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Topological charge and angular momentum of light beams carrying optical vortices
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We analyze the properties of light beams carrying phase singularities, or optical vortices. The transforma-
tions of topological charge during free-space propagation of a light wave, which is a combination of a Gaussian
beam and a multiple charged optical vortex within a Gaussian envelope, are studied both in theory and
experiment. We revise the existing knowledge about topological charge conservation, and demonstrate possible
scenarios where additional vortices appear or annihilate during free propagation of such a combined beam.
Coaxial interference of optical vortices is also analyzed, and the general rule for angular-momentum density
distribution in a combined beam is established. We show that, in spite of any variation in the number of
vortices in a combined beam, the total angular momentum is constant during the propagation.
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INTRODUCTION collision [20,21]. Other types of wave-front defects also may
occur, such as edge or mixed screw-edge dislocafid@k

Light beams possessing phase singularities, or wave-fronthe possible transformations between edge and screw dislo-
dislocationg 1,2] have been studied intensively in linear and cations(in laser mode terms, 01 and doughnut modeay
nonlinear optic§3—21], to reveal their basic properties, and be performed by modal convertgikl,23,24.
for the sake of possible applications. At the singularity the ~The light field of a singular beam carries angular momen-
phase becomes undetermined and the wave amplitude vai!™ [23] which may be transferred to a captured micropar-
ishes, resulting in a “dark beam” within a light wave. Phase ficle causing its rotation in a dlrectlon determmed by the sign
singularities appear on wave fronts in diffuse light scattering©f the topological chargg25]. In nonlinear optics, so-called
when a light wave has a form of speckle field, and eacﬁ/prtex solitons, yvh|ch are smgglar beams in nonlinear me-
speckle has one screw wave-front dislocation in the vicinitydium, are a subject of growing intere16,27. _
[3], also known as an optical vortg4]. At present, several However, singular beams demonstrate unusual properties
different techniques are used to generate “singular beams:@ven in linear optics, in free-space propagation. Optical
synthesized holograni$, 6], phase mask&—9], active laser phase S|ngular|t|e§ as morphological obp@taars of wave
systemg10—13, and low-mode optical fibefd4]. Recently fron;)_ are robust with respect to perturbations. For instance,
the generation of phase singularities was observed as a resg@fldition of a small coherent background does not destroy a
of light wave-front deformations caused by self-action inVortex, but only shifts its position to another place where the
nonlinear medid15,16). field ampl_|tude ha_s a zero vglue. _Fp_r vortices with multiple

The general result of these investigations is the origin of £harge this operation will split an initially-charged vortex
new chapter of modern optics and laser physics—singulaito |m| single-charge vorticef21]. Intuition suggests that
optics, which operates with terminology and laws quite newthe total topological charge would be conserved in a beam
to traditional optics. Phase singularities are topological obPropagating in free spadd,2]. Our goal is to analyze the
jects on wave-front surfaces, and possess topological chargg¥in properties of beams containing _phgse singularities in a
which can be attributed to the helicoidal spatial structure ogeneral way, and demonstrate the limitations on the topologi-
the wave front around a phase singularity. This structure i§al charge conservation principle for real beams, both theo-
similar to a crystal lattice defect, and therefore was at firsfetically and in experiment. On the basis of the present study,
known as a wave-front screw dislocatifh2]. The interfer- We establish the rules of angular-momentum transformations
ence of a wave possessing such wave-front screw dislocatidf light beams with phase singularities.
with an ordinary reference wave produces a spiral fringe pat-
tern [12,17,1§, or, in the case of equal wave-front curva- WAVE EQUATION SOLUTIONS POSSESSING PHASE
tures, radial fringeg§19]. The number of fringes radiating SINGULARITIES
from the center of the interference pattern equals the modu-

lus of the topological charge, and the direction of the spiral- [ this section we demonstrate some particular solutions
ing is determined by the sign of the charge and relative curPOSSessing phase singularities of the scalar wave equation for

vature of the wave fronts. a uniform isotropic medium

Optical vortices embedded in a host light beam behave in )
some degree as charged particles. They may rotate around V2E= iﬁ 1)
the beam axis, repel and attract each other, and annihilate in c? at?’
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whereE is the wave amplitude; is the speed of light, and |m| | 2/2

is time. The existence of these solutions for a monochro- Pmax= Ps —> ) (8)
matic light wave was first emphasized by Nye and Béiry
The derived complex amplitude of a light wave with fre- The maximum amplitude value of a singular wavezato,
quencyw, wavelength\, and wave vectok=2m/\ oriented  ,—, " therefore amounts to

alongz axis has the form

2

|m| |ml|/2

2e

pM expime+ikz—iwt), (2a) Eem=Es 9)

E(p,¢,z,t)x p~ M explime+ikz—iwt), (2b)

o ) ) The phase singularity disappears wher-0, and solution
wherep, ¢, andz are cylindrical coordinates. Both solutions (4) becomes an ordinary Gaussian beam:

have a phase depending on the azimuth agghaultiplied
by an integem (positive or negativecalled the topological Py p
charge of the phase singularitgptical vortey. The wave- E(p,2)=Ey w. B~ 2
! e 9 w
front (equal phase surfagéorms in space part of a helicoidal 9

surface given by the equalityng+kz=const. After one \here the propagating parameters for Gaussian beam corre-
round trip of the wave front around the axis there is & gpond to Eqs(5)—(7) with m=0.

continuous transition onto the nelir precedingwave-front As an example we show that a solution in fof2b) hav-
sheet separated by, which results in a continuous heli- jng an amplitude singularity at—0 may be used to create a
coidal wave-front surface. The topological charge attributedss|ytion with only a phase singularity. For this reason we

to this wave-front structure is positive for a right-screw heli- ke a similar solution with an amplitude singularity within
coid (m>0), and vice versa. In the cagm|>1, the wave-  Gayssian envelope,

front structure is composed frofm| identical helicoids
nested on the axis and separated by the wavelength Ps p? i

The solutions in formg2a) and(2b) cannot describe any E(p,¢,2)=Es W ex;{ - W7) exdi®y(p,¢,2)], (11)
real wave because of the radial amplitude dependence which s
grows proportionally tgp for Eq. (2a), and tends to infinity  where the phasé is
when p—0 for Eq. (2b). To avoid unwanted amplitude
growth, we may combine the solution in E(a with a
Gaussian beam. Using the paraxial approximation of the sca- Dy(p,@,2)= 2Rz T kz. (12
lar wave equation in the form s

2

exdi®4(p,2)], (10

2

5 The combination of solution$11) and (2b) for m=1 re-
14 ( E) N 1 E—Zi JE ~0 (3  moves the amplitude singularity and gives a wave which has
pap \Pap| " p?ag? gz a phase singularity gi=0:

we obtain the corresponding solution for a “singular” wave Ps 9 2 i1 2
in a Gaussian envelope carrying an optical vortex with E(P’ﬁovz):Es;{l_qu_P Iws+ikp®I2Ry(2) ]}
chargem [17]:
Xexp(ip+ikz). (13
|m] 2
Ps | P P . . ; ;
E(p.¢.2)=Es - (W) ex;{ _W) exdiPy(p,¢,2)], The amplitude of a wave created this way is zero at the
ss s 4) center p=0) and decreases on peripheryt/p. Other pos-
sible solutions of the scalar wave equation are Bessel beams

where E; is the amplitude parameter, ang is the beam [28] and Bessel-Gauss bealifi29] carrying optical vortices.

waist parameter. The phadg, is

5 OPTICAL VORTICES IN COMBINED BEAMS

2z
®(p,p,2)=—(|m|+ 1)arctan—;

+ L+mgo+ kz, In any practical realization of singular beams by use of
kps 2R4(2)

5 synthesized holograms or special optical elements, a small
(5) coherent background is always present in a singular beam.
The origin of this background may be a scattering in the

the transversal beam dimension is e : .
direction of the singular beam propagation or readout beam

W= /—p§+ (22/Kpy)?, (6) diffraction by the fundamental spatial frequgn.cy of an imper-
fect hologram. This background causes splitting of an optical
and the radius of the wave front curvature is vortex with chargem|>1 into |m| single-charged vortices
[21]. Another case is the interference between a singular
R{(z)=2z+ k2p§/4z, (7) wave and copropagating reference wave which is used in

analyzing the value and sign of the topological charge of the
The amplitude distribution in a transverse cross section ophase singularity18,21. We shall now generalize the prob-
the beam has a form of an annulus, and the waist paramettsm of coherent coaxial addition of singular beams carrying
ps is connected with the radius of maximum amplitudezat optical vortices with different chargémcluding the vortex-
=0 by a relation free wave,m=0). Our goal is to establish principles of to-
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pological charge addition and subtraction, and revise the ex- k=1,
isting knowledge about topological charge conservation in a
light beam propagating in free space. a=0, 0<{é<om, (180

Without loss of generality, we shall take a coaxial Gauss-
ian wave as a coherent background for a singular wave. BRll zeros of amplitude in the combined beam are located at
varying the amplitudeE, and waist parametep, of the the same distance from the center. The number of zards,
Gaussian beam, we may examine its influence in near and faqual tojm| and each amplitude zero is a center of a single
zones, as plane or spherical waves in limiting cases. The suwortex. The total topological charge is conserved in the com-
of the singular beam with the coaxial Gaussian be@am bined beam whem<0.
another singular beanwe shall call a combined beam. Another situation occurs whe>0. The function ofr in

The presence of a coherent background changes the posight side of Eq.(15) grows fromEg/Eg to infinity. Analysis
tion of a vortex which was initially localized at the center of shows three possibilities: no real roots of Etf), two roots
singular beam Eq4). To find the positions of the vortices in theach|m| times degenerateand one roo{2|m| times de-
combined beam, we need to write two equations, one givingieneratg The case of one root corresponds to the touching
the radius of the zero-amplitude poit@mplitudes of the of lines representing the left and right sides of Ekp). This
singular and Gaussian waves are equatedd another giv- condition is determined by taking derivatives gnwhich in
ing the angular coordinate, which corresponds to the de- combination with Eq(15) gives a solution
structive interference between the singular and Gaussian
waves: 2 [m|

ar 7, (19)

N o - .
9wy wj S W |\ Wg w2/’ which gives the critical ratio between the amplitude of the
Gaussian bearky and maximum amplitude of the singular
Dy(p,2)=P(p,p,2) + 7. (14  beamkEg,, Eq.(9):

Equations(14) are the basis for analysis of vortex behavior Eqg
in a combined beam. The first equation is easy to analyze to aﬂ
show the number of possible amplitude zeros in a combined or

beam. i P i hi
o ) When the amplitude rati¢=E,/Eg, is higher thany., no
To simplify the calculations, we suppose both beams have ti-es exist in the combined besgm, as EIf) has no real

a waist atz=0, and use a normalized transverse coordinalgqs. The resulting topological charge is zero. If the raio
r=plps and distancef=2/Lg, therELR is the Rayleigh s smaller thany,,, additionallm| single-charged vortices
length of the singular begm,R=kpS/2. The first equation of appear with charge opposite to the origimaicharged vor-
system(14) may be rewritten as tex, and the resulting total charge is zero again.
E As the parametew changes its sign during propagation of
rim=_% c(¢&)expar?), (15  the combined beam both for cases-1 and«<1, we may
Es expect a variation in the number of vorticesn a combined
beam propagating in free space, which means a change of the
topological charge of the beam. Only the case 1 will
g2\ conserve the initial topological charge unchanged frém
m) . (16 =0 to infinity, independent of the beam amplitude ratio.
Figure 1 demonstrates the variation of the number of vor-
tices in a combined beam during propagation along §he

=|m|
) . (20

2 1+ &1 k" ( 1+¢&

— 2 _
= Ner 1+§2 K2+52/K2

where

C(&)=(1+ gz)'m"z(

a= 1 5—— 12 5, (17) axis. The solid curve dividing the diagram is the dependence
1+&° wk“+ &k of ¢ Vs & for a particular value ok, x=0.5[Fig. 1(a)] and
dris th 0 of wai / k=2 [Fig. 1(b)]. The part of the diagram above the curve
and« 1s the ratio of waist parameters=pq/ps corresponds to zero number of vortices in a combined beam.
If <0, Eq.(15) has only one roo(|mjJ times degener-

In the casex<1 [Fig. 1(a)], the combined beam conserves
topological charge unté=x (a<0). This area on the dia-
gram is separated by a vertical line. Outside this region the
number of vortices may vary between zero arjch2 de-
pending on the ratigy, with total topological charge equal to
zero. A similar situation occurs for>1, but now conserva-

ate), as the left side is a function of growing from zero to
infinity, and the right side is a function decreasing from
E4/Es to zero. The conditionv<0 corresponds to the fol-
lowing relations forx and &

k=1, ) L . . .
tion of initial topological charge of singular beam will apply
=k, (189 At &k _(aSO)_ _ . -
Amplitude profiles of Gaussian and singular beams are
k<1, plotted in Fig. 2 for different distance%s The choice of pa-
rametersm=1, k=2, and »=1.05 corresponds to the dia-
E<k, (18b) gram shown in Fig. (b). Two points of intersection exist in

a region 0< £<0.655(two oppositely charged vortices in the
and combined beam no intersections in the region 0.65%
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0.0 0.5 10 15 20 25 3.0 FIG. 2. Amplitude profiles of Gaussigdashed lingand singu-

£ lar (solid line, |m|=1) waves with amplitude rati;=1.05 andx
=2, for different normalized distances (a) £=0.3, curves inter-

- ’ ! ¢ sect in two points shown by circleh) £€=0.655, touching of the
combined beam(@) The solid curve is the dependence of the criti- curves.(c) £=1: no intersections(d) £=1.39, once again touch-

cal amplitude ratio £4/Egq) - on the normalized distanggplotted ing. (&) £=1.5, two intersections(f) ¢=2, only the one intersec-

for x«=0.5 and/m|=1. The area above the curve contains no Vor-y, “Horizontal axis: normalized transverse coordinatevertical
tices. The regiort< « separated by the vertical line contaijms| axis: wave amplitude&(r),Eqy=1.

vortices, and the part below the curve corresponds g Zortices

in a combined beam. The horizontal dashed line corresponds to
particular value of the amplitude ratig,=4.05. This line crosses in
turn regions withm|, 2|m|, 0, 2/m| vortices. The total topological
charge iam, while ¢é<«, and zero outsidgb) The same a&), but

for the casex>1. The solid curve is a plot oy, for k=2. The
horizontal dashed line corresponds to the amplitude ratidl.05.
For higherm values, diagram$a) and (b) are very similar: dotted 2
lines are plots ofy,, for |m|=2. Agexp( _ p_) :As(ﬁ

W Wq

FIG. 1. Diagramga) and(b) show the number of vortices in a

istributions of the Gaussian and singular beams. The ampli-
tudesAgy(p) andAg(p) and transversal parametavg andwg

may be calculated from energy distributions, ands also
easy to determine. The amplitudes necessary for existence of
vortices in a combined beam may be written in this case as

|m| 2
exp( — %) (213

S

<1.39(no vortices in the beamtwo intersections and two
oppositely charged vortices for 1.8%<2, and finally one Of
intersection a_nd thgs a_single vortex for 2. _ _ m A 5 5
In a practical situation we may not have information (ﬂ) =—gexp(p _Pp ) (21b)
about the initial beam amplitude ratio and waist parameters Wy Ag W_zS W_Zg ’
pg andps, or the optical paths of beams from waist to ob-
servation plane may be different. The only experimentaWhereAy is the amplitude of the Gaussian beam at maxi-
measured values at the plane of observation are intensitpum, andAg is connected with the maximum amplitude of
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FIG. 3. Diagram showing the number of vortices in a beam . o
combined from arbitrary Gaussian and coaxial singular beams. The F/G: 4. Phase map shows the lines Be{O (thick line) and
horizontal coordinate is the transverse size ratio, the vertical coor™(E)=0 (thin line) in (x,y) coordinates normalized op; at a
dinate is the amplitude ratio. The dashed area corresponds to t&0SS sectione=1.405 of a combined beam with parametens

case of conservation of the total topological charge in the combined 1 <=2, and #=1.05. Positions of vortices are shown by dots
beam (the singular beam is wider than the Gausgidrhe solid (intersections of zero lingsThe original vortex is shifted from the

curve at the right side is the critical amplitude ratio forl =1, and center, and an additional vortex with opposite charge is located at

the dotted curve is fofm|=3. The area under the curves corre- the second intersection point.
sponds to Pm| vortices in the combined beam. No vortices are in

the combined beam with parameters in the area above the curve real and imaginary parts of the complex amplitle, ¢,¢)

f the combined beam: RE(=0 and Img)=0[3,15,30,31
. . _ Figure 4 shows these lines ¥y coordinategnormalized on
the singular wavés, by the same relation as E(R). Tak é’s) at cross sectiog=1.405 of a combined beam with pa-

ing into account the previous analysis, we may formulate th fametersm—1, k=2, andE,/E,~1.05. The positions of

following consequences important for experimental observa\-/Ortices are shown by dof@ntersections of zero linesThe
tion of vortex transformations in a combined beam: If the y

singular beam is broader than the Gaussian beam at the ofiginal vortex is shifted from the center and an additional
X . vortex with opposite charge is located at the second intersec-
servation planews>w,, Eq. (21b has one/m|-times de-

generate root, the total topological charge is conserved, antbon _pomt. BO”‘.'".‘ES Reéf)=0 and ImE)=0 are clqsed. .
Figure 5 exhibits transformations of zero-amplitude lines

the originalm-charged vortex breaks intn| vortices. If the and corresponding vortices map for a combined beam with
Gaussian beam is broader than the singulg>ws, the én=3, k=2, andn=1.75. At near field £=0.5) all vortices

total topological charge of the combined beam is zero. Th re suppressed by Gaussian wave with larger amolitude and
number of vortices in a combined beam is determined by th&"€ SuPP y 9 Pt
Waist parameter. The faster transverse spread of singular

relation between amplitudes. Rg/Asm>(Ag/Asnler, the beam leads to the equalizing of amplitudes at combined

combined beams will contain no vortices. Ry/Asp beam periphery and appearance of three pairs of opposite

<(Ag/As)er, an additionalm| vortices will appear in the charged vortices. Three vortices move away from the beam

combined beam, as discussed above. The critical raugnd disappear wheg=2. Finally, when £>2, combined

(Ag/ Asm)cr 1S beam contains three single vortices located symmetrically
A w2\ Imi2 with the conservation of the initial topological charge of the
(_9> :( 5 9 2) (22) singular beam.
Asm/ ., \Wg—wg The trajectories of vortices within the cross section of the

combined beam are shown in Fig. 6 for two main situations,

The number of vortices in the combined beam for this prac«>1 and k<1. The combined beartm=1, k=2, and »
tical situation may be determined from the diagram shown as=0.5) starts with two vortice§Fig. 6@] which move on
Fig. 3. The hatched area corresponds to the eagew, their trajectories as shown in Fig(e§ in opposite directions,
when the topological charge remains the same as in the simnd the negative vortex leaves the bearg-aR. For another
gular beam. In the right part of the diagram a solid curve isnitial amplitude ration=1.05, the behavior of the vortices
plotted according to Eq22) for m=1 and a dotted curve for is somewhat different. Two vortices annihilate in collision at
m=3. The region under the curves corresponds to the apt~0.655[Fig. 6(b)], and then the beam does not contain any
pearance ofm| additional vortices and zero total topological singularity until ¢~1.39. Born as a pair, two new vortices
charge. No vortices exist in the region above the correspondwith opposite charges repel each other and finally (oega-
ing curves. tively charged disappears at infinityr(— ) até=2, and the

To determine the position of vortices on a plane we  remaining one carries the initial charge of the singular beam.
need to use the second equation of systdd). Alterna- In the casex<<1 the combined beafm=1, x=0.5, andn
tively, we may calculate directly the position of the vortices =4.05 starts with only the primary vortefshifted from the
as points of intersection of lines representing the zeros of theentej, and an additional negative vortex enters the beam at
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FIG. 5. Phase maps for different distancé®f a combined
beam propagation with parameters=3, k=2, and »=1.75. (a)
£=0.5, lines ReE)=0 and ImE)=0 do not intersect, and no vor-
tices exist in the combined beartn) £=1.25, lines Re)=0 and

2

n
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£=0.5 coming from infinity[Fig. 6(c)]. After several round
trips it meets the prime vortex, and both annihilate in colli-
sion até~0.81. A new vortices pair originates §t=1.16,
and exists within the beam up to infinity.

The analysis of vortex behavior in a beam combined from
two coaxial singular beams may be performed in a similar
manner. However, the combined beam may possess some
new features in this case. First, both beams have zero ampli-
tude at the center. Ifm;|#|m,|, the combined beam will
have at the center a vortex with the smaller absolute value of
the charge. On the beam periphery, depending on the ratios
of amplitudes and sizes, the number of vortices may vary
between zero,m;—m,|, and 2|m;—m,|. In the particular
case wherim,|=|m,|, there are two situationsn; =m, and
m;=—m,. When charges have the same sign, waves add
coherently producing circular interference frind&2], and
the only m-charged vortex is located at the beam center.
When vortices have opposite charges, they compete with
each other for the central position. For smaJl we may
neglect the Gaussian envelope of the beams, and write the
amplitude at the core as

E(p,@)xpM[ A€M +Age m], (23)

which determines the phase near the core as adfétan
—AL)(Aq tAp)tan(me)]. This means that the vortex with
larger host wave amplitude will win, but becomes aniso-
tropic [30]. Finally, if Ag;=Ag,, vortices annihilate each
other. The interference pattern displayln® fringes radiat-
ing from the center.

EXPERIMENTAL OBSERVATION OF VORTICES IN
COMBINED BEAM

The setup for our experiment is shown in Fig. 7. The
linearly polarized output beam of a 10-mW He-Ne laser op-
erating on the TEM, mode is split first at beamsplitter BS1.
The directly transmitted beam is diffracted at the holographic
grating, and the first diffracted ordésingular beamis se-
lected with the iris aperture. The holographic gratings are
phase holograms restoring chargd and 3 singular beams,
both blazed for greatest efficiency into first ord@b]. The
reflected beam from beamsplitter BS1 is further split at BS2
into the “background” Gaussian beafreflected beamand
reference wavétransmitted beaim Lenses.1-L4 are used
to control the sizes and radii of curvature of the Gaussian and
reference wave. Lenis2 is finely controlled with a transla-
tion stage to allow fine adjustments of the wave-front curva-
ture. Polarizing beamsplittef®BS’y are used to control the
relative intensities of the singular and Gaussian beams. BS3
recombines the singular and Gaussian beams, and BS4 inter-
feres with the combined beam and the reference wave.
(Double reflection of the singular beam from BS3 and mirror
M does not change the sign of its topological charde-
nally, lensL5 creates a magnified image of the beam on the
screen, recorded with a charge-coupled devic€D) cam-
era.

The experimental technique consisted, first, of an align-

Im(E)=0 intersect in points shown by dots, and six single-chargednent of the singular and Gaussian beams to make them co-

vortices(three pairg exist in the beam(c) £=2.5, three intersec-

axial. The resulting interference pattern, observed in the far

tion points are shown by dots, and three vortices are located synfield, was then used to determine the relative difference in
metrically around the beam center.

curvature of wave fronts between the two beams. This was
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@)
3 T T FIG. 7. Sketch of the experimental setup. The He-Ne laser beam

splits into three channels. In the first channel a singular beam is
3 created by the hologram, the second channel carries the Gaussian

-~ S wave, and the reference wave is formed in the third channel. The
.’ S interference patterns are observed on a screen.

! adjusted using the position of leh®, so that there was at
:'§=1.39 most one round of dark fringe in the pattern. At this point,
e} £=0 the wavefronts of two beams were effectively matched at the
observation screen.

The profiles of energy distribution in the Gaussian and

Y coordinate
(=]

A4 . £=0655 singular beams were obtained from separate CCD images,
] x and the relative adjustment in beam intensities using PBS’s
2] £=25 could then be carried out to obtain the necessary number of
amplitude graph intersection points. The corresponding in-
(b) tensity distributions are shown in Figs. 8 and 9 for Gaussian
3 N S T S S S and singular beamgharges—1 and 3. Once the two beams
were roughly the required relative intensity and size for ad-
4 E=055 =< ditional vortices to be observable, the reference wave was
3_' e T~ N used to interfere the intensity pattern to observe the presence
] /’ oY \ of fringe dislocations, and hence the vortices in the original
2 / Pl AR pattern.
] / V3 N \ \
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FIG. 6. Vortex trajectories in a combined beam cross section. = ]
(@ Form=1, k=2, and »=0.5. The combined beam starts with 20 —
two oppositely charged vortices shown by dots. The negative vortex ]
leaves the beam af=2. (b) Two vortices in a beam withy ]
=1.05 annihilate in collision af~0.655. A pair of two new vor- 0 . LA S m
tices with opposite charges appeagatl.39. They repel each other
and finally one(negatively charged, dashed l)n@isappears at in- 0 20 40 60 80 100 120 140
finity (r—o) at é=2. (c) Combined beam(m=1, x=0.5, 7 X coordinate (arb. units)
=4.05 starts with only the primary vortefshifted from the cen-
ter), and an additional negative vortex enters the bearéi=a®.5 FIG. 8. Experimental intensity distributions for Gaussign

(dashed ling coming from infinity. After several round trips it =0, open circlesand singulaim= —1, closed circlesbeams at
meets the prime vortex, and both annihilate in collision éat the observation plane. Solid lines are numerical fits according to
~0.81. New vortices’ pair originates dt=1.16 (dotted lines. formulas(24).
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60
2 50
c i
S ]
o 40
5 ] &
> 30 —
230 - @ (b)
S .
£ 20 FIG. 10. Experimentafa) and numerically generatgth) inten-
- . sity distributions in a combine@Gaussian plusn=—1 singulaj
10 3 beam cross section. Zero-amplitude lines are showh)irwhen the
- solid line represents the real part of the complex amplitude, and the
] dashed line the imaginary part.
o I | 1 | I | I | I l ¥ I 1 d f h b
=8.86, w,=85.22, andxy,=65.76 for the Gaussian beam
0 20 40 60 80 100 120 140 g ’ 0 ’
. . and A*l:19'231 @\,1m:8.25), W,l:45.81, XO:6225,
X coordinate (arb. units) andy,=16.73 for the singulafcharge—1) beam. The cal-

culated curves are shown in Fig.($olid lineg. The ratio of
qhe beam sizes i&/y/ws=1.86, i.e., the Gaussian beam is
wider than the singular. The amplitude ratio Ag/A_ 1,

The reference beam was simply adjusted through the:1'07’ and according to the theoretical predicti¢sse the

choice of lense4 3 andL4 to be of much larger size than diagram in Fig. 3 an additional vortex should appear in the

the combined beam cross section. The interference pictur%omblne<j heam with a sign opposite ta the original vortex.

produced by the superposition of the reference beam and thc'?ft?a Sp;\?viecgﬁigés'néiirsséﬁgnir??;]rgscg:ngﬁe%ug:asmalso indi-
combined beam at BS4 could be roughly controlled to give a . : L
For the profiles of the Gaussian and charge 3 singular

reasonable number of fringes for sufficient resolution of any

fringe dislocations present. To avoid reduction of fringe vis—gﬁgT’_tgz ?ii(t)ti][g;r t?laeraGn;ifsr;nWs;?; 6;%_"‘195:8121?&9&
ibility due t I f coh th h Itil itudinal 0 > ! Sy 3m
bility due to a loss of coherence through multiongitudinal L2000 % 0 2 R0 BT I S

mode operation of the laser, all path differences were made . . ; T
integer Pnultiples of the laser cav?ty length. gular beam(Fig. 9. The Gaussian beam is again wider than

The parameters obtained from a numerical fit of the dataihe singular, and the amplitude ratio corresponds to the case

were used for a comparison of the experimental results witrl?f t_hrelze hadd't'oﬁL vortlc%s_ agpbearlngl,a W'th the total topo-
theoretical predictions. The following functions were used to ogical charge of the combin€d beam being Z€ro.

generate the intensity profiles of Gaussian and singular For the two superpositions investigated, namely, Gaussian
beams numerically: abeam with charge-1 singular and Gaussian with charge 3

singular, the intensity patterns were calculated in gray scale
]2 and are shown in Figs. 10 and 11. To generate the two-

FIG. 9. The same distributions as in Fig. 8, for Gaussian an
charge 3 singular beams.

(X—Xg)?
Py(x) =[Ag exr{ - W—20

g

dimensional intensity distribution(x,y) in a beam com-
bined from Gaussian and chargel singular beams numeri-
2 cally, the expression far(x,y) is represented as follows:

(X_Xo)2+Y(2)

A_
P1(x)=[W—_1[(x—xo)2+y§]l’2ex;{— W

l (X,y) = Pg(X-Y) + P—l(X'Y) + 2\/Pg(xiy) P—1(XaY)

(x—x%g)2+y2]) 2

A
PS(X):rW_E [(x—x0)2+yg]3/2ex;{— W2

3

X2+ 2 y
' X o —RZ arctan; +5/, (25
(24

whereAy, A_;, andA; are the amplitudes of the respective whereR is the radius of relative curvature of the Gaussian
waves(Gaussian, singular chargesl and 3 andwg, w_1, wave front with respect to the singular wavkis an adjust-
andws, are the beam sizes. The functi®y(x) is the inten-  able phase factor, and arctgh is the azimuth angle. The
sity profile of a Gaussian beam defined in thg plane, intensity distribution for the combined beam with Gaussian
where the profile is taken along thedirection withy=0.  and charge 3 singular wave has the same form agZ5),
P_,3 are the intensity profiles along axis of singular only the azimuth factor becomes 3 arctgr). Figures 10
beams, charges 1 and 3, aty=Y,, in order to take into and 11 also show the experimental patterns of combined
account a small misalignment of the beam centers, whiclbeam intensity in the far field and calculated intensity distri-
prevents the central minimum of the singular beam frombutions with lines of zeros for the functions [B€x,y)]=0
going to zero. Parameterg, and y, determine the beam (solid line) and InfE(x,y)]=0 (dashed ling The points of
center. The data obtained from the CQid relative unit3  intersection of the zero lines correspond to the positions of
were fitted to functions(24) with fitting parameters:A;  vortices. For the case of the combination of a Gaussian and a
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FIG. 11. The same intensity distributions as in Fig. 10, but for  FIG. 13. The interference pattern of the combined bé@auss-
Gaussian plusn=3 singular combined beam. ian plusm=3 singulay and reference wave. The primary vortex is

split into three vortices, and an additional three vortices with nega-

charge—1 singular beam, a single dark spiral fringe is Seenjye charge produce, with them, three paifa: experimental pic-
[Fig. 10a]. The curved shape of the fringe is due to slighttyre: (b) numerical simulation.

difference in wave-front curvature. The zero-amplitude lines

have two points of intersection, corresponding to two vorti-ANGULAR MOMENTUM OF LIGHT BEAM CARRYING

ces existing within the dark fringgéFig. 10b)]. For the OPTICAL VORTICES

Gaussian and charge 3 singular beam, three dark fringes ra- ) )

diating from the center of the pattern are pregéig. 11(a)]. The rotation of phase around the vortex axis causes a
There are six intersection points of the zero lines in Fig.nonzero value of angular momentum of a be@®,33. The

11(b), indicating two vortices with opposite charges located®r9in of the angular momentum may be easy explained from
in each dark fringe. simple evaluations. As the wave front of a singular beam has
To demonstrate the existence of vortices in the combine@ helicoidal shape, the Poynting vect®(p,¢,z) which is
beams clearly, the interference patterns of the combineferpendicular to the wave front surface has at each point a
beam with the reference wave are shown in Figs. 12 and 1310nZ€ro tangential component. In the paraxial approximation

The results of experimental observations are compared witHiS component equals, (p,¢,z)=—mP/kp, and the
calculated intensity distributions. For the Gaussian andangular-momentgm density in the-axis direction is
charge —1 combined beam, both theory and experimenth(P,<P_,Z)=(p/C )_PL(p,<p,z)._ As t_he Poynting vezctor is
show a dark spiral fringe which begins at the center of theroportional to a light wave intensity|Ey(p, ¢,2)|%, we
pattern and ends after nearly two tufifégs. 1Za) and 12 May obtain the expression for angular-momentum density of
(b)]. Thereafter, the interference fringes form rings corre-2 Singular beam:

sponding well with the theory: the phase has no rotating _ 2

component at this area. Thus two oppositely charged vortices M(p,¢,2)x—m|Es(p,¢,2)|%. (26)

make the total topological charge zero. The time-averaged density of angular momentum directed

For the Gaussian and charge 3 combined beam, there agong thez axis in a combined beam cross section may be
three inner interference “forks,” equally separated by 120°c|cylated in a general forfi23,33 as

and directed clockwise, and three outer “forks” directed an-

ticlockwise (Fig. 13. Hence there are six single vortices al- i .

together, or three pairs of oppositely charged vortices. At the M;=5 weg X| E v E 3y x E ox

area outside, the fringes again form rings. 27)
The experimental observations clearly demonstrate the

appearance of additional vortices in combined beams, changvheree, is the permittivity of free space. The total angular

ing the total topological charge of a beam. We have thusnomentuniL, of the beam is an integral over the beam cross

shown in both theory and experiment that the topologicakection

charge of a beam containing phase singularities is not a con-

stant while propagating in free space. L= fw f”’ M,dx dy. 29)
z z .

JE JE*
-y

JE aE*)
*

The simplest combined beam is a sum of singUEg. (4)]
and GaussiafEq. (10)] beams, and its angular momentum
calculated according to Eq27) is

Mz(Pa(PrZ)z _weom{|ES(p1(P!Z)|2
+|Es(p,(p,Z)Eg(p,Z)|C05{(DS(p,(P,Z)
~®4(p.2) T}, (29

FIG. 12. The interference pattern of the combined bé@auss-  which attains a simple form for a pure singular bealfy (
ian plusm=—1 singulaj and reference wave. The primary vortex =0):
is located near the center, and an additional vortex is seen with
positive charge(a) experimental picture(b) numerical simulation. M,(p,¢,2)=— weum|Eg(p,®,2)|% (30
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-1 0 1

FIG. 14. (Color) Distribution of energy and angular momentum in a combined béamand (b) m=1, E;/En=1.05, k=2, andé
=0.3. Green is for energy distribution, red for positive angular momentum devisity0, and blue for negative angular-momentum density
M,<0. The positions of two oppositely charged vortices are shown by white crog3eand (d) The same distributions fom= 3,
Eg/Esm=2.5, andk=2. No vortices exist in the combined beam with this amplitude ratio, but a modulation of the angular-momentum
density is clearly seen. The transverse coordinatex aredy, normalized orp.

coinciding with Eq.(26), and the angular-momentum density. Figure 14 represents the cal-
5 - 5 CL_JIation of angular-momentum density of combined beams
L= 2mwemE Ps J"” d P x| — 2p with parametersn=1, k=2, and»=1.05(a) andm=3, «
? 5wl Jo PPl w2 =2, andy=2.5 (b).

For a combined beam with a density of angular-
amm|! 22 momentum distribution given by E@29), the total angular
=~ T @€opsEs. 3D momentum is equal to that of the singular beam alone, be-
cause an interference term gives a zero amount in integral
The density of the angular momentum of a singular b&yn  (28). This demonstrates that coherent addition of a wave
is therefore proportional to the beam intensity, and the totaWith zero angular momentum does not affect the resulting
angular momentuni., to the beam energy. In a medium angular momentum of the combined beam. Using the general
without losses, the total momentun is conserved, as well form of the angular-momentum distribution in a combined
as the beam energy. beam(32), we are able now to calculate the result of coaxial
The relation obtained for the angular momentum of ainterference olN arbitrary singular beams,
combined bean29) may be generalized as a law of coaxial

addition of N beams carrying optical vortices with topologi- N
cal chargesn; : L,=> Ly, (33
I
wWEn N
M, (p,p,2)=— > > (mi+ m))|Ei(p,¢,2)Ej(p,¢,2)| which establishes a rule: In a beam combined fidrmoaxial
H beams, the angular momeritg, add arithmetically.
X co§ Pi(p,¢,2)—Pi(p,¢,2)]. (32 This rule gives interesting consequences for the addition

of singular beams with equal and opposite topological
This law is valid not only for singular waves with a Gaussiancharges. Two identical singular beams with equal energy but
envelope, but for all kinds of waves with axially symmetric opposite charges form a vortex-free beam with zero angular
amplitude distributions. momentum, independent of the phase relation between them.
An interesting consequence following from E@9) is  Identical beams with equal topological charges of vortices do
that even a small amount of a singular wave combined witmot obey the general rul@3), because the interference term
a strong Gaussian wave produces a substantial modulation &f a constant in this case, and the energy of the summed
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beam is strongly dependent on relative phases of compand “background” Gaussian waves in order to check the
nents. Further, adding a vortex-free wave with zero angulaprinciple of topological charge conservation. In brief, we ob-
momentum cannot change the total angular momerityof  tained the following results.
a beam, even though it may suppress all the vortices in the (1) Addition of a coherent coaxial vortex-free wave to a
combined beam. singular wave with an-charged vortex may change the num-
To understand the transformations of angular momentunber of vortices and the total topological charge in the com-
associated with am-charged vortex in a combined beam bined beam. Depending on background wave parameters, the
where the number of vortices may change and even becommimber of vortices in the combined beam may vary between
zero, we need to imagine the wave front of a combined bearmero, |m|, and 2m|. The total topological charge i or
which is not a symmetricah-pitched helicoid as for a pure zero.
singular beam. When all the vortices are suppressed by the (2) In free-space propagation from=0 to infinity, the
strong background wave, the wave front of the combinedotal topological charge and number of vortices in a com-
beam still has folds, but is a smooth surface without defectshined beam do change for any choice of background wave
The inclination of local “rays” which are perpendicular to parameters, except the cage 1 (equal transverse sizes
the surface produces both positive and negative components (3) We demonstrate for the first time to our knowledge,
of the angular momentum. With an increase of Gaussiathe possibility, in free-space propagation, of additional vor-
background wave amplitude, the folds become smaller, bufices appearing from the far periphery of a beé&nom in-
the beam amplitude grows proportionally, and resultingfinity), and their disappearance at a beam periphery.
negative and positive parts of angular momentum have (4) The obtained results are also applicable to the case of
nearly the same value. The difference between the negativeombinations of singular beams.
and positive components of the angular momentum remains (5) We show that the total angular momentum of a beam
exactly equal to the initial angular momentum of the singularis conserved in all cases in free-space propagation, in con-
beam, but is now due to small residual amplitude modulatiorirast with the total topological charge. We establish the main
over the combined beam cross section. In the case of mutules for addition and subtraction of angular momenta of
tiple vortices localized within a combined beam, the distri-light beams.
bution of the angular momentum becomes more compli- (6) We analyzed the transverse distribution of the angular
cated, but the resulting total angular momentum remainsnomentum in a combined beam cross section, and found a
constant. strong spatial modulation of the angular-momentum density
even in the case of absence of vortices in a combined beam.
CONCLUSIONS
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