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Quantum theory of the mazer. I. General theory
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The photon emission probability in a micromaser changes drastically when the kinetic energy of the pump-
ing atoms is comparable to the atom-field interaction energy. In this situation, the atomic center-of-mass
motion has to be treated quantum mechanically and the de Broglie wavelength of the atom inside the cavity is
an important physical parameter. The interplay between reflection and transmission of the atoms leads to a new
mechanism for induced emission. A photon is emitted by an excited atom when the de Broglie wavelength fits
resonantly into the cavity. These resonances lead to the process of microwave amplification via
z-motion-induced emission of radiation~mazer!. We derive and illustrate a general expression for the emission
probability and a master equation for the mazer. We note that the probability for emission by an excited
thermal atom~stimulated maser emission! is very different from the emission probability as given by the de
Broglie resonances~induced mazer emission!. @S1050-2947~97!01411-X#

PACS number~s!: 42.50.Ar, 32.80.2t, 42.50.Dv, 84.40.Ik
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I. INTRODUCTION

Maser action occurs when excited thermal atoms foll
classical trajectories through a cavity@1–5#. We have shown
recently @6# that operation in the limit of ultracold~laser-
cooled! atoms@7# requiring a quantum-mechanical treatme
of the center-of-mass~CM! motion @8,9# leads to a com-
pletely new kind of induced emission. In the ordinary mas
stimulated emission prevails as the mechanism for amp
cation of radiation; but in the case of ultracold atoms
physics of the induced emission process is intimately ass
ated with the quantization of the CM motion~taken to be in
the z direction!. For this reason we distinguish between t
usual stimulated emission maser physics and that chara
ized by the present quantized-z-motion–induced emission
and call the process of microwave amplification v
z-motion-induced emission of radiation the mazer action.

The physical mechanism responsible for the induc
emission is the longitudinal force that the atoms experie
upon passing into a high-Q cavity due to the abrupt chang
in the atom-field interaction. Different dressed-state com
nents of the combined atom-field system encounter diffe
potentials and experience different longitudinal forces. T
different reflection and transmission of the dressed-s
components may result in the emission of a photon.

In this paper we study in detail the quantize
z-motion–induced emission and the photon statistics of
micromaser pumped by slow atoms. In Sec. II we show t
the interaction of slow atoms with a cavity field can
viewed as a scattering problem. In Sec. III we give a gen
expression for the emission probability of an excited at
that is incident upon a cavity withn photons. In order to
study the cumulative effect of a sequence of incident ato
on the cavity field, we derive in Sec. IV a master equation
the field. In the following we first study the case where t
atom-field coupling strength inside the cavity is const
along the propagation axis of the atoms. This situation can
561050-2947/97/56~5!/4142~11!/$10.00
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treated analytically and describes a TM mode. In Sec. V
emission probability for the incident atoms and the pho
statistics of the cavity field are studied in detail. We dist
guish three very different cases that we call the Rabi regi
the intermediate regime, and the mazer regime: the kin
energy of the atoms is larger than, on the order of, or sma
than the atom-field interaction energy, respectively. T
resonances that occur in the mazer limit for very slow ato
are explained in Sec. VI in terms of the reflection and tra
mission of dressed-state components and by looking at th
Broglie wavelength of the atoms inside the cavity. A sin
soidal mode function, which corresponds to a TE mode
considered in Sec. VII. In conclusion, we summarize o
main results. A discussion of more general mode functio
and possible experimental realizations will be given in pa
II, spectral properties are considered in paper III of this
ries @10,11#.

II. ATOM-FIELD INTERACTION
AS A SCATTERING PROBLEM

We first study the interaction between an incident atom
the excited stateua& and a cavity field withn photons, taking
the quantum-mechanical CM motion of the atom into a
count. With the atomic lowering ~raising! operator
s5ub&^au (s†5ua&^bu), the cavity-field annihilation~cre-
ation! operatora (a†), and the CM momentum operatorpz ,
the atom-field Hamilton operator reads in the dipole a
rotating-wave approximation

H5\nca
†a1\vs†s1

pz
2

2M
1\gu~z!~sa†1as†!, ~1!

whereu(z) is the mode function of the cavity field,g is the
atom-field coupling strength for the interaction between
quantized field~with frequencync) and the atom~with level
4142 © 1997 The American Physical Society
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56 4143QUANTUM THEORY OF THE MAZER. I. GENERAL THEORY
spacing\v), andM is the atomic mass. For simplicity, w
assume the atom to be in resonance with the field,
nc5v.

In an interaction picture, using a reference frame t
eliminates the terms in Eq.~1! that correspond to the energ
of the free field and the internal energy of the free atom,
have the Hamilton operator

H̃5
pz

2

2M
1\gu~z!~sa†1as†!. ~2!

It is expedient to expand the atom-field state in terms of
dressed states

ugn11
6 &5

1

A2
~ ua,n&6ub,n11&), ~3!

which are the eigenstates of the interaction operator, i.e.

~sa†1as†!ugn11
6 &56An11ugn11

6 &. ~4!

As discussed in Ref.@8#, Eqs. ~2! and ~4! lead to the
elementary problem of a particle incident upon a poten
Vn

6(z)56\gAn11u(z), as sketched in Fig. 1. When a
atom in the excited stateua& and with a CM wave packe
c(z) is incident upon a cavity field in the number stateun&,
the atom-field system is characterized before the scatte
process by the wave function

^zuC~0!&5c~z,0!ua,n& ~5!

with

c~z,0!5E dk A~k!eikzu~2z!. ~6!

FIG. 1. Schematic representation of the energyE of the atoms
~solid line! incident upon a micromaser cavity of lengthL, which
acts as a repulsive potential or potential barrier~dashed! and as an
attractive potential~dotted! with a potential energyV5\gAn11
for a cavity withn photons.
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Here Heaviside’s unit step functionu merely indicates on
which side of the cavity the atom can be found; of cour
the position and extent of the wave packet are already de
mined by the amplitudesA(k).

Inserting ua,n&5(ugn11
1 &1ugn11

2 &)/A2 into Eq. ~5!, we
express the initial state as a sum of components of the f

Cn
6~z,0!5c~z,0!ugn11

6 &, ~7!

each of which obeys the time-dependent Schro¨dinger equa-
tion

i\
]

]t
Cn

6~z,t !5S 2
\2

2M

]2

]z2
1Vn

6~z!D Cn
6~z,t !. ~8!

That is, eachCn
1 component encounters the potentialVn

1(z)
and eachCn

2 component sees the potentialVn
2(z). We have

thus reduced the problem to an elementary scattering pro
and denote the reflection and transmission coefficients
the Cn

6 components byrn
6 andtn

6 , respectively.
After the atom has left the interaction region, the initi

state~5! has evolved into

^zuC~ t !&5
1

A2
E dk A~k!e2 i ~\k2/2M !t$@rn

1~k!e2 ikzu~2z!

1tn
1~k!eik~z2L !u~z2L !#ugn11

1 &

1@rn
2~k!e2 ikzu~2z!

1tn
2~k!eik~z2L !u~z2L !#ugn11

2 &%

5E dk A~k!e2 i ~\k2/2M !t@Ran~k!e2 ikzu~2z!ua,n&

1Tan~k!eik~z2L !u~z2L !ua,n&

1Rb,n11~k!e2 ikzu~2z!ub,n11&

1Tb,n11~k!eik~z2L !u~z2L !ub,n11&]. ~9!

An excited atom incident upon a cavity that containsn
photons is found to be reflected or transmitted while rema
ing in the excited stateua& with amplitudes

Ran5 1
2 ~rn

11rn
2!,

~10!

Tan5 1
2 ~tn

11tn
2!

and is similarly reflected or transmitted while making a tra
sition to the stateub&, and emitting a photon, with amplitude

Rb,n115 1
2 ~rn

12rn
2!,

~11!

Tb,n115 1
2 ~tn

12tn
2!.

These four cases are sketched in Fig. 2.

III. EMISSION PROBABILITY

From Eq. ~11!, we obtain a general expression for th
probability that an excited atom incident upon a cavity co
taining n photons will emit a photon:
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4144 56MEYER, SCULLY, AND WALTHER
Pemission~n!5uRb,n11u21uTb,n11u2

5 1
4 ~ urn

12rn
2u21utn

12tn
2u2!. ~12!

The emission probability depends therefore only on the
flection and transmission coefficients for the quantu
mechanical CM motion of the atom. For very slow atoms
reflection coefficients do not vanish, and the emission pr
ability changes drastically. This is the reason why the n
kind of induced emission is called quantize
z-motion–induced emission.

In the special case where the atom-field coupling ins
the cavity is constant along the propagation axis of the
oms, the reflection and transmission coefficients can be
culated analytically. The mode function is then given by t
mesa function

u~z!5H 1 for 0,z,L

0 elsewhere,
~13!

whereL is the length of the cavity in thez direction. In this
case, eachCn

1 component encounters a potential barrier a
each Cn

2 component sees a square-well potential. This
shown schematically in Fig. 1. We obtain for the mesa fu
tion the reflection and transmission coefficients

rn
65 iDn

6sin~kn
6L !tn

6 ,

tn
65@cos~kn

6L !2 iSn
6sin~kn

6L !#21, ~14!

where

kn
65~k27k2An11!1/2,

Dn
65

1

2S kn
6

k
2

k

kn
6D , ~15!

Sn
65

1

2S kn
6

k
1

k

kn
6D ,

\k is the atomic CM momentum, and (\k)2/2M5\g is the
vacuum coupling energy. For the emission probability,
obtain in general from Eqs.~12! and ~14!

FIG. 2. An excited atom incident upon a cavity that containsn
photons is reflected or transmitted and remains in the excited
or deposits a photon in the cavity with probability amplitudesRan ,
Tan , Rb,n11, andTb,n11.
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Pemission~n!

5
1

2F12
~11Dn

1Dn
2Sn

1Sn
2!~Cn

1Cn
21Sn

1Sn
2Sn

1Sn
2!

~Cn
121Sn

12Sn
12!~Cn

221Sn
22Sn

22!
G
~16!

with Cn
65cos(kn

6L) and Sn
65sin(kn

6L). In Sec. V we will
discuss the emission probability in detail and derive simp
formulas for limiting cases.

For the mesa mode and thermal atoms, the atomic
mentum inside the cavity is

\kn
65\kS 17

kn
2

2k2D , ~17!

with kn5kA4 n11; that is, the atoms that experience the p
tential well are faster and the atoms that see a repulsive
tential are slower inside the cavity. Therefore, the wave fu
tion ~9! after the atom-field interaction reduces to the form

^zuC~ t !&5c~z,t !
1

A2
@exp~2 ikn

2L/2k!ugn11
1 &

1exp~ ikn
2L/2k!ugn11

2 &]

5c~z,t !@cos~gtAn11!ua,n&

2 isin~gtAn11!ub,n11&] ~18!

with

c~z,t !5E dk A~k!eikzu~z2L !e2 i ~\k2/2M !t ~19!

and gt5k2L/2k. We have thus recovered the well-know
Rabi oscillations.

When the cavity mode is not described by a mesa fu
tion, the coefficients~14! are modified. However, Eqs.~10!,
~11!, and~12! still hold.

IV. DERIVATION OF THE MASTER EQUATION

We now consider a more general situation where the tw
level atom is in the statecaua&1cbub& and the cavity field is
in the state(ncnun&. The atom-field system is now chara
terized before the scattering process by the wave functio

^zuC~0!&5c~z,0! (
n50

`

~canua,n&1cbnub,n&) ~20!

with can5cacn and cbn5cbcn . Expanding ua,n& and
ub,n11& in terms of dressed states, we obtain in the sa
way as in Sec. II the state of the atom-field system after
interaction

^zuC~ t !&5E dk A~k!e2 i ~\k2/2M !tH cb0eikzu~z2L !ub,0&

1 (
n50

`

[Ran~k!e2 ikzu~2z!ua,n&

te
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1Tan~k!eik~z2L !u~z2L !ua,n&

1Rb,n11~k!e2 ikzu~2z!ub,n11&

1Tb,n11~k!eik~z2L !u~z2L !ub,n11&] J , ~21!

where

Ran5canRan1cb,n11Rb,n11 ,
~22!

Tan5canTan1cb,n11Tb,n11

are the probability amplitudes for finding the atom reflec
or transmitted in the upper state andn photons in the cavity
field and

Rb,n115canRb,n111cb,n11Ran ,

~23!

Tb,n115canTb,n111cb,n11Tan

are the amplitudes for finding the atom reflected or transm
ted in the lower state andn11 photons in the field. In the
special case treated in Sec. II, we haveca51 andcn51 for
a fixed value ofn, and thereforeRan5Ran , Tan5Tan ,
Rb,n115Rb,n11, andTb,n115Tb,n11.

Please note thatRan is not only the probability amplitude
for an atom in the upper stateua& to be reflected and to
remain inua&, but also for an atom in the lower stateub& to
be reflected and to remain inub&; andRb,n11 is not only the
probability amplitude for an atom in stateua& to be reflected
and to undergo a transition toub&, but also for an atom inub&
to make a transition toua&. Analogously,Tan should be un-
derstood as the probability amplitude for an incident atom~in
ua& or ub&) to be transmitted without undergoing a transitio
and Tb,n11 is the amplitude for an atom to be transmitt
with a transition taking place.
d

t-

,

Equation ~21! can be used to find the reduced dens
matrix r(t) for the cavity field after the interaction with th
excited atom by forming the atom-field density matrix a
tracing over the internal and external atomic degrees of fr
dom, that is,

r~ t !5 (
i 5a,b

E dẑ i ,zuC~ t !&^C~ t !u i ,z&. ~24!

The coarse-grained equation of motion for the radiation fi
is then given by

ṙ~ t !5rdr~ t !1Lr~ t !, ~25!

wherer is the atomic injection~or incidence! rate anddr(t)
is the change in the reduced density matrix of the field due
the interaction with a single atom in the state

%atom5 (
i , j 5a,b

% i j u i &^ j u with % i j 5cicj* . ~26!

Field damping is described by the Liouville operator

Lr52
C

2
~nb11!~a†ar1ra†a22ara†!

2
C

2
nb~aa†r1raa†22a†ra!, ~27!

where C is the cavity decay rate andnb is the number of
photons in thermal equilibrium. We have neglected the d
sipation during the atom-field interaction@12#.

Inserting Eq.~21! into ~24! and adding the terms describ
ing field damping, we find the equations of motion for th
density-matrix elements
ṙnn85@r%aa~RanRan8
* 1TanTan8

* 21!1r%bb~Ra,n21Ra,n821
* 1Ta,n21Ta,n821

* 21!#rnn8

1r%aa~RbnRbn8
* 1TbnTbn8

* !rn21,n8211r%bb~Rb,n11Rb,n811
* 1Tb,n11Tb,n811

* !rn11,n811

1r%ab@~RanRb,n811
* 1TanTb,n811

* !rn,n8111~RbnRa,n821
* 1Tb,nTa,n821

* !rn21,n8#

1r%ba@~Rb,n11Ran8
* 1Tb,n11Tan8

* !rn11,n81~Ra,n21Rbn8
* 1Ta,n21Tbn8

* !rn,n821#

2 1
2 C~nb11!@~n1n8!rnn822A~n11!~n811!rn11,n811#

2 1
2 Cnb@~n1n812!rnn822Ann8rn21,n821#. ~28!
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In the following we will restrict ourselves to the injectio
of excited atoms (%aa51). In this case, Eq.~28! simplifies
to

ṙnn85r ~RanRan8
* 1TanTan8

* 21!rnn8

1r ~RbnRbn8
* 1TbnTbn8

* !rn21,n821

2 1
2 C~nb11!@~n1n8!rnn8

22A~n11!~n811!rn11,n811#

2 1
2 Cnb@~n1n812!rnn822Ann8rn21,n821#.

~29!

V. PHOTON STATISTICS

The equation of motion for the photon-number distrib
tion P(n)5rnn follows from Eq.~29!:

Ṗ~n!5Gn21P~n21!2GnP~n!

2C~nb11!@nP~n!2~n11!P~n11!#

1Cnb@nP~n21!2~n11!P~n!#, ~30!

where Gn5rPemission(n) is the gain coefficient with the
emission probabilityPemissionas in Eq.~12!.

The rate of change of the mean number of photons

^ṅ&5^Gn&2C~^n&2nb! ~31!

and the steady-state photon distribution

P~n!5P~0! )
m51

n
Cnb1Gm21 /m

C~nb11!
~32!

follow from Eq. ~30!. The photon distribution of the maze
pumped by ultracold atoms is completely different from t
field in the micromaser operating with a beam of therm
atoms.

The difference between the classical and the quan
treatment of the CM motion is clearly illustrated by lookin
at the probability that an excited atom launched into a ca
containingn photons will emit a photon. As we have seen
Sec. III, this emission probabilityPemission(n) depends on the
relation between the kinetic energy of the atoms and
atom-field interaction energy. We distinguish the situatio
where the kinetic energy of the atoms is larger than, on
order of, or smaller than the atom-field coupling energy a
call these cases the Rabi regime, the intermediate reg
and the mazer regime, respectively. The emission probab
is qualitatively different in these regimes. This is illustrat
in Fig. 3 for k/k510, 1, 0.1, and 0.01, when the cavity fie
is initially in the vacuum state (n50). Please note that in th
Rabi regime the emission probability is periodic
gtAn11, in the mazer regime it is periodic inkLA4 n11.
This difference in the scaling parameter will be discussed
the next subsections.
-
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A. Rabi limit

For fast atoms withk@kn5kA4 n11, the emission prob-
ability is given by

Pemission~n!5sin2S k2L

2k
An11D . ~33!

Equation~33! embodies the usual stimulated emission p
cess and the well-known Rabi oscillations. For examp
when L is small so that (k2L/2k)An115Vnt!1, where
the Rabi frequencyVn5gAn11 and the interaction time
t5L(\k/M )21, then the emission probability is propo
tional to n11.

The influence of the potential barrier on the photon sta
tics can be observed even if the kinetic energy of the atom
larger than the atom-field interaction energy. For examp
the trapping resonances@13# of the conventional micromaser
which can be found at very low temperatures, i.e., in
absence of thermal photons, begin to disappear when
atoms are cooled down so thatk'10k ~for r /C550). This is
illustrated in Fig. 4.

FIG. 3. The emission probabilityPemissionvs the interaction time
gt ~a! for fast atoms withk/k510 ~solid! andk/k51 ~dashed! and
vs the interaction lengthkL ~b! for slow atoms withk/k50.01
~solid! and k/k50.1 ~dashed!, when the cavity field is initially in
the vacuum state. As indicated by the dashed curve in~b!, an in-
crease in the velocity of ultracold atoms results in a broadening
the resonances.
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56 4147QUANTUM THEORY OF THE MAZER. I. GENERAL THEORY
The trapping resonances occur when for a particular n
ber n of photons in the cavity an initially excited atom un
dergoes complete Rabi oscillations and leaves the ca
again in the excited state. That is, the probability for dep
iting a photon has to vanish if the atom findsn photons in the
cavity. As seen from the dashed curve in Fig. 3~a!, this is no
longer the case if the kinetic energy of the atoms is com
rable to the atom-field interaction energy.

B. Intermediate regime

If the kinetic energy of the atoms is of the same order
the potential energy, the influence of the potential bar
gets stronger and fork.kn dramatic changes happen. Th
can be seen in Fig. 5, wherePemission(0) is plotted as a func-
tion of k/k. For k.k Rabi-like oscillations can be seen; fo
k,k there are oscillations with a much smaller amplitu
around a mean value that decreases with decreasingk/k. In
the intermediate regime, we obtain fork5kn andknL@1

Pemission~n!5
1

2F11
3sin2~A2knL !

81sin2~A2knL !
G . ~34!

As already noted above, a change in the scaling param
takes place between the Rabi and the mazer limit. To fur

FIG. 4. The mean photon number^n& as a function of the inter-
action time gt for the parametersr /C550, nb50, and ~a!
k/k5100 and~b! k/k55. As shown in the inset, the depths of th
trapping resonances decrease fork/k520 ~dotted! and k/k510
~dashed!.
-
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illustrate this transition, we show the mean photon numbe
Fig. 6. If k.k, as shown in Fig. 6~a!, there are oscillations in
the mean photon number as a function ofgt. For smaller
k/k they become less periodic and their shape less sine

FIG. 5. The emission probability for a mesa potential as a fu
tion of k/k for kL510p ~solid curve! and kL510.5p ~dashed
curve!, when the cavity field is initially in the vacuum state.

FIG. 6. The mean photon number^n& in the intermediate regime
vs ~a! the interaction timegt for k/k52 ~solid curve!, k/k51
~dotted curve!, k/k50.5 ~dashed curve! and ~b! the interaction
lengthkL for k/k50.2, 0.1, 0.01~from top to bottom!. The other
parameters arer /C550 andnb50.
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4148 56MEYER, SCULLY, AND WALTHER
For k,k, the mean photon number becomes more and m
periodic if it is plotted as a function ofkL, as illustrated in
Fig. 6~b!. For some parameters in the intermediate regi
the mean photon numbers show collapse and revival a
function ofkL, for example, in the upper curve in Fig. 6~b!.
For even slower atoms, the features of collapse and rev
become less pronounced and are replaced by an irreg
behavior, as exemplified by the middle curve in Fig. 6~b!.

C. Mazer limit

For ultracold atoms withk!kn , the emission probability
is very different. This can already be inferred from the low
curve in Fig. 6~c!, whose regular structure should be com
pared with the irregularity of the middle curve. For the em
sion probability, we obtain

Pemission~n!5

1

2F11
1

2
sin~2knL !G

11~kn/2k!2sin2~knL !
. ~35!

Several aspects of Eq.~35!, which is valid for
kL!(k/k)2A4 n11 and exp(knL)@1, should be noted. The
emission probability is periodic inkLA4 n11 instead of
gtAn11, which is the period in the limit of Rabi oscilla
tions. Equation~35! resembles the Airy function of classica
optics, @11Fsin2(D/2)#21, which gives the transmitted in
tensity in a Fabry-Pe´rot interferometer with finesseF and
total phase differenceD @14#. In our situation, the finesse i
given byF5(kn/2k)2 and the phase difference byD52knL.

Please note that for very slow atoms the phase differe
does not depend on the wavelength of the incoming partic
but on the number of photons in the cavity. This is beca
the kinetic energy of the atoms that experience the poten
well and are transmitted on resonance is inside the ca
only determined by the depth of the potential, since the
netic energy outside the cavity is very small compared to
atom-field interaction energy.

VI. RESONANCES IN THE MAZER REGIME

A. Without thermal photons „T50…

There are two ways to come to a physical understand
of the quantized-z-motion–induced emission. One of them
based on the reflection and transmission of the dressed-
components, the other one explains the resonances with
picture of de Broglie waves inside the cavity.

Taking Eq. ~12! as the basis for an explanation of th
quantized-z-motion–induced emission, we first consider t
situation where in the absence of thermal photons the ca
field is initially in the vacuum state and the kinetic energy
the incident atoms is assumed to be so small that tunne
through the potential barrier is negligible, i.e.,rn

1521 and
tn

150. Furthermore,r0
2521 andt0

250 whenk!k so that
the atom is reflected and no photon is emitted (uRa0u251),
as in Fig. 7~a!. But whenkL5mp things change drastically
then r0

1521 and t0
150 as before, but nowr0

250 and
t0

25(21)m, as depicted in Fig. 7~b!. Under this resonance
condition, the atom is only reflected when it hits the rep
sive potential and traverses the cavity when it encounter
re
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attractive potential, in each case emitting a photon half of
time (uRa0u25uRb1u25uTa0u25uTb1u251/4). Note that 50%
of the reflected atoms have deposited a photon in the ca

In more physical terms, if the two components of t
wave function that are associated with the corresponding
pulsive and attractive potentials preserve their relative s
the internal state of the atom and field does not change,
no photon is emitted. On the other hand, a difference in
reflection or transmission of these components changes
atom-field state and results in the emission of a photon.

It might seem surprising that the reflected atoms can
posit a photon into the cavity with the same probability
the transmitted atoms. In order to understand this, let us c
sider the atomic CM motion in the cavity. During the inte
action with the cavity field, the atoms that are transmitted
faster and the ones that are reflected are slower than ou
the cavity. All in all, they spend the same time in the inte
action region, as has been pointed out in Ref.@12#. This
explains the high probability for reflection with emission.

We now examine the cumulative effect of a sequence
incident excited atoms on a cavity field that is initially in th
vacuum state; see Fig. 8. IfkL5mp, the first atom may
deposit a photon in the cavity~with probability 1/2). This
changes the cavity field, and therefore the potentialVn

6(z),
which determines the resonance condition; hence the
incident atom is reflected with certainty without emitting
photon~if no photon decays out of the cavity in the mea
time!. Therefore, in the limit of very slow atoms, at most on
photon is in the cavity at a time. The average photon num
has to be between zero and one and is determined by
ratio r /C between the injection~or incidence! rate and the
cavity decay rate. Figure 9~a! illustrates this behavior for the
parametersk/k51023 and r /C550.

With increasing atomic momentum, the finesseF of the
emission probability decreases, so that there is a nonvan
ing probability of depositing a photon in the cavity eve
when the resonance condition is not fulfilled. As a con
quence, more resonances~corresponding to larger photo
numbers! become accessible and can be excited, as show
Fig. 9. The resonances may occur for particular values of
interaction length, namely, for kLA4 N5mp
(N,m51,2,3, . . . ). Under this resonance condition, incide

FIG. 7. An excited atom and a cavity field withn photons is
described by the stateua,n&5(ugn11

1 &1ugn11
2 &)/A2. For very slow

incident atoms, theugn11
1 & component is always reflected by a p

tential barrier. Theugn11
2 & component, which sees a square-w

potential, is reflected forkLA4 n11Þmp ~a! and is transmitted for
kLA4 n115mp ~b!.
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atoms emit a photon with maximal probability if they fin
N21 photons in the cavity.

For very slow atoms (k!kn), one gains further insight by
considering the de Broglie wavelength of the atom inside
cavity. The de Broglie wavelength

FIG. 8. Schematic diagram showing the cumulative effect o
sequence of very slow excited atoms (k!k) on a cavity field that is
initially in the vacuum stateu0&. The parameters are such that t
resonance conditionkLAn115mp is fulfilled for n50. As a con-
sequence, the emission probability is equal to 1/2 forn50 and
vanishes forn51.

FIG. 9. The mean photon number^n& as a function of the inter-
action length kL for the parametersr /C550, nb50, and ~a!
k/k50.001, ~b! k/k50.01, and~c! k/k50.03. The peaks are la
beled by the pair of integers (N,m), which appear in the resonanc
condition kLA4 N5mp. The resonances occur whenL5m(ldB/2)
for the cavity lengthL and the de Broglie wavelengthldB inside the
cavity.
e

ldB5
2p

k1kn
>

2p

kA4 n11
~36!

depends only on the depth of the potential. The resonance
the emission probability occur when the cavity length is
integer multiple of half the de Broglie wavelength
L5m(ldB/2).

B. With thermal photons „T>0…

For very slow atoms and zero temperature of the cav
only the vacuum resonance~with N51) comes into play.
Initial field states with larger photon numbers will b
damped until there is at most one photon in the cavity
steady state. In the presence of thermal photons, howe
the other resonances may be excited even for very slow
oms (k!k). This is shown in Fig. 10~a! for the resonance
sequence corresponding tom51 and the parameter
k/k51023, r /C5103, andnb51. The thermal photons en
sure that there is a nonvanishing probability for having d
ferent numbers of photons in the cavity, which give rise
different potentials and different resonances.

The peaks in the mean photon number^n& are accompa-
nied by resonances in the normalized standard devia
s5@(^n2&2^n&2)/^n&#1/2. In Fig. 10~a!, the resonances fo

a

FIG. 10. ~a! With thermal photons present, the mean phot
number^n& and the normalized standard deviations show reso-
nances atkL5p/A4 N even for very slow atoms. The peaks a
labeled by the integerN. ~b! The photon distributionP(n) for
kL5103p/A4 N with N53 ~left plot! and N56 ~right plot! looks
like a pair of thermal distributions one of which is shifted towar
larger photon numbers. For all plots, the parameters arek/k51023,
r /C5103, andnb51.
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4150 56MEYER, SCULLY, AND WALTHER
1<N<5 show reduced photon-number fluctuations as co
pared to the thermal levels5(11nb)

1/2, whereas forN.5
the amplitude noise increases.

If the cavity length is adjusted such that the resona
condition kLA4 N5mp is fulfilled for a pair of integers
N5N0 and m5m0, then it will also be fulfilled for
N5K4N0 and m5Km0, i.e., for N516N0, 81N0,
256N0 , . . . . From now on, we always chooseN andm such
that they are the smallest nonvanishing integers that fu
the resonance condition.

For kL5mp/A4 N and in the limitk!k, we obtain from
Eqs.~32! and ~35! the steady-state photon distribution

P~n!5P~0!S nb

nb11D n2K

)
p51

K
nb1r /2Cp4N

nb11
~37!

for K4<n,(K11)4N with K50,1,2, . . . .
If only photon numbers smaller than 16N are relevant for

the chosen parameters, as was the case in Ref.@6#, Eq. ~37!
can be simplified to give

P~n!5H P~0!S nb

nb11D n

for n,N

P~0!
nb1r /2CN

nb11 S nb

nb11D n21

for n>N,

~38!

and the normalization condition(nP(n)51 implies

P~0!5Fnb111
r /C

2N S nb

nb11D N21G21

. ~39!

In Fig. 10~b!, we plot the photon distributions at the tw
resonanceskL5103p/A4 N with N53 andN56 for nb51.
Each distribution looks like a pair of thermal distribution
one of which is shifted towards larger photon numbers.
general, at the resonancekL5mp/A4 N, there is a shift byN
photons.

Equations~38! and ~39! give the steady-state photon di
tribution for the mazer with very slow atoms (k!k) in the
presence of thermal photons and for the situation when
resonance conditionkLA4 N5mp is fulfilled, that is, we pick
kL such that the resonance condition holds for fixed integ
N andm. In order to understand why this steady-state dis
bution looks like a pair of thermal distributions, we consid
an initial thermal distributionP0(n) with ^n&5nb as in Fig.
11~a!; this is the steady-state solution in the absence of
pumping atoms. A very slow excited incident atom will on
emit a photon into the cavity~with probability 1/2) if it en-
countersN21 photons in the cavity; in all other cases, t
emission probability is in general negligible. Thus, whene
there areN21 photons in the cavity, there is a large pro
ability for an incident excited atom to deposit an addition
photon, thereby increasing the probability for havingN pho-
tons in the cavity and decreasingP(N21). Without the in-
teraction with the thermal reservoir~or for a very small cav-
ity decay rate!, we would find after the passage of man
atoms the following photon distribution:P(N21)>0,
P(N)>P0(N21)1P0(N), and P(n)5P0(n) for all n
ÞN21,N. The interaction with the thermal bath leads
-
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n

e
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i-
r
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r

l

cavity damping and provides thermal photons, thereby en
ing that the ratioP(n11)/P(n) approaches its thermal
equilibrium valuenb /(nb11) for all n except forn5N21
where we have a steep increase of the ratio due to the pu
ing by the incident atoms,P(N)/P(N21)5(nb1r /2CN)/
(nb11), as can be seen from Eq.~38!. The smaller the cavity
decay rate and the larger the pump rate~and the ratio
r /2CN), the larger the ratioP(N)/P(N21). This explains
the photon distributions of Figs. 11 and 10~b!.

Moreover, as seen from the expression~39! for P(0), the
probability for finding fewer thanN photons in the cavity
can be suppressed by increasingr /C so that the resulting
photon distribution is a shifted thermal distribution. Shiftin
a distribution to larger photon numbers does not change
variance. The normalized standard deviation, however, is
creased since the mean is increased. Thus, for smallN and
large r /C, the photon distribution may even be sub
Poissonian (s,1). This is the case in the left plot of Fig
10~b!, wheres>0.81.

If we consider larger cavity temperatures with more the
mal photons present, we obtain not only a pair of therm
distributions, but a whole sequence. This is shown in Fig.
which displays a distribution we call ‘‘dragon.’’ In addition
to the peaks atn51, n524, andn534, there is an ‘‘acci-
dental’’ peak atn539, sincekLA4 39/p5103 A4 39 differs
only by 0.0006 from an integer.

VII. SINUSOIDAL POTENTIAL AS AN ATOMIC MIRROR

When the cavity mode is described by a sinusoidal mo
function as in a TE mode instead of the mesa function~13!,
which describes a TM mode, the reflection and transmiss
coefficients change and the emission probability is modifi
The coefficients can be calculated in the Wentzel-Krame
Brillouin ~WKB! approximation; details of the calculatio
will be given in Ref.@10#.

We consider the sinusoidal mode function

u~z!5H sin~2pz/L ! for 0,z,L

0 elsewhere.
~40!

FIG. 11. Time evolution of the photon distributionP(n) for the
parameterskL5103p/A4 N with N53 and k/k51023, r /C5103,
andnb51 from an initial thermal distribution witĥn&51 at t50,
t50.01C21, t5C21, andt5100C21.
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For large values ofL and k,kn , we obtain the reflection
and transmission coefficients

rn
652 iexp~2ifn

6!,

tn
650. ~41!

Analytical expressions for the phase integrals

fn
15E

0

z0Ak22kn
2u~z!dz,

~42!

fn
25E

0

L/2
Ak21kn

2u~z!dz1fn
1 ,

wherez05(L/2p)arcsin(k2/kn
2), are given in Ref.@10#.

The incident atom is always reflected. Half of the time
encounters immediately a potential barrier and is reflec
However, when it first encounters the attractive part of
sinusoidal potential, the atomic wave function can pick up
additional phase before the atom is reflected off the repul
part of the potential. This additional phase varies with
length of the cavity and gives rise to the emission probabi

Pemission~n!5sin2~Dn! ~43!

FIG. 12. The photon distributionP(n) for the parameters
k/k51023, nb520, r /C5104, andkL5103p (kL5p for the in-
set!.
ve
ol

e
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with the phase differenceDn5fn
22fn

1 .
The incident excited atoms deposit a photon in the cav

with a fixed probability, which can take on any value b
tween zero and one, depending on the length of the cavity
particular, the cavity length can be such that all the ato
deposit a photon into the cavity while they are reflected. T
cavity field acts as a mirror that may or may not change
internal state of the incident atoms in addition to reflecti
them. State-changing and state-preserving mirrors for at
can be built.

VIII. SUMMARY

We have considered a micromaser pumped by slow
oms. If the kinetic energy of the atoms is comparable to
atom-field interaction energy, effects of the quantu
mechanical CM motion become important. In this regim
the emission probability and the photon statistics change
matically, as compared to the usual maser. We have der
the quantum theory of the mazer and given exact analyt
results for a mesa mode function. Sharp resonances occ
the emission probability as a function of the interacti
length, when the de Broglie wavelength of the atoms fits i
the cavity. As a result of the cumulative effect of seve
incident atoms, unusual photon distributions are obtained
the case of a sinusoidal potential, the cavity field can act a
state-preserving or state-changing mirror for the incident
oms.

With the rapid progress in the cooling and manipulati
of single atoms, an experimental demonstration of
quantized-z-motion–induced emission, e.g., by detecting
flected atoms that have deposited a photon in the cav
seems to be feasible. In a first experiment, the cavity po
tial could be enhanced by an injected field. A more detai
discussion of experimental parameters and setups toge
with the study of smooth mode functions will be given
Ref. @10#.
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