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Time-dependent Floquet theory and absence of an adiabatic limit
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Quantum systems subject to time periodic fields offinite amplitudel have conventionally been handled
either by low-order perturbation theory, forl not too large, or by exact diagonalization within a finite basis of
N states. An adiabatic limit, asl is switched on arbitrarily slowly, has been assumed. But the validity of these
procedures seems questionable in view of the fact that, asN→`, the quasienergy spectrum becomes dense,
and numerical calculations show an increasing number of weakly avoided crossings~related in perturbation
theory to high-order resonances!. This paper deals with the highly nontrivial behavior of the solutions in this
limit. The Floquet states, and the associated quasienergies, become highly irregular functions of the amplitude
l. The mathematical radii of convergence of perturbation theory inl approach zero. There is no adiabatic limit
of the wave functions whenl is turned on arbitrarily slowly. However, the quasienergy becomes independent
of l(t) in this limit. We introduce a modification of the adiabatic theorem. We explain why, in spite of the
pervasive pathologies of the Floquet states in the limitN→`, the conventional approaches are appropriate in
almost all physically interesting situations.@S1050-2947~97!08811-2#

PACS number~s!: 42.50.Hz, 42.65.Vh, 03.65.2w, 05.45.1b
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I. INTRODUCTION

Physical systems subject to finite time periodic pertur
tions of amplitudel and periodT[2p/v have been studied
extensively@1# by making use of the Floquet theorem. Th
theorem, a consequence of the discrete time translation s
metry of the Hamiltonian, states that there is a complete
of quasiperiodic solutions of the time-dependent Schro¨dinger
equation that, whent→t1T, are simply multiplied by a
phase factor exp(2ienT), whereen is called the ‘‘quasien-
ergy.’’ This phase factor definesen only modv and so the
quasienergy may always be taken to lie in the st
0<en,v.

For such systems the quasienergiesen are of comparable
interest to the energy levels of time-independent syste
One would expect to use the subscriptsn as unambiguous
labels of the time-dependent states of a periodically dri
system as the magnitudel of the perturbation is switched o
adiabatically, as in the case of time-independent quan
systems. Indeed, there is a substantial literature studying
quet systems along these lines, usually employing nume
methods, in afinite set of basis states@2#. Of special interest
are the ‘‘avoided crossings’’~AC’s!: regions in thel-e
plane where two quasienergies approach each other
function of l and ~except for special symmetries! avoid
crossing one another.

But there is a difference in principle when a comple
infinite set of basis states is included. For a spatially confin
system, with an infinite number of discrete energy levels
l50, there is also an infinite number of quasienergies
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l.0 and the spectrum fills the fundamental strip densely
fact, typically it is a dense point spectrum@3#. ~For example,
in the special case of a particle in a one-dimensional squ
well and vanishingl, Weyl @4# has shown that the energ
eigenvalues fill the fundamental strip densely and u
formly.! As the number of basis states becomes infinite th
is a weakly avoided crossing~WAC! near each point in the
l-e strip. This leads to qualitatively different issues: Do t
Floquet state solutions for a givenl converge to well-defined
limits? Are the Floquet states and quasienergies w
behaved functions ofl? Is there a well-defined limiting path
that the system follows asl is switched on arbitrarily
slowly—i.e., does an adiabatic limit exist? We have exa
ined these questions in a variety of approximate ways
have arrived at a coherent picture, though generally we
not have conclusive mathematical proofs. We find that
radii of convergence of power-series expansions inl, start-
ing from the unperturbed eigenstates, are zero. Floquet s
and their quasienergies are discontinuous functions ofl ev-
erywhere; there is no adiabatic limit in the usual sen
~though we will propose a useful weakened modification
the adiabatic theorem!. At the same time, in the limit of slow
switching on ofl the quasienergy remains arbitrarily close
its initial (l50) value. We will explain the consistency o
these results with the well-established success of stan
time-dependent perturbation theory and of the adiabatic th
rem.

We note that these features will not be seen directly
any numerical study asN becomes large. The effects becom
increasingly weak very rapidly as the basis size is increas
Although, for a given interval inl, inclusion of very-high-
lying levels does have a major impact on Floquet states
quasienergies, it is only over an increasingly smaller rang
l, and this becomes at some stage unobservable on the
of numerical accuracy available to the computer.
4045 © 1997 The American Physical Society
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In Sec. II we review elementary Floquet theory in afinite
basis. The problems arising for an infinite basis are discus
in Sec. III. In Sec. IV we analyze the convergence of t
Floquet states as the size of the basis becomes infinite.
tion V is devoted to the dependence of the states
quasienergies onl, including questions of labeling Floque
states and of the existence of an adiabatic limit whenN→`.
The relationship to finite-order time-dependent perturbat
theory is discussed in Sec. VI. Our conclusions are sum
rized in Sec. VII.

II. FLOQUET THEORY IN A FINITE BASIS

In this section we review the elements of time period
Hamiltonian systems

H~ t !5H01lH1~ t ! with H1~ t1T!5H1~ t !, ~2.1!

when approximated by afinite matrix HN(t) in the represen-
tation of theN lowest states of the time-independent Ham
tonianH0 . In Sec. III we will discuss the considerable pro
lems that occur in the limitN→`.

Because of the discrete time translational symmetry
HN(t), there is a complete set of solutionswN(t) of the
time-dependent Schro¨dinger equation~with \51!

i
dwN

dt
5HN~ t !wN, ~2.2!

which are of the Floquet form

wn
N~ t !5exp~2 i en

Nt !un
N~ t !, ~2.3!

with a time periodic part

un
N~ t1T!5un

N~ t ! ~n51,2, . . . ,N! ~2.4!

and ‘‘quasienergies’’en
N , which may be taken to lie in the

interval@0,v!, with v52p/T. For givenl one may label the
Floquet states in order of increasing quasienergy, the eig
value associated with discrete time translation.

Figure 1 shows such a quasienergy spectrum~for finite N!
as a function ofl for the example of a free particle in
one-dimensional box (xP@2a,a#) with harmonic driving,

H~ t !5p2/2m1l sinS px

2a D cos~vt !. ~2.5!

The quasienergies are continuous functions ofl that do not
cross, but show AC’s provided there are no symmetries
allow actual crossings. These AC’s are abundant in the s
tra of time periodic systems and are of central interest in
work. As the basis size is increased, the newly introdu
avoided crossings tend to become rapidly weaker~smaller
gaps at the crossing and smaller range ofl over which their
effects are substantial!. They therefore tend to become is
lated from one another, and it is useful and meaningfu
consider their effects individually, as we do in the followin

As two quasienergy lines pass an isolated WAC
l5l1 , the corresponding Floquet states rapidly intercha
their forms. At the pointl5l1 they are very nearly linea
combinations of the two Floquet functions just outside
region of the AC, with amplitudes of equal magnitude.
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ul2l1u grows, this mixing decreases rapidly, as follow
The functions are mixed by no more than a given sm
relative weightd, provided thatul2l1u.w(d)/2, where

w~d!5
De

dus12s2u
. ~2.6!

HereDe is the quasienergy splitting at the AC ands1 ands2
are the slopesde/dl of the quasienergies at the crossin
point in the absence of the terms connecting these states~see
Fig. 1!. We neglect the weak influence of all other states n
this WAC.

Using standard Floquet state perturbation theory@6# in l,
one finds that the second-order term describes very well
overall behavior of the quasienergies for smalll. However,
nearl5l1 nearly degenerate perturbation theory is need
giving

e1,2~l!'
1

2
@~s11s2!~l2l1!

6A~s12s2!2~l2l1!21~De!2#. ~2.7!

It is helpful to considercomplexvalues ofl. Then the
time evolution is no longer unitary, and quasienergies
complex. They may be considered as theN values of a single
N-valued analytic functione~l!, with N Riemann sheets con
nected at complex branch points@7#. As is the case for reall,
the functione~l! is defined only modv and we choose al-
ways 0<Ree(l),v. From Eq.~2.7! we see that WAC’s for
real l are manifested as branch points near the real axi
e~l!, at

l5l16
De

us12s2u
i ~2.8!

~see Fig. 2!. Whenl passes along the reall axis throughl1 ,
as discussed above, there is a rapid change in the spatia

FIG. 1. Quasienergy spectrum as a function ofl for N510 for
the free particle in a box with harmonic driving and frequen
v58.3 @see Eq.~2.5!#. One finds many avoided crossings, with
typical one marked by the dashed box. There are some strictlyreal
crossings, corresponding to states of opposite parity under the c
bined symmetry operation of spatial inversion plus time translat
by half a periodT/2. Other apparently real crossings are just
weakly avoided that they cannot be resolved.
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56 4047TIME-DEPENDENT FLOQUET THEORY AND ABSENCE . . .
of the two Floquet states, which are approximately int
changed. In contrast, on a path starting from the real a
going in a loop in the complex plane around the branch po
~2.8! and back to the real axis, each of the two Floquet sta
returns approximately to its original spatial dependence. P
turbation expansions inl have finite radii of convergence. A
l50 the eigenstatew j with energyEk defines the quasien
ergy e j5Ek ~mod v! on the j th Riemann sheet ofe~l! „the
indices k and j are unequal, in general, becausej labels
increasing values ofe in @0,v!, whereask labels increasing
energy valuesE over @0,̀ !…. Then the radius of convergenc
lc, j for w j ande j is the magnitude ofl at the branch point
nearest the origin on thatj th sheet.

In the laboratory the perturbationlH1 is commonly
turned on slowly. This can be characterized, as usual, b
switching factorest in the interaction (s.0)

H~ t !5H01lestH1~ t ! where H1~ t1T!5H1~ t !,
~2.9!

with the initial condition

c j
s,l~2`!5w j . ~2.10!

We are interested in the wave functionc j
s,l(t) at a specified

time, sayt50. This system is no longer periodic in time an
the solutions of the time-dependent Schro¨dinger equation
corresponding to Eqs.~2.9! and ~2.10! are therefore no
longer Floquet functions. However, if the turn-on rates is
slow compared to the driving frequencyv, it is useful to
describe the solutions at timet in the basis of the Floque
functions ~2.3! at the corresponding value ofl(t)5lest.
Two results are known@8#:

~i! Every AC can be characterized by a rate

j̃5
~De!2

us12s2u
[jl1 , ~2.11!

where we have introduced the explicit factorl1 in the final
definition for convenience below. The behavior of the wa

FIG. 2. Position of branch points in the complexl plane for the
system and parameters of Fig. 1. Just one quadrant is shown, a
position of branch points is symmetric with respect to the a
Re(l)50 and Im(l)50, sincee(l* )5e* (l) and e(2l)5e(l).
There are no branch points on the real axis, but they do appea
the imaginary axis, as shown.
-
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function as the AC is crossed then depends on how this c
pares with the rate of growth of the exponentially increas
amplitude (1/l1)dl/dt5s. For large turn-on parameter
s@j ~provided thats!v! the solution will follow closely
the initial Floquet state, as if there were no AC. This is t
so-called@9# Landau-Zener transition through the AC. O
the other hand, in the adiabatic limit for this AC,s!j, it will
closely follow the Floquet state that passes the AC conti
ously. Fors'j the solution, afterl(t) has passedl1 , will
be a superposition of the two Floquet states involved in
AC.

~ii ! There is an adiabatic theorem: Apart from an over
phase factor, the final statec j

s,l(0) converges in the limit
s→0 and the limit is the Floquet state of the periodic syst
that corresponds to the quasienergy found by following
quasienergye j of the initial statew j as acontinuousfunction
of l.

These properties are well established for Floquet syst
with a finite basis. In the next section we show that the lim
N→` is highly pathological.

III. THE LIMIT N˜`

The general difficulties raised by an infinite basis are o
lined here. A detailed discussion is given in Secs. IV and

For definiteness we will restrict the discussion to fin
one-dimensional systems withxP@2a,a# and

H~ t !5p2/2m1U~x!1lV~x!cos~vt !, ~3.1!

whereU(x) andV(x) are analytic and bounded. Rel will be
kept uniformly bounded, Rel<l̄1 , as N becomes infinite.
For l50 the conventional energy spectrumEk is discrete
and for sufficiently high eigenvalues exhibits increasi
spacings@10# between successive levels@approximately pro-
portional to the level index, as for the caseU(x)[0#. We
will make repeated essential use of this feature.

In the limit N→` one expects that for everyl the N
quasienergies within the finite interval@0,v! will form a
dense spectrum. In fact, Weyl showed@4# that for
U(x)5l50, so thatEk5(1/2m)(p/2a)2k2, the spectrum is
uniformly dense, provided only thatv/E1 is irrational. This
is the generic situation@5# for U(x), lÞ0. Moreover, How-
land @3# has shown that, for Hamiltonians of the form~3.1!
~an essential feature of which is the increasing spacing
tween successive energy levels for sufficiently high eigenv
ues! and for most values of the coupling strengthl, the
quasienergies have a dense point spectrum.

What happens to the AC’s in the limitN→`? We find a
very simple picture in the complexl plane: AC’s correspond
to branch points, as in Fig. 2. With increasingN we add
higher-lying states of the unperturbed Hamiltonian to the
sis and find that the gaps of newly introduced AC’s, as w
as the imaginary part of the corresponding branch points~see
the Appendix!, decrease faster than any power law withN.
Therefore, the reall axis is a line of accumulation for the
branch points. Moreover, the branch points with Iml.l̄2 are
finite in number and tend to well-defined limits asN→`, for
any l̄2.0. The problems with the limitN→` are restricted
to the immediate neighborhood of the reall axis.
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For reall one expects the AC’s to be dense in thel-e
plane. In fact, along each quasienergy curvee~l! obtained
within a finite basis approximation one expects a dense se
AC’s whenN→`. This has a number of consequences:

~i! As there will be AC’s on each quasienergy curve f
arbitrarily small values ofl, the radii of convergencelc, j of
the perturbation theory inl for quasienergies and Floque
states all shrink to zero.

~ii ! The increase of the basis size from an initial valueN
will introduce AC’s arbitrarily close to any point on a give
quasienergy curve defined with the initial basis of sizeN.
Each of these AC’s will make large changes in the cor
sponding Floquet states over a finitel interval, strongly ad-
mixing and interchanging pairs of states, as described ab
and it is therefore by no means clear whether or not Floq
states converge asN→`.

~iii ! For anyfinite N one can label the Floquet stateswn
N,l

and quasienergiesen
N,l in such a way that they are continu

ous functions ofl ~if, as usual, we identifye with e1v!. If
we increaseN, we have to rearrange labels for every ne
AC and it is not clear if there exists a meaningful labeli
that tends to a well-defined limit asN→`.

~iv! Let the periodic field be switched on over the tim
interval 2`,t<0, with l(t)[estl. For anyfinite N there
is a well-defined adiabatic limit, ass→0, of the state~up to
an overall phase factor! and of the quasienergy at the fin
time t50. Let jmin be the smallest of the rate parametersj,
defined by Eq.~2.11!, characterizing the relevant AC’s i
@0,l#. Then, fors!jmin the solution of the Schro¨dinger equa-
tion ~2.9! will simply follow the Floquet state correspondin
to a continuous quasienergy curve. In the limitN→`, how-
ever, there will be AC’s with arbitrarily small parametersj.
Therefore, for smallers more and more of these weak AC
will be passed adiabatically, rather than undergo Land
Zener transitions, leading to completely different final sta
ck

s,l(t). Thus an adiabatic limit ass→0 cannot be expected

IV. CONVERGENCE AND NONCONVERGENCE OF
FLOQUET STATES

For systems of type~3.1! we shall present strong argu
ments that, for a set of full measure inl in anN-independent
interval 0<l<l̄, the Floquet states converge in the lim
N→`, even though the AC’s are dense in thel-e plane.
This does not imply, however, that the limit is a continuo
function ofl. For we will also argue that the AC’s give ris
to infinitely manyl’s, of measure zero but dense in anyl
interval, for whichnoneof the Floquet states of a finite bas
converge. This can be stated more precisely as follows.

Proposition I (convergence).For any interval@la ,lb#,
any d.0, and anyh.0, there is an integerM (d,h,la ,lb)
with the following properties: For anyM 8.M and each
m51,2, . . . ,M there exist a labelm8P$1,2, . . . ,M 8% and an
overall phase factoreia such that

uwm
M ,l~x,t !2eiawm8

M8,l
~x,t !u,d ~4.1!

and

uexp@2 i ~em
M ,l2em8

M8,l
!T#21u,2d ~4.2!
of

-

e,
et

u-
s

for all x, for all tP@0,T#, and for alllP@la ,lb#, except for
a subset ofl of measure<h.

Proposition II (nonconvergence).For any interval
@la ,lb#, anyd.0, anyM , any labelmP$1,2, . . . ,M %, suf-
ficiently largeM 8.M , and any labelm8P$1,2, . . . ,M 8%,

1

2a U E
2a

a

dx wm
M ,l~x,t !* wm8

M8,l
~x,t !U,d ~4.3!

for a set ofl’s dense in@la ,lb# and all t. That is, for this
dense set ofl’s the eigenfunctions within the smaller bas
have arbitrarily small overlap with any of those correspon
ing to the larger basis; they do not converge to a limit.

Proposition I states that asN grows, there is an increasin
measure ofl where a finite basis calculation gives the Fl
quet states and quasienergies correctly within an arbitra
small error. For many practical purposes this supports
use of a finite basis for describing a Floquet system. Nev
theless, it is important to realize, as stated in proposition
that even for an arbitrarily large basis sizeN there are infi-
nitely manyl’s, dense in any interval~albeit of total measure
zero!, where a given Floquet statewn

N(t) doesnot converge
in the limit N→`.

We can prove proposition I for any system with the fo
lowing model property, which, we submit, captures for th
purpose the essence of a real Floquet system of type~3.1!:
For an AC atlnP@la ,lb# we again define the interva
ln6wn(dn)/2, outside of which the admixture of the tw
unperturbed Floquet states changes by no more thandn .
Then we assume that we can choose a set$dn%, with
(n51

` dn,d for any chosend.0, such that(n51
` wn(dn) con-

verges. This assumption appears to be satisfied in system
type ~3.1!, although we have no mathematical proof. N
merical calculations and analytical considerations~see the
Appendix! suggest strongly that the gapsDen decrease faste
than any negative power ofn, due to the increasing spacing
of the unperturbed energiesEj . Let us choosedn to decrease
relatively slowly, as a small power ofn, say dn5d/2n2.
Then the sum overwn will converge@see Eq.~2.6!# as long
as the differenceus12s2u in quasienergy slopes does n
decrease too rapidly withn. Numerical experience sugges
this to be the case.

We make an argument based on the Borel-Cantelli lem
@11#. Let us start, as usual, with an approximation to t
system given by restriction to a finite numberM of spatial
basis functions. The new AC’s introduced as this is increa
to a complete, infinite, basis set are labeled fromnM to `.
For a large enough choice of the initial basis sizeM , the
partial sum(n5nM

` wn(dn), which gives the measure ofl’s

where a Floquet state might be affected by more thand when
increasing the basis size fromM to infinity, can be made
smaller than any givenh. For all other values ofl, those that
are within none of the intervalsln6wn(dn)/2 and therefore
constitute a set of measure at leastlb2la2h, the Floquet
states are changed by no more than(n51

` dn,d. This ex-
plains Eq.~4.1! of proposition I.

Equation ~4.2! follows at once from Eq.~4.1!. The
quasienergies can be determined fro

ei en
MT5wn

M(x,t1T)/wn
M(x,t). For Floquet states normalize

by *2a
a dxuwn

M(x,t)u2/2a51, we can choose anx and t
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where uwn
M(x,t)u>1. Then en

M8 can be determined from

wn
M8(x,t), which differs fromwn

M(x,t) by less thand @Eq.
~4.1!#, leading to Eq.~4.2!.

Proposition II follows from the plausible, but unprove
assumption that any quasienergy line of a finite basis (M )
calculation will show an AC within any givenl interval if
the basis size is increased sufficiently.~Failure of this as-
sumption would imply that there do exist finitel intervals in
which a quasienergy line isnevercrossed asM→`.! Using
that assumption, we can argue straightforwardly: Within a
given intervalI 5@l8,l9#,@la ,lb#, for a suitably large ba-
sis sizeM one will eventually find an AC. This crossin
changes then1th Floquet statewn1

M by more than some cho

sen amount, say 40% admixture of orthogonal basis sta
over some finitel interval. Within that interval the two Flo-
quet states of the AC then have an overlap of less than
with wn1

M . We now select one of these states. With a furt

increase in the basis size, it will ultimately encounter an A
within the chosen interval and will be changed by more th
40% over some smaller but still finitel interval. Within that
interval for an even larger basis size also the second s
will be changed by more than 40% due to an AC. This lea
to four Floquet states within a finitel interval, each with an
overlap of less than (0.6)2 with wn1

M . Repeating this argu

ment sufficiently often, one finds a basis sizeM1.M and an
interval I n1

,I where no Floquet statewn
M1 has an overlap of

more than a givend with wn1

M of the initial basis sizeM ,

leading to proposition II. As stated in proposition I, the
l’s, even though they are dense, have a measure that ten
0 asM→`.

We can derive a stronger version of proposition II. R
peating the argument above for then2th Floquet statewn2

M of

the initial basis sizeM , one finds a basis sizeM2.M1.M
and an intervalI n2

,I n1
,I whereno Floquet statewn

M2 has

an overlap of more than a givend with wn2

M nor with wn1

M .

This argument can be repeated for all Floquet stateswn
M of

the initial basis. Thus there is a dense set ofl’s in any l
interval wherenone of the Floquet states of a finite bas
converge@12#.

V. FUNCTIONAL DEPENDENCE ON PERTURBATION
STRENGTH: ADIABATIC LIMIT

A. Labeling of Floquet states

Proposition II of the preceding section has an immedi
consequence: A continuous labeling of the Floquet sta
wn

N,l and quasienergiesen
N,l as a function ofl, possible for

finite N, is no longer possible in the limitN→`. We there-
fore propose a different way of labeling, useful at least
smalll: We assign the labeln to a Floquet state if its overlap
with the nth eigenstatewn(x,t) of H0 is larger than 50%, in
the sense

1

T E
0

T

dt
1

2a E
2a

a

dxuwn~x,t !* wn
l~x,t !u.0.5. ~5.1!

This procedure will not always find a label for a Floqu
state. This is obvious for largel, where none of the Floque
y

s,

.6
r

n

te
s

s to

-

e
s

r

states resembles a low-lying unperturbed state. But, even
small l, in the center region of an AC the overlap with a
unperturbed state will be less than 50%.

Since for smalll the quasienergies are very flat as a fun
tion of l and AC’s will generically occur only between Flo
quet states related to states ofH0 that are far apart in energy
their AC’s are expected to have a width that decreases fa
than any power law asl goes to zero~Appendix!. We there-
fore expect that, on the interval@0,l̄#, the labeling works for
a Cantor set ofl values with finite measure less thanl̄ and
that this measure approachesl̄ as l̄→0.

B. Adiabatic turn-on

Even though perturbation theory for Floquet states a
quasienergies inl has zero radius of convergence in the lim
N→`, we find a simple, strict result for the perturbatio
expansion of a solutionck

s,l(t) of the Schro¨dinger equation
~2.9!, where the periodic driving is turned on fromt52` by
the factorlest @we remark again thatck

s,l(t) is not a Floquet
state#.

Theorem.The perturbation expansion ofck
s,l(t) in l, for

t,`, has an infinite radius of convergence for anys.0, i.e.,
ck

s,l(t) is an entire function of the complex variablel.
This can be proven by majorizing the perturbation exp

sion. With the wave functionx(t) expressed in the interac
tion picture

x~ t !5eiH 0tck
s,l~ t !, ~5.2!

the Schro¨dinger equation ~2.2! becomes idx(t)/dt
5lW(t)x(t), with W(t)5eiH 0testV(x)cos(vt)e2iH0t. The
familiar formally iterated solution is

x~ t !5F11~2 il!E
2`

t

dt1W~ t1!

1~2 il!2E
2`

t

dt2E
2`

t2
dt1W~ t2!W~ t1!

1~2 il!3E
2`

t

dt3E
2`

t3
dt2E

2`

t2
dt1W~ t3!

3W~ t2!W~ t1!1•••Gx~ t52`!. ~5.3!

Sincee2 iH 0t is unitary, it can easily be shown that for an
normalized statesf andg

^ f uW~ tn!W~ tn21!•••W~ t2!W~ t1!ug&<Vmax
n es~ tn1•••1t1!,

~5.4!

where Vmax is the maximum of uV(x)u. From this the
nth-order term of the perturbation expansion of^ f ux(t)& can
be majorized by (1/n!)(lVmax/s)

nest and thus the expansio
~5.3! converges for anys.0. That is, the state that evolve
with a given switching-on rates is uniquely and well defined
~in a finite or an infinite basis!, for an arbitrarily large final
interaction strength, in spite of the convergence proble
with Floquet states. Thereis, however, an anomaly: There i
no well-defined adiabatic limit whens→0 ~see also Sec. III!.
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Although an adiabatic limit in the usual sense does
exist, we now show that for sufficiently smalll there is a
~logarithmically! large window of turn-on parameter
s,s, s̄, where the final stateck

s,l(t) is almostindependent
of s.

Proposition III. For any smalld.0 and largeh.0 there
exists al̄.0 and an interval@s,s̄# with

s̄/s.h ~5.5!

such that for alls8,s9P@s,s̄#, all l,l̄, all x, and all states
k,

uck
s8,l~x,t50!2eia~s8,s9!ck

s9,l~x,t50!u
l

,d, ~5.6!

whereeia is a ~physically uninteresting! overall phase factor
That is, for any desired level of convergence~as defined

by d! we can find a range ofs of arbitraily large relative size
~arbitrarily large s̄/s5h! by restrictingl to a sufficiently
small value.

Consider any finiteN and the Floquet state arising out
the unperturbed statewk . The perturbation series~5.3! in-
volves first-order terms of the form

xs,~1![l(
k8

Vk8,k

Ek82Ek6v2 is
wk8 . ~5.7!

From this it is clear that to achieve independence ofs with
an accuracyd, s must be smaller than a values̄ given by

s̄l(
k8

U Vk8,k

~Ek82Ek6v!2 wk8U,d. ~5.8!

For small enoughl all higher-order terms up to any finit
ordern may be neglected~assuming, as we do, that there
no exact resonanceEk82Ek56mv, m<n!.

However, for any givenl0 , no matter how small, there
will exist a sufficiently large basis size such that there
some~weak! AC’s associated withany quasienergy in thel
interval @0,l0#. Consider for any initial basis sizeN0 an
arbitrary quasienergy curveek(l), continuous over the inter
val 0<l<l0 . As the basis size is then increased to a su
ciently large sizeN8.N0 , avoided crossings ofek(l) will
be introduced within this interval. These AC’s will be cha
acterized by rates@see Eq.~2.11!# that we labelj1 ,j2 , . . . ,
in order of increasing energy of the states atl50 from
which the crossing curves arise, which then ensures that
are ordered with decreasing rates:j i 11,j i . As N→` and
l(t) ([lest) grows from 0 tol all these~infinitely many!
weak AC’s will be encountered and each of them gives r
to an admixture of a new state intock

s,l(x,t50) with ampli-
tude ~see@9#! smaller than

dn5Apjn /s. ~5.9!

To make the total variation inck
s,l(x,t50), as defined by

(ndn , smaller than a givend over the whole range o
turn-on rates set by Eq.~5.5!, we use the following propertie
of the j’s in the limit l→0:
t

e

-

ey

e

lim
l→0

j150, ~5.10!

lim
l→0

j l 11 /j l50. ~5.11!

Equation~5.10! follows from the fact that for small enoughl
the largest AC ofek

l in @0,l# will be with an arbitrarily high-
lying statek8 of H0 and that the ratej1 characterizing the
AC, according to Eq.~2.11! and the Appendix, decrease
faster withk8 than any power law. Equation~5.11! is due to
the fact that this ratio of successive rates is, in the m
unfavorable case, due to AC’s of neighbouring levelsk811
and k8 of H0 with ek

l . The ratio of the corresponding
quasienergy splittings decreases exponentially w
(k811)22k8252k811 and goes to zero in the limitl→0.

From these properties we conclude that fors larger than
any s, s̄/h the variation inck

s,l(x,t50) due to infinitely
many AC’s can be made smaller than any givend for suffi-
ciently smalll̄. Therefore, for small enoughl̄ one finds for
all l<l̄ almost adiabatic behavior in a window@s,s̄# of
turn-on parameters withs̄/s arbitrarily large.

C. Conservation of quasienergy

Here we consider again the limit of turning onl(t) arbi-
trarily slowly from 0 up to some arbitraryl. We have seen
that theeigenfunctionck

s,l(0) does not have a limit fors→0.
However, we will argue here~but not prove mathematically!
that, ass→0, ck

s,l(0) is within arbitrary accuracy a linea
combination of Floquet states of the periodic Hamiltoni
@Eq. ~2.1!# that havequasienergiesarbitrarily close to the
initial value ek(l50), i.e., theenergymodv. Thus, in the
limit s→0 the quasienergy is a conserved quantity.

Proposition IV.For anyd.0 and anyl.0 there exists
an s0.0 such that for alls,s0

E
2a

a

dxuck
s,l~x,t !2ei ekTck

s,l~x,t1T!u2,d ~5.12!

for all t<0 and for all statesk. This is true even though
lims→0ck

s,l(x,t) does not exist for any finite time2`,t<0.
To make this plausible we will use a simplified geomet

cal picture, in which quasienergies are linear functions ofl.
Although all AC’s are now represented by actual crossin
they will be traversed dynamically like real AC’s with som
finite rate parametersj. The infinitely many quasienergy
lines fall into two classes, according to whether the mag
tudes of their slopes are smaller or larger than a speci
critical value sc5d8/2l. We will further assume in this
model that the latter~large slope! class, for anyd8.0 and
any l.0, has only a finite numberK(d8,l) of members.

In the course of turning on the periodic driving from 0 u
to l with a small enough turn-on parameters, the infinitely
many quasienergy lines with slopes<sc will, at most, cause
a deviation in quasienergy byscl (5d8/2) away from the
initial value ek(l50). The additional changes in quasie
ergy from AC’s with the finite numberK(d8,l) of steeper
quasienergy lines can also be restricted to be less thand8/2
by a sufficiently small choice of turn-on rates: Since the
AC’s are dense on any quasienergy line, for sufficien
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small s one will be diverted from any of the steep quasie
ergy lines within any given small quasienergy range, wh
we choose to bed8/2K. The total change in quasienergy asl
is increased from 0 to its final value thus can be ma
smaller than d8/21Kd8/2K5d8 for any given d8. For
d85Ad/T and within this simplified model we have thu
proved proposition IV.

The same arguments should hold for the original Floq
problem, as including the quasienergy dependence onl at
the AC’s reduces their steepness and thus further reduce
spread in quasienergy from the above estimates. Also,
overall nonlinear dependence onl that follows, e.g., from
second-order perturbation theory poses no problem for
argument. The assumption that the numberK(d8,l) of
slopes larger in magnitude thansc is finite remains reason
able since an increase in the basis size introduces Flo
states originating from higher-lying states ofH0 , which
show a decreasing dependence onl. However, the problem
of defining slopes at all~in the limit N→`!, as there is no
continuous labeling of the quasienergies as a function ol,
will make a mathematical proof difficult.

This proposition leads us to a better understanding of
nature of the stateck

s,l(0) in the limit s→0. As ck
s,l(0) is a

linear combination of Floquet states with quasienerg
closer and closer toek , it changes constantly asd ands go to
zero. Thus, while there cannot be an adiabatic limit for
wave function, quasienergy is conserved in the limits→0.

VI. STATUS OF TRADITIONAL FINITE-ORDER
PERTURBATION THEORY

Nonlinear optics is a major field of science in which tr
ditional, finite-order perturbation theory in the applied ele
tric field ~usually to low order! successfully describes exper
ment. Here we shall show why this well-established theor
consistent with our considerations in spite of our conclus
that, strictly speaking, the radii of convergencelc, j of per-
turbation theory vanish.

We reiterate first that if the turn-on rates→0, perturbative
nonlinear optics in fact fails. For smalll this failure is due to
near resonancesEk82Ek'6nv, generally with very high-
lying excited states.~This is the reason why, for any finit
basis sizeN, lc is finite.!

When the perturbation is turned on as in Eq.~2.9!, we
have seen that, provided the turn-on rates is small enough
but exceeds a lower limits, then asl→0 the resultant state
can be made arbitrarily close to the traditional first-ord
perturbative solution. A similar result can be derived for t
traditional perturbative solution up to any finite order.
typical laboratory situations we have seen thats is exponen-
tially and unphysically small. For finite smalll the pertur-
bation expansion is asymptotically convergent.

Finally, we briefly mention the unavoidable effects of lin
broadening. The quantum system of interest is inevitably
contact with its environment and there are interactions
tween the many particles that ordinarily constitute the qu
tum system of interest, so the individual particle states
lifetime broadened. We conjecture that if broadening is ch
acterized by a finite widthG, then a finite radius of conver
gence will be restored.
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VII. CONCLUSION

There have been two standard approaches to dealing
the behavior of quantum systems subject to strong time
riodic fields. One is the use of finite-order perturbati
theory~e.g., second- or third-order nonlinear optical susc
tibilities! and the other the exact solution of the proble
within a finite basis of states. But both of these approac
miss qualitative features of the exact mathematical solutio

We have shown by a set of ‘‘propositions’’~as opposed to
rigorous mathematical proofs! that for a large class of time
periodic problems the structure of the exact states and
quasienergy spectrum is remarkably irregular. By ‘‘exac
we mean here that the complete infinite set of basis state
included. Interaction with the environment is neglected. W
have considered the states and quasienergies as functio
the strengthl of the time periodic potential, as the numberN
of basis states becomes infinite. We have found that in
interval la,l,lb , although the states converge to a we
defined limit asN→` for a set ofl with the full measure
lb2la of the interval, there is a set ofl, of total measure
zero, butdensewithin every finite interval, for which the
states donot converge. As a result, in contrast to the situati
for any finiteN, it is impossible to label states and quasie
ergies continuously as a function ofl. The familiar quasien-
ergy ‘‘dispersion’’ curves as functions ofl ~as shown, e.g.,
in Fig. 1! become discontinuous everywhere. One con
quence of these discontinuities is the absence of a true a
batic limit; there is no unique final state to which the syste
tends as the periodic perturbation is switched on arbitra
slowly.

But these pathologies, including a radius of converge
of perturbation theory inl that approaches zero asN→`, do
not show up under most physically realistic circumstanc
In particular, we have explained the familiar and we
established success of ordinary time-dependent perturba
theory in terms of the modified adiabatic theorem and
typical smallness of the parameters that enters that theorem
in practice, as well as the successes of finite basis calc
tions.
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APPENDIX: EXPONENTIAL DECREASE WITH BASIS
SIZE N OF NEWLY INTRODUCED QUASIENERGY GAPS

We label the eigenstates of the time-independent Ham
tonian (l50) by an indexj that increases with the unpe
turbed energy. We consider the solution of the full tim
dependent problem in the limited spatial basis of the firsN
such states. We demonstrate here that for sufficiently sm
l, the new AC’s introduced by the inclusion of the next ba
state~labeledN11! are characterized by quasienergy ga
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that are smaller than a bound that decreases exponen
with N.

As in Sec. II, let us take as the ‘‘Nth-level’’ Hamiltonian
the representation ofH(t) in the basis of the firstN unper-
turbed states:

HN~ t ![H01 (
j ,l51

N

u l &^ l uV~ t !u j &^ j u[H01VN~ t !, ~A1!

where the unperturbed Hamiltonian is

H05(
j 51

`

Ej
0u j &^ j u. ~A2!

SinceHN has the same time periodicity as the full Ham
tonian, the corresponding time-dependent Schro¨dinger equa-
tion has solutions of the standard Floquet form~2.3!,

ck
N~x,t !5exp~2 i ek

Nt !uk
N~x,t !, ~A3!

with k51,2,...,N, where the functionsuk
N(x,t) are time pe-

riodic. Therefore, the solutions formed from the basis of
first N states are of the form

uuk
N&5(

j 51

N

(
n52`

`

ak
N~ j ;n!e2 invtu j &, ~A4!

where normalization imposes the restriction

(
j 51

N

(
n52`

`

uak
N~ j ;n!u251. ~A5!

Now we include in Eq.~A1! the next highest stateuN11&,
whose unperturbed energyEN11

0 can be written as

EN11
0 5e1MNv, ~A6!

with e confined to the fundamental stripe, 0<e,v. At some
value of the couplingl the quasienergy of this statee may
equal that of one of the solutions labeledk (1<k<N) in the
basis of the firstN states@see Eqs.~A3! and ~A4!#. The
perturbation of the remaining potentialV2VN turns that into
an avoided crossing, with a gap given approximately b
twice the corresponding matrix element,

D5l(
j 51

N

^N11uVu j &@ak
N~ j ;MN11!1ak

N~ j ;MN21!#.

~A7!

We now place strong limits on the size of the right-hand s
of this equation. Since the state labelk and the basis sizeN
will remain fixed, for simplicity of notation we will no
longer write the subscriptk and superscriptN on the coeffi-
cientsa( j ;n). The time-dependent Schro¨dinger equation for
u(x,t) can be rewritten as a set of equations for these c
ficients:

@nv1e2Ej
0#a~ j ;n!5

l

2 (
l 51

N

^ j uVu l &@a~ l ;n11!

1a~ l ;n21!# ~A8!
lly

e

e

f-

for j 51,2,...,N. We emphasize that this is theexactequa-
tion for the time-dependent problem in the finite basisN. It
contains all orders ofl and makes no reference to conve
gence of perturbation theory; there may be arbitrary re
nances or near resonances of the time-dependent Ha
tonian between the initialN states. We will draw only on the
fact that normalized solutions, satisfying Eq.~A8!, exist.
From Eq.~A7! we see that we need the coefficientsa( j ;n)
only for the large values of frequency indexn'MN . The
high-lying energies of the unperturbed static Hamiltonian
approximatelyEj

0' j 2v0 @wherev05(1/2m)(p/2a)2#. Then
MNv1e5EN11

0 '(N11)2v0 and the factor in square
brackets on the left-hand side of Eq.~A8! for the case of
interest,n5MN , is greater than 2Nv0 for any value of j
~the smallest value occurs for the largest possible ind
namely, j 5N!. We use the symbolV0 to denote the maxi-
mum absolute value of the matrix elements ofV betweenany
two basis states. Then the absolute value of the coeffic
a( j ;n) is limited by Eq.~A8! to

ua~ j ;MN!u<
lV0

4Nv0
(
i 51

N

@ ua~ i ;MN11!u1ua~ i ;MN21!u#

<
lV0

2A2Nv0

, ~A9!

where we have used only the limitation imposed by norm
ization ~A5! on sums over the absolute values of any sub
of the coefficientsa( j ,n) corresponding to a single stateuk

N ,
namely, ua1u1ua2u1•••1uamu<Am. But we can do much
better, essentially by iterating this process. We start with
~A8! for a smaller value of the photon indexn5MN2p, use
the argument just given to limit the right-hand side for t
next higher valuen5Mn2p11, and work back to the value
of interestn5MN . We choose the starting integerp as the
integer part ofNv0 /v ~this gives a substantial improveme
only for Nv0 /v@1, so we chooseN large enough for this to
be the case!. Then the coefficient in square brackets on t
left-hand side of Eq.~A8! is greater thanNv0 . Thus, by
exactly the same kind of argument that led to Eq.~A9! we
have

ua~ j ;MN2p!u<
lV0

A2Nv0

. ~A10!

The same limitation holds forua( j ;MN2p12q)u, with
q51,2,...,p, where the coefficient on the left-hand side
Eq. ~A8! is even larger. Then we use these maximum val
to bound the right-hand side of Eq.~A8! for the next itera-
tion, for the values ofn lying between those just limited
n5MN2p12q21 with q51,2,...,p ~not for q50!:

ua~ j ;MN2p1q!u<
lV0

2Nv0
(
i 51

N

@ ua~ i ;MN2p1q11!u

1ua~ i ;MN2p1q21!u#

<
1

A2N
FlV0

v0
G2

, ~A11!

where the first inequality comes again directly from Eq.~A8!
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with the minimum possible coefficient on the left-hand sid
and the final inequality results from substitution of E
~A10!, which holds for each value of the state indexi , into
the middle expression. This is repeated, using these bo
to limit the right-hand side of Eq.~A8! for then values lying
betweenthese:

ua~ j ;MN2p12q!u<
1

A2N
FlV0

v0
G3

, ~A12!

now for q51,2,...,p21. We then repeat thisp22 times,
with the power oflV0 /v0 increasing by one and the rang
of q decreasing by one at each iteration, to obtain

ua~ j ;MN!u<
1

2N FlV0

v0
G p11

<
1

A2N
FlV0

v0
GNv0 /v

.

~A13!

Finally, we use this in Eq.~A7! to put limits on the size of
the gap:

D<lV0A2NFlV0

v0
GNv0 /v

. ~A14!

Therefore, the gap is limited by this to be exponentially d
creasing with basis sizeN, at least for small enough couplin
l,v0 /V0 .

For specific examples of the spatial dependence of
time-dependent potentialV(x)cosvt we can construct even
tighter limits. There are, in particular, two limiting cases
interest: With the square-well confining potential in the
terval 2a,x,a we take~i! V(x)52V0sin(px/2a) or ~ii !
V(x)5V0ad(x). In both cases the only nonzero matrix el
ments ofV(x) between the eigenstates of the square well
of magnitudeV0 . In the first instance~sinusoidal potential!
these occur only for nearest-neighbor states in the en
ladder^ j uVuk&5V0dk, j 61 , whereas for thed-function poten-
tial all pairs of even-spatial-parity states are connected byV0
regardless of how far apart in energy they are~and all odd-
parity states with vanishing wave function atx50 are, of
course, totally unaffected by the potential!. These are then
limiting cases of short- and long-range effects of the spa
potential relative to the energy spectrum of the unpertur
static square-well potential.

For the sinusoidal potential the right-hand side of E
~A8! contains only the four coefficients corresponding
l 5 j 61, so that the inequality~A9! becomes

ua~ j ;MN!u<
lV0

2Nv0
. ~A15!

The limitation to four coefficients occurs at each stage of
iterative process that led to Eq.~A13!, which limit now be-
comes

ua~ j ;MN!u<
1

N F lV0

Nv0
GNv0 /v

. ~A16!
,
.

ds

-

e

e

gy

l
d

.

e

Note that by choosingN large enough~lV0 /Nv0,1, as
well as Nv0 /v.1! we find the ultimate exponential~in-
deed, powers of 1/N! ! decrease of the gaps for arbitrari
large coupling strengthl for this case.

We also can obtain tighter limits for thed-function poten-
tial. In this case we can rewrite Eq.~A8! as

a~ j ;,n!5
lV0/2

nv1e2Ej
0 @AN~n11!1AN~n21!#,

~A17!

where we have defined

AN~n!5(
i 51

N

a~ i ;n!, ~A18!

and throughout the analysis of this case the unpertur
eigenstate indexj refers only to even-parity states~we have
noted above that the odd-parity states are not affected by
potential!. Then we can sum Eq.~A17! over the eigenstate
index j to find a recursive relationship for theAN(n),

AN~n!5~lV0/2v0!SN~n!@AN~n11!1AN~n21!#,
~A19!

where we have defined one more sum

SN~n!5(
j 51

N Fnv1e

v0
2 j 2G21

[(
j 51

N
1

Cn
22 j 2 '

1

Cn
ln

Cn1N

Cn2N
.

~A20!

The final approximation on the right-hand side is the Eul
Maclaurin integral estimate for the sum; corrections are
order 1/Cn . Now, as before, we start by considering th
recursion relation~A19! for n5MN2p, with p the integer
part of Nv0 /v, and limit the right-hand side by the max
mum imposed by the normalization conditionuAN(n)u,AN,
so that

uAN~MN2p!u,
lV0

2v0

ln~4N11!

A2N
. ~A21!

We use this on the right-hand side of Eq.~A19! for the next
higher value ofn, namely,n5MN2p11, and iterate as be
fore to obtain

uAN~MN!u,FlV0 ln~4N11!

2v0A2N
GNv0 /v

. ~A22!

Finally, we put this back into Eq.~A17! for the original
coefficienta( j ;MN) to find

ua~ j ;MN!u,
lV0

~2N11!v0
FlV0 ln~4N11!

2v0A2N
GNv0 /v

.

~A23!
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