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Preparation of nonclassical states in cavities with a moving mirror
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We describe how a quantum system composed of a cavity field interacting with a movable mirror can be
utilized to generate a large variety of nonclassical states of both the cavity field and the mirror. First we
consider state preparation of the cavity field. The system dynamics will prepare a single mode of the cavity
field in a multicomponent Schdinger-cat state, in a similar manner to that in a Kerr medium. In addition,
when two or more cavity modes interact with the mirror, they can be prepared in an entangled state, which may
be regarded as a multimode generalization of the even and odd coherent states. We show also that near-number
states of a single mode may be prepared by performing a measurement of the position of the mirror. Second we
consider state preparation of the mirror and show that this macroscopic object may be placed irlm@ehro
cat-like state by a quadrature measurement of the light field. In addition, we examine the effect of the damping
of the motion of the mirror on the field states inside the cavity and compare this with the effect of cavity field
damping.[S1050-294{@7)01911-3

PACS numbse(s): 42.50.Dv, 42.50.Vk, 03.65.Bz

I. INTRODUCTION Il. DYNAMICS OF THE UNDAMPED SYSTEM

R tly, Manciniet al. [1] h h h it Numerous authors have previously treated the system of a
ecently, Vianciniet al. ave shown how a cavity cavity field and a movable mirror both quantum mechani-

with a movable mirroftreated as a gu_antum harmonic oscil- cally [1,4] and classically5,6] and both theoreticalljl,4,5
lator) can be used to synthesize Safirger-cat statef2,3] 5 from an experimental point of vie6,7]. We here as-
of the cavity field. In fact, as we will see here, this systemg,me the movable mirror to be a quantum harmonic oscilla-

can lead to the production of an extensive class of nonclasy, \ith frequencyw,, and annihilation operator denoted by
sical states of the cavity field, including entangled states of, interacting with a cavity field mode of frequenay, and

two or more cavity modes. One of the aims of this paper is tQ,,hihilation operator denoted by. The relevant Hamil-
describe how these can be achieved. Furthermore, in Ref. tonian[1] is

only the effect of photon leakage from the cavity was con-

sidered as a relevant source of decoherence. We examine the H=%wia'a+kwbb—fAgata(b+b"), (1
opposite extreme, namely, when the decoherence induced in

the field due to the damping of the mirror’s motion is the where

dominant source of decoherence and photon leakage is al-

most absent. We calculate the effect of this type of decoher- wo [ %
ence on the states of the cavity field and explicitly demon- 9= Mo
strate that, due to the oscillatory nature of the system, the m

decoherence rate is much lower than expected. Moreover, We 4L andm are the length of the cavity and mass of the
show that apart from trying to improve the mirror’s isolation, movable mirror respectively.

increasing its frequency al_so helps to redL_Jce the rate of the The time evolution operator corresponding to the above
type of decoherence considered here. This fact comes as&miltonian was evaluated by Manciat al. [1] (for com-

benefit in the generation of at least one type of nonclassic leteness we give a proof in Appendi And is given b
state of the cavity field. These results definitely brighten th g P PP ¥ g y

prospects of observing nonclassical states of the field inside U(t)=exd —ira'atlexgik¥(a’a)2(t—sint)]
the cavity given that damping of the mirror's motion is in-

2

evitable. It is also shown that even when the effect of mirror x exgka'a(7b"— z*b)]exd —ibTbt], (3
damping on the cavity field is dominant, it does not destroy _
all the nonclassical features of the cavity field. wheren=(1—e™"'), k=g/w, is the scaled coupling param-

In Ref.[1], the main focus was the generation of nonclas-eter,r = wy/w,,, andt represents a scaled time, being the
sical states of the cavity field. We give here a thorough treatactual time multiplied byw,,. We note that values fdt of
ment of the quantum dynamics of the mirror as well. Inthe order of unity are experimentally feasiljte,~ 10 s72,
particular, we point out ways in which this mirror motion can w,,~1 kHz, L~1 m, andm~10 mg [1,5,6]. We see from
also be put in a nonclassical state. Of course, if these are the above equation that there is now an explicit Kerr-like
be observed, then very good isolation of our system from théerm inU(t), so that physically one might expect the cavity
environment is necessary. However, the very fact that thidield to have an evolution similar to that in a Kerr-like non-
system allows in principle the production of nonclassicallinearity. In view of the large variety of nonclassical states
states of a macroscopic object such as the migfter suf- that can be produced by a Kerr medifig+10], this system
ficient isolation) should be interesting in itself. clearly offers prospects for the production of nonclassical
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states of light{1,7]. Indeed, it is known that, like the Kerr
nonlinearity, this system of a moving-mirror cavity also ex-
hibits optical bistability[5,6]. o8r k=05

Let us assume that initially both the mirror and the cavity
field are in coherent states. To see that this is reasonable we
first note that the long-time steady state of the cavity mode is %9
the vacuum and that the most stable pointer gtbtéfor the o5t
mirror (being a single harmonic oscillajds a coherent state
[12]. The steady state therefore consists of the cavity mode %4
in the vacuum state and the mirror in a coherent state. The ;3|
cavity mode can now be placed in a nonvacuum coherent k=0.1
state by driving it with a coherent input field on a time scale
that is much shorter than the time scale of the mirror motion.
Thus we write the initial state at tinte=0 as

|\I}(O)>:|a>c®|:3>ma (4)

09 k=1

0.7

FIG. 1. Linear entropys of the mirror state, in the absence of
where|a). and|B)r, are initial coherent states of the field any damping, plotted here as a function of time and for various
and the mirror, respectively. values of the scaled coupling parametelVe have taken the initial

The time evolution of the system in the interaction picturecoherent state amplitude of the cavity mode toae2 and that of
(that is, omitting the free evolution of the figlteads to a the mirror to beg=2. The entanglement of the mirror with cavity
state at time given by field increases from a value of zero to a maximuntatr and

subsequently falls back to zerotat 2. Both the scaled timeand
) Y B o the linear entropys are dimensionless quantities.
[W(t)=e 2 —— ek ) @[ dy(t))im,
n=0 \/n—' Ill. GENERATION OF NONCLASSICAL STATES
5 OF THE CAVITY FIELD

where|n). denotes a Fock state of the cavity field with ei- We divide the discussion of the generation of nonclassical
genvaluen and the| ¢,(t) ), are coherent states of the mirror states of the cavity field into three categoriés: Multicom-
given by ponent cat states generated &2 due to dynamics alone
(i.e, without any external interventipn(among these, a
|pn(1))m=]Be T+kn(1—e M)),. (6)  method of generating the two-component Sdimger-cat
state has been discussed in Réf)); (b) entangled states of
Two features of the mirror dynamics emerge from the abovéwo or more light modes generatedtat 27 due to the dy-
equations. namics alone; andc) nonclassical states produced due to
(i) After a timet=27 the mirror returns to its original conditional measurements on the mirror. Of course the dis-
state. At all times betwedn=0 andt= 2 the mirror state is  cussion here is by no means exhaustive and there remains the
entangled with the field state with the entanglement beingpossibility of generating even more interesting states.
maximum whert=7r. The time dependence of the entangle-
ment is shown in Fig. 1 as a plot of the purity, or “linear A. Multicomponent cats
entropy” [13], which is given by ETr[pyu(t)%], where
pm(t) is the reduced density matrix of the mirror.
(i) The mirror, always being in a mixture of coherent
states during its evolution, is described by entirely positive = n
Wigner functions and therefore has a fully classical dynam- |O)e=e a2 ——gizmkin? gy )
ics as illustrated in Fig. 2. In this figure, and in all the sub- =0 \n!
sequent figures that show the mirror's Wigner functian, )
shall stand fob+b' andy for i(b—b"). They are therefore Depending on the value of the paramekethe statd ) can
dimensionless quantities. The mirror undergoes an oscillad® made equivalent to a variety of multicomponent cat states.
tion of a different amplitudgbut at the same frequencfor ~ Fork=0.5,
each number state of the field. The net effect is a kind of " .
bre';lthmgo]c the mirror state; the mirror state undergoes an 12) =e‘|"‘|2’22 a—e”‘z(”’z)ln)
oscillatory increase and decrease of its position and momen- 2/¢ =0 n! ¢
tum spread. However, this is very different from the well-
known breathing of squeezed states, as the mirror state is a 1+i 1-i
mixture of coherent states. T2 T) |—a)e
Thus, during undamped evolution, no nonclassical state of
the mirror is generated. However, because of the entanglevhich is a two-component Schiimger cat state. For
ment of the mirror with the field, it is possible to generatekzl/\/é, we get the three-component cat state
nonclassical states of the mirror by performing conditional
measurements on the field. We discuss this in Sec. IV. |£3)c=C1| — @)+ Co| @€ ™)+ cglae™ (™), (9)

At time t=27 the state of the cavity field, as obtained
from Eq. (5), is given by

— g o2 |+ @)+

)
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FIG. 2. Wigner functionW(x,y) of the mirror at various times of the system in the absence of damping. We have taken the initial
coherent state amplitude of the cavity mode toase2 and that of the mirror to b@=2. The scaled coupling parameter has been set at
k=0.3. The small negativity iric) and(e) is just a truncation error, y, andW(x,y) are all dimensionless quantities.

wherec,=c3=(1+¢€'(™)/2[ 1+ cos@r/3)] andc,=1—2c,
(not normalizedl For k=1/2v2,
i (14 1
|§4>C:T(|a>(;_ | - a)c)+ §(|| a>c+ | —i a>c)a
(10

which is a four-component cat stateot normalized Thus,

by adjusting the ratio of the coupling and the mirror fre-
quency and thereby varyirlg one can in principle obtain all
these types of cat states at titnre2 7. The Wigner functions

of the cat states produced by different value& afre shown
below in Fig. 3. In this figure and all subsequent figures that
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(@ k=05 that creating such states in a cavity such as ours has intrinsic
advantages because there is an extensive set of tomographic
methodq 14—2Q that can be implemented to reconstruct the
Wigner function in a cavity.

B. Entangled states of two or more cavity modes

Two modes of light, each separately interacting with the
movable mirror and with no direct coupling between them,
can end up being in an entangled state at tim@ 7 depend-
ing on the value of the parameter Let there be two differ-
ent modes of light inside the cavity &t 0. For simplicity we
assume them to have the same frequency and hence same
value of the parametds, but mutually orthogonal polariza-
tion directions. We assume them to be initially fully disen-
tangled and prepared in coherent states. Let the initial state

y -107 10 X of the composite system of the mirror and the light be
(b) k = 0.4082 |V(0))=]ar)c1®]a2)c2®|B)m, 11
where|a,).; and|a,)., are states of the first and second
0.15+ modes, respectively, whilg8), is the initial state of the

mirror. The state of the two light modes evolveg a2 to
the state(not normalized

n_m i2';rk2(n+m)2

= X T Magime. (12

m=0

W(x.y)

The state can be rewritten as

_ S a_? ik2m22m
|§E>—mE:0 T 2T m)2®]E(MK))er,  (13)

y -0 10 X
where
(c) k =0.3536

(alelk 4wm)n
|§ m k >Cl 20 T

As is evident from the above equatidg(m,k))., are states
of the same type as the stat®. given by Eq.(7) with an

amplitudea,€%*4™. Hence, for certain values &f(such as

0.5 or 1A/6 or 1/2/2), number states of one mode become
correlated with multicomponent cat states of the other mode.
However, ifk is such that R2nm is an integer for alh and

m, then the statg£(m,k) )., becomes independent of and

|¢e) becomes a disentangled state. Some simplification of
Eq. (14) for k=0.5 results in the entangled state

2™ ny . (14

[Ze)=(1+1)|[+ a)c1®|+ ap)cr

+(1_i)|_al>cl®|_a2>021 (15

y ~10 -10 X

FIG. 3. Wigner functions of the state of the cavity field a2 =

plotted here for various values of the scaled coupling paranketer Which may be regarded as an example of a two-mode cat

We have taken the initial coherent state amplitude of the cavitystate[21] or an example of an entangled coherent stag.

mode to bex=2 and that of the mirror to b8=2. The quadratures Note that production of entangled states in a Kerr medium,

x andy and the Wigner functioW(x,y) are given here in dimen- when the two modes of light have a direct interaction be-

sionless form. tween them, has been discussed bef@@; however, this
case is different in the sense that the modes become en-

depict the Wigner function of the cavity field=a+a' and  tangled because they both individually interact with the same

y=—i(a—a'). They are therefore dimensionless quantities.movable mirror.

Exactly the same type of states has been noted before as There is no restriction on the number of modes that can be

arising in the Kerr mediurh8—10]. It is indeed worth noting entangled using the above proceduraly each mode to be
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entangled has to be resonant with the cavityis interesting  of the mirror multiplied byy2mw,,/%, m being the mass of

to demonstrate how eigenstates of the operatothe mirrop at timet=, as the entanglement is most pro-
(ac1acz  -acn)P, whereagy,ac, - .. acy are annihilation nounced at that time. Such a measurement will project the
operators ofN different modes of light angb is an integer, state of the light to

can be created in the cavity. As it is possible for resonant

modes to have frequencies that are integer multiples of each

*© n
other, let us consider the case when there Mrdifferent = @ qimk2n?
: 7()c=N> —=e™ " (x|gy(m)n)c. (20
modes of light in the cavity, with their frequencies [700)e =0 \/n! (X|n(m) e
We1,0¢z, - - - wey beiNg related byw;= njwc, Where 7

are integers. Then, from E) it follows that the value of
theirk parameters will be related = 7;k,. Hence, if the
initial state of the cavity modes and the mirror is

Thus, for different values of the mirror positio different
states of the cavity field are produced. Let us choose param-
etersk=1, =2, andB=2. Then the peak of the Gaussian
function (x| ¢,(7)) lies atx,=4n—4 and its width iss= 1.
|V(0))=|ap)c1®]az)c2® - ®|a)cn®[B)m: (16)  Thus the distance between the peaks (Bfé,(7)) and

(X| pns1(m)), thatis,x,—X,.1=4, is greater than the width

the final(at timet=2+) composite state of the cavity modes J. Hence, if the value obtained for obtained as a result of

will be the measurement is negy, the most dominant constituent
of the statg (X)) is |n).. In this way, we may expect to
o produce nonclassical states that are very close to number
|Ce )= > o 27KE (N1 + manp+ -+ pyny)? states. For example, if the value obtained fois near O
Nongnp, T nN=0 (which is nearx,), the cavity field is projected to the state
N (unnormalized
J
X1 —=|nj)¢i- 17
_ i’ci
i=o yn;! |7(0))~e™*|0)c—2|1)c+2v2e #2).+0(10 ")

o 5 (22
As the terme'27(mnit 72024+ cannot be split up
into a product of the fornf;(n,) f2(n5)--- (), for arbi- i is shown in Fig. @). Similarly, whenx is near

trary values ofky, |{e,) can, in general, be an entangled , _15 e get a state very close to the number SGiteas
state depending on the value lof. Now consider the case shown in Fig. 4b). Whenx is in betweerx,, andx,. ; we get

when 2rk;?= 7/p. We have essentially a superposition of states and|n+ 1), as illus-
(Be18p - ep)P| L6} trated in Fig. 4c) for n=2 (the state in.the figure is approxi-
c1%c2" " GeN/TISEy mately —2|1).+2v2|2)., not normalizegl Fock state su-
o perpositions and their nonclassical properties have been
_ 2 eizﬁki( PN+ oNp+ -+ )2 discussed if24]. It is evident from the above discussion that
nyNp, . NN=p the generation of the above type of states solely relies on the

N narrowness of the coherent state width in comparison to the
Q; spatial separation between the peaks of the Gaussians
XJ.UO ﬁlni_ Plej- (x| pn(7)) and(x|¢n.1(7)). As this spatial separation can
o always be increased by increasing the value of the parameter
Redefiningn; in the above equation ag+p, recasting the Kk, the proximity of the states produced to Fock states and
equation in terms of the nem;, and using the fact thay; are  their superpositions can always be improved.

nj

(18

integers, one gets We note that the first two types of states, that is, the cat
states and the entangled states, rely on the Kerr-type term in
(acracy: --acN)p|§EN) the time evolution and hence they can be generated in a Kerr
_ , medium as well. In particular, generation of cat states in a
=(ajap: - ay)Pe TP T2t ) |§EN>_ (19 Kerr medium was suggested some time §§@®]. However,

the generation of the third type of statés., the number
Hence|{g, ) are eigenstates of the operatag{ac, - acy)?,  states and their superpositiondo not appear to have an
generalizations of the well-known even and odd coherenfn@l0g in the Kerr medium because they are entirely depen-
states that are eigenstates of squares of annihilation operatf§nt on the entanglement of the states of the mirror and the

[2]. cavity field during evolution.
C. Nonclassical states produced by conditional measurements IV. GENERATION OF NONCLASSICAL STATES
on the mirror OF THE MIRROR

. . FROM CONDITIONAL MEASUREMENTS
Because of the entanglement of the mirror state with the

state of the cavity field during evolution, any measurement The system also offers the opportunity to create quite dif-
on the mirror will project the cavity field to some state thatferent nonclassical states of the mirror by conditional mea-
we can determine. We consider here measurements of thsirements on thg quadrature of the light field. As the spa-
mirror’s position,x=b+b" (i.e., x represents actual position tial separation between the coherent state components of the
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FIG. 5. Wigner function of the state to which the mirror is
projected when a measurement of thequadrature of the cavity
field at timet= 7 gives a value 0. We have taken the initial coher-
ent state amplitude of the cavity mode to de 0.8 and that of the
mirror to be B=2. The scaled coupling parameter ks=1. The
quadraturex andy and the Wigner functiokV(x,y) are given here
in dimensionless form.

— ol S a_n ik2n2s
[@O0)m=e” "2, TN go( M. (22

As the| ¢, (7)), are coherent states with a different ampli-
tude for each value dfi, |® (X)), is asuperposition of spa-
tially separated coherent statesid as such an entirely non-
classical state of the mirror. Moreover, as the paranieisr
increased, the separation between the coherent components
|pn(7))m increases. So by varying, one can control the
macroscopic distinguishability of the states involved in the
superposition. In Fig. 5 we have plotted the Wigner function
for the state of the mirror produced whke 1 and the mea-
surement result ix=0. This state is distinctly nonclassical
and looks somewhat like a Scliiager-cat state with un-
equal amounts of each coherent component.

The importance of the above procedure stems from the
observation that there is already a considerable amount of
literature, both theoreticdR5] and experimentdl3,26], fo-
cused on methods to prepare atoms in nonclassical motional
states. So it is only natural to expect that placing a more
massive object in such states should be an issue of serious
consideration. The ability to place macroscopic objects in
nonclassical states may even possess applications. Hollen-
horst, for example, has shown that placing gravitational
wave detectors in squeezed states leads to higher sensitivity
[27]. Although schemes relying on momentum transfer to a
massive object from several microscopic obje(tach as
atoms or neutronshave been suggesté@8], these are defi-

FIG. 4. Wigner functions of the state to which the cavity field is nitely difficult to implement experimentally. Thus the

projected for various results of a measurement of the position of

scheme described in this section offers a possible direction

the mirror. We have taken the initial coherent state amplitude of thg. . \vhich the production of nonclassical states of a macro-

cavity mode to bex=2 and that of the mirror to b@=2. The
scaled coupling parameter kis=1 and the measurment is made at
time t=7. The quadraturex andy and the Wigner function

W(x,y) are given here in dimensionless form.

scopic object may be approached. Obviously, these states
will decohere very rapidly and their realization may enable
some tests of decoherence modgél§]. The three main is-
sues that will need to be addressed to bring this scheme to a
practical level are(i) how well isolated the movable mirror

mirror is maximum at= 7, measurements at this instant are can be made(ii) how to perform tomography of the states
likely to produce the most nonclassical states of the mirrorproduced, andiii) how to perform instantaneous measure-
A measurement of thg quadrature of the light field at this ments of thex quadrature of the field inside the cavity. We

instant of time projects the mirror state to

leave the treatment of these issues for the future.
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V. EFFECT OF ENVIRONMENT-INDUCED similar to the solution in the case of quantum Brownian mo-
DECOHERENCE OF THE MIRROR tion because both drive the mirror state to a mixture of co-
ON THE STATES OF THE CAVITY FIELD herent states.

o The technique we use to solve E®@3) is to apply the
In Ref.[1], the decoherence of the cavity field was treated . : : : .
as entirely due to the leaking of light through the cavity unitary evolution and the nonunitaf@ecohering evolution

mirrors. Here we investigate the complementary case, i_ealtgrnately for short _|nst§qts of imat and the'n. 'Fake the
let as At—0. For simplicity, we assume the initial coher-

when the photon leakage from the cavity is almost abseném state of the mirror to be the vacuum state. The solution

but damping of the mirror's motion is significant. It is some- o o : ;
what artificial to assume no leakage of light from the cavity,:grsgl]tlsismmal condition is evaluated in Appendix B and the

but in principle the rate of mirror damping can be made a
few orders of magnitude more than the rate of damping due o

to the leakage of light by choosing mirrors of sufficiently )= g~lal? aa ™
high reflectivity. We do not try to address issues of practical n=0m=0 \/n!'m!

feasibility in this paper, however.

As the state of the cavity field is entangled with the state
of the mirror at times between 0 andr2it is expected that _
the decoherence of the mirror will induce a dgcoherence of xe D(n'm’%t)|n><m|®|¢”(7’t)><¢m(7’t)|' (24)
the cavity field. However, its effect on the state of the cavityWhere
field is expected to baontrivial. During the standard deco-
herence due to leaking of light from the cavity, the coherent
states of light form the relevant pointer bakl4]. However, dn(y, )=
in the case considered here, coherent states of the mirror are
in one-to-one correspondence with number states of the cav- . .
ity field. So if decoherence of the mirror forces it towards a@r€ the amplitudes of the coherent states of the mirror and
coherent state basis, it will induce a decoherence of the cav- K2(n—m)2 1_en
ity field towards the number state basis. This decoherence D(n,m,y,t)= (n=m 7{ €
will leave some imprint on the state produced in the cavity at T 2(1+ 9714
time t=2. Qli—¥2t_ 1  g-(i+¥2t_q

The equation that governs the decoherence of the mirror _( i - )
depends on the way the mirror is coupled to its environment. i—vyl2 i+ /2
Here, for simplicity, we assume that the mirror is amplitude ] ) )
coupled to the environment at zero temperature, which im- The terme™ ("™ in Eq. (24) is responsible for deco-
plies the master equatidB0] herence. Note that ag—0, we haveD(n,m,y,t)—0 and

dn(y,t)— ¢p(t), whereg, (1) is given by Eq(6), with 8 set
equal to zero. In other words, the solution given by E4)
dp(t) [ v + it . reduces to the undamped solution given by €& The fact
g~ zlH.p(]+ 5[2bp()b =D op(t) —p(1)b'D]. that the mirror is in a mixed state and does not return to a
(23)  bure state at=27 as in the undamped case is illustrated in
Fig. 6 in a plot of the linear entropy of the mirror’s state
versus time.
whereH is the Hamiltonian of Eq(1). Since we are using a The Wigner function for the light field at=2 for vari-
scaled timet, y in the above equation is the usual dampingous values of our scaled damping constaandk= 0.5 (that
constant(that is, the reciprocal of the dissipation time sgale is, when a Schrdinger cat state is expected in the absence of
divided by the mirror frequency,,. Equation(23) has the any decoherengés given in Fig. 7. Two features concerning
feature that it singles out coherent states as the pointer badise type of decoherence considered here become clear from
[11]. It is expected that natural decoherence of macroscopithese figures.
objects should force them towards a coherent state K@sis (i) Note that from Fig. 7a) it is evident that even for a
conform with classical realily and Eq.(23) accomplishes value of scaledy as high as 0.00tthat is, unscaled of 1),
exactly this. So we expect that the solution of E2B) willat ~ we have almost no decoherence of the Sdimger cat at all.
least give the basic features of the effect of mirror decoherThus, unless the mirror is quite heavily damped it has almost
ence on the cavity states correctly. A similar justification hasno effect on the states produced inside the cavity. A possible
been given for the use of the above type of decoherence igause for this is that the efficiency of decoherence depends
modeling quantum measurement in REfL]. A more appro- on the separation between the coherent states of the mirror
priate model for the decoherence of the mirror is quantuntorresponding to different number states of the field. This
Brownian motion[29], but it is also more difficult to solve separation is not constant, but oscillates between zero and a
for our system of interest. Work is in progress to solve themaximum value of R(n—m). The decoherence process
guantum Brownian motion for our system numerically, while therefore, does not get the chance to act with as much effi-
here we present the analytic solution for the evolution of ourciency as it would have if the mirror was not a harmonic
system when decoherence is described according t28y.  oscillator. Speaking more mathematically, Eg6) implies
This solution is expected to have most featuf@sleast the that D(n,m,v,t) is proportional tok?y and not justy. As
localization of the cavity field towards a number state hasisincreasing the frequency decreasesit also decreases the

% eik2<n2—m2)(t—sin t)

n .
— ‘}//2(1_e—(|+y/2)t) (25)

. (26
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0.8 - - - . - r number distribution. The photon number distribution at
t=21 is the same for both the decohered state given by Eq.
(24) and the undecohered state given by ). This means

that one of the primary signatures of the Sclinger-cat

state, namely, an oscillating photon number distributibat

0.5k | is, the probability of odd photon numbers being zero for an

even coherent state and vice versathe same for the final

0.4} k=0.5 § state produced dt=2, irrespective of whether or not there

was decoherence. So the decoherence considered here is not

D o3p 1 acting to eliminate all nonclassical properties of the field that

would be produced without decoherence. It does destroy the

phase information, but maintains the nonclassicality of the
number distribution. This is precisely the reason why the
=0.1 1 interference peak of the Scliinger-cat state does not ap-

. . . , , pear to be destroyed even when scajed as high as unity,

0 ! 2 t° 4 5 6 7 as depicted in Fig. (d).

So far we have only considered how the generation of the

Schralinger-cat state is affected in the presence of the mir-

FIG. 6. Linear entropys of the mirror state in the presence of ror's motional damping. Let us now briefly pause to consider
damping. This is plotted here as a function of time and for varioushow the generation of the other nonclassical states of the

values of the scaled coupling parameteiVe have taken the initial  cavity field may be affected. The entangled states of two or
coherent state amplitude of the cavity mode toabe2 and that of  more cavity modes mentioned in Sec. Ill B are generated by

the mirror to be=0. We have chosen the damping constant to beg procedure identical to the generation of the multicompo-
y=1. The entropy fails to return to zero because of the entanglenent cat states and hence should have similar patterns of
ment of the system with the environment. Both the scaled time decoherence. On the other hand, the Fock states mentioned

and the linear entropg are dimensionless quantities. in Sec. 1l C will not at all be affected by the type of deco-

herence considered here, as it drives the cavity field towards

) ) ) ] a mixture of Fock states. Moreover, even after their produc-

rate of decoherence evenyf(which relates to the isolation {jon they will be very stable because neither the Hamiltonian
of the systemis held constant. In terms of the absolute time g\ 6|ytion nor the decohering evolution destroys a Fock state

7 (obtained by dividing the scaled tiniewhich we had been ot the cavity field. Of course one will have to remember that

using, bywr,), the time scalerq of decoherence depends on j, 5 realistic case the photon leakage will also be present,

the frequency afrom Egs.(2) and(26) and the definition of  \yhich does destroy Fock statf&d]. Finally, comes the su-

k] perpositions of two successive Fock states, also described in
Sec. Il C. These will of course be seriously affected as the
decoherence process will be destroying the coherence be-

74 (om)®. (27)  tween successive Fock states. As the generation of the non-
classical states of the mirror depends crucially on the coher-
ence between the differefh).®|¢n(t))m components of

Thus controllingw,, offers an alternate way to control the the system’s state, it will also be affected. In fact, at the very

decoherence time scale of our system. instant of generation of a nonclassical state of the mirror of

It is worthwhile to mention that an analogous situationthe type given by Eq(22), the coherence between any two of
has been pointed out in Ref32] in the context of the its components such dgh,(7))ym and |dy(m))m Will be

Jaynes-Cummings model, where atomic spontaneous emig- (™™™ of the undamped value.

sion has a much weaker effect on revivals of atomic inver- We have already mentioned that the decoherence time

sion than the cavity field damping. In that case, however, thecale of the system may be increased by increasing the fre-

explanation was quite different, namely, that spontaneouguency of the mirror. But whether that actually helps in the
emission is independent of the cavity field intensity, whilegeneration of any of the nonclassical states described in this
cavity damping is intensity dependent. This logic will also paper requires further scrutiny. For example, the multicom-
apply to our system when the intensity of the cavity field isponent cat states are generated only wk&rnreaches a cer-
large. The term that causes decohered¢a,m,y) is com-  tain value. BuD(n,m,y,t) depends precisely drft and not
pletely independent of the intensity of the cavity field. So assimply on time. Thus increasing the frequency will of course
this intensity increases, the photon damping begins to domincrease the decoherence time scale, but also increase the
nate over the mirror's motional damping, as far as influenctime scale for the production of the cat states proportion-
ing the final state in the cavity is concerned. ately, so that they are decohered by the same amount when-
(i) The interference peak of the ScHinger-cat state, ever they are produced. For the nonclassical states of the
which is a primary feature of this cat state, is not signifi- mirror described by Eq(22), the situation is somewhat bet-
cantly lowered by the decoherence prockes=e Figs. ®)—  ter, but not without its problems. By decreasikdthrough

7(d)], all though there is a phase diffusion of the state. Thew,,), one not only decreases the rate of decoherence but also

reasoning for this is the simple fact that the decoherence idecreases the spatial separation between the coherent state

towards the number state basis, which preserves the phot@omponents involved in the superposition. Hence the com-

0.7f

o.6f =1

0.2 4

0.1
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FIG. 7. Wigner functionW(x,y) of the cavity field at time =2 for various values of the motional damping constgutf the mirror.
We have taken the initial coherent state amplitude of the cavity mode to=i2 and that of the mirror to b@=2. The scaled coupling
parameter i«k=0.5. The quadratures andy and the Wigner functioW(x,y) are given here in dimensionless form.

ponents in the superposition may become more coherent, babciated with the phase distribution is hindered. But here
they also become lessnacroscopically distinguishahle also one can be optimistic from the viewpoint that the effect
However, in the generation of the superposition of two sucis not dominant unless the mirror is very heavily damped.
cessive Fock states, decreasing really does help. The rea- We have not addressed the problem of detecting the states
son is clear from Eqg(20). The components of the superpo- produced in the cavity because there exists extensive litera-
sition are Fock states of the cavity field and thereby do noture on this topid 14—20.

depend in any way on the paraméteiThe only contribution The primary aim of further work must be to solve the
of k comes in the amplitudes, and two successive Fock statesystem when the mirror is damped according to quantum
can always be made to have significant amplitudes whenev@rownian motion model$11,33 so that one can set up ex-
the measurement outcomeis about halfway between the plicit limits on the parameters such as the temperature and
peaks of the Gaussiang|¢,(7)) and (x| ¢,.1(7)), irre-  mass of the mirror required to observe the nonclassical states
spective of the value df. Thus there is at least one type of in the cavity in their most undecohered condition. Neverthe-
nonclassical state whose generation can be aided by incredsss, we expect that the feature of decoherence of the field

ing the mirror frequency. towards the number state basis should also be present in that
full solution, since any physically sensible decoherence
V1. CONCLUSION model must tend to localize the mirror state towards the co-

herent state basis. In addition, there are prospects to utilize
In conclusion, we would like to stress that the work pre-the system for tests of quantum Brownian motion, which can
sented here offers prospects for the observation of nonclae explored further. Also, we have considered starting ini-
sical features of light in the cavity. Even when the decoherdially with only a coherent state inside the cavity. One might
ence due to the mirror's motion is maximum, the be able to produce more interesting nonclassical states by
nonclassicality associated with the photon number distribustarting with nonclassical states. In fact, all that can be in-
tion in the cavity is preserved. However, nonclassicality asvestigated in the Kerr medium can be done with this system.
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Even more can be done with the mirror system perhaps be- e~ ib'bg—kala(b’-b)gib'b_ o-ka'a(bTe " ~be"). (A10)
cause of the opportunities of conditional measurements.
. . . . int .
Multiplying both sides on the right bg "® °, we arrive at
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e ibTbg—kaa(b"-b) _ g—ka'a(bTe " ~be") o -ibTb. (A11)

x @ ka'a(bTe " ~be') o—ibTb (A12)
APPENDIX A: DERIVATION OF THE TIME EVOLUTION
OPERATOR FOR THE UNDAMPED SYSTEM and to obtain the final expression given in E8), we need
) ] o only combine the arguments of the third and fourth exponen-
The time evolution operator is given by tials, which is readily achieved with the BCH relatig84].

_ —irafag—itbTb+iktafa(b+bT)
U(t)=e e ’ (A1) APPENDIX B: SOLUTION TO THE MASTER EQUATION

FOR THE SYSTEM WHEN

where t is the time multiplied byw,, k=9/w,, and THE MIRROR'S MOTION IS DAMPED

r=wqy/wy,. We now consider a unitary transformation using

the operator We need to solve Eq23), which contains two parts. The
o solution of the first part
T=g kaalb=b), (A2)
dp(t) i
Note that this is a displacement operator for the mirror in —ar ~ zlHeM] (BY)

which the displacement amplitude has been replaced by the
number operator for the cavity mode. Using the Baker-is known to be
Cambell-HausdorfBCH) expansion 34|, the effect of this

transformation is readily shown to be p(t)=U(t)p(0)UT(1), (B2)
TbT'=b+ka'a, (A3)  whereU(t) is given by Eq.(3). On the other hand, the sec-
ond part
Th'T'=b"+ka'a, (A4)
dolt) _ Z[Zb ()b™=b'bp(t)—p(t)b'™b] (B3
Ta'aTf=a'a. (A5) dt  2t<°F pru—p
Using the fact that is known to transform\;)(\ | as[31]
Uf(XhuT=f{uxu™) (A6) P”|M><M|ﬂPij<xi|xj><1‘e”‘>lme‘“’2><xje‘7“2|,(84)
for any functionf, unitary operatot), and arbitrary set of
operators{X;}, the effect of the transformation on the time where|\;) and|X;) are coherent states.
evolution operator is easily calculated to be Let the initial state of our system be
TU(t)TT:e—iraTate—ibTbt—ikz(aTa)Z_ (A7) p(0)=|a) a|.®|0){0|n, (B5)

Multiplying on the left by T™ and on the right byT, we that is, we assume the mirror to be in a vacuum state initially
obtain the following expression for the time evolution opera-(for simplicity). As the damping localizes the mirror state to

tor: a coherent state basis and corresponding to each number

state of the field the mirror is driven to a separate coherent
U(t)= e-ira'atgik?(a’a)’tgka’a(b’~b) g —ibTbtg —ka'a(b"~b) state, at any timethe general form of the density matrix will
(Ag)  be

(Note that to obtain this expression we have swapped various _

exponentials that contain commuting argumenta obtain p(D) n:%:() Pam(O[MM[ @] Dn( ¥, 1)) Dl ¥, D) m-

the final form ofU(t), we need to swap the last two expo- (B6)

nential factors in this expression. To acheive this we note

first that the BCH expansion gives Thus we can split the evolution of the entire system into

separate evolutions labeled byandn. In other words, we
e—ibTb[a‘ra(b‘r_b)]eibTb:a‘ra(bTe—it_beit), (A9) break our problem into that of calculating the evolution of
each of the entitie®,m(t)| dn(,t) ) dm(y,t)|m Separately.
and again using EqA6) we obtain In any small time stepAt during which evolution occurs
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only according to Eq(B2), the amplitudes of the coherent
states of the mirror change according to

dn(y,1) = (1—iAt) pn(y,t) +iknAt, (B7)
while if evolution occurs according to E¢B3), then
én(¥,1) = dn(y,1)(1— yAL/2). (B8)
Hence we can set up the differential equation
dén(y,t) : 4
—gr = iéa(v0+ikn—Sga(rt),  (BY

the solution for whicHwith initial condition ¢,(y,0)=0] is
given by
ikn

— 0 (1_a(ity2)t

(B10)

Next let us determine how,(t) evolves. Following Eq.
(B2) it evolves as

Por(1)— pam( 1) K (M°- M)A L-cost (B 1)
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while Eq. (B3) transforms
_ a— YAt
(D)= Pam(D{Bn(v.1)| (v, 1)) E 7 ")
= ppr(t) e [En(r0 = n(v0IyAt2) (B12)
where the smallness ofAt and the fact that

Im[ (D) P v1)* =0 [from Eq. (B10)] have been used.
Hence, evolvingp,(0) according to Eq(B11) and Eq.
(B12) alternately and taking the limikt— 0, we obtain

pnm(t):an(O)eikz(nz—mz)(t—sint)
Y[t ,
rex ‘§f0|¢n<%t>—¢m(7,t)| dt|.
(B13)

Combining Egs.(B10), (B13), and(B6) and evaluating the
integral in Eq.(B13), one can obtain Eq$24)—(26) of Sec.

V, which constitutes the complete solution for the density
matrix of the system at an arbitrary time.
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