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Nonlinear collective oscillations of an ion cloud in a Paul trap
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In an experiment using a Paul trap, we create,a kn cloud by electron ionization of the background gas

at 10 °-mbar residual pressure. Exciting the ions parametrically at twice the frequency of the secular motion

of ions in ther or z direction, we observe a narrow resonance at some distance from the motional resonance
center if the amplitude of the exciting field exceeds a threshold value. The threshold value decreases with
increasing ion number. Since the narrow resonance does not shift with ion number, we interpret it as a
collective resonance of the center of mass of the ion cloud. The resonance shape exhibits the typical form of
a driven anharmonic oscillator. The conclusions drawn from the experiments are supported by detailed ana-
lytical and numerical computationgS1050-294{®7)05211-6

PACS numbds): 32.80.Pj, 07.75th

I. INTRODUCTION [17] which displays a cornucopia of nonlinear effefts—
19]. Thus, apart from elucidating the excitation mechanism
Over the past decade many authors have demonstrateof, the collective resonance of an ion cloud in a real Paul trap,
experimentally as well as theoretically, that the Paul trapve also discuss briefly additional nonlinear effects expected
[1,2] is an excellent microlaboratory for the investigation of t0 be observable in the center-of-mass motion of driven ion
nonlinear dynamics. Many effects, such as, e.g., rf heatin§louds in a real Paul trap. We present preliminary experi-
[3], or the crystallization and melting of simultaneously Mental evidence in support of our predictions. All our ex-
stored charged particldd], elusive for decades, have been pe_rimental resul_ts are backed by detailed numerical and ana-
interpreted and explained within the framework of nonlinearlytical computations. .
dynamics and chad$—7]. New nonlinear effects were pre- ~ The paper is organized in the following way. In Sec. Il we
dicted, both on the classici8,9] and quantum levelE10]. present a brief description of our experiment. In Sec. Il we
The purpose of this paper is the exp|anation of another norﬂiSCUSS the basic equations of motion of an ion cloud in the
linear effect with a long history: the excitation of collective nonlinear potential of a real Paul trap. This section serves to
motion of an ion cloud in a real Paul trap by an additionalS€t the stage and to introduce the notation needed for subse-
frequency. This effect was first described about 30 years ag@uent sections of the paper. In Sec. IV we present our ex-
by Rettinghaus, and correctly identified as a collective resoPerimental data on the existence of the collective resonance.
nance[11]. It was also seen by Jungmaahal.[12] and by N Sec. V we analyze the properties of the collective reso-
Vedel and co-workerEl3,14). The mechanism of this effect, nance on the basis of the equations of motion obtained in
however, remained elusive. As described in more detail beSec. Ill. Many of the observed resonance characteristics
low, we interpret the effect as a parametric resonance of thBinge on the existence of a damping mechanism of the cloud
center-of-mass motion of the ion cloyd5,16. Thus the motion. Since in the experiments reported in this paper we
central point of our paper is not the presentation of the coldo not use any explicit cooling methods, such as, e.g., buffer
lective resonance, which has been seen before, but a detailé@s or laser cooling20], the nature of the damping mecha-
analysis of the excitation mechanism supported by theoretidism in our experiments is as yet unclear. One candidate
cal computations. We also present detailed investigations gnechanism is damping of the cloud by the ambient rest gas.
the shape of the collective resonance, together with nonlinearhis mechanism and its consequences are presented in Sec.
effects that appear in the vicinity of the collective resonanceV!- In Sec. VIl we discuss our results. In Sec. VIII we sum-
It is clear that a real Paul trap, i.e., the actual device use@arize and conclude the paper.
in laboratory experiments, is never an ideal quadrupole. Due
to the finiteness of the electrodes, deviations from axial sym-
metry, observation holes in the electrodes, etc., the field of a
real Paul trap contains higher multipole components with In the experiments reported in this paper we study the
appreciable strength. Thus even the center-of-mass motion abnlinear response of H ion clouds stored in a Paul trap to
an ion cloud in a real Paul trap is highly nonlinear. Driven byan additionally applied ac voltage referred to as the “excita-
an additional frequency, it is akin to the Duffing oscillator tion voltage.” We accomplish this aim by measuring the
survival rate of H* ions in the presence of the excitation
field for a well-defined excitation frequency, amplitude, and
*Permanent address: Dept. of Electronics, Peking Universityinteraction time. We refer to this type of experiments as ex-
Beijing 100871, P. R. China. citation experiments. A schematic sketch of our setup is

II. EXPERIMENTAL SETUP AND PROCEDURES
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IIl. MICROSCOPIC DESCRIPTION

C Signal In Signal Out
omputer [y avc J - - | | i
In this section we establish the notation used in subse-
lon Multiplier

quent sections, and present the classical equations of motion
Extraction Pulse -~ of an ion cloud in the dynamic potential of a real Paul trap.
JL AP The classical point of view is sufficient for our purposes,
U, + V, cos since the kinetic energy of the ions in our experiments is
Driving Field W > very large: we estimate the temperature of the ion cloud to be
of the order of a thousand Kelvin. Thus quantum effects are
External v, cosQdt n69|lglb|e
Excitation Field | A~~~ The multipole expansion of the potential of a real Paul
trap is given by
Filament Potential v
I Electron Gun “ r\K
O(F)=—V(t) X, ck(r—> Py(cos 6), D
FIG. 1. The experimental setup. k=1 0
where
shown in Fig. 1. Apart from the dimensions of the Paul trap,
it has already been described in detail in RE24,, 22. Thus V(t)=Uq+V, cog Qt) +V, cog Ot). 2)

we restrict ourselves here to a presentation of only those

experimental features that are essential for the discussion bghe constant€, in Eq. (1) are the strengths of the multipole
low. components of the trapg is the radius of the ring electrode,
The core of our experiment is a Paul trap consisting of aand the functionsP, are the Legendre Polynomials as de-
hyperbolic ring electrode with an inner radius =2 cm  fined, e.g., in Ref{23]. In our analytical and numerical com-
and two hyperbolic end caps whose distance of closest agputations to be discussed below, we include multipole com-
proach is 2,=v2r,. The trap is operated at a frequency of ponents up tck=4 (octopolg. The constants), andV, in
Q/27=3 MHz. A typical excitation experiment consists of Eq. (2) are the dc and ac trap voltages, arglis the excita-
three stages. tion voltage. The trap frequency and the excitation frequency
(i) Creation stageln this stage, of temporal durationt,  gre denoted b2 andQ, respectively. Using, as the unit of

the H,* ions are created inside the trap by electron bombardrength, we obtain the following equations of motion fr
ment of the rest gas which is held at Tombar. We refer to ions in the trap:

T. as the creation time. It is typically of the order of 1 s.
(ii) Interaction stage.After creating the H* ions, they

X X;
are exposed to a superposition of the trap fields and the exd_2 yf N i yl-
citation field during a timeT;, referred to as the interaction d-2 | °' Yar |
time. The interaction tim&,; can be changed experimentally Zi 4

from a few ms to arbitrarily long times. In practice, however,
an upper limit ofT; is given by the ion storage time which is
typically of the order of 8—10 s under our experimental con-

[a+2q cog27)+2q coSwT+¢)]

ditions. During the interaction stage both end caps of the trap 0 —Xi/2 T Xii
are electrically connected. This observation is important, X1 Cy| 0] +2C,| —Vil2| +3Cq4 ;Yigi
since it rules out dipole excitation of the ion clouds. 1 Zi zi—pil2
(iii) Detection stage Following the interaction stage, we 2 5
extract the ions with the help of a field pulse through the 3Xip; 18— 3xiz;12 N e
upper end cap of the trap. The extraction pulse is phase cor- +4C, 3yipf 183y Zi12 | | + az |al_ aj|3,
related with the trap’s ac driving field. The ions arrive at the zZ2—3z,p?I2 SO
first dynode of a multiplier tube and create an electron pulse
whose total charge is proportional to the ion number. The i=1,...N. 3)

pulse is amplified and digitized and fed to a personal com-
puter for further data handling. Different mass ions arrive ag, Eq. (3) the position of ion number is defined as
the detector at different times.,H ions are selected by set- r*:(x-. yi,z); a=a, andq=gq, are the conventional Paul
ting an amplifier gate at proper timing. The total detection,[r'ap clo,ntlr,oll p;aram(arters givenrby

efficiency, including ion loss in the time-of-flight region and

guantum efficiency of the multiplier, is estimated to be 10%.

A motional resonance is detected by a decrease of the ion a= ﬂg' q= @/g' (4)
number arriving at the detector. We should emphasize that mQry maQrg

for every data point in our experimental observation, the ions

are lost from the trap, and new ions have to be created for th¢herem and Q are the mass and the charge number of the
next point. Thus the ions under investigation do not have drapped particlesr is the dimensionless time

“memory” concerning previous excitations. This is of im-

portance for the shape of the observed resonances. =QOt/2; 5)
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w=2Q/Q is the dimensionless excitation frequency,
p?=x2+y?% anda is the strength of the Coulomb potential,
in our units given by

QZGZ

X= —F—>5 3.
sz’ﬂEOrg

(6)

The control parametdf is the dimensionless strength of the
additionally applied excitation voltage. It is related to the
control parameteq by q=qV,/V,. The relative phase be-
tween the trap voltage and the excitation voltage is denoted
by ¢ in Eq. (3). The generators of the trap voltage and the

N, (arb. units)

excitation voltage are not phase locked. Thus in our current 1045 1050 1055 1060
experimentsp is unknown, but does not affect the results of Q/2n (kHz)

our experiments. Thus we will set=0 in the following

discussion. FIG. 2. Number of detected iorl¥q for mother and daughter

For =0, neglecting the nonlinear terms in E@) and  resonances as a function of excitation frequefgs for five dif-
assuming a perfect axial symmetry, the dimensionless secterent excitation voltages. The initial number of ions for the five
lar frequencies in the&, y, andz directions are given by different curves are the same. We shifted these curves vertically for

clarity of presentation.
OF= 0= 0y~ Va+022, w,~\2(gq°—a) (7)
the two resonances. Figure 3 shows the frequency locations

for smalla andg. We ad.dr?d ahda:cmplng terlin th B with ) /o7 (the central frequencigf the two resonances as a

a damping constan. Within the framework of our deriva-  nction of the number of detected ions. While the location
tions this damping term has no microscopic justification. Butyt the mother resonance shifts with ion number, the location
damping is certainly present experimentally. Possible dampg¢ the gaughter resonance is constant and thus space-charge
ing mechanisms include collisions with rest gas atoms, enyyenendent. On the basis of this observation we interpret the
ergy dissipation by polarization charges in the trap elecy,qiher resonance as due to resonant but incoherent rf heat-
trodes, or irreversible deformations of the ion cloud cause g of the ion cloud, and the daughter resonance as due to a
by the oscillation of the cloud in the anharmonic potential Ofcollective osciIIatior; of the ion cloud as a whole. i.e.. as an
the trap. The set of equatiof8) is the basis for the theoret- o itation of the center-of-mass coordinate of the ion cloud.

ical analysis of the experimental results reported in this payys jnterpretation is consistent with the one found in the
per. Set(3) is used in two different waysgi) directly as the literature[11—14.

basis for our microscopic three-dimensional numerical simu-\ye gypport the interpretation of the daughter resonance as
lations and(ii) as the starting point for an analytical investi- 5 .qjective oscillation of the center of mass of the ion cloud
gation of the cloud motion. We will see in Sec. V below that,, 5 girect numerical simulation of the equations of motion

the analytical results derived from E() reproduce the re- (3 \yg yse a fourth-order Runge-Kutta method to integrate
sults obtained from full-fledged numerical three-dimensionaly o gat of equation€) for a random initial condition of the
simulations of Eq(3) to an astonishing degree of accuracy. jons in the cloud for ten ions. The random initial condition

simulates the stochastic creation process of the ions in our

IV. COLLECTIVE RESONANCE experiment. We define the center of mass of the ion cloud
In this section we present experimental and numerical evi-
dence of the existence of a sharp collective resonance at an 1060 - ' - '
excitation frequencyw~2w,. We observe a similar phe- ol ]
nomenon atw~2w,[24]. The shape of thev~2w, reso- Soteetetteent pey b0t 0 P00 e
nance is qualitatively the same as the shape ofdh€2w, 1056 | %, -
resonance. In this paper we restrict ourselves to the discus- %o,
sion of the 2v, resonance. o 1054 ° ]
The central result of our experiments with an additionally o5l %o, i
applied excitation frequency is shown in Fig. 2. Plotted is the <, %00,
number of detected ions as a function of the excitation fre- 1050} °‘b°°go .
qguency for five different excitation voltages. We see a broad 104 o0
resonance ab~2w,. We call this resonance the “mother I o )
resonance.” Figure 2 shows that we also observe an addi- 1046 ° o |
tional narrow resonance which appears at the high-frequency 5 o 556555 356560 o
wing of the mother resonance if the excitation amplitude N,

exceeds a certain threshold value. We call this resonance the

“daughter resonance.” FIG. 3. Central frequencie /27 of mother and daughter reso-
The nature of the mother and daughter resonances is basdnces as a function of the number of detected iNgs Open

illuminated by investigating the space-charge dependence @frcles: mother resonance. Solid circles: daughter resonance.
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; r Rmax IS of appreciable magnitude, which explains the large

I
Bmaz : ( ,’ ] ion loss in the vicinity of the collective resonance.
1 2) ,’ ] Using reasonable assumptions, our aim now is to derive
0.05 : Ve ] the equations of motion fdR in the vicinity of o =2w,. We
7/ > .
: e assume that fow~2w, only thez component ofR is ex-
1 // cited, i.e.,X=Y=0. This assumption is confirmed by our
010 | : el 1 numerical simulations of the full set of equatio{®. Thus,

' L/// the physics of the cloud motion ai~2w, is contained in
the z degree of freedom of the cloud and we concentrate on
deriving an equation of motion faf. Because of

1% 85 1.95 205 N N F F
=
14000 . . : : i
12000 L A the Coulomb term in Eq(3) drops out of the equation of
(b) W motion forZ, and we obtain
10000 | e . -
) atter™ e Z+yZ=[a+2q cog27)+2q cojwT)][C,+2C,Z
g 8000 o -
: A +3Cy(2%) —~3C5(p?)/2+4C(2%) ~ 6Cy(p?2)],
& 000l Boopee. |
sl A (11)
“ 4000 IR
i .S;;., ...;s' ¢ ’ where we used the notation
0000 MR 1 N
: 14 1 14
0 . . . (Z'p)=5 2 2zt (12
1054 1055 1056 1057 1058 =1
Q2/2n (kHz) Defining
FIG. 4. The shape of the collective resonan@. Theoretical 1 N 1 N
results. The maximal excursion amplituBg,,, as a function of the N Z (fl + 77, 3 N Z (13

scaled excitation frequenc/Q(®, where Q¥=0w,/2 is the
“unperturbed” secular frequency of the trap according to EA).
The potential parameters and the damping constant are chosen
cording to Eq(21). Full line: R, obtained from three-dimensional
computer simulations of the equations of moti@. Dashed line: N
analytical resul{34) derived from the one-dimensional modelHf z §i3%0, (14)

motion. (b) Experimental results. Shown is the number of detected
we obtain

and assuming that the ion cloud is symmetric enough such
at

ionsN4 as a function of the excitation frequenﬂ/Zw. The experi-

mental result shows bistability of the trapped ion cloud in the vi-
y pp <22>=ZZ+I’§, <p2>=r§,

cinity of the transition between mother resonance and collective (15)
resonance. 3 3 )
(z°)=2Z°+3Zr;.
. X 1 N [X For the computation ofp?z), we assume, additionally, the
R=|Y|= N Z Yil, (8)  independence of the relative motion of the ions in the cloud
VA T\ z in p andz directions, i.e.,
and the relative coordinates <p22>=(p2><z>=2r,2,. (16)
& Inserting Eqs(15) and (16) into Eq.(11), we obtain
ni|=r—R. 9 o 3
{i Z+yZ=[a+2q cog27)+2q codwr)]>, f,Z"
v=0

17

We also defindR,,(w) as the maximal excursion OR| at a

fixed excitation frequencwy. The full line in Fig. 48) shows  \yhere
Rmax Obtained as a result of our ten-ion simulations. For

easier comparison with the experimental result shown in Fig. f,=C,+3Cj(r2 _rz/z), f,=2C,+ 12C4(r§—r,f/2),

4(b), Rhax is drawn in the negativg direction. We see that

Rmax is different from zero only in a narrow frequency inter- (18)

val which corresponds to the collective resonance. Moreover, f,=3C;, f3=4C,.
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In order to obtain some analytical insight into the solutions
of Eq. (17) in the vicinity of w~2w,, we observe that for
the conditions of the experimeat~2w,<2. Thus, with re- a

stable

spect to the excitation frequeney, the term proportional to ~ 144
g in Eq. (17) is rapidly oscillating and can be replaced by a
time-independent pseudopoten{ia|25]. We obtain 1 1 unstable

3 3 1-4

Z+yZ+ Y, g,2*=2q4 codwn) >, ,2°, (19
n=0 v=0

where

FIG. 5. Sketch of the stability diagram of the Mathieu equation

2r£2
=q[fi+2f,f,]/2—af;, . A ~ ~ ~
91=a°1f3 of2] 1 with control parametera andq in the vicinity ofa~1 andq~0.

(20)
93=0?[f5+2f1f5]—af;.

go=folg*f1/2—a],

0,=30?[ fof3+f,f,]/2—af,, where

The structure of Eq(19) is one of a driven, damped nonlin- a=(2w,/w)? §=80/w (28)

ear oscillator. With Eq(19), we are able to reproduce quali- . ] o o )
tatively the most prominent features of the experiments with>ince the Mathieu equation is known to exhibit parametric

the help of the following “minimal model” defined by instabilities for smallg at a=n? n=12,..., weexpect
parametric instabilities of Eq26) at w,=2w,/n. Of impor-

tance for our present experiments is the parametric instability
for n=1. We compute its widtAw by following Ref.[25].
We define

C,=0, C,=1, Csz=1, C,=0, o1

a=0, y=0.01, r,=r /2.

The parameters in Eq&21) are chosen according to the fol-
lowing considerations. As mentioned in Sec. Il, the end caps
of the trap are electrically connected during the interactiorwhere e is small, and obtain
stage of an excitation experiment. Thus no dipole excitation

is possible irz direction, and thu€;=0. We choos&€,=1, .
since this is the correct strength for an ideal Paul trap. The Z+
hexapole component is chosen relatively lar@s€1) in

order to emphasize nonlinear effects. For the phenomena dis-

cussed in th|§ paper the octopole term is not expecteq t\9vhereé~ 1, because is small. The stability diagram of Eq.
produce qualitatively new effects and is set to zero. With
choice of Eqs(21) of model parameters the model equations
are now given by

w=2w,t€, (29

Z=0, (30

—————|1-2|=|coq27)
€ w
(1+ z

2w,

(27) in the vicinity ofa~1 is sketched in Fig. 5. According
to Fig. 5 and up to linear order i, the solutions of Eq(27)
are unstable for +q<a<1+q. Expanding Eq.(30) to
74 y2+w§[2+922/2+ 973/2]=2G[2Z+ 37%]cod w7), Ieadin_g order ine, we obtain the instability of Eq30) for
(22) |e|<2q/w,. Thus, for negligibley, the frequency width of
the unstable region is
where, according to Eq7), _
Aw=40/w,. (31
w,=Vv2Q. (23
Including the damping, the widtt81) is modified and given

Let us now consider only the linear terms in Eg2), and, by [25]

for the time being, puty=0. We obtain

) 45 Aw=(40/w,)*~(2y)". (32
Z+w§ —— cojwrT)|Z=0. (29
Wy Thus we have isolated the physical origin of the collective
. resonance. It is revealed as a parametric instability of the
We substitute driven nonlinear oscillator associated with the center-of-
wr=27 (25) mass motion of the stored ion cloud. The model of the driven
nonlinear oscillator also underlies the explanation of all other
and obtain properties of the collective resonance, to be discussed in Sec.
V.
. 2wz) 4 49 .
Z+ 1- —cog27)|Z=0. (26)
w5 V. PROPERTIES OF THE COLLECTIVE RESONANCE

This is an ordinary Mathieu equation of the form

Z+[a-2§ cog27)]Z=0, (27)

Having established the existence of collective resonance
in Sec. IV, we turn now to a more in-depth investigation of
the properties of the collective resonance.
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A. Strength of the resonance ‘ ' '

Since the resonance corresponds to the instability region 0.3 r T
of a Mathieu equation, the trapped ions in this region are Aw
exponentially unstable, explaining the immediate onset of
depletion of the trap in the instability region. Total depletion 0.2 r ]
is stopped only because of the nonlinear terms in the trap
potential.

0.1 .
B. Smallness of the drive
With the help of Eq.(31) we are now in a position to

0.0 ' ‘
understand why a few mV of excitation voltage is enough to 0000 0001 0002 . 0003  0.004
produce an appreciable width of the collective resonance.

We write Eq.(32) in the form
FIG. 6. Theoretical frequency widthe of the collective reso-

nance. Full line: Analytical resul{32). Squares: Frequency widths
)qu/Z- (33 extracted from numerical solutions of EL7). Triangles: Fre-

quency widths extracted from three-dimensional numerical simula-
tions of Eq.(3).

~ _ A
Vo=Voa/gq~

w
wz

ExperimentallyA o/, is of the order of 2.% 10 3. Thus, at
q~0.15, we haveVy~2x10*V,. Thus, if V; is of the . o
order of several hundred W is of the order of several tens | "€ shapes of the collective resonances shown in Figs.

of mV, which is consistent with the experimentally observed(@ and in 4b) are qualitatively the same. Both show the
range. kink at the high frequency end of the resonance and the steep

cliff at the low frequency end. Details are different since
Rmax 1S not simply related to the ion loss in the trap. In order

) ) to compute the ion loss fromR,,,., the Gaussian shape of the
In all our experiments we observe that the collective resoion cloud[26] has to be taken into account.

nance appears only fof,>V{" . We call V™ the critical
voltage. In our experiments the critical voltage is of the order

C. Existence of a critical voltage

of V{M~15mV. As seen from Eq32), the existence of a E. Width of the resonance
critical voltage requires a finite damping constant The
critical excitation amplitude is then given "= yw,/2. In order to prove the validity of the approximations that
led us to the pseudopotential for@22) of the minimal
D. Shape of the resonance model, we computed the widthw by numerically solving

Another feat £ th llecti hich i the equations of motiofiL7), and in addition by solving the
nother feature of the ColleClive resonance, WhiCh IS eXyy, oo _gimensional set of coupled equati¢Bs for ten H,*

plamed by the simple m.OdQEZ) IS th? shape of the coIIec_— ions. The result is shown in Fig. 6. The full line is the ana-
tive resonance. Neglecting the nonlinear terms in the drlvel- tical result (32). The squares in Fig. 6 are the resonance
term in Eq.(22), the oscillation amplitud®,,,, 0f Eq. (22) in yu u : qu In =g.

the ranaeAw of Eq. (30) is given bv[25 widths obtained from the numerical solution of Ef7) and

gew a-(30/is g yl2s] the triangles are the resonance widths computed from three-
1lle 12 dimensional simulations of Ed3). There is no significant

Rmax=(;[§—\/q2/w§—72/4H , (34 difference between all three results. This proves that the

physical mechanism was correctly extracted from Byand
where the nonlinearity parameterof our model is given by ~distilled into the simple driven oscillatd22). As a result of

[25] the theoretical analysis of E¢B), we are confident that the
interpretation of the “daughter resonance” as a collective
27 parametric resonance of the center of mass of the ion cloud is
K== wg. (35  correct.

The theoretical results can be compared with experimen-

The amplitudeR,,.« is zero outside oAw. Amplitude (34) is tal datfl Figure 7 shows the frequency W|dtl§1)_/27 of the
shown as the dashed line in Figa} It is instructive to note cc_)llectlve resonance as a function of _the excitation yoltage.
that R, obtained from the ten-ion simulations is shifted in F|_gure 7 confirms the eX|s_tence of a critical V(_)Itage, since the
frequency with respect t& ., computed according to Eq. Width —of ~the collective resonance is zero for
(34). This is easily explained, since we calibrated the fre-Vo<V{"~10 mV. Moreover, the experimental width shows
guency axis in units of the “unperturbed” approximate fre- the typical nonanalytic behavior of a root singularity close to
guencieq7). Thus the shift is due to the presence of nonlin-the critical voltage. The details of the experimental results,
ear terms in the simulation calculations. Additional nonlinearhowever, are not correctly reproduced by the simple analyti-
terms not contained ir (for instance, due to the Coulomb cal model. For instance, the experimental width shows a
interaction, are responsible for the mismatch of the ampli- steep rise at high excitation voltage. The origin of this phe-
tudes between the simulations and Ef). nomenon is currently not understood.
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FIG. 8. Critical voltageV{"” as a function of the number of
detected iondNy. The symbols are the experimental data points.

FIG. 7. Experimental frequency widthQ/2 of the collective ~ The _straight line is a least-squares fit assuming

resonance as a function of the excitation voltae The working logio(V™) =A+B log;o(Ng). We obtain A=2.399-0.059 and
points are Uy=-5.0V, VEP=731V, and Q/27=3 MHz B=—0.332-0.017. The fit result indicates a relationship between

(a,=0.0136 andy,=0.4971. the critical v~oltage\~/§)°') and the numbeN of ions in the cloud
according tov{®~N~13,

v, (mv)

F. Bistability VI. A CANDIDATE DAMPING MECHANISM

One possible reason for the deviations of the analytical
prediction forAw and the experimental results is the fact that
the collective resonance exhibits bistability at its left-hand
wing, i.e., at the sharp cliff where the collective resonance
breaks and rejoins the mother resonance, as shown in Fig. yien— 297z
4(b). The bistability in the jump region is clearly visible. The 2q
existence of the bistability makes the determination of the
width of the collective resonance somewhat ambiguous. Thi&ne possible damping mechanism is the collision of the ion
may account, at least partially, for the deviations betweer¢loud with the molecules of the rest gas. Since the cloud
theory and experiment. moves in thez direction only, we represent it by a cross-

On the other hand, the existence of bistability is also sS€ctional areé orthogonal to the axis of the trap. The total
feature of the driven oscillata22) [25]. Thus, as far as the Mass of the cloud is denoted B, its velocity byV. We
mere existence of bistability of the collective resonance id'0W estimate the damping constant of the cloud on the basis

concerned, theory and experiment are in agreement. of a simple gas-kinetic model. The density of the gas mol-
ecules of the rest gas is denotedfyytheir mass bym and

their rms velocity byv. For simplicity of the argument we
assume that exactly 1/6 of the molecules fly in the positive
Another puzzling experimental result is the dependence oflirection, and 1/6 fly in the negativedirection. The are#
the critical voltage on the number of detected ions. We obis struck by the gas molecules flying in positweirection at
tain a rate ¢ —V)An/6. The momentum transfer per impact is
- Bm(v—V), where 8 varies between 1 and 2 according to
VD~ 1INY3, (36)  whether the molecule is absorbed Ayor reflected offA. In
the same way we findv(+ V)An/6 and— gm(v + V) for the
rate of impact oA and the momentum transfer for gas mol-
This result is clearly borne out by the experimental data preecules flying in negative direction. Altogether, the force
sented in the form of a log-log plot in Fig. 8. On the basis ofexerted by the gas molecules on the moving cloud becomes
our current understanding, the existence of a critical voltage
requires the presence of a damping mechanism. Since no 2B
explicit damping methods are used in our experiments, the F=- ?nAm;V. (38)
damping of the ion cloud occurs indirectly according to a
mechanism which we have not yet properly identified, anq
cannot, at present, control. But whatever the dampin
mechanism, it must explain the observetif? behavior of
the critical voltage. In Sec. VI, we offer a possible mecha-
nism which indeed reproduces theNiF law. We call this d_V
damping mechanism a “candidate,” since presently we see dt
no possibility, neither experimental nor theoretical, of either
confirming or rejecting this mechanism. where

According to Eq.(32), the critical voltage is directly pro-
portional to the damping constant, and is given by

Y- (37)

G. Critical voltage vs ion number

nserting Eq.(38) into the equation of motion for the center
f mass of the ion cloud, we obtain

=-TV, (39
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2BA measurevg”) as a function of the pressure of the rest gas.
F:anv (40 This is not feasible with the present experimental setup,
since we observe a rapid loss of Hions from the trap at
increasing background pressures, either by the reaction
may be interpreted as the damping constant of the ion cloudd,* +H,—H;"+H or by elastic collisions of K" with
SinceA~N?3andM ~N, we obtain heavy background gas molecules.
Several other sources of damping exist. For instance,
_ Ohmic dissipation of energy by induced charges in the elec-
VD ~T ~1/NY3, (41)  trodes of the trap. Another mechanism is “internal dissipa-
tion” of energy by deformation of the cloud due to the non-
linearities of the trap potential. This mechanism should be
as measured in the experiment. The dimensionless dampirgrticularly effective at the turning points of the cloud. The

constanty used in Sec. IlI-V is related tb by effectiveness of this mechanism relies on the possibility of
. the cloud to absorb large amounts of energy. We do not have
— 2_ — 4BA reliable expressions for the heat capacity of the cloud and are
0 nmo. (42 : )
Q  3MQ therefore currently not able to estimate the effectiveness of

. o this mechanism.
The expression foty can be simplified. We use the usual — The deviations of the width of the collective resonance
gas-kinetic relationp=mnu/3 andv“=3kT/m to relate  from the expected square-root behavior close to the critical
the density of the rest gas to the pressure, and the velocity igy|tage is another unsolved puzzle. Fitting the experimental
the temperature. Introducing an effective cross section sucligth function shown in Fig. 7, we found that the expression

that Aw~(Vo—VE) Y3 fits the width function much better than
A= gN23 (43) the expected square root. We do not know how to explain the
’ deviation in the exponent, and, more importantly, whether
we obtain some physics is contained in it which we have overlooked so

far.
_2hap_ 44
7 ONTym,’ (44 VIIl. SUMMARY AND CONCLUSIONS

wherem, is the proton mass. Fo=2, V,=100V, and The main thrust of this paper is a detailed analysis and
p=10"° mbar, we observe experimentally a critical voltage &xplanation of the excitation mechanism of a collective reso-

of V(Y ~20 mV. This results in nance of uncooled clouds of,H ions stored in a Paul trap,

0 ' and driven at about twice the secular frequengyby an

y~10"%. (45) additionally applied excitation voltage. We presented ample

experimental evidence of the existence of the collective reso-
Assuming v~1000 m/s, N~1C°, and Q=2mwx3x10/s, nance as well as detailed three-dimensional numerical simu-

we obtain the following estimate far: lations which are able to reproduce qualitatively the essential
characteristics of the collective resonance such as location,
o~ (1 um)?. (46)  shape, and width. We also reported some interesting experi-

o . mental results, such as the bistability of the collective reso-
This is not an unreasonable value. Thus the damping of thgance in the vicinity of its low-frequency wing, where the
collective motion by the ambient rest gas is a possible dampsharp transition to the mother resonance occurs. A simple
ing mechanism. analytical model extracted from the three-dimensional equa-

tions of motion of the stored H ions is able to reproduce
VII. DISCUSSION the results of the three-dimensional computations. Since the
simple model retains only the component of the center-of-

While there is little doubt about the nature and the eX'S'n]ass motion of the ion cloud, the collective resonance is

perimental result is the existence of the critical voltage, an
the detailed behavior of the width of the collective resonance
as a function of the excitation voltage. As far as the critical
voltage is concerned, we currently have no other epranatioHJr
but to attribute it to damping of the motion of the ion cloud.
A candidate mechanism, cooling by the ambient rest ga

acked by experiments which establish that the collective
esonance is insensitive to space-charge effects.

Although we are able to explain the most prominent fea-
es of the collective resonance, our experiments also leave
numerous open questions for future research. The most im-
was presented in Sec. VI. Although the main prediction o%g:;%?;gamggﬁazi]senr? ir;sotjuree;(dpir:'itlrl:](;ittlg nSi?]fCéht(;isrerIs;/gQ;_
this mechanismy{~N~*? agrees with experiment, we are nism determines decisively the value and functional behavior
currently not able to test this mechanism in more detail inyf the critical voltage as a function of the number of ions in
order to verify or discard it as the reason for the existence ofe ¢loud. Since the damping constant appears in the expres-
the critical voltageV{™. According to Eq.(44), y~p and,  sion for the width of the collective resonance, the damping
thus,Vg”)~p. Thus one possible test of this mechanism is tomechanism, indirectly, also determines the width of the col-
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