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The photon emission probability in a micromaser changes drastically when the kinetic energy of the pump-
ing atoms is comparable to the atom-field interaction energy. In this situation, the atomic center-of-mass
motion has to be treated quantum mechanically and the de Broglie wavelength of the atom inside the cavity is
an important physical parameter. The interplay between reflection and transmission of the atoms leads to a new
mechanism for induced emission. A photon is emitted by an excited atom when the de Broglie wavelength fits
resonantly into the cavity. These resonances lead to the process of microwave amplification via
z-motion-induced emission of radiatidmazey. We derive and illustrate a general expression for the emission
probability and a master equation for the mazer. We note that the probability for emission by an excited
thermal atom(stimulated maser emissipis very different from the emission probability as given by the de
Broglie resonanceénduced mazer emissiprnS1050-294®7)01411-X]

PACS numbg(s): 42.50.Ar, 32.80-t, 42.50.Dv, 84.40.1k

[. INTRODUCTION treated analytically and describes a TM mode. In Sec. V the
emission probability for the incident atoms and the photon
Maser action occurs when excited thermal atoms followstatistics of the cavity field are studied in detail. We distin-
classical trajectories through a cavjty—5]. We have shown guish three very different cases that we call the Rabi regime,
recently[6] that operation in the limit of ultracoldlaser- the intermediate regime, and the mazer regime: the kinetic
cooled atoms[7] requiring a quantum-mechanical treatmentenergy of the atoms is larger than, on the order of, or smaller
of the center-of-maséCM) motion [8,9] leads to a com- than the atom-field interaction energy, respectively. The
pletely new kind of induced emission. In the ordinary maserfesonances that occur in the mazer limit for very slow atoms
stimulated emission prevails as the mechanism for amplifiare explained in Sec. VI in terms of the reflection and trans-
cation of radiation; but in the case of ultracold atoms themission of dressed-state components and by looking at the de
physics of the induced emission process is intimately assocBroglie wavelength of the atoms inside the cavity. A sinu-
ated with the quantization of the CM motidgtaken to be in  soidal mode function, which corresponds to a TE mode, is
the z direction. For this reason we distinguish between theconsidered in Sec. VII. In conclusion, we summarize our
usual stimulated emission maser physics and that charactgnain results. A discussion of more general mode functions
ized by the present quantizegmotion—induced emission, and possible experimental realizations will be given in paper
and call the process of microwave amplification viall, spectral properties are considered in paper Il of this se-
z-motion-induced emission of radiation the mazer action. ries[10,11].
The physical mechanism responsible for the induced
emission is the longitudinal force that the atoms experience
upon passing into a hig- cavity due to the abrupt change
in the atom-field interaction. Different dressed-state compo-
nents of the combined atom-field system encounter different We first study the interaction between an incident atom in
potentials and experience different longitudinal forces. Thehe excited statéa) and a cavity field witm photons, taking
different reflection and transmission of the dressed-statéhe quantum-mechanical CM motion of the atom into ac-
components may result in the emission of a photon. count. With the atomic lowering (raising operator
In this paper we study in detail the quantized-o=|b)(a| (a'=|a)(b|), the cavity-field annihilationcre-
z-motion—induced emission and the photon statistics of thation) operatora (a'), and the CM momentum operatpy,
micromaser pumped by slow atoms. In Sec. Il we show thathe atom-field Hamilton operator reads in the dipole and
the interaction of slow atoms with a cavity field can be rotating-wave approximation
viewed as a scattering problem. In Sec. Il we give a general
expression for the emission probability of an excited atom p2
that is incident upon a cavity with photons. In order to H=fiva'at+too o+ ﬁ+hgu(z)(aa"+ ao"), (1)
study the cumulative effect of a sequence of incident atoms
on the cavity field, we derive in Sec. IV a master equation for
the field. In the following we first study the case where thewhereu(z) is the mode function of the cavity field, is the
atom-field coupling strength inside the cavity is constantatom-field coupling strength for the interaction between the
along the propagation axis of the atoms. This situation can bguantized fieldwith frequencyr.;) and the atoniwith level

Il. ATOM-FIELD INTERACTION
AS A SCATTERING PROBLEM
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(@) Here Heaviside’s unit step functiof merely indicates on
E[L, which side of the cavity the atom can be found; of course,
the position and extent of the wave packet are already deter-
A rmm---- ) mined by the amplitude&(k).
o S Inserting |a,n)= (| yr. 1) +|vn.1))/V2 into Eq. (5), we
: : ) express the initial state as a sum of components of the form
Ry L : n+1
S E— V5 (20)=¥(2,0)]7;: 1), 7
each of which obeys the time-dependent Sdinger equa-
tion
£ (b)
A 2 .
V H . i ------ ’: Iﬁﬁq’n (Z,t): —mg‘l'vn (Z) \I,n (Z,t). (8)
e T e
vV 4 N That is, each? | component encounters the potentigl(z)
| | and each?V, component sees the potentig] (z). We have
0 L z thus reduced the problem to an elementary scattering process

and denote the reflection and transmission coefficients for
FIG. 1. Schematic representation of the enefEgyf the atoms  the ¥, components by, andr, , respectively.
(solid line) incident upon a micromaser cavity of length which After the atom has left the interaction region, the initial
acts as a repulsive potential or potential barf@ashediand as an  state(5) has evolved into
attractive potentialdotted with a potential energW=7%gyn+1
for a cavity withn photons. 1 o _
(2| ¥ (1)) = EJ' dk A(k)e BKT2IUT 5+ (ke k29— 2)

spacingf w), andM is the atomic mass. For simplicity, we

assume the atom to be in resonance with the field, i.e., + 1 (K eRELoz—1)]] v )
V= w.

In an interaction picture, using a reference frame that +[p;(k)e‘ikz.9(—z)
eliminates the terms in Eql) that correspond to the energy B K(z—L B
of the free field and the internal energy of the free atom, we +7, (KD o(z— )]y, 1)}

have the Hamilton operator

) - [ akaoe R, e a(-2)|an)

~_ Pz P
=-—+ + . i
H oM ﬁgU(Z)(O'a ao ) (2) +Tan(k)elk(27|—)0(z_L)|a,n>
It is expedient to expand the atom-field state in terms of the +Ronr1(ke " *0(~2)[b,n+1)
dressed states + Ty nr1(KEXZYa(z—L)|b,n+1)]. 9)
+ 1 An excited atom incident upon a cavity that contams
| Y1) = Eﬂa:”ﬁ [b.n+1)), ®) photons is found to be reflected or transmitted while remain-

ing in the excited statéa) with amplitudes

which are the eigenstates of the interaction operator, i.e., 1, +, -
Ran=32 (pPn +Pn ),

t P + (10
(ca'+ac")|yni)=EVn+1 v, ). (4)

As discussed in Ref(8], Egs. (2) and (4) lead to the
elementary problem of a particle incident upon a potential
V;(z)=*hgyn+1u(z), as sketched in Fig. 1. When an
atom in the excited stat@) and with a CM wave packet Rons1=2(pr —pn).
¥(z) is incident upon a cavity field in the number stéte, ’ (13)
the atom-field system is characterized before the scattering
process by the wave function

_1 + —
Tan_i(Tn +Tn)

land is similarly reflected or transmitted while making a tran-
sition to the statéb), and emitting a photon, with amplitudes

1, _+ -
Tb,n+1:E (Tn = 70)-

These four cases are sketched in Fig. 2.
(z|¥(0))=(z,0)|a,n) (5)
with Ill. EMISSION PROBABILITY
From Eq.(11), we obtain a general expression for the
probability that an excited atom incident upon a cavity con-

— ik _
¢(Z’0)_f dk Ak)e™0(—2). 6) taining n photons will emit a photon:
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,lT‘ Pemissior(n)

(1+4,4,55)(C,C, +3,3,5,S,)
(Ca?+32,%5,9)(C % +32,%8,9)
@ — [n) |n) @ - . . o (16)

, with C, =cosk, L) and S, =sink,L). In Sec. V we will

Ran discuss the emission probability in detail and derive simpler
formulas for limiting cases.

!——’ For the mesa mode and thermal atoms, the atomic mo-
— [ +1) [n+1) @ mentum inside the cavity is

+ Kﬁ
kaE:ﬁk 11; , (17)
FIG. 2. An excited atom incident upon a cavity that contains
photons is reflected or transmitted and remains in the excited StatQith w.= x¥n+1-
or deposits a photon in the cavity with probability amplitutRsg, Kn™ K '
Tanv Rb,n+lv andTb,n-%—l-

that is, the atoms that experience the po-
tential well are faster and the atoms that see a repulsive po-
tential are slower inside the cavity. Therefore, the wave func-

PemissiofN) = | Ro s 12+ | T s 1|2 tion (9) after the atom-field interaction reduces to the form
_1 + -2 + -2
=z (py — +|7, — 7, |9). (12 1 .
#en —pn "+ =l (20 (0) = 920 [exp =KL 77 )
The emission probability depends therefore only on the re-
flection _and transmission coefficients for the quantum- +exp(i KﬁL 12K) v )
mechanical CM motion of the atom. For very slow atoms the
reflection coefficients do not vanish, and the emission prob- = y(z,t)[cog g In+ 1)|a,n)
ability changes drastically. This is the reason why the new .
kind of induced emission is called quantized- —isin(gryn+1)|b,n+1)] (18

z-motion—induced emission. .
In the special case where the atom-field coupling insidéVith
the cavity is constant along the propagation axis of the at-
oms, the reflection and transmission coefficients can be cal- ‘p(z’t):J dkA(k)eikze(Z_L)e_i(ﬁkzle)t (19)
culated analytically. The mode function is then given by the

mesa function and g7= «?L/2k. We have thus recovered the well-known

1 for0<z<L Rabi oscillations.

(13 When the cavity mode is not described by a mesa func-
tion, the coefficient§14) are modified. However, Eq$10),

whereL is the length of the cavity in the direction. In this  (11), and(12) still hold.

case, eacl’, component encounters a potential barrier and

each¥, component sees a square-well potential. This is IV. DERIVATION OF THE MASTER EQUATION

shown schematically in Fig. 1. We obtain for the mesa func-

tion the reflection and transmission coefficients

u(z)= 0 elsewhere,

We now consider a more general situation where the two-
level atom is in the state,|a)+cy|b) and the cavity field is
pn =iA,sin(k, L)7, , in the stateZ, c,|n). The atom-field system is now charac-
terized before the scattering process by the wave function
m, =[cogk, L)—i2 sin(k,L)] L, (14)

where (z|\P(0))=¢//(z,O)n§0 (Canla,n)+Cpalbin))  (20)
Ky = (K2F k?n+1)*2

with cz,=c,c, and c,,=cpC,. Expanding |a,n) and

L 1k, kK |b,n+1) in terms of dressed states, we obtain in the same
| e (15  way as in Sec. Il the state of the atom-field system after the
n interaction

L1k, Kk
*n 7(?* Q) <z|xp(t)>=f dkA(k)ei(hkz’z“")‘[cboeikze(z—L)|b,O>
%k is the atomic CM momentum, and k)%/2M =#g is the o
vacuum coupling energy. For the emission probability, we + E [Ran(K)e~20(—2)|a,n)
obtain in general from Eq$12) and(14) i=o " '
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+Tan(k)e”‘(z"-)0(z— L)|a,n) Equation (21) can be used to find the reduced density
ik matrix p(t) for the cavity field after the interaction with the
+Rpn+1(k)e”?0(—=2)|b,n+1) excited atom by forming the atom-field density matrix and

tracing over the internal and external atomic degrees of free-
+ Ty s 1 (K€K DO(z—L)b,n+1)] {, (21 dom, thatis,

where

p(t)=i=2abfdz<i,2|\lf(t)><\lf<t)|i,z>- (24)

Ran=CanRanTC R ,
an™ rantan T L (220 The coarse-grained equation of motion for the radiation field
is then given by

Tanz Canlant Ch.n+ 1Tb,n+1

are the probability amplitudes for finding the atom reflected p(t)=rp(t)+Lp(t), (25)
or transmitted in the upper state anghotons in the cavity

field and wherer is the atomic injectioror incidence rate anddp(t)

is the change in the reduced density matrix of the field due to
the interaction with a single atom in the state
Rb,n+l:Caan,n+l+Cb,n+1Rana

(23

%,nJrl:CanTb,n+l+Cb,n+1Tan Qatom:i jZab Qij|i><j| with Qij:CiC}k . (26)

are the amplitudes for finding the atom reflected or transmit-
ted in the lower state and+ 1 photons in the field. In the  Field damping is described by the Liouville operator
special case treated in Sec. Il, we haye=1 andc,=1 for
a fixed value ofn, and thereforeR,,=Ran, Zan=Tan,
Ron+1=Ron+1, andTp n1=Tp ne1

Please note tha&R,, is not only the probability amplitude
for an atom in the upper stat@) to be reflected and to
remain in|a), but also for an atom in the lower stdte) to
be reflected and to remain jb); andR;, 1 is not only the
probability amplitude for an atom in staja) to be reflected
and to undergo a transition b}, but also for an atom ifb) ~ where C is the cavity decay rate ana, is the number of
to make a transition t¢a). Analogously,T,, should be un-  photons in thermal equilibrium. We have neglected the dis-
derstood as the probability amplitude for an incident afdm  sipation during the atom-field interacti¢h?2).
|a) or|b)) to be transmitted without undergoing a transition,  Inserting Eq.(21) into (24) and adding the terms describ-
and Ty, 41 is the amplitude for an atom to be transmitted ing field damping, we find the equations of motion for the
with a transition taking place. density-matrix elements

C
Lp=—7(np+ 1)(a'ap+pa'a—2apa’)

C
— Enb(aaneraaT—Zana), (27

*

pon =L €aa RanRy + TanTay = 1)+ 1 Qob(Ran-1R5 v -1+ Tan-1Th -1~ Dlpan
+1Qaa(RonRYy + TonTon ) P10~ 1T Cob(Ron+ 1Ry 1+ Tone 1T 1) Pt 107 +1
+1Qap[(RanRy o+ 1t TanTp s )P+ 1+ (RonRa -1+ TonTa 1) Pn-1n]
+ rQba[(Rb,n+1R;nf +Tb,n+lT;n/)pn+1,n’ +(Ra,n—lR;n/ +Ta,n—1T;n')pn,n/—1]
—3 C(np+)[(N+n")ppy —23(N+1)(N"+ 1) pps 10 11]

- %Cnb[(n+n’+2)Pnn’_2\/nn,pnfl,n’fl]- (28)
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In the following we will restrict ourselves to the injection
of excited atoms ¢,,=1). In this case, Eq(28) simplifies
to

I-Jnn’ = r(RanR* + TanT;nr —Dpnn

an’

+ r(RbnR;nl +TbnT;n1)Pnfl,n’fl

Pemission

- %C(nb"_l)[(n'i”n,)l)nn’
-2 (n+1)(n’+1)pn+1,n’+l]

—3Cn(n+n"+2)ppy —2 VNN’ pn_1pr-1].
(29

V. PHOTON STATISTICS
The equation of motion for the photon-number distribu-
tion P(n) = p,, follows from Eq.(29):
P(n)=G,-1P(n—1)—=G,P(n)
—C(np+)[nP(n)—(n+1)P(n+1)]
+Cn[nP(n—=1)—(n+1)P(n)], (30

Pemission

where G,=rPmissiofN) is the gain coefficient with the
emission probabilityP ¢ mission@s in Eq.(12).
The rate of change of the mean number of photons

(nN)=(G,)—C((n)—ny) (31 FIG. 3. The emission probabilitf ¢ missionVs the interaction time

g (a) for fast atoms wittk/ k=10 (solid) andk/«x=1 (dashedand

vs the interaction lengthkL (b) for slow atoms withk/«=0.01
(solid) andk/«=0.1 (dashegl when the cavity field is initially in
the vacuum state. As indicated by the dashed curvébjinan in-
Cnp+Gp-1/m crease in the velocity of ultracold atoms results in a broadening of
T Cnt+1) (32 the resonances.

and the steady-state photon distribution

P(n)= P(O)ngl C(ny+1)

follow from Eq. (30). The photon distribution of the mazer A. Rabi limit

pumped by ultracold atoms is completely different from the  For fast atoms wittk> «,= x3n+1, the emission prob-
field in the micromaser operating with a beam of thermalapility is given by

atoms.
The difference between the classical and the quantum _ir? KL
treatment of the CM motion is clearly illustrated by looking Pemissiof M) =S| —-yn+1]. (33

at the probability that an excited atom launched into a cavity

containingn photons will emit a photon. As we have seen in

Sec. lIl, this emission probabilit? .missio{N) depends on the Equation(33) embodies the usual stimulated emission pro-
relation between the kinetic energy of the atoms and th&ess and the well-known Rabi oscillations. For example,
atom-field interaction energy. We distinguish the situationsvhen L is small so that £°L/2k)n+1=Q,7<1, where
where the kinetic energy of the atoms is larger than, on th¢he Rabi frequency),=gyn+1 and the interaction time
order of, or smaller than the atom-field coupling energy andr=L(%Ak/M) ™1, then the emission probability is propor-
call these cases the Rabi regime, the intermediate regimépnal ton+ 1.

and the mazer regime, respectively. The emission probability The influence of the potential barrier on the photon statis-
is qualitatively different in these regimes. This is illustratedtics can be observed even if the kinetic energy of the atoms is
in Fig. 3 fork/x=10, 1, 0.1, and 0.01, when the cavity field larger than the atom-field interaction energy. For example,
is initially in the vacuum staten(=0). Please note that in the the trapping resonancgt3] of the conventional micromaser,
Rabi regime the emission probability is periodic in which can be found at very low temperatures, i.e., in the
gryJn+1, in the mazer regime it is periodic iRLi/n+1.  absence of thermal photons, begin to disappear when the
This difference in the scaling parameter will be discussed iratoms are cooled down so that 10« (for r/C=50). This is

the next subsections. illustrated in Fig. 4.
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50
(a)
40
30
<n> '5
20 @
E
[0
o
10
0 ’J T T
0 1 2 3
gt
50
b
(b) FIG. 5. The emission probability for a mesa potential as a func-
401 tion of k/k for kL=10m (solid curve and xL=10.57 (dashed
curve, when the cavity field is initially in the vacuum state.
30
<n> illustrate this transition, we show the mean photon number in
20 Fig. 6. If k= «, as shown in Fig. @), there are oscillations in
the mean photon number as a functiongaf. For smaller
‘0 k/ k they become less periodic and their shape less sinelike.
U “
=
0 i 2 3 ; (a)
gt 40 |
FIG. 4. The mean photon numbgr) as a function of the inter- 30+
action time gr for the parameters/C=50, n,=0, and (& <n> 1 L [AVS )
k/k=100 and(b) k/k=5. As shown in the inset, the depths of the sod [N VP By
trapping resonances decrease kdék=20 (dotted and k/x=10 ] \ R ;' R _;"
(dashedl i . ,
10_ S // \\~‘~~\\ /I
The trapping resonances occur when for a particular num- -
ber n of photons in the cavity an initially excited atom un- O S S e e
dergoes complete Rabi oscillations and leaves the cavity 0 1 2 3

again in the excited state. That is, the probability for depos-
iting a photon has to vanish if the atom findghotons in the
cavity. As seen from the dashed curve in Figg)3this is no
longer the case if the kinetic energy of the atoms is compa-
rable to the atom-field interaction energy.

B. Intermediate regime

If the kinetic energy of the atoms is of the same order as
the potential energy, the influence of the potential barrier
gets stronger and fdt= k, dramatic changes happen. This
can be seen in Fig. 5, wheR,,issiof 0) is plotted as a func- 2

tion of k/ k. For k> k Rabi-like oscillations can be seen; for , u
k<« there are oscillations with a much smaller amplitude
p 0 JUM\UULJ&
0 5 10 15 20 2

around a mean value that decreases with decre&sinagin

. . . . 5
the intermediate regime, we obtain for k, and x,L>1 «L
Pemissiof N) = E +_3SII’]2( \/EK”L) ) (34) FIG. 6. The mean photon numbgr) in the intermediate regime
emissio 2 8+sin2( \/EKHL) vs (a) the interaction timegr for k/x=2 (solid curve, k/k=1

(dotted curve, k/k=0.5 (dashed curyeand (b) the interaction
As already noted above, a change in the scaling paramet&ingth «L for k/k=0.2, 0.1, 0.01(from top to bottor). The other
takes place between the Rabi and the mazer limit. To furthgparameters are/C=50 andn,=0.
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For k< k, the mean photon number becomes more and mor:
periodic if it is plotted as a function ofL, as illustrated in (a) (b)
Fig. 6b). For some parameters in the intermediate regime

i pl=-1 =0 pr=-1 =0
the mean photon numbers show collapse and revival as
function of kL, for example, in the upper curve in Fig(®. a) l——l — i) |l
For even slower atoms, the features of collapse and revive —» |n)
become less pronounced and are replaced by an irregul: — e .=
behavior, as exemplified by the middle curve in Fi¢h)6 o) M)
pr=-1 =0 pr=0 ="

C. Mazer limit
| | ith h . i FIG. 7. An excited atom and a cavity field with photons is
For ultracold atoms witlk<«,,, the emission probability  j.ccriped by the state,n)= (|77, 1)+ | vr.1))/y2. For very slow

is very_diﬁ_erent. This can already be inferred from the lower; iqant atoms, théy;, ,) component is always reflected by a po-
curve in Fig. €c), whose regular structure should be cOM-tniia| parrier. Thely,,,) component, which sees a square-well
pared with the irregularity of the middle curve. For the €MIS-potential, is reflected fokL4/n+1#ma (a) and is transmitted for

sion probability, we obtain xLYn+1=mm (b).
i 1
E 1+ ESII’](ZKnL)
Pemissiok N) = - . (35)  attractive potential, in each case emitting a photon half of the
1+ (Kkn/2K)?Sir?( KoL) time (|Ruo|2=|Roy]2=|Ta0|2=|Tp1|2=1/4). Note that 50%
) ) ) of the reflected atoms have deposited a photon in the cavity.
Several aspects of Eq.35), which is valid for In more physical terms, if the two components of the

kL<(x/K)*n+1 and exp;L)>1, should be noted. The \aye function that are associated with the corresponding re-
emission probability is periodic inkLyn+1 instead of puisive and attractive potentials preserve their relative sign,
gryn+1, which is the period in the limit of Rabi oscilla- the internal state of the atom and field does not change, i.e.,
tions. Equation35) resembles the Airy function of classical pq photon is emitted. On the other hand, a difference in the
optics, [1+Fsir’(A/2)] ", which gives the transmitted in- refiection or transmission of these components changes the
tensity in a Eabry—F’ret interferometer with finessé and  a1om-field state and results in the emission of a photon.
tqtal phase dlfferench [14]. In our situation, the finesse is It might seem surprising that the reflected atoms can de-
given byF = («,/2k)® and the phase difference By=2«,L. it 4 photon into the cavity with the same probability as

Please note that for very slow atoms th? pha$e dlffer.enC{;he transmitted atoms. In order to understand this, let us con-
does not depend on the wavelength of the incoming partICIE%ider the atomic CM motion in the cavity. During the inter-

but on the number of photons in the cavity. This is becaus ction with the cavity field, the atoms that are transmitted are

the kinetic energy of the atoms that experience the potentm} ster and the ones that are reflected are slower than outside

well and are transmitted on resonance is inside the cavit)[;:e cavity. All in all. thev spend the same time in the inter-
only determined by the depth of the potential, since the ki- Y- » (hey Sp

; : P ction region, as has been pointed out in Ra&®2]. This
netic energy outside the cavity is very small compared to thé& . . i : . .
atom-field interaction energy. explains the high probability for reflection with emission.

We now examine the cumulative effect of a sequence of
incident excited atoms on a cavity field that is initially in the
VI. RESONANCES IN THE MAZER REGIME vacuum state; see Fig. 8. KL=mar, the first atom may

A. Without thermal photons (T=0) deposit a photon_ in _the cavitgwith probability 1/2); This
] ~ changes the cavity field, and therefore the potentia(z),

There are two ways to come to a physical understandinghich determines the resonance condition; hence the next
of the quantized-motion—induced emission. One of them is jncident atom is reflected with certainty without emitting a
based on the reflection and transmission of the dreSSEd-Staéﬁoton(if no photon decays out of the cavity in the mean-
components, the other one explains the resonances with thigne). Therefore, in the limit of very slow atoms, at most one
picture of de Broglie waves inside the cavity. photon is in the cavity at a time. The average photon number

Taking Eq.(12) as the basis for an explanation of the pas to be between zero and one and is determined by the
quantizedz-motion—induced emission, we first consider theatio r/C between the injectiorfor incidence rate and the

situation where in the absence of thermal photons the cavityayity decay rate. Figure(8 illustrates this behavior for the
field is initially in the vacuum state and the kinetic energy 0fparametersk/;<= 102 andr/C=50.

the incident atoms is assumed to be so small that tunneling yith increasing atomic momentum, the finessef the

through the potential barrier is negligible, i.p, =—1 and  emission probability decreases, so that there is a nonvanish-
7, =0. Furthermorep, = — 1 andr, =0 whenk<x sothat  ing probability of depositing a photon in the cavity even
the atom is reflected and no photon is emitt¢,6/°=1),  when the resonance condition is not fulfilled. As a conse-
as in Fig. 1a). But whenxL =m things change drastically: quence, more resonancésorresponding to larger photon
then pj=—1 and 7y =0 as before, but now, =0 and number$ become accessible and can be excited, as shown in
7o =(—1)™, as depicted in Fig. (). Under this resonance Fig. 9. The resonances may occur for particular values of the
condition, the atom is only reflected when it hits the repul-interaction length, namely, for «kLYN=mm

sive potential and traverses the cavity when it encounters afN,m=1,2,3 . . .). Under this resonance condition, incident
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FIG. 8. Schematic diagram showing the cumulative effect of a 0.3
sequence of very slow excited atonksg«) on a cavity field that is P(n)
initially in the vacuum staté0). The parameters are such that the 02
resonance conditiorL \n+ 1=msr is fulfilled for n=0. As a con- 0.1
sequence, the emission probability is equal to 1/2rfer0 and 0.0

vanishes fom=1.

atoms emit a photon with maximal probability if they find

N—1 photons in the cavity.

FIG. 10. (@) With thermal photons present, the mean photon

For very slow atomsK< «,,), one gains further insight by number({n) and t?e normalized standard deviationshow reso-
considering the de Broglie wavelength of the atom inside thé'@nces atcL=m/{N even for very slow atoms. The peaks are

cavity. The de Broglie wavelength

(@)

<n> 14 .1

(1.3)

(=]
=
S
S

(b)

2,1) |

(c)

(1.1) @2 (12 2.3)
<n> 14 (X))

32) @3

<n> 1- (1.1 (1.2} {1,3)
@1
1 2.2) (2.3)
0 — —i A |

(13)

kL

FIG. 9. The mean photon numbgr) as a function of the inter-
action length kL for the parameters/C=50, n,=0, and (a)
k/x=0.001, (b) k/x=0.01, and(c) k/xk=0.03. The peaks are la-
beled by the pair of integers\(m), which appear in the resonance
condition kL4/N=ma. The resonances occur whérr m(\ 4g/2)
for the cavity lengthL and the de Broglie wavelengiyg inside the

cavity.

labeled by the integeN. (b) The photon distributionP(n) for
xkL=107/4N with N=3 (left plot) and N=6 (right plot) looks
like a pair of thermal distributions one of which is shifted towards
larger photon numbers. For all plots, the parameters/ace 103,
r/IC=10° andn,=1.

N 2 _ 2
® Kty xdn+l

depends only on the depth of the potential. The resonances in
the emission probability occur when the cavity length is an
integer multiple of half the de Broglie wavelength,
L=m(Aya/2).

(36)

B. With thermal photons (T>0)

For very slow atoms and zero temperature of the cavity,
only the vacuum resonandgith N=1) comes into play.
Initial field states with larger photon numbers will be
damped until there is at most one photon in the cavity in
steady state. In the presence of thermal photons, however,
the other resonances may be excited even for very slow at-
oms (k<«). This is shown in Fig. 1@&) for the resonance
sequence corresponding tmm=1 and the parameters
k/k=10"3, r/C=1C% andn,=1. The thermal photons en-
sure that there is a nonvanishing probability for having dif-
ferent numbers of photons in the cavity, which give rise to
different potentials and different resonances.

The peaks in the mean photon numkej are accompa-
nied by resonances in the normalized standard deviation
a=[({(n?)—(n)Y®)/(n)]"2 In Fig. 1Qa), the resonances for
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1<N=5 show reduced photon-number fluctuations as com

05
pared to the thermal levet=(1+n.)? whereas folN>5 04 t=0
the amplitude noise increases. 0'3

If the cavity length is adjusted such that the resonancpp)
condition xL4N=m is fulfiled for a pair of integers 0.2
N=Ng and m=mg, then it will also be fulfilled for
N=K*N, and m=Km,, ie., for N=16Ny 8IN,,
256Ny, . . . .From now on, we always choo$eandm such
that they are the smallest nonvanishing integers that fulfil
the resonance condition.

For kL=ma/4/N and in the limitk<x, we obtain from
Egs.(32) and(35) the steady-state photon distribution

P(n)=P(0)

Np )”K K np+r/2Cp*N -

nb+1 H

p=1 nb+1

for K4<n<(K+1)*N with K=0,1,2 . ... _ , o
If only photon numbers smaller than N@re relevant for FIG. 11. Time evolution of the photon distributié®(n) for the

’ _ 4 ; _ a3 _
the chosen parameters, as was the case in[BEfEq. (37) parameterscL = 10°7/ \/N with N=3 andk/«x=10"%, r/C=10",
can be simplified to give andn,=1 from an initial thermal distribution witkin)=1 att=0,

t=0.01C %, t=C %, andt=100C 1.

n

P(0) Np for n<N cavity damping and provides thermal photons, thereby ensur-
np+1 ing that the ratioP(n+1)/P(n) approaches its thermal-
P(n)= nb+r/2CN( n, |\ equilibrium valuen,/(n,+ 1) for all n except forn=N-1
for n=N, where we have a steep increase of the ratio due to the pump-
npt1 {ngt1 38 ing by the incident atomsP(N)/P(N—1)=(ny+r/2CN)/
(38) (npt1), as can be seen from E®8). The smaller the cavity
and the normalization conditioB,P(n)=1 implies decay rate and the larger the pump raend the ratio
r/2CN), the larger the ratid®(N)/P(N—1). This explains
r/IC) np \N1T the photon distributions of Figs. 11 and(bp
PO)=|npt1+ 55 ot 1 (39 Moreover, as seen from the expressig8) for P(0), the

probability for finding fewer tharN photons in the cavity

In Fig. 10(b), we plot the photon distributions at the two €N be suppressed by increasin@ so that the resulting
resonancesL = 10°7/4/N with N=3 andN=6 for n,=1. photon distribution is a shifted thermal distribution. Shifting

Each distribution looks like a pair of thermal distributions a distribution to larger photon numbers does not change its

one of which is shifted towards larger photon numbers Invariance. The normalized standard deviation, however, is de-

general, at the resonanet = ma/4/N, there is a shift byN creased since the mean is increased. Thus, for shalid
photons. Iarge r/p, the photqn _ d|str|but|on. may even be syb-
Equations(38) and (39) give the steady-state photon dis- Emgsomhan <(r<~13.8'{h|s is the case in the left plot of Fig.
tribution for the mazer with very slow atom&<€«) in the O(If), w erec_rd= I : ity ¢ ith th
presence of thermal photons and for the situation when the | whe (t:OHSI er ar%er cawb); _empetra ulres wit mfof[ﬁ er-l
resonance conditiorL4/N=ma is fulfilled, that is, we pick 12 Photons present, we obtain not only a pair ot therma
. : . distributions, but a whole sequence. This is shown in Fig. 12,
xL such that the resonance condition holds for fixed integers . : P o ,, I
. -2~ Which displays a distribution we call “dragon.” In addition
N andm. In order to understand why this steady-state distri- - ) o4 ; .
. . . A - to the peaks ah=1, n=2% andn=23", there is an "acci-
bution looks like a pair of thermal distributions, we conS|derd tal” K atn—39. si L4/39/m=10°4/39 diff
an initial thermal distributiorPo(n) with (n)=n, as in Fig. eln 1 g%%%afn— ’ _S|tnceK T iers
11(a); this is the steady-state solution in the absence of th@NlY by Y. rom an integer.
pumping atoms. A very slow excited incident atom will only
emit a photon into the cavitywith probability 1/2) if it en- VII. SINUSOIDAL POTENTIAL AS AN ATOMIC MIRROR
countersN—1 photons in the cavity; in all other cases, the When the cavity mode is described by a sinusoidal mode
emission probability is in general negligible. Thus, wheneverfunction as in a TE mode instead of the mesa functibs),
there areN—1 photons in the cavity, there is a large prob- which describes a TM mode, the reflection and transmission
ability for an incident excited atom to deposit an additionalcoefficients change and the emission probability is modified.
photon, thereby increasing the probability for havigho-  The coefficients can be calculated in the Wentzel-Kramers-
tons in the cavity and decreasiffN—1). Without the in-  Brillouin (WKB) approximation; details of the calculation
teraction with the thermal reservdior for a very small cav-  will be given in Ref.[10].
ity decay rat¢, we would find after the passage of many We consider the sinusoidal mode function
atoms the following photon distributionP(N—1)=0, ,
P(N)=Po(N—1)+P4(N), and P(n)=Py(n) for all n sin(2mz/L) for 0<z<L

#N—1N. The interaction with the thermal bath leads to u(z)= 0 elsewhere. (40)
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FIG. 12. The photon distributiorP(n) for the parameters
k/ik=10"3, n,=20,r/C=10% andxL=1C= (xL= for the in-
sed.

For large values of. and k<k,, we obtain the reflection
and transmission coefficients

pn=—iexp2igy),
7, =0. (41)
Analytical expressions for the phase integrals
Z,
ot = foo\/k2_ k2u(z)dz,

(42

L/2
b= JO VK2 + k2u(z)dz+ &,

wherez,= (L/27)arcsink?/x2), are given in Ref[10].

with the phase differenca,= ¢, — ¢, .

The incident excited atoms deposit a photon in the cavity
with a fixed probability, which can take on any value be-
tween zero and one, depending on the length of the cavity. In
particular, the cavity length can be such that all the atoms
deposit a photon into the cavity while they are reflected. The
cavity field acts as a mirror that may or may not change the
internal state of the incident atoms in addition to reflecting
them. State-changing and state-preserving mirrors for atoms
can be built.

VIIl. SUMMARY

We have considered a micromaser pumped by slow at-
oms. If the kinetic energy of the atoms is comparable to the
atom-field interaction energy, effects of the quantum-
mechanical CM motion become important. In this regime,
the emission probability and the photon statistics change dra-
matically, as compared to the usual maser. We have derived
the quantum theory of the mazer and given exact analytical
results for a mesa mode function. Sharp resonances occur in
the emission probability as a function of the interaction
length, when the de Broglie wavelength of the atoms fits into
the cavity. As a result of the cumulative effect of several
incident atoms, unusual photon distributions are obtained. In
the case of a sinusoidal potential, the cavity field can act as a
state-preserving or state-changing mirror for the incident at-
oms.

With the rapid progress in the cooling and manipulation
of single atoms, an experimental demonstration of the
guantizedz-motion—induced emission, e.g., by detecting re-
flected atoms that have deposited a photon in the cavity,
seems to be feasible. In a first experiment, the cavity poten-
tial could be enhanced by an injected field. A more detailed
discussion of experimental parameters and setups together

encounters immediately a potential barrier and is reflectecRer, [10].

However, when it first encounters the attractive part of the
sinusoidal potential, the atomic wave function can pick up an
additional phase before the atom is reflected off the repulsive
part of the potential. This additional phase varies with the
length of the cavity and gives rise to the emission probability
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