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We calculate the spectrum of the micromaser with quantized motion of the pump f¢bris Scully, G.
M. Meyer, and H. Walther, Phys. Rev. Let6, 4144(1996)] in different velocity regimes. We show that when
the kinetic energy of the pump atoms is comparable to the atom-field interaction energy the spectrum of the
cavity field is no longer centered at the cavity frequency. In the case of very slow atoms huge broadenings and
shifts occur in the vicinity of the mazer resonances. We present approximate analytical results for the spectrum
that allow a comparison with the exact numerical calculatip84050-29477)01611-9

PACS numbe(s): 84.40.1k, 03.65.Nk, 32.86:t, 42.50.Dv

I. INTRODUCTION we define the steady-state spectrum
Th_e process o_f _microwave ampllflpanon via S(V_VC):Ref K(t)e i rotgt 1)
z-motion—induced emission of radiation, that is, mazer ac- 0

tion [1] has opened a new chapter of micromaser physics. In

the previous two paperg2,3] of this series—hereafter re- of the single mode resonator field with creation and annihi-
ferred to as paper | and Il—we have studied in great detailation operatorsa’ and a as the Fourier transform of the
the statistical properties of the micromaser with quantizedwo-time correlation function

center-of-mass motion of the pump atoms. Indeed, paper | + +

presents the general theory of the mazer including the deri- ~ K(D=(a'()a(0))=Tr¢, {a'(t)a(0)p+,(0)}.  (2)
vation of the master equation and the definition of the vari-
ous velocity regimes of the pump atoms. Paper Il analyze
the mazer for a smooth mode function and suggests a po
sible experimental realization. In the present paper we focu
on the spectrum of the mazer light in the various velocity
regimes.

We obtain the spectrum numerically from the eigenvalue
and the eigenvectors of the master equation. In particular, w
discuss the contributions of the different eigenvalues. For the _ + +
dominant eigenvalues we are able to derivg approximate ana- KO=Tre. U112 /(0)U(1)a(0)pr(0)}- &)
lytical expressions that we obtain from a perturbation expansince the field operata’(0) acts only on the field we get
sion around the mazer resonan¢@p

The outline of the paper is as follows. In Sec. Il we define K(t)=Tr{a’(0)ps(t)}, (4)
the spectrum and calculate it in Sec. Ill using the eigenvalues
and eigenvectors of the master equation. Section IV gives awhere we now trace over the field using the moment operator
overview of the spectrum of the micromaser in the different
velocity regimes. Throughout the paper we focus on the two 'Ef(t)ETr,{U(t)a(O)pr(O)UT(t)} (5)
analytically tractable mode functions discussed in papers |
and II. In Sec. V we present an analytical eigenvalue discusobtained by tracing over the reservoir. With the notation
sion at the mazer resonances. We conclude in Sec. VI byI(t)=(n|ps(t)|n+1) and taking the trace over the field
summarizing our main results. in the photon number representation we find from Eq.(4)

ere v; is the cavity frequency ang;,,(0) denotes the
lensity operator of the combined fietdeservoir € +r) sys-

m. We take the trace over both the field and the reservoir.
oreover, we assume that &0 we have reached steady
state.

With the time evolution operatdd(t) for the combined
ield+reservoir system, the correlation functi&ift) reads

- (1)
II. DEFINITION OF THE SPECTRUM K(D) ; n+1pn (D). ©)

In this section, we define the spectrum of the mazer an
introduce an operato}Ef that satisfies the same equation of
motion as the density operatpf of the field. This operator
¢ allows us to calculate the spectrum.

In accordance with the Wiener-Khintchine theoréd, pf(t)ETrr{U(t)pr(O)UT(t)}, )

?n the Markov approximation the moment operaiof(t)
satisfies5] the equation of motion for the field density op-
erator
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and we therefore obtalp(l)(t) from the time dependence of 1 ifo=sz=sL
the first off-diagonal elements of the field density operator u(z)= 0 otherwise (16)
p:. The latter we find from an eigenmode decomposition
presented in the following section. describes a mode with sharp edges for a cavity of lehgth
SinceU(t=0)=1 the initial condition forp (t) is along the motion of the atoms, whereas the $dahction
P (0)=(nla(0)p¢(0)[n+1)=n+1P(n+1), (8) w(2)=sech(22/L)= — an
cost(2z/L)

wherep;(0) andP(n)={n|p;(0)|n) denote the field density

operator and the corresponding photon statistics at steady,s 4 smooth behavior. Note that strictly speaking this mode
state, respectively. function extends from- to + but due to its exponential
decay has an effective rangelofIn contrast to paper II, we
lll. SPECTRUM FROM EIGENMODES include in the present paper a factor of 2 in the definition of
OF THE MASTER EQUATION the sech mode function as to obtain in the Rabi limit the
In this section, we represent the spectrum as a sum oqffectlve coupling strengt, defined in Eq(1) of paper |.
weighted Lorentzians and dispersion curves. The parameters As outlined in Sec. |l the time dependencepgfis iden-
of these curves, such as the widths of the Lorentzians or thefical to that of p¢. When we combine the elemengg" of
weights, follow from the eigenmodes of the master equationthe first off diagonal of the operatar; to the vectox™) with
The master equation, E(R9) of paper | of this series, for the components
the density operatgs; of the field has the property to couple

only elements along the diagonals. By introducing the abbre- XD ]=pP(1), (19
viation
. the vectorx® fulfills the differential equation
PE)EPn,n+1E<n|Pf|n+1> 9
W) =QWx(t) (19)
for the nth element of the first off diagonal we can write the
equation of motion fop(" in the form with the tridiagonal matrix
(1) (1)
= AV P B G ey (10 Bo~ o
. . AL g o
with the coefficients o I ! ! _ (20)
A(l) BL
2 2

AP=1[Ro RS e 1+ TonThne 1]+ ChpVn(n+1),
11
The eigenvalues-\") and eigenvectors(™) of this matrix
follow from the equation
—Cny(n+3/2), (12) Q=

and allow us to write the formal solution

BY=r[RanR: ni1t+ TanThni1— 11— C(np+1)(n+1/2)

— A (29
and

D=C(n,+1)V(n+1)(n+2). (13

We denote the atomic injection rate and the cavity decay

constant byr and C, respectively. The number of thermal

photons is1, . MoreoverRy , Tan, Rpns1, @andTy, o 1 are of the master equatio10). Here the coefficients, are
the amplitudes of reflectionR) and transmissionT) and  determined by the initial condition E¢8), that is
simultaneous transition into the lower stal® ©r remaining

IGE E ¢, IxPexp =\ Pt) (22)

in the upper stated) of an incident excited atom, respec- E c/x(/l)zx(”(O):(\/IP(l) \/EP(Z) O (23
tively. With 2 ’ ’
Ran=3(pr +ppn)s Tan=3(7r+1,) (14) When we substitute the formal solution ER2) for
(1) into the correlation functiofK(t), Eq. (6), we find
and

- K(t)=2>, K expg—A M), 24
Rone1=3(p7=pn)s Tonsa=2(ri—7)  (19) (V=2 Koexa=\AY 24
these amplitudes follow directlj2] from the amplitudes-, where we have introduced the weights

and p, of transmission and reflection of the dressed-state

cgmponeints*,yr;l}. Papers | a_nd Il discuss the cogfﬁments K,=c,> \/m[x(/l)]n. (25)
7, andp, for two mode functions: the mesa function n
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FIG. 1. The contributiorS,(v— ;) (solid line) of the /th ei-
genvalue to the spectrui®(v—v.) is a Lorentzian(dotted ling
weighted by RK , and a dispersion curv@ashed ling weighted
by ImK .. We define the linewidtld/C of the spectrum, which in
this case consists of the contribution from a single eigenvnjb)e
as the full width ofS(v—v,) at half its maximum. For this picture
we have usedP/C=1, Re&K, =1, and InK,=0.1.

After performing the Fourier transform df(t) using the
expression Eq(24) we obtain the spectrum

S<v—vc)52 S(v—)

of the resonator field. Hence each eigenvalffe contributes

a Lorentzian

centered at v,=v,—IM\) with a full width of

=Z ReK,L(D,,v,)+ImK,D(D,,v,)

LD, v,)=

D,
D2/+(v—v/)2

(26)

(27)

2D,=2Re\M) at half maximum and a dispersion curve

D(D/,V/)E

V=V,

as demonstrated in Fig. 1.
The integrated contribution

of S, is proportional to the weight Re,, and with the total

intensity

of the spectrum following from Eq$1) and(2), we get from

Eq. (26)

i

o]

S/ (v—v,)dv=mReK,

JOO S(v—wv.)dv=m(n)

—0

2 ReK,=(n).

D?/+(V_ V/)2

(28)

(29

(30

(31

The small perturbation due to the dispersion curve is
weighted by IniK .. It does not contribute to the integrated
spectrum but shifts some parts of the spectrum to different
frequencies, as shown in Fig. 1.

We conclude this section by noting that in general, the
matrix Q%) is tridiagonal and the eigenvalues and eigenvec-
tors can only be calculated numerically. In the mazer limit,
however, we can perform a perturbation expansion around
the mazer resonances discussed in papers | and Il. This pro-
cedure yields simple expressions fdf?, B, andc{V,
and we obtain a bidiagonal matr@X*). For the latter we can
calculate the eigenvalues and eigenvectors analytically.
Therefore, we are able to derive approximate analytical ex-
pressions for the spectrum, which is the topic of Sec. V.

IV. DISCUSSION OF THE SPECTRUM

As discussed in papers | and Il the reflection and trans-
mission coefficient,, andr, can be calculated analytically
for two mode functions: the mesa function and the 4ech
function. For these two mode functions we now discuss the
micromaser spectrum in the different velocity regimes of the
pump atoms: in the Rabi limit, where we have the usual
micromaser, in the intermediate regime, and in the mazer
limit.

A. Rabi limit

In the limit of very fast atoms with madd, that is, when
their kinetic energyE=%2k?/2M is much larger than the
atom-field interaction energfg=%2«%/2M, all atoms are
transmitted. In this limit, that is, fok/«>1, the amplitudes
p, and 7, for both mode functions reag, =0 and
m, =exp(kLFiyn+1g7) with gr=«?L/2k.  Here
7=LM/%Kk is the interaction time of the atom with the field.
Consequently, the master equation of the mazer (E9).of
paper |, reduces to that of the usual micromaddrand
shows the familiar dynamical and statistical properties. In
particular, Ref[7] has investigated the spectrum of the ma-
ser in the Rabi limit.

To bring out the influence of the center-of-mass motion
on the spectrum discussed in the next subsections we recall
in Figs. 2 and 3 the spectru8(v—v.), the number of pho-
tons(n), and the linewidttD of the spectrum in their depen-
dence on the pump parametér=r/Cgr for k/x=100.
Here and in the remainder of this paper we define the line-
width of the spectrum as its full width at half its maximum.
We note that in the Rabi limit, the characteristics of the
micromaser are independent of the mode function and are
identical to those of the usual micromaser without quantiza-
tion of the center-of-mass motion of the pump atoms. The
spectrum is always centered at the cavity frequency.

B. Intermediate regime

In the intermediate regime, when the kinetic energy of the
atom is comparable to the atom-field interaction energy, that
is, whenk/ k=1, the behavior of the micromaser with quan-
tized motion of the pump atoms is different from the usual
micromaser. As discussed in paper I, steady-state properties
such as the photon numbén) are now governed by the
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FIG. 2. SpectrunB(v—v.) and average photon numbg@r) of
the micromaser in the Rabi limit as a function of the pump param-
eter . The spectrum is always symmetric with respect to the cavity FIG. 4. SpectrunS(v—v.) and average photon numbg@r) of
frequencyv. . The trapping states of the micromaser reflect them-the micromaser with quantized motion of the atoms in the interme-
selves in the spectrum as explained in R&f. In this limit, neither ~ diate regime in their dependence on the paramkterHere we
the quantization of the center-of-mass motion of the atoms nor théave used the mesa mode function and the parametersGie50,
detailed shape of the mode function have any influence on the spek{«=1, andn,= 1074,

trum. Th t kéx=100,r/C=50, andn,=10"4. i . :
fum. The parameters afx ' andny the first off diagonal rather than the diagonal. The latter de-

. . termine the photon statistics.
parametekL. We therefore analyze the spectrum in the in-

termediate regime as a function of this parameter.

In Fig. 4 we show the spectruB(v— v.) and the number
of photons({n) in their dependence okL. Here we have In the case of ultracold atoms, that is whieh«<<1, the
used the mesa mode function. We note that the oscillations iRehavior of the micromaser changes dramatically. In contrast
the photon numbefn) translate themselves into oscillations t0 the Rabi limit and the intermediate regime, the cavity at
of the width and shift of the spectrum. Moreover, we observeSt€ady state contains now in general very few photons. Only
that with increasing paramett., the linewidth and the shift UNder appropriate conditions can the atoms resonantly de-
increase. To bring this out more clearly we show in Fig. SpQS't .photons Into _the resc_mator: We ther(_efore expect that
the photon numbexn), the linewidth D, and the shift this different behavior manifests itself also in t'h'e spectrum.

Moreover, now the spectrum depends sensitively on the

vmax— Ve Of the central frequency as a functionldf in the . . :
intermediate regime. We indicate the results for the mesa aq@o.de function. In the following, we therefore discuss the

the sech mode function by solid and dashed lines, respeC_lmlt (_)f ultracold atoms separately for the mesa and thesech
tively. For the sechfunction, we find that the characteristic function.

oscillations present for the mesa function are less pro-

nounced forn) and are absent in the linewidth and in the 30 ‘

shift. The overall behavior, however, is similar. Moreover, AN o
whereas(n) approaches a constant for large valuekbf

the linewidth and the shift continue to increase, as already
indicated by Fig. 4. This is due to the fact that the spectrum
is governed by the differential equation for the elements of 0

C. Limit of ultracold atoms

50 7 T

Ymax—Ve - Tl

Qlty

-10O 20

kL

0 ‘ 6m FIG. 5. Average numbem) of photons in the micromaser cav-

ity (top), exact numerical linewidtld (middle), and shifty,,— v,

of the spectruntbottom in the intermediate regime as a function of
FIG. 3. Average numbem) of photons(top) and exact numeri-  the parametekL. Solid and dashed lines correspond to the mesa

cal linewidthD of the micromaser spectrufibottom) in the Rabi  and to the sechmode function, respectively. With increasitd

limit as a function of the pump paramet@rThe parameters are the the linewidth and the shift of the spectrum increase. The parameters

same as in Fig. 2. are the same as in Fig. 4.
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FIG. 6. SpectrunB(v—r.) and average photon numbg@r) of
the micromaser in the mazer limit using the mesa mode function. At

Ymax—Ve

«xL=m/4/N resonances occur and the linewidth gets large. Before ¢ ﬂ/‘ j '
and after the resonances the spectrum gets shifted significantly. The ‘ » i p~
parameters are/C=50, k/k=0.01, andnb=10’4. 15 . X \
0 wL 3m
1. Mesa function
In Fig. 6 we show the micromaser spectrum and the 0.04 o) ) @
steady-state photon number over a large interval of values of '
. . L S(v—ve)
L. We note a very complex behavior in the vicinity of the T :
resonance§l,?] at o | E |
220 v=re 20
mar
kL= A (32) .
UN FIG. 8. Average numbefn) of photons(top), exact numerical
linewidth D (middle), and shifty,,— v. (bottom of the microma-
with N, m=1.2, ... . Tobring this out most clearly we ser in the mazer limit for the mesa mode function. At resonances,

show in Fig. 7 an enlargement of the spectra in the vicinit
of the (1,1) and the (2,1) resonances whefle= 7 and
xL=m/%/2, respectively. We recall from Sec. VI B of paper
| that (N,m) stands for the case &f—1 photons initially in
the cavity and ofn de Broglie half-wavelength fitting in the

there are huge broadenings of the spectrum. Before and after the

yresonances, the spectrum gets shifted away from the cavity fre-

guencyv.. Note that we always plot the full width at half maxi-
mum as the linewidth and the shift of the maximum as shift of the
spectrum as indicated in the bottom of figure. Here we show the
linewidth and the shift of the spectrum at three values<bf by

cavity. Note that in the vicinity of the (2,1) resonance thehorizontal solid and vertical dashed lines. Due to the complex shape
intensity of the spectrum is significantly smaller than in theof the spectrum those quantities provide only a rough description
and can display sudden jumps as shown by the spétréc) in the
vicinity of the (2,1) resonance at the bottom of the figure. These
examples clearly demonstrate that these definition® @ind v,

are problematic for certain cases. Again we have used the same
parameters as in Fig. 6.

vicinity of the (1,1) resonance. This is in complete agree-
ment with Fig. 9b) of paper | and Fig. 8 of the present
paper.

This complex behavior of the spectrum also comes out in
Fig. 8 where we show the average numbey of photons,
the linewidthD, and the shifty,,,— v. of the maximum of
the spectrum from the cavity frequency. At resonant values
of xL the linewidthD is significantly broader than the cavity
decay rateC. Between the resonances, both are approxi-

FIG. 7. SpectrunB(v—r.) and average photon numbg@r) of

the micromaser in the mazer limit in the vicinity of the (1,1) and .
(2,1) resonances, that is, at = = and L= /42, respectively. mately equal. Note that in the case of thenflL resonances

The behavior at the two resonances is fundamentally different: ai® Width of the resonances in the linewiddhis smaller than

the (2,1) resonance the spectrum splits symmetrically into twdh€ resonances in the steady-state photon nurherHow-

lines, whereas at the (1,1) resonance the spectrum broadens afMer, in the case of the (8) resonances they have about the
shifts as a whole. The integrated spectrum, and hence the averag@me width. Before and after the resonances, the spectrum
photon numbekn), is significantly larger at the (1,1) resonance €xperiences a significant shift. Note that before thenjl,
than at the (2,1) resonance. Here we have used the mesa motgsonances, this shift is towards higher frequencies whereas
function and the same parameters as in Fig. 6. after the resonances it is towards lower frequencies. In Sec.



56 QUANTUM THEORY OF THE MAZER. Ill. SPECTRUM 4169

10

50

plls}
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] Vs Ve J ld J\V/\\/L /\Vﬂ
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-15 y
0 0 5315 ) 320

v FIG. 10. Average humbein) of photons(top), exact numerical
Im K, --------------- e linewidth D (middle), and shifty,,,— v, (bottom) of the microma-
r """""""""""""" ser in the mazer limit for the se¢imode function. For small values

of kL (left side of the figurg the behavior is similar to that for the
mesa function. For large values aL (right side of the figurg
kL however, the resonances overlap significantly. The parameters are
the same as in Fig. 6.

ﬂ/l\"/_f

FIG. 9. Four lowest eigenvalueg? , A{Y, A{Y, and\{P de- _ _ o
picted by solid, dotted, short-, and long-dashed curves, respectively 1he behavior of the spectrum in the vicinity of these reso-
and their weights creating the spectrum shown in Fig. 7 in theifl@nces is the same as for the mesa function as long as the
dependence on the parametet. For each eigenvalua’® we  resonances do not overlap, that is wikér<1. In Fig. 10 we
show its real and imaginary part and the weight&Rand InK,,.  show the average numbén) of photons, the linewidtiD,
At the (1,1) resonance, that is, @t = 7, a single eigenvalue domi- and the shift,,,— v.. For small values okL, the behavior
nates the spectrum, whereas at the (2,1) resonance, that is, @t the resonances is similar to the case of the mesa function
xL=m/4/2, an interesting interplay between two eigenvalues oc-but with different resonant valuesL. For large values of
curs. The parameters are the same as in Fig. 6. kL, however, the resonances overlap significantly and as

V we investigate the behavior in the vicinity of these two shown in paper Il the emission probabilB¢missiof) shows
resonances for many values of Consequently, there is

garzggi‘z?;es in more detail using approximate analytical ©ore than one photon in the resonator at steady state. The

We conclude this subsection by displaying in Fig. 9 theﬁzlifgthoggnﬁgsﬁggér:;cl:se;ezi de)t(:]rg?ﬁewgla?stgﬁ/vz\;zriggg of
four lowest eigenvalues$, A{P, A", and\$? and their

weights contributing to the spectrum of Fig. 7. Here we usenlflcantly larger than the cavity decay rate
the notation of Eqs(21) and (22) for the numbering of the
eigenvalues. From the behavior of the weights in the vicinity
of the (1,1) resonance, we conclude that arowhd= 7 the

spectrum is dominated by the eigenvalug’ depicted in In this section, we discuss approximate analytical expres-
Fig. 9 by a solid curve. In contrast, in the vicinity of the sions for the micromaser spectrum in the mazer limit. In
(2,1) resonance, that is arourd = 7/4/2, an interplay be- particular, we focus on the complex behavior of the spectrum
tween the eigenvalues{ and \{?, depicted by a dotted near a resonance as discussed in Sec. IV C. Our treatment

V. APPROXIMATE ANALYTICAL RESULTS
FOR THE SPECTRUM IN THE MAZER LIMIT

curve, determines the spectrum. heavily makes use of the fact that the width b of the
_ resonances in the mazer limit depends on the pararkbter
2. seclf function The smallerk/ k, the sharper are the resonances. Indeed, in
In the case of the smooth sécimode function the reso- Paper Il a perturbation expansion in the vicinity of a general
nance conditiori3] reads (N,m) resonance has shown that the width is proportional to
k/«. In the present section we prove that the choice of the
2ym(m+1) mode function does not have a significant influence on the
KL:T' (33 statistical properties of the mazer near tNe=1 and the

N=2 resonance. In the following, we therefore first present
Note that due to the different definition of the mode functiongeneral considerations for tie=1 and theN =2 resonance,
Eqg. (17) this resonance condition differs by a factor of two which are followed by the examples of the mesa and the
from the resonance conditiqC16) of paper II. secl function.
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60 . D 1+ <n>
D which is significantly different from the familiar expression
C
D 6°+1 40
™ anmy (40

of the Schawlow-Townes linewidtf8,9]. Here we have as-
sumedn,=0 for comparison.

10

1. Mesa function

‘ According to Appendix A we find for the mesa function

the reflection amplitude
-10

. _ o id/2

0.99 1.0 =
" kL o Po =1 0dr2 4D
i - o and the expression
FIG. 11. Analytical resultgsolid line) for the linewidthD (top)
and the shiftv,,,— v (bottom) from the resonator frequenay. in )\81) 1 ro1+id/2
the immediate vicinity of thecL = 7r resonance compared with and —_— =4 — — (42
contrasted to the exact numerical resuldashed ling Here we C 2 2C1+09%4
have choserk/x=0.001, r/C=50, n,=0, and the mesa mode .
function. for the lowest eigenvalue, where
A. N=1 resonance d—( L mar / k 43
=| kL— — —
As shown in Appendix A only the eigenvalue N K
A~ E+ L(p—+1) (34) denotes the scaled distance to the resonancé®jyas de-
0 "2 2°F0 fined in paper Il. With the help of Eq.38) we therefore

i i arrive at the steady-state photon number
contributes to the approximate spectrum

1 r/2C
P(1)Reng (n)

= (44)
- . (35 1+r/2C+d%4
(ReAG)2+ (v—ve+Ima§Y)2

S(v—w¢)

o ) _ o According to our analysis the spectrum consists of a
whereP(1) is given in Eq(A17). Hence, in the mazer limit single Lorentzian with linewidth

and in the neighborhood of thé=1 resonance the spectrum
is a Lorentzian with a full width at half maximum of D r 1

—=1+= 4
D r C C 1+d%4 49
6=1+6(1+Rep6) (36)
and a maximum at
and with a maximum intensity at the frequency d 1
r B Vmax— V= — Z 2, (46)
Vmax— Vo= — Elmpo . (37 1+d%4

Here we have used E®1) for p, .
ACCOI’ding to this result, the width and the shift of the spec- We note the additional termy2C in the denominator of
trum are intimately connected with each other via the reflec<n>’ Eq. (44), which is absent in the expressions E(#2)
tion amplitudep, . Therefore, we can specify a Kramers- and(45) for the eigenvalue and the linewidth, respectively. It
Kronig relation between the width and the shiftna—vc.  causes the width ikL of the resonance ifn) to be larger
This explains the similarity between Fig. 11 and other resothan the width of the resonance B by a factor of
nance curves such as the real and imaginary part of the sSU§1 1 1/2C. Hence the resonance {m) is broader than the

ceptibility. . resonance in the spectral properties as shown in Fig. 8.
Furthermore, when we recall the relation £418), We conclude this subsection by comparing in Fig. 11
_ these approximate analytical expressions for the linewidth
(ny= r(1+Repg) (3g  andthe shift with the exact numerical curves k= 0.001.
2C+r(1+Repy) ' We find excellent agreement. Only on resonance, there is a

small deviation due to the second eigenvalue, which is not
the linewidth takes the form contained in this approximate analytical description.
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2. seclt function

28

According to Appendix A we find for this mode function

_ o idr

Po " m¥12=idr2’ (47
2 1 k

R

denotes the scaled distance to the resonance(38j. This
expression leads via Eq36) to the linewidth

-
0.84 0.8427

D T (m+1/2)2 9 i TV kL

c C (m+1/2)2+d?%4

where now

d=

FIG. 12. In the immediate vicinity of the (2,1) resonance at

and via Eq.(37) to the frequency shift kL= m/4/2 the two eigenvalues{" and\{? indicated by solid and
dotted lines, respectively, interchange their place in the natural se-
rd m+1/2 (50 guence of eigenvalues. We compare their exact fegl) and
g —— = ) . . . ;
max~ Ve 4 (m+1/22+d%4 imaginary (bottom) parts with the approximate expressions Egs.

(52) and (53) represented by dashed lines. Here we have used the

When we compare Eq¢41) and (47) for the reflection mesa mode function and the same parameters as in Fig. 6.

coefficientp, , EQgs.(45) and(49) for the linewidth, and Egs. h . ith th ical |
(46) and(50) for the shift of the spectrum close to the=1 They are in good agreement with the numerical results

resonance we find a great similarity. The only difference isShOWn in the left part of Fig. 9. The anly exception is the

an increasing broadening thwith increasing ordem. This  Cl0S€ vicinity ?f the resonance al = 77/.\/5- where the two

translates itself via Eqg43) and (48) into a broadening in elgenvalueaé ) a”d)\(; ) swap their position in the sequence

L, which in turn leads to a smearing out of the resonanc@f €igenvalues. To bring this out more clearly we compare in

for kL~ /K, as discussed in detail in paper IL. Fig. 12 our approximate results for these two eigenvalues
We conclude this subsection by noting that indeed at thavith the exact resuits in the vicinity ofL = =/%/2. We find

N=1 resonance the mode function does not play a signifithat the approximate solution describes the principal behav-
cant role for the properties of the radiation. ior of both the real and imaginary parts of the eigenvalues

very well, with the exception of the very close vicinity of the
resonance. Here we observe an avoided crossing of the
imaginary parts and an additional crossing of the real parts.

B. N=2 resonance

In Appendix B we have shown that close to tNe=2
resonance and within the framework of our approximations 2. seck function
the cavity field in steady state is in the vacuum state. Hence For th h de function both th ical and
within this approximation the spectrum vanishes, which re- or the smooth mode: function both he numerical an
flects the fact that the integrated spectrum and hence th%nalytlcal results S.hOW no fundament.al difference to the case
average number of photons at the (2,1) resonance is smallié;hfhmesa futr_lcltlon. Indied_aizgrdlng tq Appendix B, Eq.
than at the (1,1) resonance as expressed in Fig. 8. In th ) the essential parameter in this case is
section we briefly discuss the eigenvalues. )
B id/\2

1. Mesa function P1 _m+ 1/2—id/\/§,

According to Appendix B the reflection amplitude

(54)

which, apart from the ternrm+1/2 in the denominator, is

id/\2 identical to the expression E¢51) for the mesa function.
P1 :—1—id/\/§ (51 Hence it is not surprising that this leads to the same results
with the additional broadening of the resonances with in-
yields the lowest eigenvalues creasing ordersn.
No) 11 1-idly2 52 VI. CONCLUSION
C 2 2C 1+d?2

We have discussed the spectrum of the mazer in the dif-
ferent velocity regimes, that is, in the Rabi limit, in the in-
termediate regime, and in the mazer limit. In particular, we
ANY 3 ¢ 1+id/\2 have found a broadening and a shift of the spectrum near the
ot o2, 7Y (53) mazer resonances. To get a shift, the strict mazer limit is not
C 2 2C 1+d?%2 necessary. Indeed, already when the kinetic energy is of the

and
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order of the energy of the vacuum dressed states, the spec- id/2

trum gets shifted significantly. In the mazer regime the PO = mi12—id/2 (AS5)
broadening and the shift are most pronounced. Moreover,

our approximate analytical treatment shows an interestingnq

connection between the linewidth and the frequency shift of

the spectrum provided by the complex amplitude of the re- _ (=1)™(m+1/2)

flected matter wave, that is of the pump atoms. In this way T T T 12=id2 (A6)
the center-of-mass motion of the atoms manifests itself in the

spectrum of the quantized electromagnetic field in the resosince our definition of the mode function, E@.7), differs

nator. from the one used in paper Il, E(), by a factor of two in
the argument of the sech function, we have substituted in
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APPENDIX A: SPECTRUM NEAR N=1 RESONANCE Bﬁ”= 1 (A8)
In this Appendix, we derive approximate analytical ex- —C|{n+ > otherwise,

pressions for the eigenvalues, the zeroth eigenvector, and the

mazer spectrum in the neighborhood of the 1 resonance. g

The present treatment is valid for both mode functions and in

the absence of thermal photons, thatrig=0. CE]”:C (n+1)(n+2), (A9)
For N=1 we find from the resonance conditions Egs.

(C14 and (C20 of paper Il the resonance photon numberwhere we have assumeg=0. Therefore the matrix
N,es— 0,15,80,255. .. andn,=0,3,8,24... for themesa

and the sechfunction, respectively. In general, there are so B ¢V
few photons in the resonator that we can neglect the higher 0 AL b
photon numbers. In this case for both the mesa function and QW= 1 1 , (A10)
the sech function the amplitudes of reflection and transmis- 0 8(21)
sion for theN=1 type resonance take the form
N B po ifn=0 defined by Eq(20), is bidiagonal and we can read the eigen-
Pn="1pn=1 -1 otherwise (A1) values
& w_C. -
and Ao '=—B; :E—F E(po +1) (Al11)
7o ifn=0
_ and
™=0, 7, :{ 0 otherwise. (A2)
1
NP =—BY=C|/+5 (A12)

Here only the coefficients, andr, depend on the form of

the mode function. In the case of the mesa function Eq, ., . .
(C11) of paper Il yields with ~=1,2,3 ... directly from the diagonal.

We now calculate the expansion coefficieatsaccording

id/2 to Eq.(23). We therefore have to first derive the steady-state
PO =T 5d/2 (A3)  photon statistics
r\" 5 PemissiofM—1
and P(n):P(O) _ H emlSSIOf( ) (A13)
C m=1 m
_(-ynm
o =1 4/2" (A4) " using the emission probability

whereas for the seémode Eqs(C18) and(C19 of paper Il

L e 2
provide us with Pemissiot N) = Z(|Pn ~Pn | +|Tn —Tn | ) (A14)
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as shown in paper I. When we substitute Ed@sl) and(A2) In Sec. V we compare these approximate analytical results
into Eq. (A14) we find with the exact numerical treatment.

(1+Repg)/2 if n=0
Pemissio N) = 0 otherwise (A15) APPENDIX B: SPECTRUM NEAR N=2 RESONANCE

In this Appendix, we perform an analysis analogous to
Here we have used the constraint Appendix A and derive approximate analytical expressions
for the eigenvalues and the spectrum in the mazer limit. We
now focus on theN=2 resonance.

We recall from Eqs(C14) and(C20 of paper Il the val-
uesn,es~1,31,161,511... andn,~1,7,17,49... of the
resonance photon numbers corresponding to the mesa and
the sech function, respectively. Again neglecting higher
photon numbers, the generdl=2 resonance gives rise to

lpo |2+ 75 2=1 (A16)

for particle conservation.
Hence from Eq(A13) we arrive at the steady-state pho-
ton statistics

2C

. n=0, the amplitudes
2C+r(1+Repgp)
B p; ifn=1
P(n)={ r(1+Repy) _ (ALD) pn=—1, p“_:| o otherwise BY
2C+r(1+Repy) '
_ of reflection and the amplitudes
L 0,n=23,...
with the steady-state photon number 7, ifn=1
=0, 7, = _ (B2)
f(1+Repg) 0 otherwise
<n = — . (A18)
2C+r(1+Repgy)

of transmission. These results are valid for both mode func-
tions. For the mesa function we find from EQ.11) of paper

Note that according to this equatign) is always smaller - )
Il the explicit expressions

than unity. This is consistent with our starting approximation
of neglecting the higher photon numbersnp,.

With the help of Eq.A17) the initial condition Eq.(23) id/\/E
reduces to p=—"" = (B3)
1-id/\2
(1) _ T
ZO c xP=(J1P(1),0,0,..)". A19) .4
The zeroth eigenvector (—1)m
(1) T n= o (B4)
x=(1,00...) (A20) 1-id/\2
immediately yields whereas Eqs(C18 and(C19 of paper Il predict
c,=KM=5,,P(1). (A21)
_ 1 _ B id/\2
Therefore, only the eigenvalues’) contributes to the spec- p=—= (B5)
trum and we find according to Eq&6)—(28) m+1/2—id/\2
P(1)Rerg" and
V=V = , (A22
Sl (ReAG")2+ (v—ve+1ImagY)2 (A22)
i ] ) ) _ ~ (=1)™(m+1/2
that is, a Lorentzian with a full width at half maximum of TE=E——— (B6)
m+ 1/2—id/\2
D 2Ra" r _
c~ ¢ “ltgttRen )- (A23) for the case of the seélpotential. Again as in Appendix A
) . we have substituted/2 for d in the expressions of paper Il.
The maximum of the spectrum E@A22) lies at the fre- Following the example of Appendix A the results fof
quency and 7, , Egs.(B1) and(B2), lead to
r _
Vmax— Vo=~ IMAG = — Simpg . (A24) AP =0, (B7)
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[ C _ 1
— 5= 5l(p1)*+1], ifn=0 NP=-B=C|/+5], (B13)
L 3C r _ where/=2,3,4 ....
BY=({ — - 31t ifn=1 (B8) To derive the expansion coefficierts from Eq.(23) we
first calculate the emission probabiIit?emissior(n),+ Eq.
1 (Al14), using the expressions Eq®&1) and(B2) for p,, and
- C( n+ 5) otherwise, 7, . After minor algebra we arrive at
\
(1+Rep;)/2 ifn=1
and Pemissiot N) = . (B14)
0 otherwise,
cV=c(n+1)(n+2), (B9)
where we have used the condition
where again we have assumag=0. As for theN=1 reso-
nance in Appendix A, the matrix lpy |2+| 7 [2=1 (B15)

Bg)l) Cgl)
0 B(l) C(l)
QW= S (B10)

o BY

defined by Eq(20), is again bidiagonal. Hence the two low-

est eigenvalues read

C
o= —B5"= 5+ 5[(p1)* +1] (B11)
and
3C r _
M= —BY=""+5(ps +1). (B12)

The higher eigenvalues follow from

for particle conservation. Due tBgissiof 0)=0 the steady-
state photon statistics reduces fg/=0 to

1, n=0

P(n)=
(n) 0, n=1,

(B16)

that is, to the photon statistics of the vacuum.
Hence we find from the condition Eq3), that is, from
>%_oc,xXP=0, the coefficients
c,=0 (B17)
and the resulting spectrum is
S(v—v,)=0. (B18)

This is consistent with Eq.30) when we recall that due to
Eg. (B16) we have(n)=0.
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