
PHYSICAL REVIEW A NOVEMBER 1997VOLUME 56, NUMBER 5
Quantum theory of the mazer. III. Spectrum
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We calculate the spectrum of the micromaser with quantized motion of the pump atoms@M. O. Scully, G.
M. Meyer, and H. Walther, Phys. Rev. Lett.76, 4144~1996!# in different velocity regimes. We show that when
the kinetic energy of the pump atoms is comparable to the atom-field interaction energy the spectrum of the
cavity field is no longer centered at the cavity frequency. In the case of very slow atoms huge broadenings and
shifts occur in the vicinity of the mazer resonances. We present approximate analytical results for the spectrum
that allow a comparison with the exact numerical calculations.@S1050-2947~97!01611-9#

PACS number~s!: 84.40.Ik, 03.65.Nk, 32.80.2t, 42.50.Dv
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I. INTRODUCTION

The process of microwave amplification v
z-motion–induced emission of radiation, that is, mazer
tion @1# has opened a new chapter of micromaser physics
the previous two papers@2,3# of this series—hereafter re
ferred to as paper I and II—we have studied in great de
the statistical properties of the micromaser with quantiz
center-of-mass motion of the pump atoms. Indeed, pap
presents the general theory of the mazer including the d
vation of the master equation and the definition of the va
ous velocity regimes of the pump atoms. Paper II analy
the mazer for a smooth mode function and suggests a
sible experimental realization. In the present paper we fo
on the spectrum of the mazer light in the various veloc
regimes.

We obtain the spectrum numerically from the eigenvalu
and the eigenvectors of the master equation. In particular
discuss the contributions of the different eigenvalues. For
dominant eigenvalues we are able to derive approximate
lytical expressions that we obtain from a perturbation exp
sion around the mazer resonances@3#.

The outline of the paper is as follows. In Sec. II we defi
the spectrum and calculate it in Sec. III using the eigenval
and eigenvectors of the master equation. Section IV give
overview of the spectrum of the micromaser in the differe
velocity regimes. Throughout the paper we focus on the
analytically tractable mode functions discussed in pape
and II. In Sec. V we present an analytical eigenvalue disc
sion at the mazer resonances. We conclude in Sec. V
summarizing our main results.

II. DEFINITION OF THE SPECTRUM

In this section, we define the spectrum of the mazer
introduce an operatorr̃ f that satisfies the same equation
motion as the density operatorr f of the field. This operator
r̃ f allows us to calculate the spectrum.

In accordance with the Wiener-Khintchine theorem@4#,
561050-2947/97/56~5!/4164~11!/$10.00
-
In

il
d
I

ri-
i-
s
s-
s

s
e
e
a-
-

s
an
t
o
I

s-
y

d

we define the steady-state spectrum

S~n2nc!5ReE
0

`

K~ t !e2 i ~n2nc!tdt ~1!

of the single mode resonator field with creation and ann
lation operatorsa† and a as the Fourier transform of th
two-time correlation function

K~ t ![^a†~ t !a~0!&5Trf 1r$a
†~ t !a~0!r f 1r~0!%. ~2!

Here nc is the cavity frequency andr f 1r(0) denotes the
density operator of the combined field1reservoir (f 1r ) sys-
tem. We take the trace over both the field and the reserv
Moreover, we assume that att50 we have reached stead
state.

With the time evolution operatorU(t) for the combined
field1reservoir system, the correlation functionK(t) reads

K~ t !5Trf 1r$U
†~ t !a†~0!U~ t !a~0!r f 1r~0!%. ~3!

Since the field operatora†(0) acts only on the field we get

K~ t !5Trf$a
†~0! r̃ f~ t !%, ~4!

where we now trace over the field using the moment oper

r̃ f~ t ![Trr$U~ t !a~0!r f 1r~0!U†~ t !% ~5!

obtained by tracing over the reservoir. With the notati
r̃ n

(1)(t)[^nu r̃ f(t)un11& and taking the trace over the fiel
in the photon number representationun& we find from Eq.~4!

K~ t !5(
n

An11 r̃ n
~1!~ t !. ~6!

In the Markov approximation the moment operatorr̃ f(t)
satisfies@5# the equation of motion for the field density op
erator

r f~ t ![Trr$U~ t !r f 1r~0!U†~ t !%, ~7!
4164 © 1997 The American Physical Society
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56 4165QUANTUM THEORY OF THE MAZER. III. SPECTRUM
and we therefore obtainr̃ n
(1)(t) from the time dependence o

the first off-diagonal elements of the field density opera
r f . The latter we find from an eigenmode decomposit
presented in the following section.

SinceU(t50)51 the initial condition forr̃ n
(1)(t) is

r̃ n
~1!~0!5^nua~0!r f~0!un11&5An11P~n11!, ~8!

wherer f(0) andP(n)5^nur f(0)un& denote the field density
operator and the corresponding photon statistics at ste
state, respectively.

III. SPECTRUM FROM EIGENMODES
OF THE MASTER EQUATION

In this section, we represent the spectrum as a sum
weighted Lorentzians and dispersion curves. The parame
of these curves, such as the widths of the Lorentzians or t
weights, follow from the eigenmodes of the master equat

The master equation, Eq.~29! of paper I of this series, for
the density operatorr f of the field has the property to coup
only elements along the diagonals. By introducing the abb
viation

rn
~1![rn,n11[^nur f un11& ~9!

for thenth element of the first off diagonal we can write th
equation of motion forrn

(1) in the form

ṙn
~1!5An

~1!rn21
~1! 1Bn

~1!rn
~1!1Cn

~1!rn11
~1! ~10!

with the coefficients

An
~1![r @Rb,nRb,n11* 1Tb,nTb,n11* #1CnbAn~n11!,

~11!

Bn
~1![r @Ra,nRa,n11* 1Ta,nTa,n11* 21#2C~nb11!~n11/2!

2Cnb~n13/2!, ~12!

and

Cn
~1![C~nb11!A~n11!~n12!. ~13!

We denote the atomic injection rate and the cavity de
constant byr and C, respectively. The number of therm
photons isnb . Moreover,Ra,n , Ta,n , Rb,n11, andTb,n11 are
the amplitudes of reflection (R) and transmission (T) and
simultaneous transition into the lower state (b) or remaining
in the upper state (a) of an incident excited atom, respe
tively. With

Ra,n[ 1
2 ~rn

11rn
2!, Ta,n[ 1

2 ~tn
11tn

2! ~14!

and

Rb,n11[ 1
2 ~rn

12rn
2!, Tb,n11[ 1

2 ~tn
12tn

2! ~15!

these amplitudes follow directly@2# from the amplitudestn
6

and rn
6 of transmission and reflection of the dressed-st

componentsugn11
6 &. Papers I and II discuss the coefficien

tn
6 andrn

6 for two mode functions: the mesa function
r
n

dy

of
rs
ir
.

e-

y

e

u~z![H 1 if 0<z<L

0 otherwise
~16!

describes a mode with sharp edges for a cavity of lengtL
along the motion of the atoms, whereas the sech2 function

u~z![sech2~2z/L ![
1

cosh2~2z/L !
~17!

has a smooth behavior. Note that strictly speaking this m
function extends from2` to 1` but due to its exponentia
decay has an effective range ofL. In contrast to paper II, we
include in the present paper a factor of 2 in the definition
the sech2 mode function as to obtain in the Rabi limit th
effective coupling strengthg, defined in Eq.~1! of paper I.

As outlined in Sec. II the time dependence ofr f is iden-
tical to that of r̃ f . When we combine the elementsr̃ n

(1) of

the first off diagonal of the operatorr̃ f to the vectorx(1) with
the components

@x~1!~ t !#n[ r̃ n
~1!~ t !, ~18!

the vectorx(1) fulfills the differential equation

ẋ~1!~ t !5Q~1!x~1!~ t ! ~19!

with the tridiagonal matrix

Q~1![S B0
~1! C0

~1!

A1
~1! B1

~1! C1
~1!

A2
~1! B2

~1!
�

� �

D . ~20!

The eigenvalues2l l
(1) and eigenvectorsxl

(1) of this matrix
follow from the equation

Q~1!xl
~1!52l l

~1!xl
~1! ~21!

and allow us to write the formal solution

r̃ n
~1!~ t !5(

l
cl @xl

~1!#nexp~2l l
~1!t ! ~22!

of the master equation~10!. Here the coefficientscl are
determined by the initial condition Eq.~8!, that is

(
l

cl xl
~1![x~1!~0!5„A1P~1!,A2P~2!, . . . …T. ~23!

When we substitute the formal solution Eq.~22! for
r̃ n

(1)(t) into the correlation functionK(t), Eq. ~6!, we find

K~ t !5(
l

K l exp~2l l
~1!t !, ~24!

where we have introduced the weights

K l [cl (
n

An11@xl
~1!#n . ~25!
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4166 56SCHRÖDER, VOGEL, SCHLEICH, SCULLY, AND WALTHER
After performing the Fourier transform ofK(t) using the
expression Eq.~24! we obtain the spectrum

S~n2nc![(
l

Sl ~n2nc!

5(
l

ReK l L~D l ,n l !1ImK l D~D l ,n l !

~26!

of the resonator field. Hence each eigenvaluel l
(1) contributes

a Lorentzian

L~D l ,n l ![
D l

D l
2 1~n2n l !2

~27!

centered at n l 5nc2Iml l
(1) with a full width of

2D l [2Rel l
(1) at half maximum and a dispersion curve

D~D l ,n l ![
n2n l

D l
2 1~n2n l !2

~28!

as demonstrated in Fig. 1.
The integrated contribution

E
2`

`

Sl ~n2nc!dn5pReK l ~29!

of Sl is proportional to the weight ReK l , and with the total
intensity

E
2`

`

S~n2nc!dn5p^n& ~30!

of the spectrum following from Eqs.~1! and~2!, we get from
Eq. ~26!

(
l

ReK l 5^n&. ~31!

FIG. 1. The contributionSl (n2nc) ~solid line! of the l th ei-
genvalue to the spectrumS(n2nc) is a Lorentzian~dotted line!
weighted by ReK l and a dispersion curve~dashed line! weighted
by ImK l . We define the linewidthD/C of the spectrum, which in
this case consists of the contribution from a single eigenvaluel l

(1) ,
as the full width ofS(n2nc) at half its maximum. For this picture
we have usedl l

(1)/C51, ReK l 51, and ImK l 50.1.
The small perturbation due to the dispersion curve
weighted by ImK l . It does not contribute to the integrate
spectrum but shifts some parts of the spectrum to differ
frequencies, as shown in Fig. 1.

We conclude this section by noting that in general, t
matrix Q(1) is tridiagonal and the eigenvalues and eigenv
tors can only be calculated numerically. In the mazer lim
however, we can perform a perturbation expansion aro
the mazer resonances discussed in papers I and II. This
cedure yields simple expressions forAn

(1) , Bn
(1) , and Cn

(1) ,
and we obtain a bidiagonal matrixQ(1). For the latter we can
calculate the eigenvalues and eigenvectors analytica
Therefore, we are able to derive approximate analytical
pressions for the spectrum, which is the topic of Sec. V.

IV. DISCUSSION OF THE SPECTRUM

As discussed in papers I and II the reflection and tra
mission coefficientsrn

6 andtn
6 can be calculated analyticall

for two mode functions: the mesa function and the se2

function. For these two mode functions we now discuss
micromaser spectrum in the different velocity regimes of
pump atoms: in the Rabi limit, where we have the us
micromaser, in the intermediate regime, and in the ma
limit.

A. Rabi limit

In the limit of very fast atoms with massM , that is, when
their kinetic energyE[\2k2/2M is much larger than the
atom-field interaction energy\g[\2k2/2M , all atoms are
transmitted. In this limit, that is, fork/k@1, the amplitudes
rn

6 and tn
6 for both mode functions readrn

650 and
tn

65exp(ikL7iAn11gt) with gt5k2L/2k. Here
t5LM /\k is the interaction time of the atom with the field
Consequently, the master equation of the mazer, Eq.~29! of
paper I, reduces to that of the usual micromaser@6# and
shows the familiar dynamical and statistical properties.
particular, Ref.@7# has investigated the spectrum of the m
ser in the Rabi limit.

To bring out the influence of the center-of-mass moti
on the spectrum discussed in the next subsections we r
in Figs. 2 and 3 the spectrumS(n2nc), the number of pho-
tons^n&, and the linewidthD of the spectrum in their depen
dence on the pump parameteru5Ar /Cgt for k/k5100.
Here and in the remainder of this paper we define the li
width of the spectrum as its full width at half its maximum
We note that in the Rabi limit, the characteristics of t
micromaser are independent of the mode function and
identical to those of the usual micromaser without quanti
tion of the center-of-mass motion of the pump atoms. T
spectrum is always centered at the cavity frequency.

B. Intermediate regime

In the intermediate regime, when the kinetic energy of
atom is comparable to the atom-field interaction energy, t
is, whenk/k'1, the behavior of the micromaser with qua
tized motion of the pump atoms is different from the usu
micromaser. As discussed in paper II, steady-state prope
such as the photon number^n& are now governed by the
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56 4167QUANTUM THEORY OF THE MAZER. III. SPECTRUM
parameterkL. We therefore analyze the spectrum in the
termediate regime as a function of this parameter.

In Fig. 4 we show the spectrumS(n2nc) and the number
of photons^n& in their dependence onkL. Here we have
used the mesa mode function. We note that the oscillation
the photon number̂n& translate themselves into oscillation
of the width and shift of the spectrum. Moreover, we obse
that with increasing parameterkL, the linewidth and the shift
increase. To bring this out more clearly we show in Fig
the photon number̂ n&, the linewidth D, and the shift
nmax2nc of the central frequency as a function ofkL in the
intermediate regime. We indicate the results for the mesa
the sech2 mode function by solid and dashed lines, resp
tively. For the sech2 function, we find that the characterist
oscillations present for the mesa function are less p
nounced for̂ n& and are absent in the linewidth and in th
shift. The overall behavior, however, is similar. Moreove
whereaŝ n& approaches a constant for large values ofkL,
the linewidth and the shift continue to increase, as alre
indicated by Fig. 4. This is due to the fact that the spectr
is governed by the differential equation for the elements

FIG. 2. SpectrumS(n2nc) and average photon number^n& of
the micromaser in the Rabi limit as a function of the pump para
eteru. The spectrum is always symmetric with respect to the ca
frequencync . The trapping states of the micromaser reflect the
selves in the spectrum as explained in Ref.@7#. In this limit, neither
the quantization of the center-of-mass motion of the atoms nor
detailed shape of the mode function have any influence on the s
trum. The parameters arek/k5100, r /C550, andnb51024.

FIG. 3. Average number̂n& of photons~top! and exact numeri-
cal linewidth D of the micromaser spectrum~bottom! in the Rabi
limit as a function of the pump parameteru. The parameters are th
same as in Fig. 2.
-
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the first off diagonal rather than the diagonal. The latter d
termine the photon statistics.

C. Limit of ultracold atoms

In the case of ultracold atoms, that is whenk/k!1, the
behavior of the micromaser changes dramatically. In contr
to the Rabi limit and the intermediate regime, the cavity
steady state contains now in general very few photons. O
under appropriate conditions can the atoms resonantly
posit photons into the resonator. We therefore expect th
this different behavior manifests itself also in the spectrum
Moreover, now the spectrum depends sensitively on t
mode function. In the following, we therefore discuss th
limit of ultracold atoms separately for the mesa and the sec2

function.

-
y
-

e
c-

FIG. 4. SpectrumS(n2nc) and average photon number^n& of
the micromaser with quantized motion of the atoms in the interm
diate regime in their dependence on the parameterkL. Here we
have used the mesa mode function and the parameters arer /C550,
k/k51, andnb51024.

FIG. 5. Average number̂n& of photons in the micromaser cav-
ity ~top!, exact numerical linewidthD ~middle!, and shiftnmax2nc

of the spectrum~bottom! in the intermediate regime as a function o
the parameterkL. Solid and dashed lines correspond to the me
and to the sech2 mode function, respectively. With increasingkL
the linewidth and the shift of the spectrum increase. The paramet
are the same as in Fig. 4.
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4168 56SCHRÖDER, VOGEL, SCHLEICH, SCULLY, AND WALTHER
1. Mesa function

In Fig. 6 we show the micromaser spectrum and
steady-state photon number over a large interval of value
kL. We note a very complex behavior in the vicinity of th
resonances@1,2# at

kL5
mp

A4 N
, ~32!

with N, m51,2, . . . . To bring this out most clearly we
show in Fig. 7 an enlargement of the spectra in the vicin
of the (1,1) and the (2,1) resonances wherekL5p and
kL5p/A4 2, respectively. We recall from Sec. VI B of pap
I that (N,m) stands for the case ofN21 photons initially in
the cavity and ofm de Broglie half-wavelength fitting in the
cavity. Note that in the vicinity of the (2,1) resonance t
intensity of the spectrum is significantly smaller than in t

FIG. 6. SpectrumS(n2nc) and average photon number^n& of
the micromaser in the mazer limit using the mesa mode function
kL5mp/A4 N resonances occur and the linewidth gets large. Bef
and after the resonances the spectrum gets shifted significantly
parameters arer /C550, k/k50.01, andnb51024.

FIG. 7. SpectrumS(n2nc) and average photon number^n& of
the micromaser in the mazer limit in the vicinity of the (1,1) a
(2,1) resonances, that is, atkL5p and kL5p/A4 2, respectively.
The behavior at the two resonances is fundamentally differen
the (2,1) resonance the spectrum splits symmetrically into
lines, whereas at the (1,1) resonance the spectrum broaden
shifts as a whole. The integrated spectrum, and hence the ave
photon number̂ n&, is significantly larger at the (1,1) resonan
than at the (2,1) resonance. Here we have used the mesa
function and the same parameters as in Fig. 6.
e
of

y

vicinity of the (1,1) resonance. This is in complete agre
ment with Fig. 9~b! of paper I and Fig. 8 of the presen
paper.

This complex behavior of the spectrum also comes ou
Fig. 8 where we show the average number^n& of photons,
the linewidthD, and the shiftnmax2nc of the maximum of
the spectrum from the cavity frequency. At resonant valu
of kL the linewidthD is significantly broader than the cavit
decay rateC. Between the resonances, both are appro
mately equal. Note that in the case of the (1,m) resonances
the width of the resonances in the linewidthD is smaller than
the resonances in the steady-state photon number^n&. How-
ever, in the case of the (2,m) resonances they have about t
same width. Before and after the resonances, the spec
experiences a significant shift. Note that before the (1,m)
resonances, this shift is towards higher frequencies whe
after the resonances it is towards lower frequencies. In S

t
e
he

at
o
and
ge

ode

FIG. 8. Average number̂n& of photons~top!, exact numerical
linewidth D ~middle!, and shiftnmax2nc ~bottom! of the microma-
ser in the mazer limit for the mesa mode function. At resonanc
there are huge broadenings of the spectrum. Before and afte
resonances, the spectrum gets shifted away from the cavity
quencync . Note that we always plot the full width at half max
mum as the linewidth and the shift of the maximum as shift of
spectrum as indicated in the bottom of figure. Here we show
linewidth and the shift of the spectrum at three values ofkL by
horizontal solid and vertical dashed lines. Due to the complex sh
of the spectrum those quantities provide only a rough descrip
and can display sudden jumps as shown by the spectra~a!–~c! in the
vicinity of the ~2,1! resonance at the bottom of the figure. The
examples clearly demonstrate that these definitions ofD and nmax

are problematic for certain cases. Again we have used the s
parameters as in Fig. 6.
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56 4169QUANTUM THEORY OF THE MAZER. III. SPECTRUM
V we investigate the behavior in the vicinity of these tw
resonances in more detail using approximate analytical
pressions.

We conclude this subsection by displaying in Fig. 9 t
four lowest eigenvaluesl0

(1) , l1
(1) , l2

(1) , andl3
(1) and their

weights contributing to the spectrum of Fig. 7. Here we u
the notation of Eqs.~21! and ~22! for the numbering of the
eigenvalues. From the behavior of the weights in the vicin
of the (1,1) resonance, we conclude that aroundkL5p the
spectrum is dominated by the eigenvaluel0

(1) depicted in
Fig. 9 by a solid curve. In contrast, in the vicinity of th
(2,1) resonance, that is aroundkL5p/A4 2, an interplay be-
tween the eigenvaluesl0

(1) and l1
(1) , depicted by a dotted

curve, determines the spectrum.

2. sech2 function

In the case of the smooth sech2 mode function the reso
nance condition@3# reads

kL5
2Am~m11!

A4 N
. ~33!

Note that due to the different definition of the mode functi
Eq. ~17! this resonance condition differs by a factor of tw
from the resonance condition~C16! of paper II.

FIG. 9. Four lowest eigenvaluesl0
(1) , l1

(1) , l2
(1) , andl3

(1) de-
picted by solid, dotted, short-, and long-dashed curves, respect
and their weights creating the spectrum shown in Fig. 7 in th
dependence on the parameterkL. For each eigenvaluel l

(1) we
show its real and imaginary part and the weights ReK l and ImK l .
At the (1,1) resonance, that is, atkL5p, a single eigenvalue domi
nates the spectrum, whereas at the (2,1) resonance, that
kL5p/A4 2, an interesting interplay between two eigenvalues
curs. The parameters are the same as in Fig. 6.
x-

e

y

The behavior of the spectrum in the vicinity of these res
nances is the same as for the mesa function as long as
resonances do not overlap, that is whenkL!1. In Fig. 10 we
show the average number^n& of photons, the linewidthD,
and the shiftnmax2nc . For small values ofkL, the behavior
at the resonances is similar to the case of the mesa func
but with different resonant valueskL. For large values of
kL, however, the resonances overlap significantly and
shown in paper II the emission probabilityPemission(n) shows
resonances for many values ofn. Consequently, there is
more than one photon in the resonator at steady state.
shift of the spectrum is less extreme due to the averagin
neighboring resonances and the linewidthD is always sig-
nificantly larger than the cavity decay rateC.

V. APPROXIMATE ANALYTICAL RESULTS
FOR THE SPECTRUM IN THE MAZER LIMIT

In this section, we discuss approximate analytical expr
sions for the micromaser spectrum in the mazer limit.
particular, we focus on the complex behavior of the spectr
near a resonance as discussed in Sec. IV C. Our treatm
heavily makes use of the fact that the width inkL of the
resonances in the mazer limit depends on the parameterk/k.
The smallerk/k, the sharper are the resonances. Indeed
paper II a perturbation expansion in the vicinity of a gene
(N,m) resonance has shown that the width is proportiona
k/k. In the present section we prove that the choice of
mode function does not have a significant influence on
statistical properties of the mazer near theN51 and the
N52 resonance. In the following, we therefore first pres
general considerations for theN51 and theN52 resonance,
which are followed by the examples of the mesa and
sech2 function.

ly
ir

at
-

FIG. 10. Average number̂n& of photons~top!, exact numerical
linewidth D ~middle!, and shiftnmax2nc ~bottom! of the microma-
ser in the mazer limit for the sech2 mode function. For small values
of kL ~left side of the figure!, the behavior is similar to that for the
mesa function. For large values ofkL ~right side of the figure!,
however, the resonances overlap significantly. The parameters
the same as in Fig. 6.
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A. N51 resonance

As shown in Appendix A only the eigenvalue

l0
~1!'

C

2
1

r

2
~r0

211! ~34!

contributes to the approximate spectrum

S~n2nc!5
P~1!Rel0

~1!

~Rel0
~1!!21~n2nc1Iml0

~1!!2
, ~35!

whereP(1) is given in Eq.~A17!. Hence, in the mazer limi
and in the neighborhood of theN51 resonance the spectru
is a Lorentzian with a full width at half maximum of

D

C
511

r

C
~11Rer0

2! ~36!

and with a maximum intensity at the frequency

nmax2nc52
r

2
Imr0

2 . ~37!

According to this result, the width and the shift of the spe
trum are intimately connected with each other via the refl
tion amplituder0

2 . Therefore, we can specify a Kramer
Kronig relation between the widthD and the shiftnmax2nc .
This explains the similarity between Fig. 11 and other re
nance curves such as the real and imaginary part of the
ceptibility.

Furthermore, when we recall the relation Eq.~A18!,

^n&5
r ~11Rer0

2!

2C1r ~11Rer0
2!

, ~38!

the linewidth takes the form

FIG. 11. Analytical results~solid line! for the linewidthD ~top!
and the shiftnmax2nc ~bottom! from the resonator frequencync in
the immediate vicinity of thekL5p resonance compared with an
contrasted to the exact numerical results~dashed line!. Here we
have chosenk/k50.001, r /C550, nb50, and the mesa mod
function.
-
-

-
s-

D

C
5

11^n&
12^n&

, ~39!

which is significantly different from the familiar expressio

D

C
5

u211

4^n&
~40!

of the Schawlow-Townes linewidth@8,9#. Here we have as-
sumednb50 for comparison.

1. Mesa function

According to Appendix A we find for the mesa functio
the reflection amplitude

r0
25

id/2

12 id/2
~41!

and the expression

l0
~1!

C
5

1

2
1

r

2C

11 id/2

11d2/4
~42!

for the lowest eigenvalue, where

d[S kL2
mp

A4 N
D Y k

k
~43!

denotes the scaled distance to the resonance Eq.~32! as de-
fined in paper II. With the help of Eq.~38! we therefore
arrive at the steady-state photon number

^n&5
r /2C

11r /2C1d2/4
. ~44!

According to our analysis the spectrum consists o
single Lorentzian with linewidth

D

C
511

r

C

1

11d2/4
~45!

and a maximum at

nmax2nc52
rd

4

1

11d2/4
. ~46!

Here we have used Eq.~41! for r0
2 .

We note the additional termr /2C in the denominator of
^n&, Eq. ~44!, which is absent in the expressions Eqs.~42!
and~45! for the eigenvalue and the linewidth, respectively.
causes the width inkL of the resonance in̂n& to be larger
than the width of the resonance inD by a factor of
A11r /2C. Hence the resonance in̂n& is broader than the
resonance in the spectral properties as shown in Fig. 8.

We conclude this subsection by comparing in Fig.
these approximate analytical expressions for the linewi
and the shift with the exact numerical curves fork/k50.001.
We find excellent agreement. Only on resonance, there
small deviation due to the second eigenvalue, which is
contained in this approximate analytical description.



n

.

i

nc

th
ifi

n
nc
re
t

a
th

lts
e

e
in

ues

av-
es
e
the

rts.

nd
ase
q.

ults
in-

dif-
-

we
the
not
the

at

l se-

s.
the

56 4171QUANTUM THEORY OF THE MAZER. III. SPECTRUM
2. sech2 function

According to Appendix A we find for this mode functio

r0
25

id/2

m11/22 id/2
, ~47!

where now

d[S kL2
2Am~m11!

A4 N
D Y k

k
~48!

denotes the scaled distance to the resonance, Eq.~33!. This
expression leads via Eq.~36! to the linewidth

D

C
511

r

C

~m11/2!2

~m11/2!21d2/4
~49!

and via Eq.~37! to the frequency shift

nmax2nc52
rd

4

m11/2

~m11/2!21d2/4
. ~50!

When we compare Eqs.~41! and ~47! for the reflection
coefficientr0

2 , Eqs.~45! and~49! for the linewidth, and Eqs
~46! and~50! for the shift of the spectrum close to theN51
resonance we find a great similarity. The only difference
an increasing broadening ind with increasing orderm. This
translates itself via Eqs.~43! and ~48! into a broadening in
kL, which in turn leads to a smearing out of the resona
for kL'k/k, as discussed in detail in paper II.

We conclude this subsection by noting that indeed at
N51 resonance the mode function does not play a sign
cant role for the properties of the radiation.

B. N52 resonance

In Appendix B we have shown that close to theN52
resonance and within the framework of our approximatio
the cavity field in steady state is in the vacuum state. He
within this approximation the spectrum vanishes, which
flects the fact that the integrated spectrum and hence
average number of photons at the (2,1) resonance is sm
than at the (1,1) resonance as expressed in Fig. 8. In
section we briefly discuss the eigenvalues.

1. Mesa function

According to Appendix B the reflection amplitude

r1
25

id/A2

12 id/A2
~51!

yields the lowest eigenvalues

l0
~1!

C
5

1

2
1

r

2C

12 id/A2

11d2/2
~52!

and

l1
~1!

C
5

3

2
1

r

2C

11 id/A2

11d2/2
. ~53!
s

e

e
-

s
e
-
he
ller
is

They are in good agreement with the numerical resu
shown in the left part of Fig. 9. The only exception is th
close vicinity of the resonance atkL5p/A4 2, where the two
eigenvaluesl0

(1) andl1
(1) swap their position in the sequenc

of eigenvalues. To bring this out more clearly we compare
Fig. 12 our approximate results for these two eigenval
with the exact results in the vicinity ofkL5p/A4 2. We find
that the approximate solution describes the principal beh
ior of both the real and imaginary parts of the eigenvalu
very well, with the exception of the very close vicinity of th
resonance. Here we observe an avoided crossing of
imaginary parts and an additional crossing of the real pa

2. sech2 function

For the smooth mode function both the numerical a
analytical results show no fundamental difference to the c
of the mesa function. Indeed according to Appendix B, E
~B5! the essential parameter in this case is

r1
25

id/A2

m11/22 id/A2
, ~54!

which, apart from the termm11/2 in the denominator, is
identical to the expression Eq.~51! for the mesa function.
Hence it is not surprising that this leads to the same res
with the additional broadening of the resonances with
creasing ordersm.

VI. CONCLUSION

We have discussed the spectrum of the mazer in the
ferent velocity regimes, that is, in the Rabi limit, in the in
termediate regime, and in the mazer limit. In particular,
have found a broadening and a shift of the spectrum near
mazer resonances. To get a shift, the strict mazer limit is
necessary. Indeed, already when the kinetic energy is of

FIG. 12. In the immediate vicinity of the (2,1) resonance
kL5p/A4 2 the two eigenvaluesl0

(1) andl1
(1) indicated by solid and

dotted lines, respectively, interchange their place in the natura
quence of eigenvalues. We compare their exact real~top! and
imaginary ~bottom! parts with the approximate expressions Eq
~52! and ~53! represented by dashed lines. Here we have used
mesa mode function and the same parameters as in Fig. 6.
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order of the energy of the vacuum dressed states, the s
trum gets shifted significantly. In the mazer regime t
broadening and the shift are most pronounced. Moreo
our approximate analytical treatment shows an interes
connection between the linewidth and the frequency shif
the spectrum provided by the complex amplitude of the
flected matter wave, that is of the pump atoms. In this w
the center-of-mass motion of the atoms manifests itself in
spectrum of the quantized electromagnetic field in the re
nator.
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APPENDIX A: SPECTRUM NEAR N51 RESONANCE

In this Appendix, we derive approximate analytical e
pressions for the eigenvalues, the zeroth eigenvector, an
mazer spectrum in the neighborhood of theN51 resonance.
The present treatment is valid for both mode functions an
the absence of thermal photons, that is,nb50.

For N51 we find from the resonance conditions Eq
~C14! and ~C20! of paper II the resonance photon numb
nres50,15,80,255, . . . andnres50,3,8,24, . . . for themesa
and the sech2 function, respectively. In general, there are
few photons in the resonator that we can neglect the hig
photon numbers. In this case for both the mesa function
the sech2 function the amplitudes of reflection and transm
sion for theN51 type resonance take the form

rn
1521, rn

25H r0
2 if n50

21 otherwise ~A1!

and

tn
150, tn

25H t0
2 if n50

0 otherwise. ~A2!

Here only the coefficientsr0
2 andt0

2 depend on the form o
the mode function. In the case of the mesa function
~C11! of paper II yields

r0
25

id/2

12 id/2
~A3!

and

t0
25

~21!m

12 id/2
, ~A4!

whereas for the sech2 mode Eqs.~C18! and~C19! of paper II
provide us with
ec-

r,
g
f
-
y
e

o-

e

S.
n
k

the

in

.
r

er
d

-

.

r0
25

id/2

m11/22 id/2
~A5!

and

t0
25

~21!m~m11/2!

m11/22 id/2
. ~A6!

Since our definition of the mode function, Eq.~17!, differs
from the one used in paper II, Eq.~7!, by a factor of two in
the argument of the sech function, we have substituted
these resultsd/2 for d.

We now use the expressions Eqs.~A1! and ~A2! for rn
6

andtn
6 to calculate the amplitudesRa,n , Ta,n , Rb,n11, and

Tb,n11 from Eqs.~14! and~15! and find from Eqs.~11!–~13!
the quantities

An
~1!50, ~A7!

Bn
~1!55 2

C

2
2

r

2
~r0

211! if n50,

2CS n1
1

2D otherwise,

~A8!

and

Cn
~1!5CA~n11!~n12!, ~A9!

where we have assumednb50. Therefore the matrix

Q~1!5S B0
~1! C0

~1!

0 B1
~1! C1

~1!

0 B2
~1!

�

� �

D , ~A10!

defined by Eq.~20!, is bidiagonal and we can read the eige
values

l0
~1!52B0

~1!5
C

2
1

r

2
~r0

211! ~A11!

and

l l
~1!52Bl

~1!5CS l 1
1

2D ~A12!

with l 51,2,3, . . . directly from the diagonal.
We now calculate the expansion coefficientscl according

to Eq.~23!. We therefore have to first derive the steady-st
photon statistics

P~n!5P~0!S r

CD n

)
m51

n
Pemission~m21!

m
~A13!

using the emission probability

Pemission~n!5
1

4
~ urn

12rn
2u21utn

12tn
2u2! ~A14!
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as shown in paper I. When we substitute Eqs.~A1! and~A2!
into Eq. ~A14! we find

Pemission~n!5H ~11Rer0
2!/2 if n50

0 otherwise.
~A15!

Here we have used the constraint

ur0
2u21ut0

2u251 ~A16!

for particle conservation.
Hence from Eq.~A13! we arrive at the steady-state ph

ton statistics

P~n!55
2C

2C1r ~11Rer0
2!

, n50,

r ~11Rer0
2!

2C1r ~11Rer0
2!

, n51,

0, n52,3, . . .

~A17!

with the steady-state photon number

^n&5
r ~11Rer0

2!

2C1r ~11Rer0
2!

. ~A18!

Note that according to this equation^n& is always smaller
than unity. This is consistent with our starting approximati
of neglecting the higher photon numbers innres.

With the help of Eq.~A17! the initial condition Eq.~23!
reduces to

(
l 50

`

cl xl
~1!5„A1P~1!,0,0, . . .…T. ~A19!

The zeroth eigenvector

x0
~1!5~1,0,0, . . . !T ~A20!

immediately yields

cl 5K l
~1!5d l ,0P~1!. ~A21!

Therefore, only the eigenvaluel0
(1) contributes to the spec

trum and we find according to Eqs.~26!–~28!

S~n2nc!5
P~1!Rel0

~1!

~Rel0
~1!!21~n2nc1Iml0

~1!!2
, ~A22!

that is, a Lorentzian with a full width at half maximum of

D

C
5

2Rel0
~1!

C
511

r

C
~11Rer0

2!. ~A23!

The maximum of the spectrum Eq.~A22! lies at the fre-
quency

nmax2nc52Iml0
~1!52

r

2
Imr0

2 . ~A24!
In Sec. V we compare these approximate analytical res
with the exact numerical treatment.

APPENDIX B: SPECTRUM NEAR N52 RESONANCE

In this Appendix, we perform an analysis analogous
Appendix A and derive approximate analytical expressio
for the eigenvalues and the spectrum in the mazer limit.
now focus on theN52 resonance.

We recall from Eqs.~C14! and~C20! of paper II the val-
ues nres51,31,161,511, . . . andnres51,7,17,49, . . . of the
resonance photon numbers corresponding to the mesa
the sech2 function, respectively. Again neglecting highe
photon numbers, the generalN52 resonance gives rise t
the amplitudes

rn
1521, rn

25H r1
2 if n51

21 otherwise
~B1!

of reflection and the amplitudes

tn
150, tn

25H t1
2 if n51

0 otherwise
~B2!

of transmission. These results are valid for both mode fu
tions. For the mesa function we find from Eq.~C11! of paper
II the explicit expressions

r1
25

id/A2

12 id/A2
~B3!

and

t1
25

~21!m

12 id/A2
, ~B4!

whereas Eqs.~C18! and ~C19! of paper II predict

r1
25

id/A2

m11/22 id/A2
~B5!

and

t1
25

~21!m~m11/2!

m11/22 id/A2
~B6!

for the case of the sech2 potential. Again as in Appendix A
we have substitutedd/2 for d in the expressions of paper II

Following the example of Appendix A the results forrn
6

andtn
6 , Eqs.~B1! and ~B2!, lead to

An
~1!50, ~B7!
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Bn
~1!55

2
C

2
2

r

2
@~r1

2!* 11#, if n50

2
3C

2
2

r

2
~r1

211!, if n51

2CS n1
1

2D otherwise,

~B8!

and

Cn
~1!5CA~n11!~n12!, ~B9!

where again we have assumednb50. As for theN51 reso-
nance in Appendix A, the matrix

Q~1!5S B0
~1! C0

~1!

0 B1
~1! C1

~1!

0 B2
~1!

�

� �

D , ~B10!

defined by Eq.~20!, is again bidiagonal. Hence the two low
est eigenvalues read

l0
~1!52B0

~1!5
C

2
1

r

2
@~r1

2!* 11# ~B11!

and

l1
~1!52B1

~1!5
3C

2
1

r

2
~r1

211!. ~B12!

The higher eigenvalues follow from
tt.

s.

,

l l
~1!52Bl

~1!5CS l 1
1

2D , ~B13!

wherel 52,3,4, . . . .
To derive the expansion coefficientscl from Eq. ~23! we

first calculate the emission probabilityPemission(n), Eq.
~A14!, using the expressions Eqs.~B1! and~B2! for rn

6 and
tn

6 . After minor algebra we arrive at

Pemission~n!5H ~11Rer1
2!/2 if n51

0 otherwise,
~B14!

where we have used the condition

ur1
2u21ut1

2u251 ~B15!

for particle conservation. Due toPemission(0)50 the steady-
state photon statistics reduces fornb50 to

P~n!5H 1, n50

0, n>1,
~B16!

that is, to the photon statistics of the vacuum.
Hence we find from the condition Eq.~23!, that is, from

( l 50
` cl xl

(1)50, the coefficients

cl [0 ~B17!

and the resulting spectrum is

S~n2nc![0. ~B18!

This is consistent with Eq.~30! when we recall that due to
Eq. ~B16! we have^n&50.
.
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