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Quantum systems subject to time periodic fieldsfiofte amplitude\ have conventionally been handled
either by low-order perturbation theory, famot too large, or by exact diagonalization within a finite basis of
N states. An adiabatic limit, @sis switched on arbitrarily slowly, has been assumed. But the validity of these
procedures seems questionable in view of the fact thay-ase, the quasienergy spectrum becomes dense,
and numerical calculations show an increasing number of weakly avoided crogslaied in perturbation
theory to high-order resonange3his paper deals with the highly nontrivial behavior of the solutions in this
limit. The Floquet states, and the associated quasienergies, become highly irregular functions of the amplitude
\. The mathematical radii of convergence of perturbation theokydpproach zero. There is no adiabatic limit
of the wave functions wheR is turned on arbitrarily slowly. However, the quasienergy becomes independent
of A(t) in this limit. We introduce a modification of the adiabatic theorem. We explain why, in spite of the
pervasive pathologies of the Floquet states in the IMqit 0, the conventional approaches are appropriate in
almost all physically interesting situatiof$1050-294®7)08811-3

PACS numbses): 42.50.Hz, 42.65.Vh, 03.65w, 05.45:+b

I. INTRODUCTION A>0 and the spectrum fills the fundamental strip densely. In
fact, typically it is a dense point spectrdi®]. (For example,
Physical systems subject to finite time periodic perturbain the special case of a particle in a one-dimensional square
tions of amplitudex and periodT=27/w have been studied well and vanishing\, Weyl [4] has shown that the energy
extensively[1] by making use of the Floguet theorem. This eigenvalues fill the fundamental strip densely and uni-
theorem, a consequence of the discrete time translation symormly.) As the number of basis states becomes infinite there
metry of the Hamiltonian, states that there is a complete sat a weakly avoided crossinVAC) near each point in the
of quasiperiodic solutions of the time-dependent Sdimger  \-e strip. This leads to qualitatively different issues: Do the
equation that, wheri—t+T, are simply multiplied by a Floquet state solutions for a givarconverge to well-defined
phase factor expfie,T), wheree, is called the “quasien- |imits? Are the Floquet states and quasienergies well-
ergy.” This phase factor defines, only modw and so the behaved functions of? Is there a well-defined limiting path
quasienergy may always be taken to lie in the stripthat the system follows ad is switched on arbitrarily
O0<e¢<w. slowly—i.e., does an adiabatic limit exist? We have exam-
For such systems the quasienergigsare of comparable ined these questions in a variety of approximate ways and
interest to the energy levels of time-independent systemsave arrived at a coherent picture, though generally we do
One would expect to use the subscriptsis unambiguous not have conclusive mathematical proofs. We find that the
labels of the time-dependent states of a periodically drivemadii of convergence of power-series expansiona,iistart-
system as the magnitudeof the perturbation is switched on ing from the unperturbed eigenstates, are zero. Floguet states
adiabatically, as in the case of time-independent quanturand their quasienergies are discontinuous functions e¥-
systems. Indeed, there is a substantial literature studying Flerywhere; there is no adiabatic limit in the usual sense
quet systems along these lines, usually employing numericdthough we will propose a useful weakened modification of
methods, in dinite set of basis statd®]. Of special interest the adiabatic theoremAt the same time, in the limit of slow
are the “avoided crossings’{AC’s): regions in thek-e  switching on of\ the quasienergy remains arbitrarily close to
plane where two quasienergies approach each other asitg initial (A=0) value. We will explain the consistency of
function of A and (except for special symmetriesavoid these results with the well-established success of standard
crossing one another. time-dependent perturbation theory and of the adiabatic theo-
But there is a difference in principle when a completerem.
infinite set of basis states is included. For a spatially confined We note that these features will not be seen directly in
system, with an infinite number of discrete energy levels forany numerical study a¥ becomes large. The effects become
A=0, there is also an infinite number of quasienergies folincreasingly weak very rapidly as the basis size is increased.
Although, for a given interval in\, inclusion of very-high-
lying levels does have a major impact on Floquet states and

*Electronic address: hone@itp.ucsb.edu quasienergies, it is only over an increasingly smaller range of
"Electronic address: roland@chaos.gwdg.de \, and this becomes at some stage unobservable on the scale
*Electronic address: kohn@physics.ucsb.edu of numerical accuracy available to the computer.
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In Sec. Il we review elementary Floquet theory ifirdte ®
basis. The problems arising for an infinite basis are discussed
in Sec. lll. In Sec. IV we analyze the convergence of the

Floquet states as the size of the basis becomes infinite. Sec-
tion V is devoted to the dependence of the states and
guasienergies oR, including questions of labeling Floquet
states and of the existence of an adiabatic limit wNen.

The relationship to finite-order time-dependent perturbation
theory is discussed in Sec. VI. Our conclusions are summa- N
rized in Sec. VII.

Il. FLOQUET THEORY IN A FINITE BASIS 0 10 20 8 40 50

In this section we review the elements of time periodic
Hamiltonian systems
) FIG. 1. Quasienergy spectrum as a functioldbr N=10 for
H(t)=Ho+NHy(t) with Hy(t+T)=Hy(t), (2.1  the free particle in a box with harmonic driving and frequency

. - UINTe »w=28.3[see Eq.2.5]. One finds many avoided crossings, with a
when approximated by finite matrix H™(t) in the represen- typical one marked by the dashed box. There are some strezly

tation of theN lowest states of the time-independent Hamil- o ossings;, corresponding to states of opposite parity under the com-
tonianH,. In Sec. IIl we will discuss the considerable prob- pined symmetry operation of spatial inversion plus time translation

lems that occur in thg IimiN—>.00. . by half a periodT/2. Other apparently real crossings are just so
Because of the discrete time translational symmetry ofveakly avoided that they cannot be resolved.

HN(t), there is a complete set of solutiorg'(t) of the

time-dependent Schadinger equatior(with 7=1) IN—\;| grows, this mixing decreases rapidly, as follows.
JRY The functions are mixed by no more than a given small
i %: HN() oV, (2.2  relative weights, provided thai\ —\4|>w()/2, where
which are of the Floquet form W(o)=5—- (2.6
8lo1— o
N _ + N N
en(t)=exp—iequn (), 23 HereAce is the quasienergy splitting at the AC angd and o,
with a time periodic part are the slopesle/d\ of the quasienergies at the crossing
point in the absence of the terms connecting these Hsees
uNt+T)=uN(t) (n=1,2,...N) (2.4  Fig. 1). We neglect the weak influence of all other states near
N this WAC.

and “quasienergies’e, , which may be taken to lie in the Using standard Floquet state perturbation thd6iyin A,

interval[0,w), with w=2#/T. For given\ one may label the one finds that the second-order term describes very well the

Floguet states in order of increasing quasienergy, the eigemverall behavior of the quasienergies for smalHowever,

value associated with discrete time translation. near\ =\, nearly degenerate perturbation theory is needed,
Figure 1 shows such a quasienergy specttianfinite N) giving

as a function ofA for the example of a free particle in a

one-dimensional bo —a,a]) with harmonic driving, 1
Helmaad . &1~ (o1 + 7 (A=)

2 o TX
H(t)=p“/2m+2\ sm( oa coq wt). (2.9 + (01— 0)2(A—N)2+(Ae)?]. (2.7
The quasienergies are continuous functiona dhat do not It is helpful to considercomplexvalues of\. Then the

cross, but show AC’s provided there are no symmetries thadime evolution is no longer unitary, and quasienergies are
allow actual crossings. These AC’s are abundant in the spe€omplex. They may be considered as thgalues of a single

tra of time periodic systems and are of central interest in thidN-valued analytic functior(\), with N Riemann sheets con-
work. As the basis size is increased, the newly introducediected at complex branch poirid. As is the case for real,
avoided crossings tend to become rapidly wealsenaller  the functione(\) is defined only modv and we choose al-
gaps at the crossing and smaller rangé. @iver which their ~ ways 0<Ree(\)<w. From Eq.(2.7) we see that WAC's for
effects are substantialThey therefore tend to become iso- real\ are manifested as branch points near the real axis of
lated from one another, and it is useful and meaningful toe(\), at

consider their effects individually, as we do in the following.

As two quasienergy lines pass an isolated WAC at N Ae i
A=\, the corresponding Floquet states rapidly interchange Y lo— oy
their forms. At the point\ =X\, they are very nearly linear
combinations of the two Floquet functions just outside the(see Fig. 2 When\ passes along the realaxis throughh ;,
region of the AC, with amplitudes of equal magnitude. Asas discussed above, there is a rapid change in the spatial part

(2.9



56 TIME-DEPENDENT FLOQUET THEORY AND ABSENE . .. 4047

20 function as the AC is crossed then depends on how this com-
ImQL) pares with the rate of growth of the exponentially increasing
amplitude (1X,)d\/dt=s. For large turn-on parameters
s> ¢ (provided thats<w) the solution will follow closely
the initial Floquet state, as if there were no AC. This is the
104 so-called[9] Landau-Zener transition through the AC. On
© the other hand, in the adiabatic limit for this A& &, it will
closely follow the Floquet state that passes the AC continu-
o o $ ously. Fors= ¢ the solution, aftei(t) has passed,, will
o be a superposition of the two Floquet states involved in the
M ° Qe ° AC.
0 S a. % R X
0 10 20 30 40 50 (ii) There is an adiabatic theorem: Apart from an overall
Re()) phase factor, the final statﬁjs”‘(O) converges in the limit
s—0 and the limit is the Floquet state of the periodic system
that corresponds to the quasienergy found by following the
uasienergy; of the initial statep; as acontinuousfunction

FIG. 2. Position of branch points in the complexlane for the
system and parameters of Fig. 1. Just one quadrant is shown, as t

position of branch points is symmetric with respect to the axes These properties are well established for Floguet systems

= = i *) = % — =
Re@)=0 and Imp)=0, sincee(A")=e*(A) and e(~N\)=€(M). i o finite basis. In the next section we show that the limit
There are no branch points on the real axis, but they do appear o'q % is highly pathological
N )

the imaginary axis, as shown.

of the two Floquet states, which are approximately inter- IIl. THE LIMIT N—x
changed. In contrast, on a path starting from the real axis, o ) S _
going in a loop in the complex plane around the branch point  The general difficulties raised by an infinite basis are out-
(2.8) and back to the real axis, each of the two Floquet statelined here. A detailed discussion is given in Secs. IV and V.
returns approximately to its original spatial dependence. Per- For definiteness we will restrict the discussion to finite
turbation expansions ik have finite radii of convergence. At one-dimensional systems wite[ —a,a] and
A =0 the eigenstate; with energyE, defines the quasien-
ergy €;=E, (mod ) on thejth Riemann sheet of(\) (the H(t)=p?%/2m+U(x)+ A V(x)cog wt), (3.1
indicesk and j are unequal, in general, becausdabels
increasing values of in [0,w), whereask labels increasing  hereU(x) andV/(x) are analytic and bounded. Revill be
energy valueg oyer[o,oc)). Th'en the radius of convergence kept uniformly bounded, Res)\_l asN becomes infinite.
A¢j for ¢; ande; is the magnitude ok at the branch point  £q ) — 0 the conventional energy spectrugy is discrete
nearest the origin on thath sheet. _ and for sufficiently high eigenvalues exhibits increasing
In the laboratory the perturbationH; is commonly spacingq 10] between successive levgkpproximately pro-
turned on slowly. This can be characterized, as usual, by Bortional to the level index, as for the casdx)=0]. We
switching factore®" in the interaction ¢>0) will make repeated essential use of this feature.
In the limit N—o one expects that for every the N
quasienergies within the finite intervéd,w) will form a
dense spectrum. In fact, Weyl showed] that for

H(t)=Ho+AeSH(t) where H (t+T)=H(t),

with the initial condition U(x) =\=0, so thatE,= (1/2m)(7/2a)?k?, the spectrum is
uniformly dense, provided only thai/E, is irrational. This
¢j5'“(_oo)= @ . (2.10 is the generic situatiofb] for U(x), A #0. Moreover, How-

land [3] has shown that, for Hamiltonians of the fori3.1)
We are interested in the wave functigit*(t) at a specified ~(an essential feature of which is the increasing spacing be-
time, sayt=0. This system is no longer periodic in time and fween successive energy levels for sufﬁqently high eigenval-
the solutions of the time-dependent Salinger equation U€9 and for most values of the coupling strength the
corresponding to Eqgs(2.9) and (2.10 are therefore no duasienergies have a dense point spectrum.
longer Floquet functions. However, if the turn-on ratés What happens to the AC’s in the limiN—<? We find a
slow compared to the driving frequenay, it is useful to  Very simple picture in the complexplane: AC’s correspond
describe the solutions at tintein the basis of the Floquet 0 branch points, as in Fig. 2. With increasihgwe add
functions (2.3 at the corresponding value of(t)= e, higher-lying states of the unperturbed Hamiltonian to the ba-

Two results are knowfs]: sis and find that the gaps of newly introduced AC’s, as well
(i) Every AC can be characterized by a rate as the imaginary part of the corresponding branch pdses
the Appendi¥, decrease faster than any power law whith
~  (Ae)? Therefore, the reak axis is a line of accumulation for the
&= mzf)‘l' (211 branch points. Moreover, the branch points with\lr\, are

finite in number and tend to well-defined limits lds- o, for

where we have introduced the explicit factor in the final  any\,>0. The problems with the limiN—< are restricted
definition for convenience below. The behavior of the waveto the immediate neighborhood of the reabxis.
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For real\ one expects the AC’s to be dense in the
plane. In fact, along each quasienergy cue(e) obtained

within a finite basis approximation one expects a dense set of Proposition |l

AC’'s whenN—o. This has a number of consequences:
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for all x, for allte[0,T], and for allx e[A5,A], except for

a subset of\ of measure< 7.
(nonconvergence).For any interval
[Na,\p], @any >0, anyM, any labeime{1,2,... M}, suf-

(i) As there will be AC’s on each quasienergy curve for ficiently largeM’>M, and any labem’ €{1,2,... M},

arbitrarily small values ok, the radii of convergenck ; of
the perturbation theory in for quasienergies and Floquet
states all shrink to zero.

(ii) The increase of the basis size from an initial valNie

a 7
f ngow(x,t)*cpm,’*(x,t)@ 4.3
—a

1
2a

will introduce AC’s arbitrarily close to any point on a given for a set of\’s dense i \,,\,] and allt. That is, for this

guasienergy curve defined with the initial basis of dite

dense set ol’s the eigenfunctions within the smaller basis

Each of these AC’s will make large changes in the correhave arbitrarily small overlap with any of those correspond-

sponding Floquet states over a finkdnterval, strongly ad-

ing to the larger basis; they do not converge to a limit.

mixing and interchanging pairs of states, as described above, Proposition | states that & grows, there is an increasing
and it is therefore by no means clear whether or not Floquefeasure of. where a finite basis calculation gives the Flo-

states converge d$— .

(iii) For anyfinite N one can label the Floquet statg8™
and quasienergieé}"” in such a way that they are continu-
ous functions ol (if, as usual, we identify with e+ w). If

quet states and quasienergies correctly within an arbitrarily
small error. For many practical purposes this supports the
use of a finite basis for describing a Floquet system. Never-
theless, it is important to realize, as stated in proposition II,

we increaseN, we have to rearrange labels for every newthat even for an arbitrarily large basis sikethere are infi-
AC and it is not clear if there exists a meaningful labeling nitely many\’s, dense in any intervdhlbeit of total measure

that tends to a well-defined limit d&¢— .

zerg, where a given Floquet staté}‘(t) doesnot converge

(iv) Let the periodic field be switched on over the time in the limit N—o.

interval —o<t<0, with \(t)=e*\. For anyfinite N there
is a well-defined adiabatic limit, as— 0, of the statgup to
an overall phase factpand of the quasienergy at the final
time t=0. Let &, be the smallest of the rate parametérs
defined by Eq.(2.11), characterizing the relevant AC’s in
[0O\]. Then, fors< &, the solution of the Schainger equa-
tion (2.9 will simply follow the Floquet state corresponding
to a continuous quasienergy curve. In the lilit>, how-
ever, there will be AC’s with arbitrarily small parametefs
Therefore, for smalles more and more of these weak AC’s

We can prove proposition | for any system with the fol-
lowing model property, which, we submit, captures for this
purpose the essence of a real Floquet system of (g
For an AC at\,e[M\,,\,] We again define the interval
AnEW,(6,)/2, outside of which the admixture of the two
unperturbed Floquet states changes by no more than
Then we assume that we can choose a {sgf, with
S5_16,< 6 for any chosers>0, such thak_,w,(35,) con-

verges. This assumption appears to be satisfied in systems of

type (3.1), although we have no mathematical proof. Nu-

will be passed adiabatically, rather than undergo Landaumerical calculations and analytical consideratigase the
Zener transitions, leading to completely different final statessppendix suggest strongly that the gaps, decrease faster

zpﬁ"‘(t). Thus an adiabatic limit as— 0 cannot be expected.

IV. CONVERGENCE AND NONCONVERGENCE OF
FLOQUET STATES

For systems of typ€3.1) we shall present strong argu-
ments that, for a set of full measureNrin anN-independent
interval O<A <\, the Floquet states converge in the limit
N—oo, even though the AC'’s are dense in thes plane.

than any negative power of, due to the increasing spacings
of the unperturbed energi€s . Let us choosé, to decrease
relatively slowly, as a small power af, say 8,=&/2n2.
Then the sum ovew, will converge[see Eq(2.6)] as long
as the differencdo,—o,| in quasienergy slopes does not
decrease too rapidly with. Numerical experience suggests
this to be the case.

We make an argument based on the Borel-Cantelli lemma
[11]. Let us start, as usual, with an approximation to the

This does not imply, however, that the limit is a continuoussystem given by restriction to a finite numbidr of spatial

function of . For we will also argue that the AC's give rise
to infinitely many\’s, of measure zero but dense in any
interval, for whichnoneof the Floquet states of a finite basis
converge. This can be stated more precisely as follows.

Proposition | (convergence)-or any interval[\,\p],
any 6>0, and anyn>0, there is an intege¥ (4, 7, 5,\p)
with the following properties: For anyy’>M and each
m=1,2,...M there exist a labein’{1,2,...M'} and an
overall phase factog'“ such that

M (x,t) — €% M (x,1)| < 5 (4.2

and

lexf —i(eMr—eM ™M T]-1|<26 (4.2)

basis functions. The new AC’s introduced as this is increased
to a complete, infinite, basis set are labeled frogn to oe.
For a large enough choice of the initial basis sMe the
partial sumEﬁ:nMwnwn), which gives the measure ofs

where a Floquet state might be affected by more thaten
increasing the basis size froM to infinity, can be made
smaller than any givery. For all other values of, those that
are within none of the intervals,+w,(4,)/2 and therefore
constitute a set of measure at leagt-\,— », the Floquet
states are changed by no more thafL,5,<d. This ex-
plains Eq.(4.1) of proposition |I.

Equation (4.2) follows at once from Eq.(4.1). The
gquasienergies can be determined from

glenT= oM (x,t+T)/oM(x,t). For Floguet states normalized
by [2,dx eM(x,t)|%2a=1, we can choose am and t
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where |oM(x,t)|=1. Then Er';/l’ can be determined from States resembles a low-lying unperturbed state. But, even for
small \, in the center region of an AC the overlap with an
unperturbed state will be less than 50%.
Since for small\ the quasienergies are very flat as a func-
" tion of A and AC'’s will generically occur only between Flo-
quet states related to statesttyf that are far apart in energy,
their AC’s are expected to have a width that decreases faster

oM (x,t), which differs from o™ (x,t) by less thans [Eq.
(4.7)], leading to Eq(4.2).

Proposition 1l follows from the plausible, but unproved
assumption that any quasienergy line of a finite bas9 (
calculation will show an AC within any given interval if

the basis size is increased sufficient{ffailure of this as- . )
sumption would imply that there do exist finikeintervals in than any power law ak goes to zer¢Appendix. We there

which a quasienergy line isevercrossed add— ) Using fore expect that, on the intervgd,\], the labeling works for
that assumption, we can argue straightforwardly: Within any? Cantor set ok values with finite measure less tharand
given intervall =[\’,\"]C[X,,\p], for a suitably large ba- that this measure approachess\— 0.

sis sizeM one will eventually find an AC. This crossing

changes the th Floquet state,o,';"l by more than some cho- B. Adiabatic turn-on

sen amount, say 40% admixture of orthogonal basis states, Even though perturbation theory for Floquet states and
over some finite\ interval. Within that interval the two Flo- guasienergies iR has zero radius of convergence in the limit
quet states of the AC then have an overlap of less than 0.Q—, we find a simple, strict result for the perturbation
with (p,':/ll. We now select one of these states. With a furthelexpansion of a solutioﬂ/ﬁ'k(t) of the Schrdinger equation
increase in the basis size, it will ultimately encounter an AC(2.9), where the periodic driving is turned on frars — o by
within the chosen interval and will be changed by more tharthe factora St [we remark again tha,t/ﬁ'“(t) is nota Floquet
40% over some smaller but still finiteinterval. Within that  statd.
interval for an even larger basis size also the second state TheoremThe perturbation expansion g™ (t) in \, for
will be changed by more than 40% due to an AC. This Iead$<oo, has an infinite radius of convergence for a0, i.e.,
to four Floquet states within a finite interval, each with an lﬂii)‘(t) is an entire function of the Comp|ex variable
overlap of less than (0.8)with @Dr'\f'l- Repeating this argu-  This can be proven by majorizing the perturbation expan-
ment sufficiently often, one finds a basis side>M and an  sion. With the wave functiory(t) expressed in the interac-
intervall, C1 where no Floguet state)'* has an overlap of tion picture
more than a giverns with (p,'\{'l of the initial basis sizeM, X(t):eiHotwi,A(t), (5.2
leading to proposition Il. As stated in proposition I, these
\'s, even though they are dense, have a measure that tendstb@  Schrdinger equation (2.2) becomes idy(t)/dt
0 asM— . =AW(t) x(t), with W(t)=e"oleS'V(x)coswt)e ™', The

We can derive a stronger version of proposition Il. Re-familiar formally iterated solution is
peating the argument above for thgth Floquet statao,';"2 of
the initial basis sizeM, one finds a basis si2d ,>M;>M x(t)=
and an interval n,Cln,Cl whereno Floquet s:tatezpr':/|2 has
an overlap of more than a givef\with (pr':/lz nor with zp,’}"l. L[ t
This argument can be repeated for all Floquet stafésof (=™ f_mdtZJ_wdtlw(tZ)W(tl)
the initial basis. Thus there is a dense seftsf in any A

interval wherenone of the Floquet states of a finite basis N t3 ty
ConVerge[]_Z]. +(_|)\) f_wdt3 _Ocdtz _wdt1W(t3)

V. FUNCTIONAL DEPENDENCE ON PERTURBATION
STRENGTH: ADIABATIC LIMIT

t
1+(—i)\)f dt,W(t,)

XW(t2)W(ty)+ - [ x(t=—). (5.3

A. Labeling of Floquet states . —i . . . .
g q Sincee Mo js unitary, it can easily be shown that for any

Proposition Il of the preceding section has an immediaterormalized state$ andg

consequence: A continuous labeling of the Floquet states
@\ and quasienergies\™* as a function of\, possible for (FIW(t)W(th_1)- - W(to) W(ty)|g) < Va5t T,
finite N, is no longer possible in the limNl—«. We there- (5.9
fore propose a different way of labeling, useful at least for
small\: We assign the label to a Floquet state if its overlap Where Vi, is the maximum of [V(x)|. From this the
with the nth eigenstatep,,(x,t) of H, is larger than 50%, in nth-order term of the perturbation expansion(bfx(t)) can
the sense be majorized by (1) (A Vmax/9)"€™ and thus the expansion
L (5.3 converges for ang>0. That is, the state that evolves

T a x ) with a given switching-on rate is uniquely and well defined
T fo dt 2a _adx|"°“(x’t) en(x,)[>0.5.  (5.1) (in a finite or an infinite basiy for an arbitrarily large final

interaction strength, in spite of the convergence problems

This procedure will not always find a label for a Floquet with Floquet states. Theiis, however, an anomaly: There is
state. This is obvious for large, where none of the Floquet no well-defined adiabatic limit whes— 0 (see also Sec. IlI
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Although an adiabatic limit in the usual sense does not lim &,=0, (5.10
exist, we now show that for sufficiently small there is a A—0
(logarithmically large window of turn-on parameters
s<s<s, where the final statg;"(t) is almostindependent lim &.,,/&=0. (5.1)
of s. A—0

Proposition IIl. For any smalls>0 and largen>0 there

i ; .. Equation(5.10 follows from the fact that for small eno
exists a\>0 and an intervals,s] with quation(S.10 follow: ugh

the largest AC ofsf; in [O,\] will be with an arbitrarily high-

Sis> 7 (5.5) lying statek’ of Hy and that the rat&, characterizing the
- ' AC, according to Eq(2.11) and the Appendix, decreases
such that for alls’,s” e[s,s], all A<\, all x, and all states faster withk tha_m any power law. E'quat|o(r5.1.]) IS due to
K the fact that this ratio of successive rates is, in the most
' unfavorable case, due to AC’s of neighbouring leu€ls- 1
! : ran " ! H A H H
15 Mx,t=0)—ea(s's )lﬂﬁ "‘(x,t=0)| and k of Hy Wlth k- The ratio of the corres_,pondlng-
5, (5.6 quasienergy splittings decreases exponentially with
A (k"+1)2—k’?2=2k’ +1 and goes to zero in the limt—O0.

From these properties we conclude that $darger than
any s<s/y the variation in zﬂﬁ"‘(x,t:O) due to infinitely

by 6) we can find a range of of arbitraily large relative size many AC's can be made smaller than any givefor suffi-

(arbitrarily larges/s= ) by restricting\ to a sufficiently ciently smallx. Therefor(?, for smqll e.noug)kl pne flnis for
small value. all A<\ almost adiabatic behavior in a windojg,s] of

Consider any finite\ and the Floguet state arising out of tUrn-on parameters witd/s arbitrarily large.
the unperturbed state,. The perturbation serie.3) in-
volves first-order terms of the form C. Conservation of quasienergy

Here we consider again the limit of turning art) arbi-
(5.7) trarily slowly from O up to some arbitrary. We have seen
that theeigenfunctions;™*(0) does not have a limit fa— 0.
o _ _ _ However, we will argue heréut not prove mathematically
From this it is clear that to achieve mdepen_dences afith that, ass—0, ,/,i,k(o) is within arbitrary accuracy a linear
an accuracys, s must be smaller than a valsegiven by combination of Floquet states of the periodic Hamiltonian
[Eq. (2.1D)] that havequasienergiesarbitrarily close to the
(5.9 initial value ¢,(A=0), i.e., theenergymod w. Thus, in the
limit s—0 the quasienergy is a conserved quantity.
Proposition IV.For any §>0 and any\>0 there exists
For small enough\ all higher-order terms up to any finite ansy>0 such that for alb<s,
ordern may be neglecteéassuming, as we do, that there is .
no exact resonandg,, — E,= = mw, m=<n). S\ _ aieT S 2
However, for any given\y, no matter how small, there ﬁadX' YOG — @RI TS (512
will exist a sufficiently large basis size such that there are
some(weak AC'’s associated witlany quasienergy in tha  for all t<0 and for all statek. This is true even though
interval [0\ ¢]. Consider for any initial basis sizB, an Iimsﬂol/lﬁ'h(x,t) does not exist for any finite time o <t<0.
arbitrary quasienergy curvg(\), continuous over the inter- To make this plausible we will use a simplified geometri-
val 0O\ =\,. As the basis size is then increased to a suffi-cal picture, in which quasienergies are linear functiona.of
ciently large sizeN’'>N,, avoided crossings of,(\) will Although all AC’s are now represented by actual crossings,
be introduced within this interval. These AC'’s will be char- they will be traversed dynamically like real AC’s with some
acterized by ratefsee Eq.(2.11] that we label¢,,&5,..., finite rate parameterg. The infinitely many quasienergy
in order of increasing energy of the stateshat0 from lines fall into two classes, according to whether the magni-
which the crossing curves arise, which then ensures that theydes of their slopes are smaller or larger than a specified
are ordered with decreasing rat&s; 1<&;. As N—x and critical value o,=8"/2\. We will further assume in this
A(t) (=\e®Y) grows from O to\ all these(infinitely many  model that the lattetlarge slopg class, for anys’>0 and
weak AC’s will be encountered and each of them gives riseany A >0, has only a finite numbe£(4’,\) of members.

wheree'® is a(physically uninterestingoverall phase factor.
That is, for any desired level of convergen@s defined

Vk’,k

s = [ L —
X )\E Ekr_Ekia)_iS

K’

Pk’ -

N Vk’ K
SN | | <.
% (Ekl_ Eki (,0) Pk

to an admixture of a new state in&}j’h(x,t:O) with ampli- In the course of turning on the periodic driving from 0 up
tude (see[9]) smaller than to A with a small enough turn-on parametgerthe infinitely
many quasienergy lines with slopess will, at most, cause
Sp=VmE,ls. (5.9 a deviation in quasienergy by\ (= 6'/2) away from the

initial value e, (A=0). The additional changes in quasien-
To make the total variation i3 (x,t=0), as defined by ergy from AC’s with the finite numbeK(48’,\) of steeper
=.6,, smaller than a givens over the whole range of quasienergy lines can also be restricted to be less &héh
turn-on rates set by E@5.5), we use the following properties by a sufficiently small choice of turn-on rage Since the
of the £s in the limit A—0: AC’s are dense on any quasienergy line, for sufficiently
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smalls one will be diverted from any of the steep quasien- VIl. CONCLUSION

ergy lines within any given small quasignergy range, which There have been two standard approaches to dealing with
yve'choose to bé'/2K. Th? totgl change in quasienergyls o penavior of guantum systems subject to strong time pe-
is increased from 0 to its final value thus can be madgiygic fields. One is the use of finite-order perturbation
sr,‘naller than 6'/2+K¢6'/2K=4" for any given &'. FOr  theory(e.g., second- or third-order nonlinear optical suscep-
&' =\/8IT and within this simplified model we have thus tipilities) and the other the exact solution of the problem

proved proposition 1V. o within a finite basis of states. But both of these approaches
The same arguments should hold for the original Floquemiss qualitative features of the exact mathematical solutions.
problem, as including the quasienergy dependence ai We have shown by a set of “propositiong4s opposed to

the AC’s reduces their steepness and thus further reduces thgorous mathematical proofshat for a large class of time
spread in quasienergy from the above estimates. Also, thgeriodic problems the structure of the exact states and the
overall nonlinear dependence anthat follows, e.g., from quasienergy spectrum is remarkably irregular. By “exact”
second-order perturbation theory poses no problem for th@e mean here that the complete infinite set of basis states is
argument. The assumption that the numls&fs’,\) of  included. Interaction with the environment is neglected. We
slopes larger in magnitude than is finite remains reason- have considered the states and quasienergies as functions of
able since an increase in the basis size introduces Flogugte strength\ of the time periodic potential, as the numiér
states originating from higher-lying states bf;, which  of basis states becomes infinite. We have found that in any
show a decreasing dependence)orHowever, the problem interval \ ,<\ <\, although the states converge to a well-
of defining slopes at allin the limit N— ), as there is no defined limit asN—o for a set of\ with the full measure
continuous labeling of the quasienergies as a function,of ), —\, of the interval, there is a set o, of total measure
will make a mathematical proof difficult. zero, butdensewithin every finite interval, for which the
This proposition leads us to a better understanding of thetates dmot converge. As a result, in contrast to the situation
nature of the stat¢g*(0) in the limits—0. As y3*(0) isa  for any finiteN, it is impossible to label states and quasien-
linear combination of Floquet states with quasienergiesrgies continuously as a function ®f The familiar quasien-
closer and closer tey, it changes constantly asands goto  ergy “dispersion” curves as functions of (as shown, e.g.,
zero. Thus, while there cannot be an adiabatic limit for thein Fig. 1) become discontinuous everywhere. One conse-
wave function, quasienergy is conserved in the ligit 0. quence of these discontinuities is the absence of a true adia-
batic limit; there is no unique final state to which the system
tends as the periodic perturbation is switched on arbitrarily
VI. STATUS OF TRADITIONAL FINITE-ORDER slowly.
PERTURBATION THEORY But these pathologies, including a radius of convergence
) o o . ) ) of perturbation theory i that approaches zero Bs— o0, do
_Nonlinear optics is a major field of science in which tra- not show up under most physically realistic circumstances.
ditional, finite-order perturbation theory in the applied elec-|n particular, we have explained the familiar and well-
tric field (usually to low ordersuccessfully describes experi- estaplished success of ordinary time-dependent perturbation
ment. Here we shall show why this well-established theory isheory in terms of the modified adiabatic theorem and the
consistent with our considerations in spite of our conclusioqypica| smallness of the parametethat enters that theorem

that, strictly speaking, the radii of convergencg; of per-  in practice, as well as the successes of finite basis calcula-
turbation theory vanish. tions.

We reiterate first that if the turn-on rase- 0, perturbative
nonlinear optics in fact fails. For smallthis failure is due to
near resonances, — E,~ * nw, generally with very high-
lying excited states(This is the reason why, for any finite  This work was supported by the NSF under Grants Nos.
basis sizeN, \. is finite) PHY94-07194 and DMR96-30452, as well as the Deutsche

When the perturbation is turned on as in ER.9), we  Forschungsgemeinshaft. We profited from discussions with
have seen that, provided the turn-on rates small enough S. Fishman, H. Metiu, and F. Pikus. W.K. thanks Professor J.
but exceeds a lower limi, then as\ — 0 the resultant state Moser for a helpful conversation. The work was stimulated
can be made arbitrarily close to the traditional first-orderin part by the experiments of M. Sherwin on the response of
perturbative solution. A similar result can be derived for theelectrons in semiconductor quantum structures to intense far-
traditional perturbative solution up to any finite order. Ininfrared laser fields.
typical laboratory situations we have seen th# exponen-

tially and unphysically small. For finite small the pertur- APPENDIX: EXPONENTIAL DECREASE WITH BASIS

bation expansion is asymptotically convergent. SIZE N OF NEWLY INTRODUCED QUASIENERGY GAPS
Finally, we briefly mention the unavoidable effects of line

broadening. The quantum system of interest is inevitably in We label the eigenstates of the time-independent Hamil-
contact with its environment and there are interactions betonian (\=0) by an index] that increases with the unper-
tween the many particles that ordinarily constitute the quanturbed energy. We consider the solution of the full time-
tum system of interest, so the individual particle states areependent problem in the limited spatial basis of the first
lifetime broadened. We conjecture that if broadening is charsuch states. We demonstrate here that for sufficiently small
acterized by a finite widti", then a finite radius of conver- A\, the new AC’s introduced by the inclusion of the next basis
gence will be restored. state(labeledN+1) are characterized by quasienergy gaps
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that are smaller than a bound that decreases exponentialigr j=1,2,..,N. We emphasize that this is tlexactequa-
with N. tion for the time-dependent problem in the finite bdsislt
As in Sec. Il, let us take as theNth-level” Hamiltonian  contains all orders ok and makes no reference to conver-
the representation dfi(t) in the basis of the firsN unper- gence of perturbation theory; there may be arbitrary reso-
turbed states: nances or near resonances of the time-dependent Hamil-
tonian between the initiall states. We will draw only on the
. fact that normalized solutions, satisfying EGA8), exist.
HN(t)EHoij;l INCAIVOLDGI=Ho+ VY1), (A From Eq.(A7) we see that we need the coefficieatg;n)
' only for the large values of frequency index=My. The
where the unperturbed Hamiltonian is high-lying energies of the unperturbed static Hamiltonian are
approximatelyE?~ j?w, [wherew,= (1/2m)(w/2a)?]. Then
S ol Myo+e=ES, ,~(N+1)?w, and the factor in square
HO:JZl SHNIIE (A2) " prackets on the left-hand side of EGA8) for the case of
interest,n=My, is greater than Rw, for any value ofj
SinceHN has the same time periodicity as the full Hamil- (the smallest value occurs for the largest possible index,
tonian, the corresponding time-dependent Sdimger equa- namely,j=N). We use the symboV, to denote the maxi-

N

tion has solutions of the standard Floquet fo23), mum absolute value of the matrix elements/dbetweerany
\ N N two basis states. Then the absolute value of the coefficient
P (X, ) =exp(—igHu(x,t), (A3)  a(j;n) is limited by Eq.(A8) to
with k=1,2,..,N, where the functionﬂE(x,t) are time pe- \Vq N

riodic. Therefore, the solutions formed from the basis of the 2(i;My)|< ANo, 21 [lai;My+D)[+]a(i;My—1)]]
first N states are of the form

N o AVq
N N/ —inwt|; = ! (Ag)
uh=2 2 alime "), (A4) 2V2Nwo
o o where we have used only the limitation imposed by normal-
where normalization imposes the restriction ization (A5) on sums over the absolute values of any subset
N of the coefficienta(j,n) corresponding to a single stalE ,
SO jalin2=1. (A5)  namely, [ay|+[ay|+ -+ +|ay|< Jm. But we can do much
[ R better, essentially by iterating this process. We start with Eq.

_ _ _ (A8) for a smaller value of the photon index= M y—p, use
Now we include in Eq(A1) the next highest stattN+ 1),  the argument just given to limit the right-hand side for the

whose unperturbed enerdgf, , ; can be written as next higher valuei=M ,—p+1, and work back to the value
0 of interestn=My. We choose the starting integpras the
Env1= €t Myo, (AB) integer part oNwy/w (this gives a substantial improvement

only for Nwy/w>1, so we choosdl large enough for this to
be the case Then the coefficient in square brackets on the
left-hand side of Eq(A8) is greater tharNwy. Thus, by
exactly the same kind of argument that led to E&9) we

with e confined to the fundamental stripess@< w. At some
value of the coupling\ the quasienergy of this statemay
equal that of one of the solutions labeled1<k=<N) in the
basis of the firstN states[see Egs.(A3) and (A4)]. The

. . : h
perturbation of the remaining potentMd VN turns that into ave
an avoided crossing, with a gap given approximately by A
twice the corresponding matrix element, a(j;My—p)|= . Al10
ponding la(j;My—p)| TN (A10)
N
A=\ N+ 2/V[i) (i M+ 1) +al(i:My—1)]. The same limitation holds fota(j;My—p+2q)|, with
121< V(M D) + 8 (M= 1)] g=1,2,..,p, where the coefficient on the left-hand side of

(A7) Eq. (A8) is even larger. Then we use these maximum values

. . . . to bound the right-hand side of EA8) for the next itera-
We now place strong limits on the size of the right-hand S|de(i0n, for the values of lying between those just limited,
of this equation. Since the state lalxehnd the basis sizN n=My—p+2q—1 with q=1,2,..,p (notfor q=0):

will remain fixed, for simplicity of notation we will no

longer write the subscrigt and superscrip on the coeffi- _ AV, N _
cientsa(j;n). The time-dependent Schtimger equation for [a(;My—pra)l= 55~ 21 [la(i;My—p+qg+1)|
u(x,t) can be rewritten as a set of equations for these coef- 0=
ficients: +la(i;My—p+q—1)|]
+e—E%a(j:n) A% iIV|D[a(l;n+1) oL [P (A11)
n —E’la(j;nm) == a(l;n S —|—
[No+e ]] (j 2 & (i La( \/m @0

+a(l;n—1)] (A8)  where the first inequality comes again directly from E&8)
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with the minimum possible coefficient on the left-hand side,Note that by choosindN large enough(\Vy/Nwy<1, as
and the final inequality results from substitution of Eq.well as Nwy/w>1) we find the ultimate exponentidin-
(A10), which holds for each value of the state indexnto  deed, powers of N!) decrease of the gaps for arbitrarily
the middle expression. This is repeated, using these boundsrge coupling strength for this case.

to limit the right-hand side of EqA8) for then values lying We also can obtain tighter limits for th&function poten-
betweenthese tial. In this case we can rewrite EGA8) as

1 3
la(j;My—p+20)|<s —

V2N

wo

_ \Vo/2
, (A12) a(l;,n)Zm[AN(nJrl)JFAN(n—l)],
i

(A7)
now for g=1,2,..,p—1. We then repeat thip—2 times, )
with the power of\V,/w, increasing by one and the range Where we have defined
of q decreasing by one at each iteration, to obtain
N
L IAVEIPT 1 [avg]Neols An(m)=2, ai;n), (A18)
aGiMOI=og || <7< |0
o V2N | @o

(A13) and throughout the analysis of this case the unperturbed
eigenstate index refers only to even-parity statéae have
Finally, we use this in Eq(A7) to put limits on the size of noted above that the odd-parity states are not affected by this
the gap: potentia). Then we can sum EqAL7) over the eigenstate
index | to find a recursive relationship for thig(n),

Nwg/w

AV
As)\vo\/ZN[w—o
0

(Al4) An(n) = (A\Vo/20) Sy(M[ Ay(n+1) +Ay(n—1)],
(A19)

Therefore, the gap is limited by this to be exponentially de- i

creasing with basis siZé, at least for small enough coupling Where we have defined one more sum

)\<wo /VO

For specific examples of the spatial dependence of the N 4N
time-dependent potential(x)coswt we can construct even sym=3 Not+e —jz} =3 1 iln Cht+N
tighter limits. There are, in particular, two limiting cases of 1] wo =1 Cﬁ—j2 C, C,—N’

interest; With the square-well confining potential in the in- (A20)
terval —a<x<a we take(i) V(x)=2Vysin(mx/2a) or (ii) ) S _ o
V(x)=Voad(x). In both cases the only nonzero matrix ele- The flna_l a_pprOX|mat|o_n on the right-hand side is the Euler-
ments ofV(x) between the eigenstates of the square well ardaclaurin integral estimate for the sum; correcpon.s are of
of magnitudeV,. In the first instancésinusoidal potential ~ order 1C,. Now, as before, we start by considering the
these occur only for nearest-neighbor states in the energigcursion relation(A19) for n=My—p, with p the integer
ladder(j|V|k) =V -1, whereas for theé-function poten- part of Nwg/w, and limit the right-hand side by the maxi-
tial all pairs of even-spatial-parity states are connectedpy Mum imposed by the normalization conditiphy(n)|< VN,
regardless of how far apart in energy they éad all odd- SO that

parity states with vanishing wave function xat0 are, of

course, totally unaffected by the potentialhese are then AVoIn(4N+1)

limiting cases of short- and long-range effects of the spatial [An(MN= p)|<2w0 2N (A21)
potential relative to the energy spectrum of the unperturbed

static square-well potential. We use this on the right-hand side of EA19) for the next

For the sinusoidal potential the right-hand side of Eqmgher value ofn, name|y,n:MN—p+ 1, and iterate as be-
(A8) contains only the four coefficients corresponding tofgre to obtain

I=j=*1, so that the inequalityA9) becomes

Nwqg/w
AVg IN(4N+1) |0
. AVq AyMpy | <| ———— (A22)
laliMyI= 5500 (A15) A BT

The limitation to four coefficients occurs at each stage of thdinally, we put this back into Eq(A17) for the original
iterative process that led to EGA13), which limit now be-  coefficienta(j;My) to find

comes
ali:My)|< AVo [ AV In(aN+1)|N0’
Nwg/w a(j;
Ia(J';MN)ISE AVo ¢ (A16) PN N+ g 2w 2N
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