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Quantum theory of the mazer. Il. Extensions and experimental considerations
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The quantum theory of the mazer is extended by giving exact analytical solutions for a smooth potential and
comparing them with the mesa potential considered earlier. Furthermore, WKB solutions for sinusoidal mode
functions are found, leading to interesting features such as a state-changing or state-preserving mirror for
atoms. Experimental parameters are taken into account to show that it is in principle possible to realize the
mazer experimentallyf.S1050-294P7)01511-4

PACS numbdps): 42.50.Ar, 32.80-t, 42.50.Dv, 84.40.1k

I. INTRODUCTION Sec. Il C. In Sec. Il WKB solutions for sinusoidal modes are
presented. Finally, experimental parameters are taken into
It has been shown recent[yl,2] that a completely new accountin Sec. IV and different possible experimental setups
kind of induced emission occurs when a micromaser igire considered.
pumped by ultracold atoms. In an ordinary micromaser ra-
diation is amplified via stimulated emissi¢8,4]. For ultra- Il. MESA MODE VERSUS sech? MODE
cold atoms the interplay between the quantized center-of-
mass(CM) motion and the atom-field interaction leads to
microwave amplification viz-motion—induced emission of
radiation (mazej. In the preceding papd?] (hereafter re-
ferred to as paper) lthe quqntum theory of the mazer has Pemissim(n):|Rb,n+1|2+|Tb,n+1|2' )
been developed. The physical mechanism governing mazer
action can be understood in the atom-field dressed-state pig¢here
ture. One of the dressed-state components| gay, ), sees a

The probability for the atoms to emit a photon, if initially
the atoms are in the upper state and the cavity contains
photons, is given byl] (see paper | for details

_1 + - _1 + —
potential well, as the other ongy(, ,)) sees a potential Ran=32 (pn tPn)s Tan=2 (7, +75), @
barrier. In the mazer regime the kinetic energy of the atoms _ _
i : Rons1=3 (pr —pn)s Tone1=3 (18 —77)
is so small that the component that sees the barrier can be bn+1=2Pn " FPn ) bn+17= 2% — ¥n

reflecte_q while the other one lls_transmltted. The EMISSION o the reflection and transmission coefficients with the atom
probability and the photon statistics of the cavity depend o n the upper or lower state, as indicated in Fig. 1

the reflection and transmission coefficients for the dressed- |, yhig section expressions for the dressed-state reflection

state components. In Refl] and paper |, these coefficients 54 yransmission coefficients (and 7) are given for two
are given analytically for a mesa potential. In the present

paper, the problem is solved for a ségiotential as well as

for sinusoidal potentials. R, 1,,
Our main results are as follows. Also for a smooth gech

potential, mazer resonances can be found, as long as the @ @

interaction length is not too large. In the intermediate regime

between the Rabi limit and the mazer limit the properties of —~—— ‘/\ e

the mazer depend crucially on the form of the potential. The

scaling parameters governing this regime are identified. A @ /\/ @

mazer with a sinusoidal potential can serve as a very inter- \

esting device for atom optics, namely, as a state-preserving Ry i Ty e

or state-changing atomic mirror. The most promising setup

for an experimental realization of the mazer is a reentrant [ 1 schematic drawing of the setup. The initial state is

cavity. With such a devi(_:e it should be possible to see theFa,n}, i.e., the atoms are in the excited state and the field is in a

mazer resonances experimentally. number state. We consider three different mode functions, a mesa
This paper is organized as follows: in Sec. Il analyticalfunction, a sech and a sinusoidal mode function. After the inter-

solutions are given both for a mesa mode function and for &ction the atoms are either transmitted or reflected and can be in the

secht mode function. The features and differences of theupper or lower state. This is described by the transmission and
emission probability for the different modes are discussed ineflection coefficient®k and T as indicated in the figure.
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different mode functions: the mesa mode function and the
seck mode function. As the latter is smooth, it leads to a
somewhat different behavior of the mazer. From these ex-
pressions and with E@2), the bare-state reflection and trans-
mission coefficientsR andT) are obtained.

The steady-state photon distribution for a mazer pumped
by a Poissonian beam of atoms with the rates given by
(see paper)l

Cr]b_*_ rPemissior(m_ 1)/m
C(np+1) ’

P(n)= P<0>ngl 3)

where C is the cavity decay rate and, is the number of
photons in thermal equilibrium.

A. Mesa function

In the special case, where the atom-field coupling inside
the cavity is constant along the propagation axis of the at-
oms, e.g., for a TM mode in a cylindrical cavity, the reflec-
tion and transmission coefficients can be calculated analyti-
cally, as discussed in paper I. The mode function is then
given by the mesa function

1 for O<z<L

(4)

uz)= 0 elsewhere,

whereL is the length of the cavity in the direction. We
obtain

pa =iAgsin(ky L) 7y,

P emission
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FIG. 2. The emission probabilityP¢ission VS the interaction

length«,L for k/ k,=0.01(solid) andk/x,= 0.1 (dashedl (a) Mesa

mode function andb) secif mode function.

7y =[cogkyL)—iZ sin(kyL)] ™Y, (5)

where

Ky = (K2F k2)*2,

k=+2Mg/#,
Kn=K4\/n+l,

(6)

This potential can be used as an approximation for a Gauss-
ian mode in an optical resonator. The reflection and trans-
mission coefficients are given Kgee Appendix A for de-
tails)

_ T(kL)T(1-ikL)
(L4 £ (12— £7)

*
Th s

Pn

+

 I[1/2—-i(kL+ ENT[L2—i(KL—&,)]

with the atomic masM and the atom-field coupling strength
g. The emission probability shows resonances as a function
of «x,L. This behavior is illustrated in Fig.(d. The reso-

n T(—ikL)[(1—ikL) . ®
where
& == (k,L)%2—1/4. 9

nances occur ak,L=mm7 (m=1,23...), if the cavity

containsn photons.

B. secl function

In the following, we consider a seéhmode function

u(z)=sech(z/L).

@)

As for the mesa functionP¢yission ShOWS resonances as a
function of «,L for very slow atoms as illustrated in Fig.
2(b). There are, however, two major differences. First, the
resonance condition ig,L=ym(m+1) (m=1,23...), as
compared tok,L=ms for the mesa function. Second, for
larger values ok, L the resonances become less pronounced
and the emission probability approaches a plateau with
Pemissior= 1/2.
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FIG. 4. Exact emission probabilit] o ission (S0lid) vs the inter-
action lengthxL for k/k=0.1. The expansion around each reso-
nance(dashed shows that the width of the resonances increases
with larger xL.

gies that are a little bit smaller than the maximal atom-field
interaction energy. Therefore, there is a substantial tunneling
probability if k is smaller but on the order ok, which
smears out the sudden changePqf,issionat K= x. For very
slow atoms, i.e., fok<<«, the behavior is similar for both
potentials: On a mazer resonand®,,ssioi=1/2 (solid
curveg, between the resonance®qpissioi=0 (dashed

P, emission

0.0 0.5 1.0 15 20 curves. As already noted, the resonance condition is
k,L=ms for the mesa potential and,L=+m(m+1) for
k/’fn the secR potential, if the cavity containa photons.

To get a deeper insight into the behavior of the resonances
FIG. 3. The emission probabilit¢yission@s a function ok/ «,, in both cases, we consider the caseO, introduce a vari-
on a mazer resonancésolid curve$ and between resonances able d that is a measure of the distance of from the
(dashed curves (a) Mesa function withk,L =107 (solid) and resonance scaled ¥/ x, use the expansion
k,L=10.57 (dashediand(b) seclt potential with«,L =10 (solid)
and k,L=+/10(10+1) (dashed

C. Velocity regimes and emission probability

Depending on the velocity of the atoms, we distinguishand take the limik/x— 0. Details are given in Appendix C.
three regimes: fok> «, the CM motion is essentially clas- The result is the emission probability
sical and the kinetic term in the Hamiltonian can be ne-
glected; therefore the standard micromaser theory applies.
We call this regime theRabi regime If k<k, the mazer Pemissiof 0) = 2 1+d2/4’ (12)
resonances mentioned above occur. The quantized nature of

the CM motion plays a crucial role. We call this regime thehich is a Lorentzian. All resonances have the same width,

1. Mazer regime

k
KL=m7T+d;, (10

KL=\/m(m+1)+dE (12

In this section we want to discuss the features of the ma-
zer regime and compare it to the well-known Rabi regime.
Figure 3 shows a plot 0P mission@s a function ok/k, both  and the emission probability
for the mesaa) and for the sech (b) potential. Fork> «,,
both potentials show a Rabi-like behavior. Kt «, a dra-
matic change happens. This change is abrupt for the mesa
mode function and continuous for the séanode function.

The physical reason for this is the following: for the mesaNote that in this case the emission probability is also a
mode function tunneling does not play an essential role. Théorentzian, but now the width growths with increasing order
dressed-state component., ,), which encounters the po- m. This is illustrated in Fig. 4 where we plot the exact emis-
tential well, is completely reflected as long ks «. If k sion probability using Eqs(l), (2), and (5), as well as the
becomes larger thar, it is suddenly transmitted. The séch expansiong13) at each resonance. For small valuesxaf
potential, on the other hand, forms a narrower well for enerthe resonances are well separated. The expansion fits the

(2m+1)?

(2m+1)2+4d?’ 13

1
Pemissioh 0) = E
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states contribute t¢n) and therefore the different emission
probabilitiesPissio{ N) lead to an irregular dependence on

kL.
With the introduction of the scaling parametérand 7,

= we can analyze the equations governing the mazer. In the
= casen>1/MNg,, k/ik,=1, we get with Eq(5)

=0,

n

+~
0.0 L o p”—l,
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FIG. 5. Normalized steady-state photon numbgy as a func- T COE{/.L\/; ) Z’M\/;S n(,u\/; U

tion of kL in the intermediate regimex(k%/Ng=3) for Ng,=20
(dotted, Ng,=50 (dashedl andNg,— > (solid). i i . -
Py =5 rAlysin(uinkL) 7, .

sharply peaked resonances. For larger valued_othe reso-

nances start to overlap, and the emission probability ap- This means that they, ,) component is completely re-

proaches its asymptotic value of 1/2. flected. The|y,,,) component is partially transmitted and
partially reflected. The reflection and transmission ampli-
2. Intermediate regime tudes for thd y, . ;) component are periodic as a function of
The intermediate regime is characterized by the fact thakL with the period 2r/(u?/7); see Fig. 5. The fading of the
neitherk/x,>1 as in the Rabi limit nok/x,<1 as in the oscillations with largekL can be explained by the fact that a
mazer limit. larger value ofkL causes faster oscillations in the scaled
For the mesa mode functidiFig. 3@], there are oscilla- photon numbery. Since several values of contribute to
tions around a mean value that is decreasing with decreasing)), this causes an averaging that results in a collapse of the
k/k,. For the sech mode functionFig. 3(b)], on the other  oscillations in(n).
hand, there is a plateau witRgissiofN) =1/2 for a wide
range ofk values. Note that within the plateau all of the I1l. SINUSOIDAL MODE FUNCTIONS
probabilities under consideration are the same:
|Tanl?=1Tp.n+ 112=|Ranl?=|Rp.n1 1/>= 1/4. This means half When the cavity mode is described by a sinusoidal mode
of the atoms are reflected, half are transmitted, and the emidunction as in a TE mode instead of the mesa functin
sion probability for each atom is 1/2, regardless of whether itvhich describes a TM mode, the reflection and transmission
is transmitted or reflected. In this case and for smglithe  coefficients change and the emission probability is modified.

field generated in the cavity has a Poissonian distribution We here present a detailed Wentzel-Kramers-Brillouin cal-
culation for such a case. In each of the regions that are dis-

tinguished in Fig. 6, taking the sharp corners of the potential

P(O)( r \" at the ports of the cavity into account, we make an ansatz for
P(N)=—735¢ (14 the wave function of the form
z
_ ~1 ;
with a mean photon numbéa'a)=r/2C. Such a distribu- V(D) =AK(2) 2exp(|fajK(z)dz)

tion is not found in the usual micromaser.

In the intermediate regime neitherd=Ng,g7in
(Ne=r/C being the scaled pumping rate ang the inter-
action timeg nor «,L describe the steady state in the clearest

way. We introdu_ce the normajlized photon ”U_mberwhereK(z)= 2M[E—V(2)]/%. At the sharp corners, we
7=n/Ney, the scaling parametgi=7\Ne/k, and the in-  gemand the continuity of the wave function and its first de-
teraction lengttkL as the natural parameters of the interme-rivative. At the turning points, the well-known connection

diate regime. Figure 5 shows a plot of the normalized meafgrmulas are usefb]. The WKB approximation is applicable
photon numbef ) =({n)/N, versuskL for different values i

of the pumping rat&\l, for the mesa mode function, keeping
the scaling parameter fixed. Note that in the limitNg,— oo,

the steady-state photon number tends towards an asymptotic
curve (solid line) with sharp peaks at approximately equal
distances for small values &L (left panel of Fig. 3, and for
largekL a constant value is reachédght panel of Fig. 5. with x(z) =K(z) 1. This condition is fulfilled, for example,
The behavior for larg&L is due to the fact that several Fock whenxL>1 as for usual micromaser cavities.

+B,—K(z)—1/2eXp( —i fZ_K(z)dz), (16)

<1 17

1Kd2x 1/dx\?
2% 42 4\dz




56 QUANTUM THEORY OF THE MAZER. IIl. EXTENSIONS. .. 4157

I I Il v v 1.20 T T . ——

V+(2) Do Do

I N 115 ]

‘ S L0 ]
~
a

val ' I : 1 (@) e‘? 105 | |

—‘\/— Loo |

0 L B 0.95 | - s R
k/k
oo v v FIG. 7. The phas&, in the long-cavity limit as a function of
V+(z) N 5 ; the atomic momenturk for the fundamental sinusoidal mode.
i ! :
F(x.y) X dé
X’y = —l
' ‘ 0 V1-yZsir?(6
| I mw v o (b) y'sin(6) 22)

Vol N :

—\/ N E(x,y)=J J1—yZsir(6)de.

0

0 Lz In the limit of very fast atoms, we regain the Rabi oscil-
lations. Their period is determined by the average atom-field

FIG. 6. Schematic representation of sinusoidal mode function%oup”ngg_: 29/ in agreement with the result of Réf7].
and the regions that are distinguished in the WKB calculation for The limit of largeL corresponds tay,—0. In this case
n .

(a) the fundamental mode arit) the second harmonic mode. the expression for the emission probability simplifies to

A. Fundamental mode Pemissiof N) = Si (P, (23
The fundamental sinusoidal mode is described by the .
mode function with the phase
; 2L K
sin(wz/L) for 0<z<L _c 2 _ _Mn
u(z)= (18) D, - vk +K2n[E(5,b) E(m/4b)] ik (24)

0 elsewhere,

whereb=[2«2/(k2+k?)]"? and 6= arcsin,/bk). The de-

which is shown in Fig. @). Two cases have to be distin- pendence of this phase o« is illustrated in Fig. 7.

guished.
2. Case: kk,

For very slow atomsK< «,,), we obtain

~+
~+ € Xn
eXn +
4

1. Case: kk,
The reflection and transmission coefficients arekfork,,

(19

pn =+ 2i pa[cog oy F masin(ep) 17y p;:i[znn[cos(zx,f)— 7sin(2x:)]

Th=[7ne'n +(1Fip,)%e ] T,

~+
~ e_Xn
_(1+2,7§)(ex$_ i )]r;,
with the phase integrals

2L

/2 T
(p,?:?fo Vk?F kacogz)dz (20) Tn =

o . Ziyt_ iv 12
en[(1—in,)e " —p,eXn]

_;; Lo+ Lo+ -
and g [(A=ig)e ™ + ppehn]?
dK ‘ 1 )2 i (25
=——0)|| 5| = . 21 _ . - P
"=z V2K " g & pn = =21 0%y )+ mrsin )17,
An analytical expression for this phase integral is given in m, =[n2eXn +(1+inp,)%e ]t

Appendix B in terms of the elliptic integrals of the first and
second kind 6] with
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L (=2 A=¢d —o . 32
XIZEL Vk?= k2cogz)dz, n=én = ¢n (32

The incident excited atoms deposit a photon into the cavity
~y_2L(2 — 2 with a fixed probability, which can take on any value be-
xn=—] Vkjcogz)—kdz (26) p Y, _ y _

7 Jo tween zero and one, depending on the length of the cavity. In
particular, the cavity length can be such that all the atoms
Xn =@n » deposit a photon into the cavity while they are reflected. The
) _ _ cavity field acts as a mirror that may or may not change the
where a=arccosk? ;) and », as in Eq.(21). Analytical  internal state of the incident atoms in addition to reflecting
expressions for these phase integrals are given in Appendtkem. We can build state-changing and state-preserving mir-
B. rors for atoms.
For large values of , we haver,—0 andy, — . In this
case, the emission probability is always 1/2, independent of

the number of photons in the cavifif the relevant values of IV. EXPERIMENTAL CONSIDERATIONS

n are not too largg and for smalln, the field generated in A. Micromaser

the cavity has a Poissonian distribution, as discussed above . . .

for the sech potential[Eq. (14)]. In this section we want to discuss how a mazer-type ex-

periment could be performed with the one-atom maser setup

[3]. We consider the transition 83,,—61Ps, in 8°Rb used

in the Garching experiments. The typical parameters are

Finally, we consider the sinusoidal mode function g=44 kHz,M=1.4x10 % kg, andL=2.5 cm. This yields
kn,=1.1x10" m 1. To reach the mazer regime with the cav-

27) ity field being the vacuum, we therefore need a velocity

B. Second harmonic mode

sin(27z/L) for 0<z<L
u(z)=

0 elsewhere, v<<8 mml/s, corresponding to a temperature of about 100 nK,
which is in the range of state-of-the-art cooling techniques
which is depicted in Fig. @). [8]. By injecting a microwave field into the cavity and there-
For large values of. andk<«k,, we obtain, using the fore enhancing the potential, one could, however, use faster
ansatz(16), atoms.
N ] . As the de Broglie wavelength of the atoms for the param-
pn=—1€xp2idy, ), eters under consideration is in them range, it should be
. possible to realize a mesalike potential with a TM mode. To
7 =0 (28 see the sharp resonancesHpssion fequires, however, an

extremely narrow velocity distribution of the atoms. This is
due to the large value of,L=10. The argument of the sine
L (2 and cosine functions in the expressionsggrandr,, in Eq.
¢>,T=Z Vk?— kcogz)dz, (5) is k, L. If the velocity is given byv=vy+ v, where
X0 (29 vo=Kg/M is the mean velocity andv is a small velocity
spread, there is also a small spredid; . To see the reso-

with the phase integrals

- +
$n = én+ 4, nances, Sk L<w/2 is required, which implies
and the phase difference Svlv=6x10"* for k/x,=0.1. This is several orders of
magnitude smaller than the state of the art in the experi-
L (w2 — ments.
Aﬁ;f Vk®+ kpcogz)dz. (30) Therefore an averaging over a small velocity rafgg
0 ) i LOF
has to be performed to describe the experimental situation.

Analytical solutions for these integrals are given in Appen-'Nis leads to

dix B. We have introduced the short-hand notations —
Xo=arccosk? k2), f=[2k2/(k2+k?)]*? a=arcsin(lf), Pemission
and g=arcsinf/\2).

Equation (28) implies that the incident atom is always

2 2\1/2__ 2
reflected. Half of the time, it encounters immediately a po- :1 _(K“+k°) Ko “n )
tential barrier and is reflected. However, when it first en- 2|7 (K24K2) Y2+ kg 2ko( k2 —k3)Y2— 2k3+ K2
counters the attractive part of the sinusoidal potential, the (33

atomic wave function can pick up an additional phase before
the atom is reflected off the repulsive part of the potential. ) ) )
This additional phase varies with the length of the cavity and®Wing to this averaging, the sharp resonanceB dijssionas

gives rise to the emission probability a function ofx,L are smeared out and the emission probabil-
ity is constant in the mazer regime. This is, however, still
Pemissiof N) =SIi(A,,) (31) very different from the oscillations in the Rabi regime as it

leads to a Poissonian photon distributiideg. (14)] as dis-
with the phase cussed for the seérand sinusoidal mode functions.
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L JdVHZ
G:—

, (36)
éds#

whereH is the magnetic field. For the cavity proposed here,
one finds[11]

(ZIN)In(B/A)

C={Z/A)(1+ AIB) T In(BIA) 37

To estimate whether this setup can be realized experimen-
tally, we consider the transition 83,,— 61Pc, in 2Rb with
|<—2 7 —» w=2m7X21 GHz as in Sec. IV A. With the parameters
L=100um, A=2.0 mm,B=3.0 mm, andZz=4.0 mm, Eq.
(34) yields the resonant wavelengih.=5 cm, which cor-
FIG. 8. Schematic drawing of a possible setup. Atoms in theresponds to the transition under consideration. For this ge-
excited state travel along theaxis. The cavity is of the reentrant ometry we haveG = 4.34x 104 m. For a superconducting

.typ.e and has a cylindrical symmetry arlound. thaxis. The lines  \p resonator witlR= 80 ©Q, this yieldsQ on the order of
inside the cavity represent the electric field lines. 108

If we assume the same coupling constgnt44 kHz as in
the Garching micromaséBec. IV A), we havexk=10" m !
The recent developments of high-optical cavities make and thereforexL=10°. For k/x=0.1 we therefore need a
a mazer-type experiment in the optical domain feasible. Theelocity selection of aboubv/v=15% in order to see the
advantage of such an experiment compared to the microwav@azer resonances. In the present Garching setup, the velocity
regime is that due to the small mode volume a larger couselectivity is about 1.5%. This should allow one to see the
pling constanyg can be achieved, which allows for larges  resonances very clearly. On the other hand, with this velocity
and therefore for larger velocities. To give an estimate fOI’spread one could use more convenient cavity dimensions,
the velocities needed, we consider a cavity of lengthl e g.,L=1.0 mm,A=4.0 mm,B=6.5 mm, andZ=8.0 mm.
mm and the TEM, mode with a beam waist afp=10 um, In conclusion we see that an experiment with realistic
resulting in a mode volume of=1.6x10 ** m~3. Using parameters seems possible.
rubidium atoms and thB, line as the transition under con-
sideration, this yields a coupling constajt 200 MHz and
ka=7x10% m~1 To fulfill k<k,, we need a velocity
v<0.5 m/s, which corresponds to a temperature in the mK We have considered a micromaser pumped by slow at-
range. oms. If the kinetic energy of the atoms is comparable to the
atom-field interaction energy, effects of the quantized CM
C. Reentrant cavity motion are important. The emission probability and the pho-
ton statistics change dramatically, even for realistic experi-

In order to see most clearly the mazer resonances, alsQ
y mental parameters.

when the atoms have a certain velocity spread, the parameter .
kL has to be small, as discussed in Sec. IV A. This can be. We have reviewed the quantum theory of the mazer and

achieved in the setup shown in Fig. 8. This cavity is of theg v on exact analytical results for a mesa and a Seohde

reentrant typd10—17, which allows for a very small inter- function, as well as WKB solutions for sinusoidal modes.
: yp C LT . Y .. For a mesa mode function, sharp resonances in the emission
action lengthL. As the field inside the interaction region is

L : probability as a function of the interaction length occur, lead-
homogeneou$13], it is given by a mesa mode function, . o
) ing to unusual photon distributions. For small values«af
independent of the wavelengkh

. also the sech potential yields the mazer resonances, for
The resonant wavelength and tQevalue can be approxi- | | both th 2rand sinusoidal mode function
mated by[11] arger values both the se sinusoidal mode functions
show a plateau with constant emission probability leading to
7 A2 Poissonian photon distributions. For the sinusoidal mode
)\rESZZ’IT\/TM(B/A), (34  functions interesting features are found such as the possibil-
ity to build a state-changing or state-preserving atomic mir-
ror. In all cases, the mazer regime is very different from the
Q= M_O‘"G 35) well-known Rabi regime.
R ™ Various possibilities for experimental realizations have
been presented, showing that it should be possible to see
with the vacuum permeabilityso, the transition(circulan mazer action experimentally. The most promising setup is a
frequencyw, the high-frequency resistané® and a geom- microwave cavity of the reentrant type, as for such a cavity
etry factor G, which is defined as the ratio of a volume the interaction length can be on the order of the de Broglie
integral and a surface integral wavelength of the pumping atoms.

B. Microlaser

V. SUMMARY AND DISCUSSION
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APPENDIX A: CALCULATION FOR sech 2 POTENTIAL

The reflection and transmission coefficients for the poten

tial
Vo (2)=*hgyn+1u(z) (A1)
with
u(z)=secHK(z/L) (A2)

can be calculated analyticallst4]. For convenience, we re-

write the potential as

Vi) h2  E2+1/4 3
Sy
" 2ML2 cosR(z/L)

with
&n == (kL) 1/4 (A4)
and obtain the time-independent Sdflirger equation

e

dzZ e L2costt(z/L)

Y (2)=0 (A5)

To select one of the four possible sign combinationsfor
andq and to find the reflection and transmission coefficients,

we consider the boundary conditions

exp(ikz)+p, exp(—ikz) for z——oo
7, exp(ikz)

yn (2)=

for z— oo,
(A10)

For convenience, we have used here a different phase con-
vention for 7, compared to Eq(9) in paper I.

In the limit z— o, we obtainx=exp(—2z/L)<1 and there-
fore ¢, (x)=CxP=Cexp(—2pzL), which implies r, =C
andp= —ikL/2. For the limitz— —, on the other hand, we
obtain 1-x=exp(2/L)<1, and usingy— «— B=—29g and

T G—a=p)
PG BYN =T ()

X Fq(a,B,a+B—y+1;1-X)
ST (a+ =)

+H(1-x)7e

for the corresponding scattering problem. The transformation

x=[1+exp(2Z/L)] ! leads to

1 d2+l 2 d
X( —X)& (1- X)&

k212

o ex2
+ m (fn +1/4)

iy (x)=0. (A6)

The ansataf, (x) =xP(1—x)%(x) yields the hypergeomet-

ric differential equation

d? d
x(l—x)@f(x)+[2p+ 1—2(p+q+1)x]&f(x)

—[(p+q+1/2)2+£:2]f(x) =0, (A7)

which is solved by the hypergeometric function

o

2" (a+k)(B+k
f(x>=2Fl<a,B,y;x>=nEOmk_o—(a y)iff 3
(A8)

wherep?+ (kL/2)?>=0, p>=q?, and

I'(a)T(B)
XFi(y—a,y=B,y—a—B+1;1-X),
(A11)
we find
o AT (y—a=B)
D= G- T2
F'(yI'a+p—vy)
T(a)T(B) exp—2qz/L)|.
(A12)

Therefore the sign of is arbitrary, it only changes the role
of the coefficients in Eq(A12); we chooseq= —p=ikL/2.
Finally, by comparing Eqs/A10) and(Al11), we obtain the
reflection and transmission coefficients

. D@kL)T[2/2-i(kL+ ENIT[L2—i(KL—¢&))]
o N (CIkD) T (1241 €5 T (12— 65)

. T[2—i(kL+ ENT[12—i(KL—&)]
no I'(—ikL)[(1—ikL)

+

T

. (A13)

APPENDIX B: PHASE INTEGRALS

For the phase integral0), (26), and (29), analytical
expressions can be fourdd5] in terms of the elliptic inte-
grals of the first and second kind.



56 QUANTUM THEORY OF THE MAZER.

1. Fundamental mode

For k> k,, we obtain

4 2L (w2 5
@n =7f0 vk —Kzncos{z)dz

2

2L 2
= ?[2\/k2+ K2E(8,b)— :”

(B1)

2L (/2
(p;=?fo Vk?— k%cogz)dz

4L
= — K2+ KGE(wlab).

For k<k,, we obtain

L (/2
Xn =;Ja k2= k2cogz)dz

“ob B[ E(miab)— E(a,b)]

v

+(1- K% k2)[F(a,b)—F(ml4b)]},
}rT:%LF\/Kﬁcos{z)—kzdz
0

2kl
7: V2[2E(7/2,1b") — (K* K2+ 1)F(w/2,1b")],

(B2
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Here we have introduced the short-hand notations
a’ =arccosk?/ k2), f=[2k2/(k2+k?)]"? a=arcsin(lf),
and B=arcsinf//2).

APPENDIX C: EXPANSION NEAR THE MAZER
RESONANCES

In this Appendix, we derive approximate expressions for
the reflection and transmission coefficiepfs and 7, in the
mazer limit and in the neighborhood of a resonance.

1. Mesa function

As discussed in detail in paper I, in the mazer limit the
probability

3[1+ 3sin(2x,L)]
Pemissior(n)= 2 .
1+ (k,/2K)?sir?(k,L)

(CY

of emission of a photon in the presenceno€avity photons
displays characteristic resonances at

(C2

kpL=mmr.

In general, the atom encounters a linear combination of sev-
eral Fock stategn), and the resonance condition reads

(C3

with N and m being integer numbers. We label each reso-
nance by N,m).

In order to understand the behavior gf and ., in the
mazer limit around a particulafN;m) resonance, we make

Xn = @n - the ansatz
Here we have introduced the short-hand notations K
a=arcsin(lb),  y=arcsinp/\2), and b’'=[2«% ol — :"—’T+d—, (c4)
(ka—K2)]M2 N K

2. Second harmonic mode

For the second harmonic mode and k&t «,,, we obtain
the phase integrals

L
¢n :E . k —KnCOS(Z)dZ
a
\/_

2
= Kby —{2[E(7/4f) ~E(a,1)]
41272 _
(A= KQF(rlan —F@ O] o
bn = by + A,

with the phase difference

L (w2 > 5
An:;fo vk“+ kjcogz)dz

:KnL\/—f[ZE(/B,llf)—(l—kZ/Kﬁ)F(,B,llf)]. (B4)

that is, we introduce a quantity, which specifies the dis-
tance ofkL from the exact resonance scaled kix. We
substitute this ansatz into the expressionspfprand 7, and
take the limitk/k—0. In this way, we get expressions that
depend on the new variabte

Here we note that in the limik/x—0 the quantityk
takes on imaginary values. Indeed we find from Ej.
(CH

+~.
K, =ikp.

We insert this expression into E(p) and find fork/«x—0,

+ .Kn . -1
Ty = COSI’(KnL)-HﬂSIm’(KnL) —0,

K
pr=—i Z—IZSinr(KnL)T:H—l

(Co)
for the |y, ) component.

For the scattering amplitudes of the, ) componentk,,
is real and we find
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n=Kp. (C7?  with amplitude—1. For all other photon numbers# n,s,
Eqg. (C13 holds and both components are reflected with am-
Now, we consider the case where we have the limit plitude — 1.
The emission probability is given by
sin(k,L)—0 (C8)
! ! for n=n
for k/k—0, i.e.,k, L—M for an integerM. Then we ob- T o, “Nres
. ={ 2 2
tain for k/ k—0, via inserting Pemissiof ) 1+(n+1)d%4
0 otherwise.
(C15
in+1 k
- . 4]
cogky L)_C°S< AN m7r+d; n+1 2. seclf function
In the mazer limit, the photon emission probabilit
— (-1 (et 0 isplavs

PemissiokN) in the presence oh cavity photons displays
resonances at

and
ym(m+1)
kL= T. (C19
4
Yn+1 k
sin(k;L):sin<4—m7r+d—4\/n+l _ . ,
AN K Again, the integer numberdN(m) label the different reso-
K nances.
—(—)Md—4n+1 (C10 We perform a similar expansion around the resonances as
K for the mesa function, use the ansatz
into Eq. (5), the amplitudes of reflection and transmission of Jym(m+1)  k
the|y,) component as KLZT +d—, (C17)
and find, taking the limik/x— 0, the expressions
_ iyn+1d/2 J P
o iyt 1di2’ pn="1,
(—1)M c i2yn+1d for n=n
. 11 =
i Nt Ldr (1D pr={ (2m+1)—i2yn+1d * (19
-1 otherwise
If instead of Eq.(C8) we have the limit
S for the reflection coefficients and
sin(k,, L)—const=0 (C12
7'::0,
for k/k—0, we get
- -DHM@2m+1
pn:—lzp;—, _ ) ( ) for n=nes
™, =9 (2m+1)—i2yn+1d (C19
7, =0=1,. (C13 0 otherwise

At a given (N,m) resonance, that is, for a certain for the transmission coefficients. The integgs, is defined
kL=mz/{/N, the state of the atom-cavity system in generalby
consists of several dressed-state compongntsorrespond-

ing to different potentials of heightszg\/n+1. For each . (M(M +1) 2_1 (20
|7, ), i.e., for eacm, we have to check whether E(C8) or res T m(m+1) '
Eq. (C12) holds. Sincek, L—main+1/4/N, the condition
(C8) is equiva|ent to which is the analog of EqC14)
When we use these expressions, the emission probability
M4 in the neighborhood of theN,m) resonance reduces to
n=N——1. (C14)
m 1 (2m+1)2  nen
s —!lres

We denote the photon numbarsfor which Eq.(C11) holds PemissiofN)= | 2 (2m+1)?+4(n+1)d?
by Nes. FOrn=n,sandd=0, the|y,) component is reso- 0 otherwise.

nantly transmitted whereas the, ) component is reflected (C2)
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