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Quantum theory of the mazer. II. Extensions and experimental considerations
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The quantum theory of the mazer is extended by giving exact analytical solutions for a smooth potential and
comparing them with the mesa potential considered earlier. Furthermore, WKB solutions for sinusoidal mode
functions are found, leading to interesting features such as a state-changing or state-preserving mirror for
atoms. Experimental parameters are taken into account to show that it is in principle possible to realize the
mazer experimentally.@S1050-2947~97!01511-4#

PACS number~s!: 42.50.Ar, 32.80.2t, 42.50.Dv, 84.40.Ik
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I. INTRODUCTION

It has been shown recently@1,2# that a completely new
kind of induced emission occurs when a micromaser
pumped by ultracold atoms. In an ordinary micromaser
diation is amplified via stimulated emission@3,4#. For ultra-
cold atoms the interplay between the quantized center
mass~CM! motion and the atom-field interaction leads
microwave amplification viaz-motion–induced emission o
radiation ~mazer!. In the preceding paper@2# ~hereafter re-
ferred to as paper I! the quantum theory of the mazer h
been developed. The physical mechanism governing m
action can be understood in the atom-field dressed-state
ture. One of the dressed-state components, sayugn11

2 &, sees a
potential well, as the other one (ugn11

1 &) sees a potentia
barrier. In the mazer regime the kinetic energy of the ato
is so small that the component that sees the barrier ca
reflected while the other one is transmitted. The emiss
probability and the photon statistics of the cavity depend
the reflection and transmission coefficients for the dress
state components. In Ref.@1# and paper I, these coefficien
are given analytically for a mesa potential. In the pres
paper, the problem is solved for a sech2 potential as well as
for sinusoidal potentials.

Our main results are as follows. Also for a smooth se2

potential, mazer resonances can be found, as long as
interaction length is not too large. In the intermediate regi
between the Rabi limit and the mazer limit the properties
the mazer depend crucially on the form of the potential. T
scaling parameters governing this regime are identified
mazer with a sinusoidal potential can serve as a very in
esting device for atom optics, namely, as a state-preser
or state-changing atomic mirror. The most promising se
for an experimental realization of the mazer is a reentr
cavity. With such a device it should be possible to see
mazer resonances experimentally.

This paper is organized as follows: in Sec. II analytic
solutions are given both for a mesa mode function and fo
sech2 mode function. The features and differences of
emission probability for the different modes are discussed
561050-2947/97/56~5!/4153~11!/$10.00
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Sec. II C. In Sec. III WKB solutions for sinusoidal modes a
presented. Finally, experimental parameters are taken
account in Sec. IV and different possible experimental set
are considered.

II. MESA MODE VERSUS sech2 MODE

The probability for the atoms to emit a photon, if initiall
the atoms are in the upper state and the cavity containn
photons, is given by@1# ~see paper I for details!

Pemission~n!5uRb,n11u21uTb,n11u2, ~1!

where

Ran5 1
2 ~rn

11rn
2!, Tan5 1

2 ~tn
11tn

2!,
~2!

Rb,n115 1
2 ~rn

12rn
2!, Tb,n115 1

2 ~tn
12tn

2!

are the reflection and transmission coefficients with the a
in the upper or lower state, as indicated in Fig. 1.

In this section expressions for the dressed-state reflec
and transmission coefficients (r and t) are given for two

FIG. 1. Schematic drawing of the setup. The initial state
ua,n&, i.e., the atoms are in the excited state and the field is i
number state. We consider three different mode functions, a m
function, a sech2, and a sinusoidal mode function. After the inte
action the atoms are either transmitted or reflected and can be i
upper or lower state. This is described by the transmission
reflection coefficientsR andT as indicated in the figure.
4153 © 1997 The American Physical Society
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different mode functions: the mesa mode function and
sech2 mode function. As the latter is smooth, it leads to
somewhat different behavior of the mazer. From these
pressions and with Eq.~2!, the bare-state reflection and tran
mission coefficients (R andT) are obtained.

The steady-state photon distribution for a mazer pum
by a Poissonian beam of atoms with the rater is given by
~see paper I!

P~n!5P~0! )
m51

n
Cnb1rPemission~m21!/m

C~nb11!
, ~3!

where C is the cavity decay rate andnb is the number of
photons in thermal equilibrium.

A. Mesa function

In the special case, where the atom-field coupling ins
the cavity is constant along the propagation axis of the
oms, e.g., for a TM mode in a cylindrical cavity, the refle
tion and transmission coefficients can be calculated ana
cally, as discussed in paper I. The mode function is th
given by the mesa function

u~z!5H 1 for 0,z,L

0 elsewhere,
~4!

whereL is the length of the cavity in thez direction. We
obtain

rn
65 iDn

6sin~kn
6L !tn

6 ,

tn
65@cos~kn

6L !2 iSn
6sin~kn

6L !#21, ~5!

where

kn
65~k27kn

2!1/2,

Dn
65

1

2S kn
6

k
2

k

kn
6D ,

Sn
65

1

2S kn
6

k
1

k

kn
6D , ~6!

k5A2Mg/\,

kn5kA4 n11,

with the atomic massM and the atom-field coupling strengt
g. The emission probability shows resonances as a func
of knL. This behavior is illustrated in Fig. 2~a!. The reso-
nances occur atknL5mp (m51,2,3, . . . ), if the cavity
containsn photons.

B. sech2 function

In the following, we consider a sech2 mode function

u~z!5sech2~z/L !. ~7!
e

x-

d

e
t-

ti-
n

n

This potential can be used as an approximation for a Ga
ian mode in an optical resonator. The reflection and tra
mission coefficients are given by~see Appendix A for de-
tails!

rn
65

G~ ikL !G~12 ikL !

G~1/21 i jn
6!G~1/22 i jn

6!
tn

6 ,

tn
65

G@1/22 i ~kL1jn
6!#G@1/22 i ~kL2jn

6!#

G~2 ikL !G~12 ikL !
, ~8!

where

jn
65A6~knL !221/4. ~9!

As for the mesa function,Pemission shows resonances as
function of knL for very slow atoms as illustrated in Fig
2~b!. There are, however, two major differences. First, t
resonance condition isknL5Am(m11) (m51,2,3, . . . ), as
compared toknL5mp for the mesa function. Second, fo
larger values ofknL the resonances become less pronoun
and the emission probability approaches a plateau w
Pemission51/2.

FIG. 2. The emission probabilityPemission vs the interaction
lengthknL for k/kn50.01~solid! andk/kn50.1 ~dashed!. ~a! Mesa
mode function and~b! sech2 mode function.
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56 4155QUANTUM THEORY OF THE MAZER. II. EXTENSIONS . . .
C. Velocity regimes and emission probability

Depending on the velocity of the atoms, we distingu
three regimes: fork@kn the CM motion is essentially clas
sical and the kinetic term in the Hamiltonian can be n
glected; therefore the standard micromaser theory app
We call this regime theRabi regime. If k!kn the mazer
resonances mentioned above occur. The quantized natu
the CM motion plays a crucial role. We call this regime t
mazer regime. The parameter range wherek.kn we call
intermediate regime; this will be discussed in Sec. II C 2.

1. Mazer regime

In this section we want to discuss the features of the m
zer regime and compare it to the well-known Rabi regim
Figure 3 shows a plot ofPemissionas a function ofk/kn both
for the mesa~a! and for the sech2 ~b! potential. Fork.kn
both potentials show a Rabi-like behavior. Atk.kn a dra-
matic change happens. This change is abrupt for the m
mode function and continuous for the sech2 mode function.
The physical reason for this is the following: for the me
mode function tunneling does not play an essential role.
dressed-state componentugn11

1 &, which encounters the po
tential well, is completely reflected as long ask,k. If k
becomes larger thank, it is suddenly transmitted. The sech2

potential, on the other hand, forms a narrower well for en

FIG. 3. The emission probabilityPemissionas a function ofk/kn

on a mazer resonance~solid curves! and between resonance
~dashed curves!. ~a! Mesa function withknL510p ~solid! and
knL510.5p ~dashed! and~b! sech2 potential withknL510 ~solid!
andknL5A10(1011) ~dashed!.
-
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gies that are a little bit smaller than the maximal atom-fie
interaction energy. Therefore, there is a substantial tunne
probability if k is smaller but on the order ofk, which
smears out the sudden change ofPemissionat k5k. For very
slow atoms, i.e., fork!kn the behavior is similar for both
potentials: On a mazer resonancePemission51/2 ~solid
curves!, between the resonancesPemission50 ~dashed
curves!. As already noted, the resonance condition
knL5mp for the mesa potential andknL5Am(m11) for
the sech2 potential, if the cavity containsn photons.

To get a deeper insight into the behavior of the resonan
in both cases, we consider the casen50, introduce a vari-
able d that is a measure of the distance ofkL from the
resonance scaled byk/k, use the expansion

kL5mp1d
k

k
, ~10!

and take the limitk/k→0. Details are given in Appendix C
The result is the emission probability

Pemission~0!5
1

2

1

11d2/4
, ~11!

which is a Lorentzian. All resonances have the same wid
independent of the orderm of the resonance.

For the sech2 function, we obtain with a similar expansio

kL5Am~m11!1d
k

k
~12!

and the emission probability

Pemission~0!5
1

2

~2m11!2

~2m11!214d2
. ~13!

Note that in this case the emission probability is also
Lorentzian, but now the width growths with increasing ord
m. This is illustrated in Fig. 4 where we plot the exact em
sion probability using Eqs.~1!, ~2!, and ~5!, as well as the
expansions~13! at each resonance. For small values ofkL
the resonances are well separated. The expansion fits

FIG. 4. Exact emission probabilityPemission~solid! vs the inter-
action lengthkL for k/k50.1. The expansion around each res
nance~dashed! shows that the width of the resonances increa
with largerkL.
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4156 56LÖFFLER, MEYER, SCHRO¨ DER, SCULLY, AND WALTHER
sharply peaked resonances. For larger values ofkL, the reso-
nances start to overlap, and the emission probability
proaches its asymptotic value of 1/2.

2. Intermediate regime

The intermediate regime is characterized by the fact
neitherk/kn@1 as in the Rabi limit nork/kn!1 as in the
mazer limit.

For the mesa mode function@Fig. 3~a!#, there are oscilla-
tions around a mean value that is decreasing with decrea
k/kn . For the sech2 mode function@Fig. 3~b!#, on the other
hand, there is a plateau withPemission(n)51/2 for a wide
range ofk values. Note that within the plateau all of th
probabilities under consideration are the sam
uTanu25uTb,n11u25uRanu25uRb,n11u251/4. This means half
of the atoms are reflected, half are transmitted, and the e
sion probability for each atom is 1/2, regardless of whethe
is transmitted or reflected. In this case and for smallnb , the
field generated in the cavity has a Poissonian distribution

P~n!5
P~0!

n! S r

2CD n

~14!

with a mean photon number^a†a&5r /2C. Such a distribu-
tion is not found in the usual micromaser.

In the intermediate regime neitheru5ANexgt int
(Nex5r /C being the scaled pumping rate andt int the inter-
action time! nor knL describe the steady state in the clear
way. We introduce the normalized photon numb
h[n/Nex, the scaling parameterm[A4 Nexk/k, and the in-
teraction lengthkL as the natural parameters of the interm
diate regime. Figure 5 shows a plot of the normalized m
photon number̂h&5^n&/Nex versuskL for different values
of the pumping rateNex for the mesa mode function, keepin
the scaling parameterm fixed. Note that in the limitNex→`,
the steady-state photon number tends towards an asymp
curve ~solid line! with sharp peaks at approximately equ
distances for small values ofkL ~left panel of Fig. 5!, and for
largekL a constant value is reached~right panel of Fig. 5!.
The behavior for largekL is due to the fact that several Foc

FIG. 5. Normalized steady-state photon number^h& as a func-
tion of kL in the intermediate regime (k/kA4 Nex53) for Nex520
~dotted!, Nex550 ~dashed!, andNex→` ~solid!.
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states contribute tôn& and therefore the different emissio
probabilitiesPemission(n) lead to an irregular dependence o
kL.

With the introduction of the scaling parametersu andh,
we can analyze the equations governing the mazer. In
caseh@1/Nex, k/kn.1, we get with Eq.~5!

th
1.0,

rh
1.1,

~15!

th
2.Fcos~mA4 hkL!2

i

2
mA4 hsin~mA4 hkL!G21

,

rh
2.

i

2
mA4 hsin~mA4 hkL!th

2 .

This means that theugn11
1 & component is completely re

flected. Theugn11
2 & component is partially transmitted an

partially reflected. The reflection and transmission amp
tudes for theugn11

2 & component are periodic as a function
kL with the period 2p/(mA4 h); see Fig. 5. The fading of the
oscillations with largerkL can be explained by the fact that
larger value ofkL causes faster oscillations in the scal
photon numberh. Since several values ofh contribute to
^n&, this causes an averaging that results in a collapse of
oscillations in^n&.

III. SINUSOIDAL MODE FUNCTIONS

When the cavity mode is described by a sinusoidal mo
function as in a TE mode instead of the mesa function~4!,
which describes a TM mode, the reflection and transmiss
coefficients change and the emission probability is modifi
We here present a detailed Wentzel-Kramers-Brillouin c
culation for such a case. In each of the regions that are
tinguished in Fig. 6, taking the sharp corners of the poten
at the ports of the cavity into account, we make an ansatz
the wave function of the form

c~z!5AjK~z!21/2expS i E
aj

z

K~z!dzD
1BjK~z!21/2expS 2 i E

aj

z

K~z!dzD , ~16!

where K(z)5A2M @E2V(z)#/\. At the sharp corners, we
demand the continuity of the wave function and its first d
rivative. At the turning points, the well-known connectio
formulas are used@5#. The WKB approximation is applicable
if

U12 |
d2|

dz2
2

1

4S d|

dzD
2U!1 ~17!

with |(z)5K(z)21. This condition is fulfilled, for example,
whenkL@1 as for usual micromaser cavities.
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A. Fundamental mode

The fundamental sinusoidal mode is described by
mode function

u~z!5H sin~pz/L ! for 0,z,L

0 elsewhere,
~18!

which is shown in Fig. 6~a!. Two cases have to be distin
guished.

1. Case: k>kn

The reflection and transmission coefficients are fork.kn

rn
6562ihn@cos~wn

6!7hnsin~wn
6!#tn

6 ,
~19!

tn
65@hn

2eiwn
6

1~17 ihn!2e2 iwn
6

#21,

with the phase integrals

wn
65

2L

p E
0

p/2
Ak27kn

2cos~z!dz ~20!

and

hn5UdK

dz
~0!US 1

2kD 2

5
pkn

2

8k3L
. ~21!

An analytical expression for this phase integral is given
Appendix B in terms of the elliptic integrals of the first an
second kind@6#

FIG. 6. Schematic representation of sinusoidal mode functi
and the regions that are distinguished in the WKB calculation
~a! the fundamental mode and~b! the second harmonic mode.
e

F~x,y!5E
0

x du

A12y2sin2~u!
,

~22!

E~x,y!5E
0

x
A12y2sin2~u!du.

In the limit of very fast atoms, we regain the Rabi osc
lations. Their period is determined by the average atom-fi
coupling ḡ52g/p in agreement with the result of Ref.@7#.

The limit of largeL corresponds tohn→0. In this case
the expression for the emission probability simplifies to

Pemission~n!5sin2~Fn! ~23!

with the phase

Fn5
2L

p SAk21kn
2@E~d,b!2E~p/4,b!#2

kn

k D , ~24!

whereb5@2kn
2/(kn

21k2)#1/2 and d5arcsin(kn /bk). The de-
pendence of this phase onk/k is illustrated in Fig. 7.

2. Case: k<kn

For very slow atoms (k,kn), we obtain

rn
15 i H 2hn@cos~2xn

1!2hnsin~2xn
1!#S ex̃n

1

1
e2 x̃n

1

4
D

2~112hn
2!S ex̃n

1

2
e2 x̃n

1

4
D J tn

1 ,

tn
15H ex̃n

1

@~12 ihn!e2 ixn
1

2hneixn
1

#2

1
e2 x̃n

1

4
@~12 ihn!e2 ixn

1

1hneixn
1

#2J 21

~25!

rn
2522ihn@cos~xn

2!1hnsin~xn
2!#tn

2 ,

tn
25@hn

2eixn
2

1~11 ihn!2e2 ixn
2

#21

with

s
r

FIG. 7. The phaseF0 in the long-cavity limit as a function of
the atomic momentumk for the fundamental sinusoidal mode.
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xn
15

L

pEa

p/2
Ak22kn

2cos~z!dz,

x̃n
15

2L

p E
0

a
Akn

2cos~z!2k2dz, ~26!

xn
25wn

2 ,

where a5arccos(k2/kn
2) and hn as in Eq.~21!. Analytical

expressions for these phase integrals are given in Appe
B.

For large values ofL, we havehn→0 andx̃n
1→`. In this

case, the emission probability is always 1/2, independen
the number of photons in the cavity~if the relevant values of
n are not too large!, and for smallnb the field generated in
the cavity has a Poissonian distribution, as discussed ab
for the sech2 potential@Eq. ~14!#.

B. Second harmonic mode

Finally, we consider the sinusoidal mode function

u~z!5H sin~2pz/L ! for 0,z,L

0 elsewhere,
~27!

which is depicted in Fig. 6~b!.
For large values ofL and k,kn , we obtain, using the

ansatz~16!,

rn
652 iexp~2ifn

6!,

tn
650 ~28!

with the phase integrals

fn
15

L

2pEx0

p/2
Ak22kn

2cos~z!dz,

~29!

fn
25fn

11Dn ,

and the phase difference

Dn5
L

pE0

p/2
Ak21kn

2cos~z!dz. ~30!

Analytical solutions for these integrals are given in Appe
dix B. We have introduced the short-hand notatio
x05arccos(k2/kn

2), f 5@2kn
2/(kn

21k2)#1/2, a5arcsin(1/f ),
andb5arcsin(f/A2).

Equation ~28! implies that the incident atom is alway
reflected. Half of the time, it encounters immediately a p
tential barrier and is reflected. However, when it first e
counters the attractive part of the sinusoidal potential,
atomic wave function can pick up an additional phase bef
the atom is reflected off the repulsive part of the potent
This additional phase varies with the length of the cavity a
gives rise to the emission probability

Pemission~n!5sin2~Dn! ~31!

with the phase
ix

of

ve

-
s

-
-
e

re
l.
d

Dn5fn
22fn

1 . ~32!

The incident excited atoms deposit a photon into the ca
with a fixed probability, which can take on any value b
tween zero and one, depending on the length of the cavity
particular, the cavity length can be such that all the ato
deposit a photon into the cavity while they are reflected. T
cavity field acts as a mirror that may or may not change
internal state of the incident atoms in addition to reflecti
them. We can build state-changing and state-preserving
rors for atoms.

IV. EXPERIMENTAL CONSIDERATIONS

A. Micromaser

In this section we want to discuss how a mazer-type
periment could be performed with the one-atom maser se
@3#. We consider the transition 63P3/2→61P5/2 in 85Rb used
in the Garching experiments. The typical parameters
g544 kHz, M51.4310225 kg, andL52.5 cm. This yields
kn51.13107 m21. To reach the mazer regime with the ca
ity field being the vacuum, we therefore need a veloc
v,8 mm/s, corresponding to a temperature of about 100
which is in the range of state-of-the-art cooling techniqu
@8#. By injecting a microwave field into the cavity and ther
fore enhancing the potential, one could, however, use fa
atoms.

As the de Broglie wavelength of the atoms for the para
eters under consideration is in themm range, it should be
possible to realize a mesalike potential with a TM mode.
see the sharp resonances inPemission requires, however, an
extremely narrow velocity distribution of the atoms. This
due to the large value ofknL.105. The argument of the sine
and cosine functions in the expressions forrn

6 andtn
6 in Eq.

~5! is kn
6L. If the velocity is given byv5v01dv, where

v05k0 /M is the mean velocity anddv is a small velocity
spread, there is also a small spreaddkn

6 . To see the reso-
nances, dkn

6L,p/2 is required, which implies
dv/v5631024 for k/kn50.1. This is several orders o
magnitude smaller than the state of the art in the exp
ments.

Therefore an averaging over a small velocity range@9#
has to be performed to describe the experimental situat
This leads to

P̄emission

5
1

2F12
~kn

21k0
2!1/22k0

~kn
21k0

2!1/21k0

kn
2

2k0~kn
22k0

2!1/222k0
21kn

2G .

~33!

Owing to this averaging, the sharp resonances inPemissionas
a function ofknL are smeared out and the emission proba
ity is constant in the mazer regime. This is, however, s
very different from the oscillations in the Rabi regime as
leads to a Poissonian photon distribution@Eq. ~14!# as dis-
cussed for the sech2 and sinusoidal mode functions.
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B. Microlaser

The recent developments of high-Q optical cavities make
a mazer-type experiment in the optical domain feasible. T
advantage of such an experiment compared to the microw
regime is that due to the small mode volume a larger c
pling constantg can be achieved, which allows for largerkn
and therefore for larger velocities. To give an estimate
the velocities needed, we consider a cavity of lengthL51
mm and the TEM00 mode with a beam waist ofw0510 mm,
resulting in a mode volume ofV51.6310213 m23. Using
rubidium atoms and theD2 line as the transition under con
sideration, this yields a coupling constantg5200 MHz and
kn573108 m21. To fulfill k,kn , we need a velocity
v,0.5 m/s, which corresponds to a temperature in the
range.

C. Reentrant cavity

In order to see most clearly the mazer resonances,
when the atoms have a certain velocity spread, the param
kL has to be small, as discussed in Sec. IV A. This can
achieved in the setup shown in Fig. 8. This cavity is of t
reentrant type@10–12#, which allows for a very small inter-
action lengthL. As the field inside the interaction region
homogeneous@13#, it is given by a mesa mode function
independent of the wavelengthl.

The resonant wavelength and theQ value can be approxi
mated by@11#

l res.2pAZA2

L
ln~B/A!, ~34!

Q5
m0v

R
G, ~35!

with the vacuum permeabilitym0, the transition~circular!
frequencyv, the high-frequency resistanceR, and a geom-
etry factor G, which is defined as the ratio of a volum
integral and a surface integral

FIG. 8. Schematic drawing of a possible setup. Atoms in
excited state travel along thez axis. The cavity is of the reentran
type and has a cylindrical symmetry around thez axis. The lines
inside the cavity represent the electric field lines.
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G5

E dVH2

R dSH2

, ~36!

whereH is the magnetic field. For the cavity proposed he
one finds@11#

G.
~Z/l!ln~B/A!

~Z/A!~11A/B!1 ln~B/A!
. ~37!

To estimate whether this setup can be realized experim
tally, we consider the transition 63P3/2→61P5/2 in 85Rb with
v52p321 GHz as in Sec. IV A. With the paramete
L5100 mm, A52.0 mm,B53.0 mm, andZ54.0 mm, Eq.
~34! yields the resonant wavelengthl res55 cm, which cor-
responds to the transition under consideration. For this
ometry we haveG54.3431024 m. For a superconducting
Nb resonator withR580 mV, this yieldsQ on the order of
106.

If we assume the same coupling constantg544 kHz as in
the Garching micromaser~Sec. IV A!, we havek.107 m21

and thereforekL.103. For k/k50.1 we therefore need a
velocity selection of aboutdv/v515% in order to see the
mazer resonances. In the present Garching setup, the vel
selectivity is about 1.5%. This should allow one to see
resonances very clearly. On the other hand, with this velo
spread one could use more convenient cavity dimensio
e.g.,L51.0 mm,A54.0 mm,B56.5 mm, andZ58.0 mm.

In conclusion we see that an experiment with realis
parameters seems possible.

V. SUMMARY AND DISCUSSION

We have considered a micromaser pumped by slow
oms. If the kinetic energy of the atoms is comparable to
atom-field interaction energy, effects of the quantized C
motion are important. The emission probability and the ph
ton statistics change dramatically, even for realistic exp
mental parameters.

We have reviewed the quantum theory of the mazer
given exact analytical results for a mesa and a sech2 mode
function, as well as WKB solutions for sinusoidal mode
For a mesa mode function, sharp resonances in the emis
probability as a function of the interaction length occur, lea
ing to unusual photon distributions. For small values ofkL
also the sech2 potential yields the mazer resonances,
larger values both the sech2 and sinusoidal mode function
show a plateau with constant emission probability leading
Poissonian photon distributions. For the sinusoidal mo
functions interesting features are found such as the poss
ity to build a state-changing or state-preserving atomic m
ror. In all cases, the mazer regime is very different from
well-known Rabi regime.

Various possibilities for experimental realizations ha
been presented, showing that it should be possible to
mazer action experimentally. The most promising setup
microwave cavity of the reentrant type, as for such a cav
the interaction length can be on the order of the de Brog
wavelength of the pumping atoms.
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APPENDIX A: CALCULATION FOR sech 2 POTENTIAL

The reflection and transmission coefficients for the pot
tial

Vn
6~z!56\gAn11u~z! ~A1!

with

u~z!5sech2~z/L ! ~A2!

can be calculated analytically@14#. For convenience, we re
write the potential as

Vn
6~z!5

\2

2ML2

jn
6211/4

cosh2~z/L !
~A3!

with

jn
65A6~knL !221/4 ~A4!

and obtain the time-independent Schro¨dinger equation

F d2

dz2
1k22

jn
6211/4

L2cosh2~z/L !
Gcn

6~z!50 ~A5!

for the corresponding scattering problem. The transforma
x5@11exp(2z/L)#21 leads to

Fx~12x!
d2

dx2
1~122x!

d

dx

1
k2L2

4x~12x!
2~jn

6211/4!Gcn
6~x!50. ~A6!

The ansatzcn
6(x)5xp(12x)qf (x) yields the hypergeomet

ric differential equation

x~12x!
d2

dx2
f ~x!1@2p1122~p1q11!x#

d

dx
f ~x!

2@~p1q11/2!21jn
62# f ~x!50, ~A7!

which is solved by the hypergeometric function

f ~x!52F1~a,b,g;x!5 (
n50

`
zn

n! )k50

n21
~a1k!~b1k!

g1k
,

~A8!

wherep21(kL/2)250, p25q2, and
l
ed

-

n

a5~p1q11/2!1 i jn
6 ,

b5~p1q11/2!2 i jn
6 , ~A9!

g52p11.

To select one of the four possible sign combinations fop
andq and to find the reflection and transmission coefficien
we consider the boundary conditions

cn
6~z!5H exp~ ikz!1rn

6exp~2 ikz! for z→2`

tn
6exp~ ikz! for z→`.

~A10!

For convenience, we have used here a different phase
vention fortn

6 compared to Eq.~9! in paper I.
In the limit z→`, we obtainx.exp(22z/L)!1 and there-

fore cn
6(x).Cxp5Cexp(22pz/L), which implies tn

65C
andp52 ikL/2. For the limitz→2`, on the other hand, we
obtain 12x.exp(2z/L)!1, and usingg2a2b522q and

2F1~a,b,g;x!5
G~g!G~g2a2b!

G~g2a!G~g2b!

32F1~a,b,a1b2g11;12x!

1~12x!g2a2b
G~g!G~a1b2g!

G~a!G~b!

32F1~g2a,g2b,g2a2b11;12x!,

~A11!

we find

cn
6~z!5CFG~g!G~g2a2b!

G~g2a!G~g2b!
exp~2qz/L !

1
G~g!G~a1b2g!

G~a!G~b!
exp~22qz/L !G .

~A12!

Therefore the sign ofq is arbitrary, it only changes the rol
of the coefficients in Eq.~A12!; we chooseq52p5 ikL/2.
Finally, by comparing Eqs.~A10! and ~A11!, we obtain the
reflection and transmission coefficients

rn
65

G~ ikL !G@1/22 i ~kL1jn
6!#G@1/22 i ~kL2jn

6!#

G~2 ikL !G~1/21 i jn
6!G~1/22 i jn

6!
,

tn
65

G@1/22 i ~kL1jn
6!#G@1/22 i ~kL2jn

6!#

G~2 ikL !G~12 ikL !
. ~A13!

APPENDIX B: PHASE INTEGRALS

For the phase integrals~20!, ~26!, and ~29!, analytical
expressions can be found@15# in terms of the elliptic inte-
grals of the first and second kind.
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1. Fundamental mode

For k.kn , we obtain

wn
15

2L

p E
0

p/2
Ak22kn

2cos~z!dz

5
2L

p F2Ak21kn
2E~d,b!2

2kn
2

k G ,
~B1!

wn
25

2L

p E
0

p/2
Ak22kn

2cos~z!dz

5
4L

p
Ak21kn

2E~p/4,b!.

For k,kn , we obtain

xn
15

L

pEa

p/2
Ak22kn

2cos~z!dz

5
knL

p
A2$2@E~p/4,b!2E~a,b!#

1~12k2/kn
2!@F~a,b!2F~p/4,b!#%,

x̃n
15

2L

p E
0

a
Akn

2cos~z!2k2dz

5
2knL

p
A2@2E~p/2,1/b8!2~k2/kn

211!F~p/2,1/b8!#,

~B2!

xn
25wn

2 .

Here we have introduced the short-hand notatio
a5arcsin(1/b), g5arcsin(b/A2), and b85@2kn

2/
(kn

22k2)] 1/2.

2. Second harmonic mode

For the second harmonic mode and fork,kn , we obtain
the phase integrals

fn
15

L

2pEa8

p/2
Ak22kn

2cos~z!dz

5knL
A2

2p
$2@E~p/4,f !2E~a, f !#

2~12k2/kn
2!@F~p/4,f !2F~a, f !#%,

~B3!

fn
25fn

11Dn

with the phase difference

Dn5
L

pE0

p/2
Ak21kn

2cos~z!dz

5knL
A2

p
@2E~b,1/f !2~12k2/kn

2!F~b,1/f !#. ~B4!
s

Here we have introduced the short-hand notatio
a85arccos(k2/kn

2), f 5@2kn
2/(kn

21k2)#1/2, a5arcsin(1/f ),
andb5arcsin(f/A2).

APPENDIX C: EXPANSION NEAR THE MAZER
RESONANCES

In this Appendix, we derive approximate expressions
the reflection and transmission coefficientsrn

6 andtn
6 in the

mazer limit and in the neighborhood of a resonance.

1. Mesa function

As discussed in detail in paper I, in the mazer limit t
probability

Pemission~n!5

1
2 @11 1

2 sin~2knL !#

11~kn/2k!2sin2~knL !
~C1!

of emission of a photon in the presence ofn cavity photons
displays characteristic resonances at

knL5mp. ~C2!

In general, the atom encounters a linear combination of s
eral Fock statesun&, and the resonance condition reads

kL5
mp

A4 N
~C3!

with N and m being integer numbers. We label each res
nance by (N,m).

In order to understand the behavior ofrn
6 andtn

6 in the
mazer limit around a particular (N,m) resonance, we make
the ansatz

kL5
mp

A4 N
1d

k

k
, ~C4!

that is, we introduce a quantityd, which specifies the dis-
tance ofkL from the exact resonance scaled byk/k. We
substitute this ansatz into the expressions forrn

6 andtn
6 and

take the limitk/k→0. In this way, we get expressions th
depend on the new variabled.

Here we note that in the limitk/k→0 the quantitykn
1

takes on imaginary values. Indeed we find from Eq.~6!

kn
1. ikn . ~C5!

We insert this expression into Eq.~5! and find fork/k→0,

tn
1.Fcosh~knL !1 i

kn

2k
sinh~knL !G21

→0,

rn
1.2 i

kn

2k
sinh~knL !tn

1→21 ~C6!

for the ugn
1& component.

For the scattering amplitudes of theugn
2& component,kn

2

is real and we find
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4162 56LÖFFLER, MEYER, SCHRO¨ DER, SCULLY, AND WALTHER
kn
2.kn . ~C7!

Now, we consider the case where we have the limit

sin~kn
2L !→0 ~C8!

for k/k→0, i.e.,kn
2L→Mp for an integerM . Then we ob-

tain for k/k→0, via inserting

cos~kn
2L !.cosS A4 n11

A4 N
mp1d

k

k
A4 n11D

→~21!M ~C9!

and

sin~kn
2L !.sinS A4 n11

A4 N
mp1d

k

k
A4 n11D

→~21!Md
k

k
A4 n11 ~C10!

into Eq. ~5!, the amplitudes of reflection and transmission
the ugn

2& component as

rn
25

iAn11d/2

12 iAn11d/2
,

tn
25

~21!M

12 iAn11d/2
. ~C11!

If instead of Eq.~C8! we have the limit

sin~kn
2L !→constÞ0 ~C12!

for k/k→0, we get

rn
25215rn

1 ,

tn
2505tn

1 . ~C13!

At a given (N,m) resonance, that is, for a certa
kL5mp/A4 N, the state of the atom-cavity system in gene
consists of several dressed-state componentsgn

6 correspond-
ing to different potentials of heights6\gAn11. For each
ugn

2&, i.e., for eachn, we have to check whether Eq.~C8! or
Eq. ~C12! holds. Sincekn

2L→mpA4 n11/A4 N, the condition
~C8! is equivalent to

n5N
M4

m4
21. ~C14!

We denote the photon numbersn for which Eq.~C11! holds
by nres. For n5nres andd50, the ugn

2& component is reso
nantly transmitted whereas theugn

1& component is reflected
f

l

with amplitude21. For all other photon numbersnÞnres,
Eq. ~C13! holds and both components are reflected with a
plitude 21.

The emission probability is given by

Pemission~n!5H 1

2

1

11~n11!d2/4
for n5nres

0 otherwise.
~C15!

2. sech2 function

In the mazer limit, the photon emission probabili
Pemission(n) in the presence ofn cavity photons displays
resonances at

kL5
Am~m11!

A4 N
. ~C16!

Again, the integer numbers (N,m) label the different reso-
nances.

We perform a similar expansion around the resonance
for the mesa function, use the ansatz

kL5
Am~m11!

A4 N
1d

k

k
, ~C17!

and find, taking the limitk/k→0, the expressions

rn
1521,

rn
25H i2An11d

~2m11!2 i2An11d
for n5nres

21 otherwise

~C18!

for the reflection coefficients and

tn
150,

tn
25H ~21!M~2m11!

~2m11!2 i2An11d
for n5nres

0 otherwise

~C19!

for the transmission coefficients. The integernres is defined
by

nres5NS M ~M11!

m~m11! D 2

21, ~C20!

which is the analog of Eq.~C14!.
When we use these expressions, the emission probab

in the neighborhood of the (N,m) resonance reduces to

Pemission~n!5H 1

2

~2m11!2

~2m11!214~n11!d2
if n5nres

0 otherwise.
~C21!
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