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Core-polarization effects on near-threshold photoionization of Mg
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~Received 21 April 1997!

The multiconfiguration relativistic random-phase approximation theory~MCRRPA! is applied to the photo-
ionization processes of Mg. Double-electron excitations as well as core-electron excitations are included. The
core-electron excitations account for the core-valence correlations, specifically the core-polarization effects,
and the double-electron excitations account for the intravalence correlations. We obtain a prediction of the
3s1/2 threshold photoionization cross section that is in excellent agreement with experiment. It shows that the
core-polarization effects in addition to the double-electron excitations play an important role in the near-
threshold photoionization processes of Mg and the MCRRPA provides an accurate account of these effects.
@S1050-2947~97!04811-7#

PACS number~s!: 32.80.Fb, 31.25.2v
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I. INTRODUCTION

In recent years, photoionization of magnesium has
tracted much attention from theoretical and experimental
searchers. The magnesium atom with two valence elect
outside a closed core has low-lying doubly excited sta
Besides the usual discrete-continuum correlations with
gly excited states, the correlation effects due to the prese
of doubly excited states are also important in the photoi
ization processes of valence electrons. Measurements o
photoionization cross section of the magnesium atom@1–6#
indicate that the spectrum is dominated by autoionizat
resonances. Certain features of these structures have
been reported in several theoretical calculations@7–21#.
However, only the measurement of Ditchburn and Marr h
reported the absolute photoionization cross section of m
nesium, and it is found that all available calculations pred
much larger near-threshold cross sections in comparison
the data of Ditchburn and Marr@1#.

Including doubly excited states in the calculation of t
photoionization processes of magnesium is essential for g
agreement with experiment. Relativistic effects should a
be dealt with to produce fine structures of the autoionizat
resonances. The generalization of the relativistic rando
phase approximation~RRPA! theory @13,22–28# by using a
multiconfiguration wave function as the reference state p
vides the allowance for treating double excitation corre
tions and is thereby appropriate for this application. T
approach is called the multiconfiguration relativistic rando
phase approximation~MCRRPA! theory @29,30#. The
MCRRPA theory preserves all the advantages of the RR
approach: First, the MCRRPA results are gauge independ
Second, both discrete and continuum correlations can
dealt with. Third, the initial- and final-state correlations a
treated on an equal footing. Fourth, core-polarization effe
can be treated readily. Applications of the MCRRPA are
the photoionization of Be, Mg, Zn, and Sr@31–36#, and to
photoexcitations of ions in the Be, Mg, Zn, Co, Hg, and
isoelectronic sequences@37–46#. Most of these MCRRPA
results have been reviewed recently@47#.

In the present calculation, the MCRRPA theory is appl
to photoionization of magnesium with core-polarization
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fects included. The interplay between the double-excitat
effects and core-polarization effects having an influence
the photoelectrons in the photoionization processes of m
nesium is investigated.

In Sec. II we review briefly the MCRRPA theory with
emphasis on its application to the photoionization of t
magnesium atom. The results and discussion are give
Sec. III.

II. THEORY

The MCRRPA theory treats both relativistic and corre
tion effects in open-shell atoms and has been presente
detail in a previous paper@30#. In the present application, th
wave function of the ground reference state of magnesium
described by the admixture

C5C1~3s1/2
2 !01C2~3p1/2

2 !01C3~3p3/2
2 !0 , ~1!

where (3l j
2)0 represents a Slater determinant with the to

angular momentumJ50 and even parity, constructed from
the 3l j valence orbitals and ten core orbitals. The groun
state orbitals and weights can be obtained from a MC
computer code@48#. The weights for configurations (3s1/2

2 )0 ,
(3p1/2

2 )0 , and (3p3/2
2 )0 are 0.9617, 0.1586, and 0.2236, r

spectively. Therefore, the mixing of configurations (3p1/2
2 )0

and (3p3/2
2 )0 with the dominant configuration (3s1/2

2 )0 is sig-
nificant for the description of the ground state of magnesiu
The binding energies for the 3s1/2, 3p1/2, and 3p3/2 orbitals
from the Dirac-Fock~DF! and MCDF calculations togethe
with the experimental values are listed in Table I. Since

TABLE I. Experimental removal energies and theoretical Dira
Fock ~DF! and multiconfiguration Dirac-Fock~MCDF! eigenvalues
~in eV! for valence electrons of the neutral magnesium atom.

Subshell Expt.a MCDF DF

3s1/2 7.644 7.692 6.88
3p1/2 12.069 11.848 10.907
3p3/2 12.080 11.861 10.918

aMoore @49#.
4118 © 1997 The American Physical Society
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are interested in low-energy photoionization, the main c
tributions to the photoionization amplitudes are predom
nantly due to electric dipole transitions. Within the elect
dipole approximation, the allowed valence excitations of
ground reference state~1! consist of seven interacting chan
nels, denoted symbolically as

3s1/2→«p1/2,«p3/2,

3p1/2→«s1/2,«d3/2, ~2!

3p3/2→«s1/2,«d3/2,«d5/2.

In addition, we have included seven allowed core-excitat
channels in the present calculation. The included chan
are

2s1/2→«p1/2,«p3/2,

2p1/2→«s1/2,«d3/2, ~3!

2p3/2→«s1/2,«d3/2,«d5/2.

We are concerned with photon energies just above thes
ionization threshold; therefore, only the first two valenc
excitation channels are open. A coherence interfere
among all 14 excitation channels coupled by interelect
Coulomb interactions leads to our MCRRPA results.
omitting the negative-frequency parts in the MCRRP
theory, we obtain our multiconfiguration Tamm-Dancoff a
proximation ~MCTD! results. If the single configuration
(3s1/2

2 )0 is used as the ground reference state in
MCRRPA theory, we have our RRPA and Tamm-Danc
approximation~TD! results.

FIG. 1. Comparison of the 3s1/2 photoionization cross section o
magnesium from various theoretical calculations and the exp
mental measurement. ---------, experimental data of Ditchburn
Marr @1#. , present MCRRPA calculation. –--–--–-, ou
previous MCRRPA calculation@35#. –-–-–-–-, eight-state close-
coupling calculation of Mendoza and Zeippen@19#. –––––,
configuration-interaction calculation of Altick and Bates@9#.
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III. RESULTS AND DISCUSSION

Figure 1 shows the comparison of the experimental pho
ionization cross section near the 3s1/2 threshold of magne-
sium with various theoretical predictions. From this figu
we see that all previous theoretical calculations have ove
timated the photoionization cross section. It is found th
most approaches predicted a double value of the 3s1/2 thresh-
old cross section in comparison with the experimental da
In comparison with the RPA calculation, we have obtain
improved agreement of the 3s1/2 threshold cross section with
the experiment in our previous MCRRPA calculation. Fro
Table II, we see that the RRPA gives a threshold cross s
tion of 4.4 Mb, and the MCRRPA gives a prediction of 1.7
Mb. It is revealed that a multiconfiguration wave function
important and necessary in describing the photoioniza
processes of magnesium. The intravalence correlations
tween the two equivalent valence electrons of magnes
are well accounted for by a multiconfiguration wave fun
tion. However, a large discrepancy still exists between
previous MCRRPA calculation and the experimental da
The discrepancy is ascribed to the ignored core-polariza
effects arising from excitation of the inner 2s and 2p core
electrons. The relaxation of the core electrons accounts
the core-valence correlations among the photoelectron
the electrons of the residual ion. As we can see from Fig
our present calculation shows that the magnitude of the 3s1/2
threshold cross section is modified drastically by the co
polarization effects. We have obtained a threshold cross
tion of 1.08 Mb, which is in excellent agreement with th
experimental value 1.18 Mb. Our calculation demonstra
that the core-valence correlations as well as the intravale
correlations play an important role in an accurate descrip
of photoionization processes of magnesium.

ri-
d

TABLE II. Photoionization cross section of magnesium at t
3s1/2 ionization threshold from various theoretical predictions a
experimental measurement.

Method sTH ~Mb!

Experimenta 1.1860.25
Quantum-defect theoryb 2.6
Close couplingc 1.5
Configuration interactiond 2.55
RRPAe 4.4
R matrixf 4.2
Complex basis expansiong 2.3
Quantum-defect theoryh 2.3
Close couplingi 2.67
MCRRPAj 1.73
MCRRPAk 1.08

aDitchburn and Marr@1#.
bBurgess and Seaton@7#.
cDubau and Wells@8#.
dBates and Altick@9#.
eAmusia, Cherepkov, Zivanovic, and Radojevic@10#.
fO’Mahony and Greene@15#.
gRescigno@16#.
hBerrington and Seaton@18#.
iMendoza and Zeippen@19#.
jOur previous MCRRPA results without core-polarization effe
@35#.
kOur present MCRRPA results with core-polarization effects.
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