the above equation asnj1p, recasting the
equation in terms of the newnj , and using the fact thath j are
integers, one gets

~ac1ac2•••acN!puzEN
&

5~a1a2•••aN!peipp~h11h21•••1hN!2
uzEN

&. ~19!

HenceuzEN
& are eigenstates of the operator (ac1ac2•••acN)p,

generalizations of the well-known even and odd coher
states that are eigenstates of squares of annihilation oper
@2#.

C. Nonclassical states produced by conditional measurements
on the mirror

Because of the entanglement of the mirror state with
state of the cavity field during evolution, any measurem
on the mirror will project the cavity field to some state th
we can determine. We consider here measurements o
mirror’s position,x5b1b† ~i.e.,x represents actual positio
r

t
ch

t
ors

e
t

t
he

of the mirror multiplied byA2mvm /\, m being the mass of
the mirror! at time t5p, as the entanglement is most pr
nounced at that time. Such a measurement will project
state of the light to

uh~x!&c5N(
n50

`
an

An!
eipk2n2

^xufn~p!&un&c . ~20!

Thus, for different values of the mirror positionx, different
states of the cavity field are produced. Let us choose par
etersk51, a52, andb52. Then the peak of the Gaussia
function ^xufn(p)& lies atxn54n24 and its width isd51.
Thus the distance between the peaks of^xufn(p)& and
^xufn11(p)&, that is,xn2xn1154, is greater than the width
d. Hence, if the value obtained forx obtained as a result o
the measurement is nearxn , the most dominant constituen
of the stateuh(x)&c is un&c . In this way, we may expect to
produce nonclassical states that are very close to num
states. For example, if the value obtained forx is near 0
~which is nearx1!, the cavity field is projected to the stat
~unnormalized!

uh~0!&'e24u0&c22u1&c12&e24u2&c1O~1027!
~21!

which is shown in Fig. 4~a!. Similarly, when x is near
x5'16, we get a state very close to the number stateu5&, as
shown in Fig. 4~b!. Whenx is in betweenxn andxn11 we get
essentially a superposition of statesun& andun11&, as illus-
trated in Fig. 4~c! for n52 ~the state in the figure is approx
mately 22u1&c12&u2&c , not normalized!. Fock state su-
perpositions and their nonclassical properties have b
discussed in@24#. It is evident from the above discussion th
the generation of the above type of states solely relies on
narrowness of the coherent state width in comparison to
spatial separation between the peaks of the Gauss
^xufn(p)& and ^xufn11(p)&. As this spatial separation ca
always be increased by increasing the value of the param
k, the proximity of the states produced to Fock states a
their superpositions can always be improved.

We note that the first two types of states, that is, the
states and the entangled states, rely on the Kerr-type ter
the time evolution and hence they can be generated in a
medium as well. In particular, generation of cat states i
Kerr medium was suggested some time ago@8,9#. However,
the generation of the third type of states~i.e., the number
states and their superpositions! do not appear to have a
analog in the Kerr medium because they are entirely dep
dent on the entanglement of the states of the mirror and
cavity field during evolution.

IV. GENERATION OF NONCLASSICAL STATES
OF THE MIRROR

FROM CONDITIONAL MEASUREMENTS

The system also offers the opportunity to create quite
ferent nonclassical states of the mirror by conditional m
surements on thex quadrature of the light field. As the spa
tial separation between the coherent state components o
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4180 56S. BOSE, K. JACOBS, AND P. L. KNIGHT
mirror is maximum att5p, measurements at this instant a
likely to produce the most nonclassical states of the mirr
A measurement of thex quadrature of the light field at this
instant of time projects the mirror state to

FIG. 4. Wigner functions of the state to which the cavity field
projected for various resultsx of a measurement of the position o
the mirror. We have taken the initial coherent state amplitude of
cavity mode to bea52 and that of the mirror to beb52. The
scaled coupling parameter isk51 and the measurment is made
time t5p. The quadraturesx and y and the Wigner function
W(x,y) are given here in dimensionless form.
r.

uF~x!&m5e2uau2/2(
n50

`
an

An!
eik2n2p^xun&ufn~p!&m . ~22!

As the ufn(p)&m are coherent states with a different amp
tude for each value ofn, uF(x)&m is a superposition of spa-
tially separated coherent statesand as such an entirely non
classical state of the mirror. Moreover, as the parameterk is
increased, the separation between the coherent compon
ufn(p)&m increases. So by varyingk, one can control the
macroscopic distinguishability of the states involved in t
superposition. In Fig. 5 we have plotted the Wigner functi
for the state of the mirror produced whenk51 and the mea-
surement result isx50. This state is distinctly nonclassica
and looks somewhat like a Schro¨dinger-cat state with un-
equal amounts of each coherent component.

The importance of the above procedure stems from
observation that there is already a considerable amoun
literature, both theoretical@25# and experimental@3,26#, fo-
cused on methods to prepare atoms in nonclassical moti
states. So it is only natural to expect that placing a m
massive object in such states should be an issue of se
consideration. The ability to place macroscopic objects
nonclassical states may even possess applications. Ho
horst, for example, has shown that placing gravitatio
wave detectors in squeezed states leads to higher sensi
@27#. Although schemes relying on momentum transfer to
massive object from several microscopic objects~such as
atoms or neutrons! have been suggested@28#, these are defi-
nitely difficult to implement experimentally. Thus th
scheme described in this section offers a possible direc
from which the production of nonclassical states of a mac
scopic object may be approached. Obviously, these st
will decohere very rapidly and their realization may enab
some tests of decoherence models@29#. The three main is-
sues that will need to be addressed to bring this scheme
practical level are:~i! how well isolated the movable mirro
can be made,~ii ! how to perform tomography of the state
produced, and~iii ! how to perform instantaneous measur
ments of thex quadrature of the field inside the cavity. W
leave the treatment of these issues for the future.

e

FIG. 5. Wigner function of the state to which the mirror
projected when a measurement of thex quadrature of the cavity
field at timet5p gives a value 0. We have taken the initial cohe
ent state amplitude of the cavity mode to bea50.8 and that of the
mirror to be b52. The scaled coupling parameter isk51. The
quadraturesx andy and the Wigner functionW(x,y) are given here
in dimensionless form.
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56 4181PREPARATION OF NONCLASSICAL STATES IN . . .
V. EFFECT OF ENVIRONMENT-INDUCED
DECOHERENCE OF THE MIRROR

ON THE STATES OF THE CAVITY FIELD

In Ref. @1#, the decoherence of the cavity field was trea
as entirely due to the leaking of light through the cav
mirrors. Here we investigate the complementary case,
when the photon leakage from the cavity is almost abs
but damping of the mirror’s motion is significant. It is som
what artificial to assume no leakage of light from the cavi
but in principle the rate of mirror damping can be made
few orders of magnitude more than the rate of damping
to the leakage of light by choosing mirrors of sufficient
high reflectivity. We do not try to address issues of practi
feasibility in this paper, however.

As the state of the cavity field is entangled with the st
of the mirror at times between 0 and 2p, it is expected that
the decoherence of the mirror will induce a decoherence
the cavity field. However, its effect on the state of the cav
field is expected to benontrivial. During the standard deco
herence due to leaking of light from the cavity, the coher
states of light form the relevant pointer basis@11#. However,
in the case considered here, coherent states of the mirro
in one-to-one correspondence with number states of the
ity field. So if decoherence of the mirror forces it towards
coherent state basis, it will induce a decoherence of the
ity field towards the number state basis. This decohere
will leave some imprint on the state produced in the cavity
time t52p.

The equation that governs the decoherence of the m
depends on the way the mirror is coupled to its environme
Here, for simplicity, we assume that the mirror is amplitu
coupled to the environment at zero temperature, which
plies the master equation@30#

dr~ t !

dt
52

i

\
@H,r~ t !#1

g

2
@2br~ t !b†2b†br~ t !2r~ t !b†b#,

~23!

whereH is the Hamiltonian of Eq.~1!. Since we are using a
scaled timet, g in the above equation is the usual dampi
constant~that is, the reciprocal of the dissipation time sca!
divided by the mirror frequencyvm . Equation~23! has the
feature that it singles out coherent states as the pointer b
@11#. It is expected that natural decoherence of macrosco
objects should force them towards a coherent state basi~to
conform with classical reality!, and Eq.~23! accomplishes
exactly this. So we expect that the solution of Eq.~23! will at
least give the basic features of the effect of mirror decoh
ence on the cavity states correctly. A similar justification h
been given for the use of the above type of decoherenc
modeling quantum measurement in Ref.@31#. A more appro-
priate model for the decoherence of the mirror is quant
Brownian motion@29#, but it is also more difficult to solve
for our system of interest. Work is in progress to solve
quantum Brownian motion for our system numerically, wh
here we present the analytic solution for the evolution of
system when decoherence is described according to Eq.~23!.
This solution is expected to have most features~at least the
localization of the cavity field towards a number state ba!
d
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similar to the solution in the case of quantum Brownian m
tion because both drive the mirror state to a mixture of
herent states.

The technique we use to solve Eq.~23! is to apply the
unitary evolution and the nonunitary~decohering! evolution
alternately for short instants of timeDt and then take the
limit as Dt→0. For simplicity, we assume the initial cohe
ent state of the mirror to be the vacuum state. The solu
for this initial condition is evaluated in Appendix B and th
result is

r~ t !5e2uau2 (
n50,m50

`
ana* m

An!m!

3eik2~n22m2!~ t2sin t !

3e2D~n,m,g,t !un&^mu ^ ufn~g,t !&^fm~g,t !u, ~24!

where

fn~g,t !5
ikn

i 1g/2
~12e2~ i 1g/2!t! ~25!

are the amplitudes of the coherent states of the mirror a

D~n,m,g,t !5
k2~n2m!2g

2~11g2/4! F t1
12e2gt

g

2S e~ i 2g/2!t21

i 2g/2
2

e2~ i 1g/2!t21

i 1g/2 D G . ~26!

The terme2D(n,m,g,t) in Eq. ~24! is responsible for deco
herence. Note that asg→0, we haveD(n,m,g,t)→0 and
fn(g,t)→fn(t), wherefn(t) is given by Eq.~6!, with b set
equal to zero. In other words, the solution given by Eq.~24!
reduces to the undamped solution given by Eq.~5!. The fact
that the mirror is in a mixed state and does not return t
pure state att52p as in the undamped case is illustrated
Fig. 6 in a plot of the linear entropy of the mirror’s sta
versus time.

The Wigner function for the light field att52p for vari-
ous values of our scaled damping constantg andk50.5 ~that
is, when a Schro¨dinger cat state is expected in the absence
any decoherence! is given in Fig. 7. Two features concernin
the type of decoherence considered here become clear
these figures.

~i! Note that from Fig. 7~a! it is evident that even for a
value of scaledg as high as 0.001~that is, unscaledg of 1!,
we have almost no decoherence of the Schro¨dinger cat at all.
Thus, unless the mirror is quite heavily damped it has alm
no effect on the states produced inside the cavity. A poss
cause for this is that the efficiency of decoherence depe
on the separation between the coherent states of the m
corresponding to different number states of the field. T
separation is not constant, but oscillates between zero a
maximum value of 2k(n2m). The decoherence proces
therefore, does not get the chance to act with as much
ciency as it would have if the mirror was not a harmon
oscillator. Speaking more mathematically, Eq.~26! implies
that D(n,m,g,t) is proportional tok2g and not justg. As
increasing the frequency decreasesk, it also decreases th
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rate of decoherence even ifg ~which relates to the isolation
of the system! is held constant. In terms of the absolute tim
t ~obtained by dividing the scaled timet, which we had been
using, byvm!, the time scaletd of decoherence depends o
the frequency as@from Eqs.~2! and~26! and the definition of
k#

td}~vm!3. ~27!

Thus controllingvm offers an alternate way to control th
decoherence time scale of our system.

It is worthwhile to mention that an analogous situati
has been pointed out in Ref.@32# in the context of the
Jaynes-Cummings model, where atomic spontaneous e
sion has a much weaker effect on revivals of atomic inv
sion than the cavity field damping. In that case, however,
explanation was quite different, namely, that spontane
emission is independent of the cavity field intensity, wh
cavity damping is intensity dependent. This logic will al
apply to our system when the intensity of the cavity field
large. The term that causes decoherenceD(n,m,g) is com-
pletely independent of the intensity of the cavity field. So
this intensity increases, the photon damping begins to do
nate over the mirror’s motional damping, as far as influe
ing the final state in the cavity is concerned.

~ii ! The interference peak of the Schro¨dinger-cat state,
which is a primary feature of this cat state, is not sign
cantly lowered by the decoherence process@see Figs. 7~b!–
7~d!#, all though there is a phase diffusion of the state. T
reasoning for this is the simple fact that the decoherenc
towards the number state basis, which preserves the ph

FIG. 6. Linear entropyS of the mirror state in the presence o
damping. This is plotted here as a function of time and for vari
values of the scaled coupling parameterk. We have taken the initia
coherent state amplitude of the cavity mode to bea52 and that of
the mirror to beb50. We have chosen the damping constant to
g51. The entropy fails to return to zero because of the entan
ment of the system with the environment. Both the scaled timt
and the linear entropyS are dimensionless quantities.
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number distribution. The photon number distribution
t52p is the same for both the decohered state given by
~24! and the undecohered state given by Eq.~5!. This means
that one of the primary signatures of the Schro¨dinger-cat
state, namely, an oscillating photon number distribution~that
is, the probability of odd photon numbers being zero for
even coherent state and vice versa! is the same for the fina
state produced att52p, irrespective of whether or not ther
was decoherence. So the decoherence considered here
acting to eliminate all nonclassical properties of the field t
would be produced without decoherence. It does destroy
phase information, but maintains the nonclassicality of
number distribution. This is precisely the reason why t
interference peak of the Schro¨dinger-cat state does not ap
pear to be destroyed even when scaledg is as high as unity,
as depicted in Fig. 7~d!.

So far we have only considered how the generation of
Schrödinger-cat state is affected in the presence of the m
ror’s motional damping. Let us now briefly pause to consid
how the generation of the other nonclassical states of
cavity field may be affected. The entangled states of two
more cavity modes mentioned in Sec. III B are generated
a procedure identical to the generation of the multicom
nent cat states and hence should have similar pattern
decoherence. On the other hand, the Fock states menti
in Sec. III C will not at all be affected by the type of deco
herence considered here, as it drives the cavity field towa
a mixture of Fock states. Moreover, even after their prod
tion they will be very stable because neither the Hamilton
evolution nor the decohering evolution destroys a Fock s
of the cavity field. Of course one will have to remember th
in a realistic case the photon leakage will also be pres
which does destroy Fock states@8,9#. Finally, comes the su-
perpositions of two successive Fock states, also describe
Sec. III C. These will of course be seriously affected as
decoherence process will be destroying the coherence
tween successive Fock states. As the generation of the
classical states of the mirror depends crucially on the coh
ence between the differentun&c^ ufn(t)&m components of
the system’s state, it will also be affected. In fact, at the v
instant of generation of a nonclassical state of the mirror
the type given by Eq.~22!, the coherence between any two
its components such asufn(p)&m and ufm(p)&m will be
e2D(n,m,g,p) of the undamped value.

We have already mentioned that the decoherence t
scale of the system may be increased by increasing the
quency of the mirror. But whether that actually helps in t
generation of any of the nonclassical states described in
paper requires further scrutiny. For example, the multico
ponent cat states are generated only whenk2t reaches a cer-
tain value. ButD(n,m,g,t) depends precisely onk2t and not
simply on time. Thus increasing the frequency will of cour
increase the decoherence time scale, but also increase
time scale for the production of the cat states proporti
ately, so that they are decohered by the same amount w
ever they are produced. For the nonclassical states of
mirror described by Eq.~22!, the situation is somewhat be
ter, but not without its problems. By decreasingk ~through
vm!, one not only decreases the rate of decoherence but
decreases the spatial separation between the coherent
components involved in the superposition. Hence the co

s

e
e-
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FIG. 7. Wigner functionW(x,y) of the cavity field at timet52p for various values of the motional damping constantg of the mirror.
We have taken the initial coherent state amplitude of the cavity mode to bea52 and that of the mirror to beb52. The scaled coupling
parameter isk50.5. The quadraturesx andy and the Wigner functionW(x,y) are given here in dimensionless form.
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ponents in the superposition may become more coherent
they also become lessmacroscopically distinguishable.
However, in the generation of the superposition of two s
cessive Fock states, decreasingvm really does help. The rea
son is clear from Eq.~20!. The components of the superp
sition are Fock states of the cavity field and thereby do
depend in any way on the parameterk. The only contribution
of k comes in the amplitudes, and two successive Fock st
can always be made to have significant amplitudes when
the measurement outcomex is about halfway between th
peaks of the Gaussians^xufn(p)& and ^xufn11(p)&, irre-
spective of the value ofk. Thus there is at least one type
nonclassical state whose generation can be aided by inc
ing the mirror frequency.

VI. CONCLUSION

In conclusion, we would like to stress that the work pr
sented here offers prospects for the observation of nonc
sical features of light in the cavity. Even when the decoh
ence due to the mirror’s motion is maximum, th
nonclassicality associated with the photon number distri
tion in the cavity is preserved. However, nonclassicality
ut
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t

es
er

as-

-
s-

r-

-
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sociated with the phase distribution is hindered. But h
also one can be optimistic from the viewpoint that the eff
is not dominant unless the mirror is very heavily dampe
We have not addressed the problem of detecting the st
produced in the cavity because there exists extensive lit
ture on this topic@14–20#.

The primary aim of further work must be to solve th
system when the mirror is damped according to quant
Brownian motion models@11,33# so that one can set up ex
plicit limits on the parameters such as the temperature
mass of the mirror required to observe the nonclassical st
in the cavity in their most undecohered condition. Neverth
less, we expect that the feature of decoherence of the
towards the number state basis should also be present in
full solution, since any physically sensible decoheren
model must tend to localize the mirror state towards the
herent state basis. In addition, there are prospects to ut
the system for tests of quantum Brownian motion, which c
be explored further. Also, we have considered starting
tially with only a coherent state inside the cavity. One mig
be able to produce more interesting nonclassical states
starting with nonclassical states. In fact, all that can be
vestigated in the Kerr medium can be done with this syste



b

m
t
n

.K
n

ng

in
t

er

e

ra

io

o-
ot

en-

-

lly
to

ber
ent

ll

to

of

4184 56S. BOSE, K. JACOBS, AND P. L. KNIGHT
Even more can be done with the mirror system perhaps
cause of the opportunities of conditional measurements.
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APPENDIX A: DERIVATION OF THE TIME EVOLUTION
OPERATOR FOR THE UNDAMPED SYSTEM

The time evolution operator is given by

U~ t !5e2 ira †ae2 i tb†b1 ikta†a~b1b†!, ~A1!

where t is the time multiplied byvm , k5g/vm , and
r 5v0 /vm . We now consider a unitary transformation usi
the operator

T5e2ka†a~b†2b!. ~A2!

Note that this is a displacement operator for the mirror
which the displacement amplitude has been replaced by
number operator for the cavity mode. Using the Bak
Cambell-Hausdorf~BCH! expansion@34#, the effect of this
transformation is readily shown to be

TbT†5b1ka†a, ~A3!

Tb†T†5b†1ka†a, ~A4!

Ta†aT†5a†a. ~A5!

Using the fact that

U f ~$Xi%!U†5 f ~$UXiU
†%! ~A6!

for any function f , unitary operatorU, and arbitrary set of
operators$Xi%, the effect of the transformation on the tim
evolution operator is easily calculated to be

TU~ t !T†5e2 ira †ate2 ib†bt2 ik2~a†a!2
. ~A7!

Multiplying on the left by T† and on the right byT, we
obtain the following expression for the time evolution ope
tor:

U~ t !5e2 ira †ateik2~a†a!2teka†a~b†2b!e2 ib†bte2ka†a~b†2b!.
~A8!

~Note that to obtain this expression we have swapped var
exponentials that contain commuting arguments.! To obtain
the final form ofU(t), we need to swap the last two exp
nential factors in this expression. To acheive this we n
first that the BCH expansion gives

e2 ib†b@a†a~b†2b!#eib†b5a†a~b†e2 i t2beit !, ~A9!

and again using Eq.~A6! we obtain
e-

he
,
.
d

he
-

-

us

e

e2 ib†be2ka†a~b†2b!eib†b5e2ka†a~b†e2 i t2beit !. ~A10!

Multiplying both sides on the right bye2 ib†b, we arrive at
the relation required to swap the exponentials, namely,

e2 ib†be2ka†a~b†2b!5e2ka†a~b†e2 i t2beit !e2 ib†b. ~A11!

We may now write the expression forU(t) as

U~ t !5e2 ira †ateik2~a†a!2teka†a~b†2b!

3e2ka†a~b†e2 i t2beit !e2 ib†b, ~A12!

and to obtain the final expression given in Eq.~3!, we need
only combine the arguments of the third and fourth expon
tials, which is readily achieved with the BCH relation@34#.

APPENDIX B: SOLUTION TO THE MASTER EQUATION
FOR THE SYSTEM WHEN

THE MIRROR’S MOTION IS DAMPED

We need to solve Eq.~23!, which contains two parts. The
solution of the first part

dr~ t !

dt
52

i

\
@H,r~ t !# ~B1!

is known to be

r~ t !5U~ t !r~0!U†~ t !, ~B2!

whereU(t) is given by Eq.~3!. On the other hand, the sec
ond part

dr~ t !

dt
5

g

2
@2br~ t !b†2b†br~ t !2r~ t !b†b# ~B3!

is known to transformul i&^l j u as @31#

Pi j ul i&^l j u→Pi j ^l i ul j&
~12e2gt!ul ie

2gt/2&^l je
2gt/2u,

~B4!

whereul i& and ul j& are coherent states.
Let the initial state of our system be

r~0!5ua&^auc^ u0&^0um , ~B5!

that is, we assume the mirror to be in a vacuum state initia
~for simplicity!. As the damping localizes the mirror state
a coherent state basis and corresponding to each num
state of the field the mirror is driven to a separate coher
state, at any timet the general form of the density matrix wi
be

r~ t !5 (
n50,m50

rnm~ t !un&^muc^ ufn~g,t !&^fm~g,t !um .

~B6!

Thus we can split the evolution of the entire system in
separate evolutions labeled bym andn. In other words, we
break our problem into that of calculating the evolution
each of the entitiesrnm(t)ufn(g,t)&^fm(g,t)um separately.
In any small time stepDt during which evolution occurs
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only according to Eq.~B2!, the amplitudes of the coheren
states of the mirror change according to

fn~g,t !→~12 iDt !fn~g,t !1 iknDt, ~B7!

while if evolution occurs according to Eq.~B3!, then

fn~g,t !→fn~g,t !~12gDt/2!. ~B8!

Hence we can set up the differential equation

dfn~g,t !

dt
52 ifn~g,t !1 ikn2

g

2
fn~g,t !, ~B9!

the solution for which@with initial conditionfn(g,0)50] is
given by

fn~g,t !5
ikn

i 1g/2
~12e2~ i 1g/2!t!. ~B10!

Next let us determine howrnm(t) evolves. Following Eq.
~B2! it evolves as

rnm~ t !→rnm~ t !eik2~n22m2!Dt~12cos t !, ~B11!
d,

ys
.

v.
.

J.

H.

c

while Eq. ~B3! transforms

rnm~ t !→rnm~ t !^fn~g,t !ufm~g,t !&~12e2gDt!

5rnm~ t !e2ufn~g,t !2fm~g,t !u2gDt/2, ~B12!

where the smallness of Dt and the fact that
Im@fn(g,t)fm(g,t)* #50 @from Eq. ~B10!# have been used
Hence, evolvingrnm(0) according to Eq.~B11! and Eq.
~B12! alternately and taking the limitDt→0, we obtain

rnm~ t !5rnm~0!eik2~n22m2!~ t2sin t !

3expS 2
g

2 E0

t

ufn~g,t !2fm~g,t !u2dtD .

~B13!

Combining Eqs.~B10!, ~B13!, and ~B6! and evaluating the
integral in Eq.~B13!, one can obtain Eqs.~24!–~26! of Sec.
V, which constitutes the complete solution for the dens
matrix of the system at an arbitrary time.
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