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Topological charge and angular momentum of light beams carrying optical vortices
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We analyze the properties of light beams carrying phase singularities, or optical vortices. The transforma-
tions of topological charge during free-space propagation of a light wave, which is a combination of a Gaussian
beam and a multiple charged optical vortex within a Gaussian envelope, are studied both in theory and
experiment. We revise the existing knowledge about topological charge conservation, and demonstrate possible
scenarios where additional vortices appear or annihilate during free propagation of such a combined beam.
Coaxial interference of optical vortices is also analyzed, and the general rule for angular-momentum density
distribution in a combined beam is established. We show that, in spite of any variation in the number of
vortices in a combined beam, the total angular momentum is constant during the propagation.
@S1050-2947~97!09910-1#

PACS number~s!: 42.65.Sf, 42.50.Vk
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INTRODUCTION

Light beams possessing phase singularities, or wave-f
dislocations@1,2# have been studied intensively in linear a
nonlinear optics@3–21#, to reveal their basic properties, an
for the sake of possible applications. At the singularity t
phase becomes undetermined and the wave amplitude
ishes, resulting in a ‘‘dark beam’’ within a light wave. Pha
singularities appear on wave fronts in diffuse light scatteri
when a light wave has a form of speckle field, and ea
speckle has one screw wave-front dislocation in the vicin
@3#, also known as an optical vortex@4#. At present, severa
different techniques are used to generate ‘‘singular beam
synthesized holograms@5,6#, phase masks@7–9#, active laser
systems@10–13#, and low-mode optical fibers@14#. Recently
the generation of phase singularities was observed as a r
of light wave-front deformations caused by self-action
nonlinear media@15,16#.

The general result of these investigations is the origin o
new chapter of modern optics and laser physics—sing
optics, which operates with terminology and laws quite n
to traditional optics. Phase singularities are topological
jects on wave-front surfaces, and possess topological cha
which can be attributed to the helicoidal spatial structure
the wave front around a phase singularity. This structur
similar to a crystal lattice defect, and therefore was at fi
known as a wave-front screw dislocation@1,2#. The interfer-
ence of a wave possessing such wave-front screw disloca
with an ordinary reference wave produces a spiral fringe p
tern @12,17,18#, or, in the case of equal wave-front curv
tures, radial fringes@19#. The number of fringes radiating
from the center of the interference pattern equals the mo
lus of the topological charge, and the direction of the spir
ing is determined by the sign of the charge and relative c
vature of the wave fronts.

Optical vortices embedded in a host light beam behav
some degree as charged particles. They may rotate ar
the beam axis, repel and attract each other, and annihila
561050-2947/97/56~5!/4064~12!/$10.00
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collision @20,21#. Other types of wave-front defects also ma
occur, such as edge or mixed screw-edge dislocations@22#.
The possible transformations between edge and screw d
cations~in laser mode terms, 01 and doughnut modes! may
be performed by modal converters@11,23,24#.

The light field of a singular beam carries angular mome
tum @23# which may be transferred to a captured microp
ticle causing its rotation in a direction determined by the s
of the topological charge@25#. In nonlinear optics, so-called
vortex solitons, which are singular beams in nonlinear m
dium, are a subject of growing interest@26,27#.

However, singular beams demonstrate unusual prope
even in linear optics, in free-space propagation. Opti
phase singularities as morphological objects~tears of wave
front! are robust with respect to perturbations. For instan
addition of a small coherent background does not destro
vortex, but only shifts its position to another place where
field amplitude has a zero value. For vortices with multip
charge this operation will split an initiallym-charged vortex
into umu single-charge vortices@21#. Intuition suggests tha
the total topological charge would be conserved in a be
propagating in free space@1,2#. Our goal is to analyze the
main properties of beams containing phase singularities
general way, and demonstrate the limitations on the topolo
cal charge conservation principle for real beams, both th
retically and in experiment. On the basis of the present stu
we establish the rules of angular-momentum transformati
in light beams with phase singularities.

WAVE EQUATION SOLUTIONS POSSESSING PHASE
SINGULARITIES

In this section we demonstrate some particular soluti
possessing phase singularities of the scalar wave equatio
a uniform isotropic medium

¹2E5
1

c2

]2E

]t2 , ~1!
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56 4065TOPOLOGICAL CHARGE AND ANGULAR MOMENTUM OF . . .
whereE is the wave amplitude,c is the speed of light, andt
is time. The existence of these solutions for a monoch
matic light wave was first emphasized by Nye and Berry@1#.
The derived complex amplitude of a light wave with fr
quencyv, wavelengthl, and wave vectork52p/l oriented
alongz axis has the form

E~r,w,z,t !} H r umu exp~ imw1 ikz2 ivt !,
r2umu exp~ imw1 ikz2 ivt !,

~2a!
~2b!

wherer, w, andz are cylindrical coordinates. Both solution
have a phase depending on the azimuth anglew multiplied
by an integerm ~positive or negative! called the topological
charge of the phase singularity~optical vortex!. The wave-
front ~equal phase surface! forms in space part of a helicoida
surface given by the equalitymw1kz5const. After one
round trip of the wave front around thez axis there is a
continuous transition onto the next~or preceding! wave-front
sheet separated byml, which results in a continuous hel
coidal wave-front surface. The topological charge attribu
to this wave-front structure is positive for a right-screw he
coid (m.0), and vice versa. In the caseumu.1, the wave-
front structure is composed fromumu identical helicoids
nested on thez axis and separated by the wavelengthl.

The solutions in forms~2a! and ~2b! cannot describe any
real wave because of the radial amplitude dependence w
grows proportionally tor for Eq. ~2a!, and tends to infinity
when r→0 for Eq. ~2b!. To avoid unwanted amplitude
growth, we may combine the solution in Eq.~2a! with a
Gaussian beam. Using the paraxial approximation of the
lar wave equation in the form

1

r

]

]r S r
]E

]r D1
1

r2

]2E

]w222ik
]E

]z
50, ~3!

we obtain the corresponding solution for a ‘‘singular’’ wav
in a Gaussian envelope carrying an optical vortex w
chargem @17#:

E~r,w,z!5Es

rs

ws
S r

ws
D umu

expS 2
r2

ws
2Dexp@ iFs~r,w,z!#,

~4!

where Es is the amplitude parameter, andrs is the beam
waist parameter. The phaseFs is

Fs~r,w,z!52~ umu11!arctan
2z

krs
2 1

kr2

2Rs~z!
1mw1kz,

~5!

the transversal beam dimension is

ws5Ars
21~2z/krs!

2, ~6!

and the radius of the wave front curvature is

Rs~z!5z1k2rs
4/4z. ~7!

The amplitude distribution in a transverse cross section
the beam has a form of an annulus, and the waist param
rs is connected with the radius of maximum amplitude az
50 by a relation
-

d

ch

a-

f
ter

rmax5rsS umu
2 D 1/2

, ~8!

The maximum amplitude value of a singular wave atz50,
r5rmax, therefore amounts to

Esm5EsS umu
2e D umu/2

. ~9!

The phase singularity disappears whenm50, and solution
~4! becomes an ordinary Gaussian beam:

E~r,z!5Eg

rg

wg
expS 2

r2

wg
2Dexp@ iFg~r,z!#, ~10!

where the propagating parameters for Gaussian beam c
spond to Eqs.~5!–~7! with m50.

As an example we show that a solution in form~2b! hav-
ing an amplitude singularity atr→0 may be used to create
solution with only a phase singularity. For this reason
take a similar solution with an amplitude singularity with
Gaussian envelope,

E~r,w,z!5Es

rs

r
expS 2

r2

ws
2Dexp@ iFs~r,w,z!#, ~11!

where the phaseFs is

Fs~r,w,z!5
kr2

2Rs~z!
1w1kz. ~12!

The combination of solutions~11! and ~2b! for m51 re-
moves the amplitude singularity and gives a wave which
a phase singularity atr50:

E~r,w,z!5Es

rs

r
$12exp@2r2/ws

21 ikr2/2Rs~z!#%

3exp~ iw1 ikz!. ~13!

The amplitude of a wave created this way is zero at
center (r50) and decreases on periphery}1/r. Other pos-
sible solutions of the scalar wave equation are Bessel be
@28# and Bessel-Gauss beams@29# carrying optical vortices.

OPTICAL VORTICES IN COMBINED BEAMS

In any practical realization of singular beams by use
synthesized holograms or special optical elements, a s
coherent background is always present in a singular be
The origin of this background may be a scattering in t
direction of the singular beam propagation or readout be
diffraction by the fundamental spatial frequency of an imp
fect hologram. This background causes splitting of an opt
vortex with chargeumu.1 into umu single-charged vortices
@21#. Another case is the interference between a singu
wave and copropagating reference wave which is used
analyzing the value and sign of the topological charge of
phase singularity@18,21#. We shall now generalize the prob
lem of coherent coaxial addition of singular beams carry
optical vortices with different charges~including the vortex-
free wave,m50!. Our goal is to establish principles of to
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4066 56M. S. SOSKINet al.
pological charge addition and subtraction, and revise the
isting knowledge about topological charge conservation i
light beam propagating in free space.

Without loss of generality, we shall take a coaxial Gau
ian wave as a coherent background for a singular wave.
varying the amplitudeEg and waist parameterrg of the
Gaussian beam, we may examine its influence in near an
zones, as plane or spherical waves in limiting cases. The
of the singular beam with the coaxial Gaussian beam~or
another singular beam! we shall call a combined beam.

The presence of a coherent background changes the
tion of a vortex which was initially localized at the center
singular beam Eq.~4!. To find the positions of the vortices in
combined beam, we need to write two equations, one giv
the radius of the zero-amplitude point~amplitudes of the
singular and Gaussian waves are equated!, and another giv-
ing the angular coordinatew, which corresponds to the de
structive interference between the singular and Gaus
waves:

Eg

rg

wg
expS 2

r2

wg
2D 5Es

rs

ws
S r

ws
D umu

expS 2
r2

ws
2D ,

Fg~r,z!5Fs~r,w,z!6p. ~14!

Equations~14! are the basis for analysis of vortex behav
in a combined beam. The first equation is easy to analyz
show the number of possible amplitude zeros in a combi
beam.

To simplify the calculations, we suppose both beams h
a waist atz50, and use a normalized transverse coordin
r 5r/rs and distancej5z/LR , where LR is the Rayleigh
length of the singular beam,LR5krs

2/2. The first equation of
system~14! may be rewritten as

r umu5
Eg

Es
C~j!exp~ar 2!, ~15!

where

C~j!5~11j2! umu/2S 11j2

11j2/k4D 1/2

, ~16!

a5
1

11j22
1

k21j2/k2 , ~17!

andk is the ratio of waist parametersk5rg /rs .
If a<0, Eq. ~15! has only one root~umu times degener-

ate!, as the left side is a function ofr growing from zero to
infinity, and the right side is a function decreasing fro
Eg /Es to zero. The conditiona<0 corresponds to the fol
lowing relations fork andj:

k>1,

j>k, ~18a!

k<1,

j<k, ~18b!

and
x-
a

-
y

far
m

si-

he
g

an

to
d

e
te

k51,

a50, 0,j,`. ~18c!

All zeros of amplitude in the combined beam are located
the same distance from the center. The number of zeros,n, is
equal toumu and each amplitude zero is a center of a sin
vortex. The total topological charge is conserved in the co
bined beam whena<0.

Another situation occurs whena.0. The function ofr in
right side of Eq.~15! grows fromEg /Es to infinity. Analysis
shows three possibilities: no real roots of Eq.~15!, two roots
~eachumu times degenerate!, and one root~2umu times de-
generate!. The case of one root corresponds to the touch
of lines representing the left and right sides of Eq.~15!. This
condition is determined by taking derivatives onr , which in
combination with Eq.~15! gives a solution

ar 25
umu
2

, ~19!

which gives the critical ratio between the amplitude of t
Gaussian beamEg and maximum amplitude of the singula
beamEsm, Eq. ~9!:

S Eg

Esm
D

cr

2

5hcr
2 5

11j2/k4

11j2 S 12
11j2

k21j2/k2D 2umu

. ~20!

When the amplitude ratioh5Eg /Esm is higher thanhcr , no
vortices exist in the combined beam, as Eq.~15! has no real
roots. The resulting topological charge is zero. If the ratioh
is smaller thanhcr , additionalumu single-charged vortices
appear with charge opposite to the originalm-charged vor-
tex, and the resulting total charge is zero again.

As the parametera changes its sign during propagation
the combined beam both for casesk.1 andk,1, we may
expect a variation in the number of vorticesn in a combined
beam propagating in free space, which means a change o
topological charge of the beam. Only the casek51 will
conserve the initial topological charge unchanged fromj
50 to infinity, independent of the beam amplitude ratio.

Figure 1 demonstrates the variation of the number of v
tices in a combined beam during propagation along thj
axis. The solid curve dividing the diagram is the depende
of hcr vs j for a particular value ofk, k50.5 @Fig. 1~a!# and
k52 @Fig. 1~b!#. The part of the diagram above the curv
corresponds to zero number of vortices in a combined be
In the casek,1 @Fig. 1~a!#, the combined beam conserve
topological charge untilj5k (a<0). This area on the dia-
gram is separated by a vertical line. Outside this region
number of vortices may vary between zero and 2umu, de-
pending on the ratioh, with total topological charge equal t
zero. A similar situation occurs fork.1, but now conserva-
tion of initial topological charge of singular beam will app
at j.k (a<0).

Amplitude profiles of Gaussian and singular beams
plotted in Fig. 2 for different distancesj. The choice of pa-
rametersm51, k52, andh51.05 corresponds to the dia
gram shown in Fig. 1~b!. Two points of intersection exist in
a region 0,j,0.655~two oppositely charged vortices in th
combined beam!, no intersections in the region 0.655,j



n
te
b-
ta
s

pli-

e of
as

xi-
of

a
iti-

or

to

l

-

56 4067TOPOLOGICAL CHARGE AND ANGULAR MOMENTUM OF . . .
,1.39 ~no vortices in the beam!, two intersections and two
oppositely charged vortices for 1.39,j,2, and finally one
intersection and thus a single vortex forj.2.

In a practical situation we may not have informatio
about the initial beam amplitude ratio and waist parame
rg andrs , or the optical paths of beams from waist to o
servation plane may be different. The only experimen
measured values at the plane of observation are inten

FIG. 1. Diagrams~a! and ~b! show the number of vortices in
combined beam.~a! The solid curve is the dependence of the cr
cal amplitude ratio (Eg /Esm)cr on the normalized distancej plotted
for k50.5 andumu51. The area above the curve contains no v
tices. The regionj,k separated by the vertical line containsumu
vortices, and the part below the curve corresponds to 2umu vortices
in a combined beam. The horizontal dashed line corresponds
particular value of the amplitude ratio,h54.05. This line crosses in
turn regions withumu, 2umu, 0, 2umu vortices. The total topologica
charge ism, while j<k, and zero outside.~b! The same as~a!, but
for the casek.1. The solid curve is a plot ofhcr for k52. The
horizontal dashed line corresponds to the amplitude ratioh51.05.
For higherm values, diagrams~a! and ~b! are very similar: dotted
lines are plots ofhcr for umu52.
rs

l
ity

distributions of the Gaussian and singular beams. The am
tudesAg(r) andAs(r) and transversal parameterswg andws
may be calculated from energy distributions, andm is also
easy to determine. The amplitudes necessary for existenc
vortices in a combined beam may be written in this case

AgexpS 2
r2

wg
2D 5AsS r

ws
D umu

expS 2
r2

ws
2D ~21a!

or

S r

ws
D umu

5
Ag

As
expS r2

ws
22

r2

wg
2D , ~21b!

where Ag is the amplitude of the Gaussian beam at ma
mum, andAs is connected with the maximum amplitude

-

a

FIG. 2. Amplitude profiles of Gaussian~dashed line! and singu-
lar ~solid line, umu51! waves with amplitude ratioh51.05 andk
52, for different normalized distancesj. ~a! j50.3, curves inter-
sect in two points shown by circles.~b! j50.655, touching of the
curves.~c! j51; no intersections.~d! j51.39, once again touch
ing. ~e! j51.5, two intersections.~f! j52, only the one intersec-
tion. Horizontal axis: normalized transverse coordinater ; vertical
axis: wave amplitudesE(r ),Esm51.
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4068 56M. S. SOSKINet al.
the singular waveAsm by the same relation as Eq.~9!. Tak-
ing into account the previous analysis, we may formulate
following consequences important for experimental obser
tion of vortex transformations in a combined beam: If t
singular beam is broader than the Gaussian beam at the
servation plane,ws.wg , Eq. ~21b! has oneumu-times de-
generate root, the total topological charge is conserved,
the originalm-charged vortex breaks intoumu vortices. If the
Gaussian beam is broader than the singular,wg.ws , the
total topological charge of the combined beam is zero. T
number of vortices in a combined beam is determined by
relation between amplitudes. IfAg /Asm.(Ag /Asm)cr , the
combined beams will contain no vortices. IfAg /Asm
,(Ag /Asm)cr , an additionalumu vortices will appear in the
combined beam, as discussed above. The critical r
(Ag /Asm)cr is

S Ag

Asm
D

cr

5S wg
2

wg
22ws

2D umu/2

. ~22!

The number of vortices in the combined beam for this pr
tical situation may be determined from the diagram shown
Fig. 3. The hatched area corresponds to the casews.wg
when the topological charge remains the same as in the
gular beam. In the right part of the diagram a solid curve
plotted according to Eq.~22! for m51 and a dotted curve fo
m53. The region under the curves corresponds to the
pearance ofumu additional vortices and zero total topologic
charge. No vortices exist in the region above the correspo
ing curves.

To determine the position of vortices on a planer ,w we
need to use the second equation of system~14!. Alterna-
tively, we may calculate directly the position of the vortic
as points of intersection of lines representing the zeros of

FIG. 3. Diagram showing the number of vortices in a be
combined from arbitrary Gaussian and coaxial singular beams.
horizontal coordinate is the transverse size ratio, the vertical c
dinate is the amplitude ratio. The dashed area corresponds to
case of conservation of the total topological charge in the comb
beam ~the singular beam is wider than the Gaussian!. The solid
curve at the right side is the critical amplitude ratio forumu51, and
the dotted curve is forumu53. The area under the curves corr
sponds to 2umu vortices in the combined beam. No vortices are
the combined beam with parameters in the area above the cur
e
-

b-

nd

e
e

io

-
s

in-
s

p-

d-

e

real and imaginary parts of the complex amplitudeE(r ,w,j)
of the combined beam: Re(E)50 and Im(E)50 @3,15,30,31#.
Figure 4 shows these lines inx,y coordinates~normalized on
rs! at cross sectionj51.405 of a combined beam with pa
rametersm51, k52, andEg /Esm51.05. The positions of
vortices are shown by dots~intersections of zero lines!. The
original vortex is shifted from the center and an addition
vortex with opposite charge is located at the second inter
tion point. Both lines Re(E)50 and Im(E)50 are closed.

Figure 5 exhibits transformations of zero-amplitude lin
and corresponding vortices map for a combined beam w
m53, k52, andh51.75. At near field (j50.5) all vortices
are suppressed by Gaussian wave with larger amplitude
waist parameter. The faster transverse spread of sing
beam leads to the equalizing of amplitudes at combin
beam periphery and appearance of three pairs of oppo
charged vortices. Three vortices move away from the be
and disappear whenj52. Finally, whenj.2, combined
beam contains three single vortices located symmetric
with the conservation of the initial topological charge of t
singular beam.

The trajectories of vortices within the cross section of t
combined beam are shown in Fig. 6 for two main situatio
k.1 and k,1. The combined beam~m51, k52, andh
50.5! starts with two vortices@Fig. 6~a!# which move on
their trajectories as shown in Fig. 6~a! in opposite directions,
and the negative vortex leaves the beam atj52. For another
initial amplitude ratioh51.05, the behavior of the vortice
is somewhat different. Two vortices annihilate in collision
j'0.655@Fig. 6~b!#, and then the beam does not contain a
singularity until j'1.39. Born as a pair, two new vortice
with opposite charges repel each other and finally one~nega-
tively charged! disappears at infinity (r→`) at j52, and the
remaining one carries the initial charge of the singular bea
In the casek,1 the combined beam~m51, k50.5, andh
54.05! starts with only the primary vortex~shifted from the
center!, and an additional negative vortex enters the beam

he
r-

the
d

s.

FIG. 4. Phase map shows the lines Re(E)50 ~thick line! and
Im(E)50 ~thin line! in (x,y) coordinates normalized onrs at a
cross sectionj51.405 of a combined beam with parametersm
51, k52, andh51.05. Positions of vortices are shown by do
~intersections of zero lines!. The original vortex is shifted from the
center, and an additional vortex with opposite charge is locate
the second intersection point.
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FIG. 5. Phase maps for different distancesj of a combined
beam propagation with parametersm53, k52, andh51.75. ~a!
j50.5, lines Re(E)50 and Im(E)50 do not intersect, and no vor
tices exist in the combined beam.~b! j51.25, lines Re(E)50 and
Im(E)50 intersect in points shown by dots, and six single-charg
vortices~three pairs! exist in the beam.~c! j52.5, three intersec-
tion points are shown by dots, and three vortices are located s
metrically around the beam center.
j50.5 coming from infinity@Fig. 6~c!#. After several round
trips it meets the prime vortex, and both annihilate in co
sion atj'0.81. A new vortices pair originates atj'1.16,
and exists within the beam up to infinity.

The analysis of vortex behavior in a beam combined fr
two coaxial singular beams may be performed in a sim
manner. However, the combined beam may possess s
new features in this case. First, both beams have zero am
tude at the center. Ifum1uÞum2u, the combined beam will
have at the center a vortex with the smaller absolute valu
the charge. On the beam periphery, depending on the ra
of amplitudes and sizes, the number of vortices may v
between zero,um12m2u, and 2um12m2u. In the particular
case whenum1u5um2u, there are two situations:m15m2 and
m152m2 . When charges have the same sign, waves
coherently producing circular interference fringes@32#, and
the only m-charged vortex is located at the beam cent
When vortices have opposite charges, they compete w
each other for the central position. For smallr, we may
neglect the Gaussian envelope of the beams, and write
amplitude at the core as

E~r,w!}r umu@As1eimw1As2e2 imw#, ~23!

which determines the phase near the core as arctan@(As1
2As2)/(As11As2)tan(mw)#. This means that the vortex with
larger host wave amplitude will win, but becomes anis
tropic @30#. Finally, if As15As2 , vortices annihilate each
other. The interference pattern displays 2umu fringes radiat-
ing from the center.

EXPERIMENTAL OBSERVATION OF VORTICES IN
COMBINED BEAM

The setup for our experiment is shown in Fig. 7. T
linearly polarized output beam of a 10-mW He-Ne laser o
erating on the TEM00 mode is split first at beamsplitter BS1
The directly transmitted beam is diffracted at the holograp
grating, and the first diffracted order~singular beam! is se-
lected with the iris aperture. The holographic gratings
phase holograms restoring charge21 and 3 singular beams
both blazed for greatest efficiency into first order@25#. The
reflected beam from beamsplitter BS1 is further split at B
into the ‘‘background’’ Gaussian beam~reflected beam! and
reference wave~transmitted beam!. LensesL1 –L4 are used
to control the sizes and radii of curvature of the Gaussian
reference wave. LensL2 is finely controlled with a transla
tion stage to allow fine adjustments of the wave-front cur
ture. Polarizing beamsplitters~PBS’s! are used to control the
relative intensities of the singular and Gaussian beams.
recombines the singular and Gaussian beams, and BS4 i
feres with the combined beam and the reference wa
~Double reflection of the singular beam from BS3 and mir
M does not change the sign of its topological charge.! Fi-
nally, lensL5 creates a magnified image of the beam on
screen, recorded with a charge-coupled device~CCD! cam-
era.

The experimental technique consisted, first, of an ali
ment of the singular and Gaussian beams to make them
axial. The resulting interference pattern, observed in the
field, was then used to determine the relative difference
curvature of wave fronts between the two beams. This w

d

-
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4070 56M. S. SOSKINet al.
FIG. 6. Vortex trajectories in a combined beam cross sect
~a! For m51, k52, andh50.5. The combined beam starts wi
two oppositely charged vortices shown by dots. The negative vo
leaves the beam atj52. ~b! Two vortices in a beam withh
51.05 annihilate in collision atj'0.655. A pair of two new vor-
tices with opposite charges appear atj'1.39. They repel each othe
and finally one~negatively charged, dashed line! disappears at in-
finity ( r→`) at j52. ~c! Combined beam~m51, k50.5, h
54.05! starts with only the primary vortex~shifted from the cen-
ter!, and an additional negative vortex enters the beam atj50.5
~dashed line! coming from infinity. After several round trips i
meets the prime vortex, and both annihilate in collision atj
'0.81. New vortices’ pair originates atj'1.16 ~dotted lines!.
adjusted using the position of lensL2, so that there was a
most one round of dark fringe in the pattern. At this poi
the wavefronts of two beams were effectively matched at
observation screen.

The profiles of energy distribution in the Gaussian a
singular beams were obtained from separate CCD ima
and the relative adjustment in beam intensities using PB
could then be carried out to obtain the necessary numbe
amplitude graph intersection points. The corresponding
tensity distributions are shown in Figs. 8 and 9 for Gauss
and singular beams~charges21 and 3!. Once the two beams
were roughly the required relative intensity and size for a
ditional vortices to be observable, the reference wave w
used to interfere the intensity pattern to observe the prese
of fringe dislocations, and hence the vortices in the origi
pattern.

.

x

FIG. 7. Sketch of the experimental setup. The He-Ne laser be
splits into three channels. In the first channel a singular beam
created by the hologram, the second channel carries the Gau
wave, and the reference wave is formed in the third channel.
interference patterns are observed on a screen.

FIG. 8. Experimental intensity distributions for Gaussian~m
50, open circles! and singular~m521, closed circles! beams at
the observation plane. Solid lines are numerical fits according
formulas~24!.
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The reference beam was simply adjusted through
choice of lensesL3 andL4 to be of much larger size tha
the combined beam cross section. The interference pic
produced by the superposition of the reference beam and
combined beam at BS4 could be roughly controlled to giv
reasonable number of fringes for sufficient resolution of a
fringe dislocations present. To avoid reduction of fringe v
ibility due to a loss of coherence through multilongitudin
mode operation of the laser, all path differences were m
integer multiples of the laser cavity length.

The parameters obtained from a numerical fit of the d
were used for a comparison of the experimental results w
theoretical predictions. The following functions were used
generate the intensity profiles of Gaussian and sing
beams numerically:

Pg~x!5H Ag expF2
~x2x0!2

wg
2 G J 2

,

P21~x!5H A21

w21
@~x2x0!21y0

2#1/2expF2
~x2x0!21y0

2

w21
2 G J 2

,

P3~x!5H A3

w3
3 @~x2x0!21y0

2#3/2expF2
~x2x0!21y0

2

w3
2 G J 2

,

~24!

whereAg , A21 , andA3 are the amplitudes of the respectiv
waves~Gaussian, singular charges21 and 3! andwg , w21 ,
andw3 are the beam sizes. The functionPg(x) is the inten-
sity profile of a Gaussian beam defined in thex,y plane,
where the profile is taken along thex direction with y50.
P21,3 are the intensity profiles alongx axis of singular
beams, charges21 and 3, aty5y0 , in order to take into
account a small misalignment of the beam centers, wh
prevents the central minimum of the singular beam fr
going to zero. Parametersx0 and y0 determine the beam
center. The data obtained from the CCD~in relative units!
were fitted to functions~24! with fitting parameters:Ag

FIG. 9. The same distributions as in Fig. 8, for Gaussian
charge 3 singular beams.
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58.86, wg585.22, andx0565.76 for the Gaussian beam
and A21519.23, (A21m58.25), w21545.81, x0562.25,
andy0516.73 for the singular~charge21! beam. The cal-
culated curves are shown in Fig. 8~solid lines!. The ratio of
the beam sizes iswg /ws51.86, i.e., the Gaussian beam
wider than the singular. The amplitude ratio isAg /A21m
51.07, and according to the theoretical predictions~see the
diagram in Fig. 3! an additional vortex should appear in th
combined beam with a sign opposite to the original vort
The presence of intersection points of the curves also in
cates two vortices existence in the combined beam.

For the profiles of the Gaussian and charge 3 singu
beam, the fitting parameters wereAg56.29, wg5115.92,
andx0566.30 for the Gaussian beam, andA3515.82 (A3m
56.49), w3541.23,x0566.05, andy0533.91 for the sin-
gular beam~Fig. 9!. The Gaussian beam is again wider th
the singular, and the amplitude ratio corresponds to the c
of three additional vortices appearing, with the total top
logical charge of the combined beam being zero.

For the two superpositions investigated, namely, Gaus
beam with charge21 singular and Gaussian with charge
singular, the intensity patterns were calculated in gray sc
and are shown in Figs. 10 and 11. To generate the t
dimensional intensity distributionI (x,y) in a beam com-
bined from Gaussian and charge21 singular beams numeri
cally, the expression forI (x,y) is represented as follows:

I ~x,y!5Pg~x,y!1P21~x,y!12APg~x,y!P21~x,y!

3cosS x21y2

R2 2arctan
y

x
1d D , ~25!

whereR is the radius of relative curvature of the Gaussi
wave front with respect to the singular wave,d is an adjust-
able phase factor, and arctan(y/x) is the azimuth angle. The
intensity distribution for the combined beam with Gauss
and charge 3 singular wave has the same form as Eq.~25!,
only the azimuth factor becomes 3 arctan(y/x). Figures 10
and 11 also show the experimental patterns of combi
beam intensity in the far field and calculated intensity dis
butions with lines of zeros for the functions Re@E(x,y)#50
~solid line! and Im@E(x,y)#50 ~dashed line!. The points of
intersection of the zero lines correspond to the positions
vortices. For the case of the combination of a Gaussian a

d

FIG. 10. Experimental~a! and numerically generated~b! inten-
sity distributions in a combined~Gaussian plusm521 singular!
beam cross section. Zero-amplitude lines are shown in~b!, when the
solid line represents the real part of the complex amplitude, and
dashed line the imaginary part.
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charge21 singular beam, a single dark spiral fringe is se
@Fig. 10~a!#. The curved shape of the fringe is due to slig
difference in wave-front curvature. The zero-amplitude lin
have two points of intersection, corresponding to two vo
ces existing within the dark fringe@Fig. 10~b!#. For the
Gaussian and charge 3 singular beam, three dark fringe
diating from the center of the pattern are present@Fig. 11~a!#.
There are six intersection points of the zero lines in F
11~b!, indicating two vortices with opposite charges locat
in each dark fringe.

To demonstrate the existence of vortices in the combi
beams clearly, the interference patterns of the combi
beam with the reference wave are shown in Figs. 12 and
The results of experimental observations are compared
calculated intensity distributions. For the Gaussian a
charge 21 combined beam, both theory and experime
show a dark spiral fringe which begins at the center of
pattern and ends after nearly two turns@Figs. 12~a! and 12
~b!#. Thereafter, the interference fringes form rings cor
sponding well with the theory: the phase has no rotat
component at this area. Thus two oppositely charged vort
make the total topological charge zero.

For the Gaussian and charge 3 combined beam, there
three inner interference ‘‘forks,’’ equally separated by 12
and directed clockwise, and three outer ‘‘forks’’ directed a
ticlockwise ~Fig. 13!. Hence there are six single vortices a
together, or three pairs of oppositely charged vortices. At
area outside, the fringes again form rings.

The experimental observations clearly demonstrate
appearance of additional vortices in combined beams, ch
ing the total topological charge of a beam. We have th
shown in both theory and experiment that the topologi
charge of a beam containing phase singularities is not a
stant while propagating in free space.

FIG. 11. The same intensity distributions as in Fig. 10, but
Gaussian plusm53 singular combined beam.

FIG. 12. The interference pattern of the combined beam~Gauss-
ian plusm521 singular! and reference wave. The primary vorte
is located near the center, and an additional vortex is seen
positive charge:~a! experimental picture;~b! numerical simulation.
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ANGULAR MOMENTUM OF LIGHT BEAM CARRYING
OPTICAL VORTICES

The rotation of phase around the vortex axis cause
nonzero value of angular momentum of a beam@23,33#. The
origin of the angular momentum may be easy explained fr
simple evaluations. As the wave front of a singular beam
a helicoidal shape, the Poynting vectorP(r,w,z) which is
perpendicular to the wave front surface has at each poi
nonzero tangential component. In the paraxial approxima
this component equalsP'(r,w,z)52mP/kr, and the
angular-momentum density in thez-axis direction is
Mz(r,w,z)5(r/c2)P'(r,w,z). As the Poynting vector is
proportional to a light wave intensity,P}uEs(r,w,z)u2, we
may obtain the expression for angular-momentum density
a singular beam:

Mz~r,w,z!}2muEs~r,w,z!u2. ~26!

The time-averaged density of angular momentum direc
along thez axis in a combined beam cross section may
calculated in a general form@23,33# as

Mz5
i

2
ve0FxS E*

]E

]y
2E

]E*

]y D2yS E*
]E

]x
2E

]E*

]x D G ,
~27!

wheree0 is the permittivity of free space. The total angul
momentumLz of the beam is an integral over the beam cro
section

Lz5E
2`

` E
2`

`

Mzdx dy. ~28!

The simplest combined beam is a sum of singular@Eq. ~4!#
and Gaussian@Eq. ~10!# beams, and its angular momentu
calculated according to Eq.~27! is

Mz~r,w,z!52ve0m$uEs~r,w,z!u2

1uEs~r,w,z!Eg~r,z!ucos@Fs~r,w,z!

2Fg~r,z!#%, ~29!

which attains a simple form for a pure singular beam (Eg
50):

Mz~r,w,z!52ve0muEs~r,w,z!u2, ~30!

r

th

FIG. 13. The interference pattern of the combined beam~Gauss-
ian plusm53 singular! and reference wave. The primary vortex
split into three vortices, and an additional three vortices with ne
tive charge produce, with them, three pairs:~a! experimental pic-
ture; ~b! numerical simulation.
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FIG. 14. ~Color! Distribution of energy and angular momentum in a combined beam.~a! and ~b! m51, Eg /Esm51.05, k52, andj
50.3. Green is for energy distribution, red for positive angular momentum densityMz.0, and blue for negative angular-momentum dens
Mz,0. The positions of two oppositely charged vortices are shown by white crosses.~c! and ~d! The same distributions form53,
Eg /Esm52.5, andk52. No vortices exist in the combined beam with this amplitude ratio, but a modulation of the angular-mom
density is clearly seen. The transverse coordinates arex andy, normalized onrs .
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coinciding with Eq.~26!, and

Lz522pve0mEs
2S rs

ws
D 2E

0

`

rdrS r

ws
D 2umu

expS 2
2r2

ws
2 D

52
pmumu!
2umu11 ve0rs

2Es
2. ~31!

The density of the angular momentum of a singular beamMz
is therefore proportional to the beam intensity, and the to
angular momentumLz to the beam energy. In a medium
without losses, the total momentumLz is conserved, as wel
as the beam energy.

The relation obtained for the angular momentum o
combined beam~29! may be generalized as a law of coax
addition ofN beams carrying optical vortices with topolog
cal chargesmi :

Mz~r,w,z!52
ve0

2 (
i , j

N

~mi1mj !uEi~r,w,z!Ej~r,w,z!u

3cos@F i~r,w,z!2F j~r,w,z!#. ~32!

This law is valid not only for singular waves with a Gaussi
envelope, but for all kinds of waves with axially symmetr
amplitude distributions.

An interesting consequence following from Eq.~29! is
that even a small amount of a singular wave combined w
a strong Gaussian wave produces a substantial modulatio
al

h
of

the angular-momentum density. Figure 14 represents the
culation of angular-momentum density of combined bea
with parametersm51, k52, andh51.05 ~a! andm53, k
52, andh52.5 ~b!.

For a combined beam with a density of angula
momentum distribution given by Eq.~29!, the total angular
momentum is equal to that of the singular beam alone,
cause an interference term gives a zero amount in inte
~28!. This demonstrates that coherent addition of a wa
with zero angular momentum does not affect the result
angular momentum of the combined beam. Using the gen
form of the angular-momentum distribution in a combin
beam~32!, we are able now to calculate the result of coax
interference ofN arbitrary singular beams,

Lz5(
i

N

Lzi , ~33!

which establishes a rule: In a beam combined fromN coaxial
beams, the angular momentaLzi add arithmetically.

This rule gives interesting consequences for the addi
of singular beams with equal and opposite topologi
charges. Two identical singular beams with equal energy
opposite charges form a vortex-free beam with zero ang
momentum, independent of the phase relation between th
Identical beams with equal topological charges of vortices
not obey the general rule~33!, because the interference ter
is a constant in this case, and the energy of the summ



p
ula

th

tu
m
om
a

t
e
ct
o
e
ia
b

in
av
ti

ai
la
io
u

tri
pl
in

e
n-
et
la

he
b-

a
-

m-
, the
een

m-
ave

e,
or-

e of

am
on-
ain
of

lar
d a

sity
am.

nal
t of

4074 56M. S. SOSKINet al.
beam is strongly dependent on relative phases of com
nents. Further, adding a vortex-free wave with zero ang
momentum cannot change the total angular momentumLz of
a beam, even though it may suppress all the vortices in
combined beam.

To understand the transformations of angular momen
associated with anm-charged vortex in a combined bea
where the number of vortices may change and even bec
zero, we need to imagine the wave front of a combined be
which is not a symmetricalm-pitched helicoid as for a pure
singular beam. When all the vortices are suppressed by
strong background wave, the wave front of the combin
beam still has folds, but is a smooth surface without defe
The inclination of local ‘‘rays’’ which are perpendicular t
the surface produces both positive and negative compon
of the angular momentum. With an increase of Gauss
background wave amplitude, the folds become smaller,
the beam amplitude grows proportionally, and result
negative and positive parts of angular momentum h
nearly the same value. The difference between the nega
and positive components of the angular momentum rem
exactly equal to the initial angular momentum of the singu
beam, but is now due to small residual amplitude modulat
over the combined beam cross section. In the case of m
tiple vortices localized within a combined beam, the dis
bution of the angular momentum becomes more com
cated, but the resulting total angular momentum rema
constant.

CONCLUSIONS

Our analysis of coherent coaxial addition of optical wav
carrying ~at least one! optical vortices has revealed the ge
eral properties of combined beams. We have studied in d
the behavior of vortices in a beam combined from singu
V
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and ‘‘background’’ Gaussian waves in order to check t
principle of topological charge conservation. In brief, we o
tained the following results.

~1! Addition of a coherent coaxial vortex-free wave to
singular wave with am-charged vortex may change the num
ber of vortices and the total topological charge in the co
bined beam. Depending on background wave parameters
number of vortices in the combined beam may vary betw
zero, umu, and 2umu. The total topological charge ism or
zero.

~2! In free-space propagation fromz50 to infinity, the
total topological charge and number of vortices in a co
bined beam do change for any choice of background w
parameters, except the casek51 ~equal transverse sizes!.

~3! We demonstrate for the first time to our knowledg
the possibility, in free-space propagation, of additional v
tices appearing from the far periphery of a beam~from in-
finity!, and their disappearance at a beam periphery.

~4! The obtained results are also applicable to the cas
combinations of singular beams.

~5! We show that the total angular momentum of a be
is conserved in all cases in free-space propagation, in c
trast with the total topological charge. We establish the m
rules for addition and subtraction of angular momenta
light beams.

~6! We analyzed the transverse distribution of the angu
momentum in a combined beam cross section, and foun
strong spatial modulation of the angular-momentum den
even in the case of absence of vortices in a combined be
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