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Nonlinear collective oscillations of an ion cloud in a Paul trap
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~Received 12 June 1997!

In an experiment using a Paul trap, we create a H2
1 ion cloud by electron ionization of the background gas

at 1029-mbar residual pressure. Exciting the ions parametrically at twice the frequency of the secular motion
of ions in ther or z direction, we observe a narrow resonance at some distance from the motional resonance
center if the amplitude of the exciting field exceeds a threshold value. The threshold value decreases with
increasing ion number. Since the narrow resonance does not shift with ion number, we interpret it as a
collective resonance of the center of mass of the ion cloud. The resonance shape exhibits the typical form of
a driven anharmonic oscillator. The conclusions drawn from the experiments are supported by detailed ana-
lytical and numerical computations.@S1050-2947~97!05211-6#

PACS number~s!: 32.80.Pj, 07.75.1h
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I. INTRODUCTION

Over the past decade many authors have demonstr
experimentally as well as theoretically, that the Paul t
@1,2# is an excellent microlaboratory for the investigation
nonlinear dynamics. Many effects, such as, e.g., rf hea
@3#, or the crystallization and melting of simultaneous
stored charged particles@4#, elusive for decades, have bee
interpreted and explained within the framework of nonline
dynamics and chaos@5–7#. New nonlinear effects were pre
dicted, both on the classical@8,9# and quantum levels@10#.
The purpose of this paper is the explanation of another n
linear effect with a long history: the excitation of collectiv
motion of an ion cloud in a real Paul trap by an addition
frequency. This effect was first described about 30 years
by Rettinghaus, and correctly identified as a collective re
nance@11#. It was also seen by Jungmannet al. @12# and by
Vedel and co-workers@13,14#. The mechanism of this effec
however, remained elusive. As described in more detail
low, we interpret the effect as a parametric resonance of
center-of-mass motion of the ion cloud@15,16#. Thus the
central point of our paper is not the presentation of the c
lective resonance, which has been seen before, but a det
analysis of the excitation mechanism supported by theo
cal computations. We also present detailed investigation
the shape of the collective resonance, together with nonlin
effects that appear in the vicinity of the collective resonan

It is clear that a real Paul trap, i.e., the actual device u
in laboratory experiments, is never an ideal quadrupole. D
to the finiteness of the electrodes, deviations from axial sy
metry, observation holes in the electrodes, etc., the field
real Paul trap contains higher multipole components w
appreciable strength. Thus even the center-of-mass motio
an ion cloud in a real Paul trap is highly nonlinear. Driven
an additional frequency, it is akin to the Duffing oscillat

*Permanent address: Dept. of Electronics, Peking Univers
Beijing 100871, P. R. China.
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@17# which displays a cornucopia of nonlinear effects@17–
19#. Thus, apart from elucidating the excitation mechani
of the collective resonance of an ion cloud in a real Paul tr
we also discuss briefly additional nonlinear effects expec
to be observable in the center-of-mass motion of driven
clouds in a real Paul trap. We present preliminary expe
mental evidence in support of our predictions. All our e
perimental results are backed by detailed numerical and
lytical computations.

The paper is organized in the following way. In Sec. II w
present a brief description of our experiment. In Sec. III
discuss the basic equations of motion of an ion cloud in
nonlinear potential of a real Paul trap. This section serve
set the stage and to introduce the notation needed for su
quent sections of the paper. In Sec. IV we present our
perimental data on the existence of the collective resona
In Sec. V we analyze the properties of the collective re
nance on the basis of the equations of motion obtained
Sec. III. Many of the observed resonance characteris
hinge on the existence of a damping mechanism of the cl
motion. Since in the experiments reported in this paper
do not use any explicit cooling methods, such as, e.g., bu
gas or laser cooling@20#, the nature of the damping mecha
nism in our experiments is as yet unclear. One candid
mechanism is damping of the cloud by the ambient rest g
This mechanism and its consequences are presented in
VI. In Sec. VII we discuss our results. In Sec. VIII we sum
marize and conclude the paper.

II. EXPERIMENTAL SETUP AND PROCEDURES

In the experiments reported in this paper we study
nonlinear response of H2

1 ion clouds stored in a Paul trap t
an additionally applied ac voltage referred to as the ‘‘exci
tion voltage.’’ We accomplish this aim by measuring th
survival rate of H2

1 ions in the presence of the excitatio
field for a well-defined excitation frequency, amplitude, a
interaction time. We refer to this type of experiments as
citation experiments. A schematic sketch of our setup

y,
4023 © 1997 The American Physical Society
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shown in Fig. 1. Apart from the dimensions of the Paul tra
it has already been described in detail in Refs.@21, 22#. Thus
we restrict ourselves here to a presentation of only th
experimental features that are essential for the discussion
low.

The core of our experiment is a Paul trap consisting o
hyperbolic ring electrode with an inner radius ofr 052 cm
and two hyperbolic end caps whose distance of closest
proach is 2z05&r 0 . The trap is operated at a frequency
V/2p53 MHz. A typical excitation experiment consists o
three stages.

(i) Creation stage.In this stage, of temporal durationTc ,
the H2

1 ions are created inside the trap by electron bomba
ment of the rest gas which is held at 1029 mbar. We refer to
Tc as the creation time. It is typically of the order of 1 s.

(ii) Interaction stage.After creating the H2
1 ions, they

are exposed to a superposition of the trap fields and the
citation field during a timeTi , referred to as the interactio
time. The interaction timeTi can be changed experimental
from a few ms to arbitrarily long times. In practice, howeve
an upper limit ofTi is given by the ion storage time which
typically of the order of 8–10 s under our experimental co
ditions. During the interaction stage both end caps of the
are electrically connected. This observation is importa
since it rules out dipole excitation of the ion clouds.

(iii) Detection stage.Following the interaction stage, w
extract the ions with the help of a field pulse through t
upper end cap of the trap. The extraction pulse is phase
related with the trap’s ac driving field. The ions arrive at t
first dynode of a multiplier tube and create an electron pu
whose total charge is proportional to the ion number. T
pulse is amplified and digitized and fed to a personal co
puter for further data handling. Different mass ions arrive
the detector at different times. H2

1 ions are selected by se
ting an amplifier gate at proper timing. The total detecti
efficiency, including ion loss in the time-of-flight region an
quantum efficiency of the multiplier, is estimated to be 10

A motional resonance is detected by a decrease of the
number arriving at the detector. We should emphasize
for every data point in our experimental observation, the io
are lost from the trap, and new ions have to be created for
next point. Thus the ions under investigation do not hav
‘‘memory’’ concerning previous excitations. This is of im
portance for the shape of the observed resonances.

FIG. 1. The experimental setup.
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III. MICROSCOPIC DESCRIPTION

In this section we establish the notation used in sub
quent sections, and present the classical equations of mo
of an ion cloud in the dynamic potential of a real Paul tra
The classical point of view is sufficient for our purpose
since the kinetic energy of the ions in our experiments
very large: we estimate the temperature of the ion cloud to
of the order of a thousand Kelvin. Thus quantum effects
negligible.

The multipole expansion of the potential of a real Pa
trap is given by

F~rW !52V~ t !(
k51

`

CkS r

r 0
D k

Pk~cosu!, ~1!

where

V~ t !5U01V0 cos~Vt !1Ṽ0 cos~Ṽt !. ~2!

The constantsCk in Eq. ~1! are the strengths of the multipol
components of the trap,r 0 is the radius of the ring electrode
and the functionsPk are the Legendre Polynomials as d
fined, e.g., in Ref.@23#. In our analytical and numerical com
putations to be discussed below, we include multipole co
ponents up tok54 ~octopole!. The constantsU0 andV0 in
Eq. ~2! are the dc and ac trap voltages, andṼ0 is the excita-
tion voltage. The trap frequency and the excitation freque
are denoted byV andṼ, respectively. Usingr 0 as the unit of
length, we obtain the following equations of motion forN
ions in the trap:

d2

dt2 S xi

yi

zi

D 1g
d

dt S xi

yi

zi

D
5@a12q cos~2t!12q̃ cos~vt1w!#

3H C1S 0
0
1
D 12C2S 2xi /2

2yi /2
zi

D 13C3S 2xizi

2yizi

zi
22r i

2/2
D

14C4S 3xir i
2/823xizi

2/2

3yir i
2/823yizi

2/2

zi
323zir i

2/2
D J 1a(

j 51
j Þ i

N
rW i2rW j

urW i2rW j u3
,

i 51, . . . ,N. ~3!

In Eq. ~3! the position of ion numberi is defined as
rW i5(xi ,yi ,zi); a[ar and q[qr are the conventional Pau
trap control parameters given by

a5
4QeU0

mV2r 0
2 , q5

2QeV0

mV2r 0
2 , ~4!

wherem andQ are the mass and the charge number of
trapped particles,t is the dimensionless time

t5Vt/2; ~5!
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56 4025NONLINEAR COLLECTIVE OSCILLATIONS OF AN ION . . .
v52Ṽ/V is the dimensionless excitation frequenc
r25x21y2; anda is the strength of the Coulomb potentia
in our units given by

a5
Q2e2

mV2pe0r 0
3 . ~6!

The control parameterq̃ is the dimensionless strength of th
additionally applied excitation voltage. It is related to t
control parameterq by q̃5qṼ0 /V0 . The relative phase be
tween the trap voltage and the excitation voltage is deno
by w in Eq. ~3!. The generators of the trap voltage and t
excitation voltage are not phase locked. Thus in our curr
experimentsw is unknown, but does not affect the results
our experiments. Thus we will setw50 in the following
discussion.

For q̃50, neglecting the nonlinear terms in Eq.~3! and
assuming a perfect axial symmetry, the dimensionless s
lar frequencies in thex, y, andz directions are given by

v r[vx5vy'Aa1q2/2, vz'A2~q22a! ~7!

for smalla andq. We added a damping term to Eq.~3! with
a damping constantg. Within the framework of our deriva-
tions this damping term has no microscopic justification. B
damping is certainly present experimentally. Possible da
ing mechanisms include collisions with rest gas atoms,
ergy dissipation by polarization charges in the trap el
trodes, or irreversible deformations of the ion cloud cau
by the oscillation of the cloud in the anharmonic potential
the trap. The set of equations~3! is the basis for the theoret
ical analysis of the experimental results reported in this
per. Set~3! is used in two different ways.~i! directly as the
basis for our microscopic three-dimensional numerical sim
lations and~ii ! as the starting point for an analytical inves
gation of the cloud motion. We will see in Sec. V below th
the analytical results derived from Eq.~3! reproduce the re-
sults obtained from full-fledged numerical three-dimensio
simulations of Eq.~3! to an astonishing degree of accurac

IV. COLLECTIVE RESONANCE

In this section we present experimental and numerical
dence of the existence of a sharp collective resonance a
excitation frequencyv'2vz . We observe a similar phe
nomenon atv'2v r @24#. The shape of thev'2v r reso-
nance is qualitatively the same as the shape of thev'2vz
resonance. In this paper we restrict ourselves to the dis
sion of the 2vz resonance.

The central result of our experiments with an additiona
applied excitation frequency is shown in Fig. 2. Plotted is
number of detected ions as a function of the excitation
quency for five different excitation voltages. We see a bro
resonance atv'2vz . We call this resonance the ‘‘mothe
resonance.’’ Figure 2 shows that we also observe an a
tional narrow resonance which appears at the high-freque
wing of the mother resonance if the excitation amplitu
exceeds a certain threshold value. We call this resonance
‘‘daughter resonance.’’

The nature of the mother and daughter resonances is
illuminated by investigating the space-charge dependenc
,
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the two resonances. Figure 3 shows the frequency locat
Vc/2p ~the central frequencies! of the two resonances as
function of the number of detected ions. While the locati
of the mother resonance shifts with ion number, the locat
of the daughter resonance is constant and thus space-ch
independent. On the basis of this observation we interpret
mother resonance as due to resonant but incoherent rf h
ing of the ion cloud, and the daughter resonance as due
collective oscillation of the ion cloud as a whole, i.e., as
excitation of the center-of-mass coordinate of the ion clo
This interpretation is consistent with the one found in t
literature@11–14#.

We support the interpretation of the daughter resonanc
a collective oscillation of the center of mass of the ion clo
by a direct numerical simulation of the equations of moti
~3!. We use a fourth-order Runge-Kutta method to integr
the set of equations~3! for a random initial condition of the
ions in the cloud for ten ions. The random initial conditio
simulates the stochastic creation process of the ions in
experiment. We define the center of mass of the ion clou

FIG. 2. Number of detected ionsNd for mother and daughte
resonances as a function of excitation frequencyṼ/2p for five dif-
ferent excitation voltages. The initial number of ions for the fi
different curves are the same. We shifted these curves vertically
clarity of presentation.

FIG. 3. Central frequenciesVc/2p of mother and daughter reso
nances as a function of the number of detected ionsNd . Open
circles: mother resonance. Solid circles: daughter resonance.
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RW [S X
Y
Z
D 5

1

N (
i 51

N S xi

yi

zi

D , ~8!

and the relative coordinates

S j i

h i

z i

D [rW i2RW . ~9!

We also defineRmax(v) as the maximal excursion ofuRW u at a
fixed excitation frequencyv. The full line in Fig. 4~a! shows
Rmax obtained as a result of our ten-ion simulations. F
easier comparison with the experimental result shown in F
4~b!, Rmax is drawn in the negativey direction. We see tha
Rmax is different from zero only in a narrow frequency inte
val which corresponds to the collective resonance. Moreo

FIG. 4. The shape of the collective resonance.~a! Theoretical
results. The maximal excursion amplitudeRmax as a function of the
scaled excitation frequencyṼ/Vz

(0) , where Vz
(0)5Vvz/2 is the

‘‘unperturbed’’ secular frequency of the trap according to Eq.~7!.
The potential parameters and the damping constant are chose
cording to Eq.~21!. Full line: Rmax obtained from three-dimensiona
computer simulations of the equations of motion~3!. Dashed line:
analytical result~34! derived from the one-dimensional model ofZ
motion. ~b! Experimental results. Shown is the number of detec
ionsNd as a function of the excitation frequencyṼ/2p. The experi-
mental result shows bistability of the trapped ion cloud in the
cinity of the transition between mother resonance and collec
resonance.
r
g.

r,

Rmax is of appreciable magnitude, which explains the lar
ion loss in the vicinity of the collective resonance.

Using reasonable assumptions, our aim now is to de
the equations of motion forRW in the vicinity of v52vz . We
assume that forv'2vz only the z component ofRW is ex-
cited, i.e.,X5Y50. This assumption is confirmed by ou
numerical simulations of the full set of equations~3!. Thus,
the physics of the cloud motion atv'2vz is contained in
the z degree of freedom of the cloud and we concentrate
deriving an equation of motion forZ. Because of

(
i 51

N

(
j 51
j Þ i

N
rW i2rW j

urW i2rW j u3
50, ~10!

the Coulomb term in Eq.~3! drops out of the equation o
motion for Z, and we obtain

Z̈1gŻ5@a12q cos~2t!12q̃ cos~vt!#@C112C2Z

13C3^z
2&23C3^r

2&/214C4^z
3&26C4^r

2z&#,

~11!

where we used the notation

^znrm&5
1

N (
i 51

N

zi
nr i

m . ~12!

Defining

r r
2[^r2&5

1

N (
i 51

N

~j i
21h i

2!, r z
25

1

N (
i 51

N

z i
2 ~13!

and assuming that the ion cloud is symmetric enough s
that

(
i 51

N

z i
3'0, ~14!

we obtain

^z2&5Z21r z
2 , ^r2&5r r

2 ,
~15!

^z3&5Z313Zrz
2 .

For the computation of̂r2z&, we assume, additionally, th
independence of the relative motion of the ions in the clo
in r andz directions, i.e.,

^r2z&5^r2&^z&5Zrr
2 . ~16!

Inserting Eqs.~15! and ~16! into Eq. ~11!, we obtain

Z̈1gŻ5@a12q cos~2t!12q̃ cos~vt!# (
n50

3

f nZn,

~17!

where

f 05C113C3~r z
22r r

2/2!, f 152C2112C4~r z
22r r

2/2!,

~18!

f 253C3 , f 354C4 .

ac-

d

-
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In order to obtain some analytical insight into the solutio
of Eq. ~17! in the vicinity of v'2vz , we observe that for
the conditions of the experimentv'2vz!2. Thus, with re-
spect to the excitation frequencyv, the term proportional to
q in Eq. ~17! is rapidly oscillating and can be replaced by
time-independent pseudopotential@3,25#. We obtain

Z̈1gŻ1 (
m50

3

gmZm52q̃ cos~vt! (
n50

3

f nZn, ~19!

where

g05 f 0@q2f 1/22a#, g15q2@ f 1
212 f 0f 2#/22a f1 ,

~20!

g253q2@ f 0f 31 f 1f 2#/22a f2 , g35q2@ f 2
212 f 1f 3#2a f3 .

The structure of Eq.~19! is one of a driven, damped nonlin
ear oscillator. With Eq.~19!, we are able to reproduce qual
tatively the most prominent features of the experiments w
the help of the following ‘‘minimal model’’ defined by

C150, C251, C351, C450,
~21!

a50, g50.01, r z5r r/A2.

The parameters in Eqs.~21! are chosen according to the fo
lowing considerations. As mentioned in Sec. II, the end c
of the trap are electrically connected during the interact
stage of an excitation experiment. Thus no dipole excitat
is possible inz direction, and thusC150. We chooseC251,
since this is the correct strength for an ideal Paul trap. T
hexapole component is chosen relatively large (C351) in
order to emphasize nonlinear effects. For the phenomena
cussed in this paper the octopole term is not expected
produce qualitatively new effects and is set to zero. W
choice of Eqs.~21! of model parameters the model equatio
are now given by

Z̈1gŻ1vz
2@Z19Z2/219Z3/2#52q̃@2Z13Z2#cos~vt!,

~22!

where, according to Eq.~7!,

vz5&q. ~23!

Let us now consider only the linear terms in Eq.~22!, and,
for the time being, putg50. We obtain

Z̈1vz
2F12

4q̃

vz
2 cos~vt!GZ50. ~24!

We substitute

vt52t̂, ~25!

and obtain

Z̈1S 2vz

v D 2F12
4q̃

vz
2 cos~2t̂ !GZ50. ~26!

This is an ordinary Mathieu equation of the form

Z̈1@ â22q̂ cos~2t̂ !#Z50, ~27!
s

h

s
n
n

e

is-
to
h

where

â5~2vz /v!2, q̂58q̃/v2. ~28!

Since the Mathieu equation is known to exhibit parame
instabilities for smallq̂ at â5n2, n51,2, . . . , weexpect
parametric instabilities of Eq.~26! at vn52vz /n. Of impor-
tance for our present experiments is the parametric instab
for n51. We compute its widthDv by following Ref. @25#.
We define

v52vz1e, ~29!

wheree is small, and obtain

Z̈1
1

S 11
e

2vz
D 2 F122S 2q̃

vz
2D cos~2t̂ !GZ50, ~30!

whereâ'1, becausee is small. The stability diagram of Eq
~27! in the vicinity of â'1 is sketched in Fig. 5. According
to Fig. 5 and up to linear order inq̂, the solutions of Eq.~27!
are unstable for 12q̂,â,11q̂. Expanding Eq.~30! to
leading order ine, we obtain the instability of Eq.~30! for
ueu,2q̃/vz . Thus, for negligibleg, the frequency width of
the unstable region is

Dv54q̃/vz . ~31!

Including the damping, the width~31! is modified and given
by @25#

Dv5A~4q̃/vz!
22~2g!2. ~32!

Thus we have isolated the physical origin of the collect
resonance. It is revealed as a parametric instability of
driven nonlinear oscillator associated with the center-
mass motion of the stored ion cloud. The model of the driv
nonlinear oscillator also underlies the explanation of all ot
properties of the collective resonance, to be discussed in
V.

V. PROPERTIES OF THE COLLECTIVE RESONANCE

Having established the existence of collective resona
in Sec. IV, we turn now to a more in-depth investigation
the properties of the collective resonance.

FIG. 5. Sketch of the stability diagram of the Mathieu equati
with control parametersâ and q̂ in the vicinity of â'1 andq̂'0.
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A. Strength of the resonance

Since the resonance corresponds to the instability reg
of a Mathieu equation, the trapped ions in this region
exponentially unstable, explaining the immediate onset
depletion of the trap in the instability region. Total depleti
is stopped only because of the nonlinear terms in the
potential.

B. Smallness of the drive

With the help of Eq.~31! we are now in a position to
understand why a few mV of excitation voltage is enough
produce an appreciable width of the collective resonan
We write Eq.~31! in the form

Ṽ05V0q̃/q'S Dv

vz
DqV0/2. ~33!

ExperimentallyDv/vz is of the order of 2.531023. Thus, at
q'0.15, we haveṼ0;231024V0 . Thus, if V0 is of the
order of several hundred V,Ṽ0 is of the order of several ten
of mV, which is consistent with the experimentally observ
range.

C. Existence of a critical voltage

In all our experiments we observe that the collective re
nance appears only forṼ0.Ṽ0

(cr) . We call Ṽ0
(cr) the critical

voltage. In our experiments the critical voltage is of the ord
of Ṽ0

(cr)'15 mV. As seen from Eq.~32!, the existence of a
critical voltage requires a finite damping constantg. The
critical excitation amplitude is then given byq̃(cr)5gvz/2.

D. Shape of the resonance

Another feature of the collective resonance, which is
plained by the simple model~22! is the shape of the collec
tive resonance. Neglecting the nonlinear terms in the dr
term in Eq.~22!, the oscillation amplitudeRmax of Eq. ~22! in
the rangeDv of Eq. ~30! is given by@25#

Rmax5H 1

k F e

2
2Aq̃2/vz

22g2/4G J 1/2

, ~34!

where the nonlinearity parameterk of our model is given by
@25#

k52
27

4
vz . ~35!

The amplitudeRmax is zero outside ofDv. Amplitude~34! is
shown as the dashed line in Fig. 4~a!. It is instructive to note
that Rmax obtained from the ten-ion simulations is shifted
frequency with respect toRmax computed according to Eq
~34!. This is easily explained, since we calibrated the f
quency axis in units of the ‘‘unperturbed’’ approximate fr
quencies~7!. Thus the shift is due to the presence of nonl
ear terms in the simulation calculations. Additional nonline
terms not contained ink ~for instance, due to the Coulom
interaction!, are responsible for the mismatch of the amp
tudes between the simulations and Eq.~34!.
n
e
f

p

o
e.

-

r

-

-

-

-
r

-

The shapes of the collective resonances shown in F
4~a! and in 4~b! are qualitatively the same. Both show th
kink at the high frequency end of the resonance and the s
cliff at the low frequency end. Details are different sin
Rmax is not simply related to the ion loss in the trap. In ord
to compute the ion loss fromRmax, the Gaussian shape of th
ion cloud @26# has to be taken into account.

E. Width of the resonance

In order to prove the validity of the approximations th
led us to the pseudopotential form~22! of the minimal
model, we computed the widthDv by numerically solving
the equations of motion~17!, and in addition by solving the
three-dimensional set of coupled equations~3! for ten H2

1

ions. The result is shown in Fig. 6. The full line is the an
lytical result ~32!. The squares in Fig. 6 are the resonan
widths obtained from the numerical solution of Eq.~17! and
the triangles are the resonance widths computed from th
dimensional simulations of Eq.~3!. There is no significant
difference between all three results. This proves that
physical mechanism was correctly extracted from Eq.~3! and
distilled into the simple driven oscillator~22!. As a result of
the theoretical analysis of Eq.~3!, we are confident that the
interpretation of the ‘‘daughter resonance’’ as a collect
parametric resonance of the center of mass of the ion clou
correct.

The theoretical results can be compared with experim
tal data. Figure 7 shows the frequency widthDV/2p of the
collective resonance as a function of the excitation volta
Figure 7 confirms the existence of a critical voltage, since
width of the collective resonance is zero fo
Ṽ0,Ṽ0

(cr)'10 mV. Moreover, the experimental width show
the typical nonanalytic behavior of a root singularity close
the critical voltage. The details of the experimental resu
however, are not correctly reproduced by the simple anal
cal model. For instance, the experimental width show
steep rise at high excitation voltage. The origin of this ph
nomenon is currently not understood.

FIG. 6. Theoretical frequency widthDv of the collective reso-
nance. Full line: Analytical result~32!. Squares: Frequency width
extracted from numerical solutions of Eq.~17!. Triangles: Fre-
quency widths extracted from three-dimensional numerical sim
tions of Eq.~3!.
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F. Bistability

One possible reason for the deviations of the analyt
prediction forDv and the experimental results is the fact th
the collective resonance exhibits bistability at its left-ha
wing, i.e., at the sharp cliff where the collective resonan
breaks and rejoins the mother resonance, as shown in
4~b!. The bistability in the jump region is clearly visible. Th
existence of the bistability makes the determination of
width of the collective resonance somewhat ambiguous. T
may account, at least partially, for the deviations betwe
theory and experiment.

On the other hand, the existence of bistability is also
feature of the driven oscillator~22! @25#. Thus, as far as the
mere existence of bistability of the collective resonance
concerned, theory and experiment are in agreement.

G. Critical voltage vs ion number

Another puzzling experimental result is the dependenc
the critical voltage on the number of detected ions. We
tain

Ṽ0
~cr!;1/N1/3. ~36!

This result is clearly borne out by the experimental data p
sented in the form of a log-log plot in Fig. 8. On the basis
our current understanding, the existence of a critical volt
requires the presence of a damping mechanism. Since
explicit damping methods are used in our experiments,
damping of the ion cloud occurs indirectly according to
mechanism which we have not yet properly identified, a
cannot, at present, control. But whatever the damp
mechanism, it must explain the observed 1/N1/3 behavior of
the critical voltage. In Sec. VI, we offer a possible mech
nism which indeed reproduces the 1/N1/3 law. We call this
damping mechanism a ‘‘candidate,’’ since presently we
no possibility, neither experimental nor theoretical, of eith
confirming or rejecting this mechanism.

FIG. 7. Experimental frequency widthDV/2p of the collective
resonance as a function of the excitation voltageṼ0 . The working
points are U0525.0 V, V0

pp5731 V, and V/2p53 MHz
~az50.0136 andqz50.4971!.
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VI. A CANDIDATE DAMPING MECHANISM

According to Eq.~32!, the critical voltage is directly pro-
portional to the damping constant, and is given by

Ṽ0
~cr!5

V0vz

2q
g. ~37!

One possible damping mechanism is the collision of the
cloud with the molecules of the rest gas. Since the clo
moves in thez direction only, we represent it by a cros
sectional areaA orthogonal to thez axis of the trap. The tota
mass of the cloud is denoted byM , its velocity byV. We
now estimate the damping constant of the cloud on the b
of a simple gas-kinetic model. The density of the gas m
ecules of the rest gas is denoted byn, their mass bym and
their rms velocity byv. For simplicity of the argument we
assume that exactly 1/6 of the molecules fly in the positivz
direction, and 1/6 fly in the negativez direction. The areaA
is struck by the gas molecules flying in positivez direction at
a rate (v2V)An/6. The momentum transfer per impact
bm(v2V), whereb varies between 1 and 2 according
whether the molecule is absorbed byA or reflected offA. In
the same way we find (v1V)An/6 and2bm(v1V) for the
rate of impact onA and the momentum transfer for gas mo
ecules flying in negativez direction. Altogether, the force
exerted by the gas molecules on the moving cloud beco

F52
2b

3
nAmvV. ~38!

Inserting Eq.~38! into the equation of motion for the cente
of mass of the ion cloud, we obtain

dV

dt
52GV, ~39!

where

FIG. 8. Critical voltageṼ0
(cr) as a function of the number o

detected ionsNd . The symbols are the experimental data poin
The straight line is a least-squares fit assum
log10(Ṽ0

(cr))5A1B log10(Nd). We obtain A52.39960.059 and
B520.33960.017. The fit result indicates a relationship betwe
the critical voltageṼ 0

(cr) and the numberN of ions in the cloud
according toṼ0

(cr);N21/3.
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G5
2bA

3M
nmv ~40!

may be interpreted as the damping constant of the ion clo
SinceA;N2/3 andM;N, we obtain

Ṽ0
~cr!;G;1/N1/3, ~41!

as measured in the experiment. The dimensionless dam
constantg used in Sec. III–V is related toG by

g5
2G

V
5

4bA

3MV
nmv. ~42!

The expression forg can be simplified. We use the usu
gas-kinetic relationsp5mnv2/3 and v253kT/m to relate
the density of the rest gas to the pressure, and the veloci
the temperature. Introducing an effective cross section s
that

A5sN2/3, ~43!

we obtain

g5
2bsp

VN1/3vmp
, ~44!

where mp is the proton mass. Forb52, V05100 V, and
p51029 mbar, we observe experimentally a critical volta
of Ṽ0

(cr);20 mV. This results in

g;1024. ~45!

Assuming v'1000 m/s, N;106, and V52p333106/s,
we obtain the following estimate fors :

s;~1 mm!2. ~46!

This is not an unreasonable value. Thus the damping of
collective motion by the ambient rest gas is a possible da
ing mechanism.

VII. DISCUSSION

While there is little doubt about the nature and the ex
tence of the collective resonance, its features leave cons
able room for discussion. Currently the most puzzling e
perimental result is the existence of the critical voltage, a
the detailed behavior of the width of the collective resona
as a function of the excitation voltage. As far as the criti
voltage is concerned, we currently have no other explana
but to attribute it to damping of the motion of the ion clou
A candidate mechanism, cooling by the ambient rest g
was presented in Sec. VI. Although the main prediction
this mechanism,Ṽ0

(cr);N21/3 agrees with experiment, we ar
currently not able to test this mechanism in more detai
order to verify or discard it as the reason for the existence
the critical voltageṼ0

(cr). According to Eq.~44!, g;p and,
thus,Ṽ0

(cr);p. Thus one possible test of this mechanism is
d.

ing
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e
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s,
f

n
f

o

measureṼ0
(cr) as a function of the pressure of the rest g

This is not feasible with the present experimental set
since we observe a rapid loss of H2

1 ions from the trap at
increasing background pressures, either by the reac
H2

11H2→H3
11H or by elastic collisions of H2

1 with
heavy background gas molecules.

Several other sources of damping exist. For instan
Ohmic dissipation of energy by induced charges in the e
trodes of the trap. Another mechanism is ‘‘internal dissip
tion’’ of energy by deformation of the cloud due to the no
linearities of the trap potential. This mechanism should
particularly effective at the turning points of the cloud. Th
effectiveness of this mechanism relies on the possibility
the cloud to absorb large amounts of energy. We do not h
reliable expressions for the heat capacity of the cloud and
therefore currently not able to estimate the effectiveness
this mechanism.

The deviations of the width of the collective resonan
from the expected square-root behavior close to the crit
voltage is another unsolved puzzle. Fitting the experimen
width function shown in Fig. 7, we found that the expressi
Dv;(Ṽ02Ṽ0

(cr))1/3 fits the width function much better tha
the expected square root. We do not know how to explain
deviation in the exponent, and, more importantly, wheth
some physics is contained in it which we have overlooked
far.

VIII. SUMMARY AND CONCLUSIONS

The main thrust of this paper is a detailed analysis a
explanation of the excitation mechanism of a collective re
nance of uncooled clouds of H2

1 ions stored in a Paul trap
and driven at about twice the secular frequencyvz by an
additionally applied excitation voltage. We presented am
experimental evidence of the existence of the collective re
nance as well as detailed three-dimensional numerical si
lations which are able to reproduce qualitatively the essen
characteristics of the collective resonance such as loca
shape, and width. We also reported some interesting exp
mental results, such as the bistability of the collective re
nance in the vicinity of its low-frequency wing, where th
sharp transition to the mother resonance occurs. A sim
analytical model extracted from the three-dimensional eq
tions of motion of the stored H2

1 ions is able to reproduce
the results of the three-dimensional computations. Since
simple model retains only thez component of the center-of
mass motion of the ion cloud, the collective resonance
explained as a parametric excitation of thez component of
the center-of-mass motion of the ion cloud. This result
backed by experiments which establish that the collec
resonance is insensitive to space-charge effects.

Although we are able to explain the most prominent fe
tures of the collective resonance, our experiments also le
numerous open questions for future research. The most
portant among them is the identification of the releva
damping mechanism in our experiments, since this mec
nism determines decisively the value and functional beha
of the critical voltage as a function of the number of ions
the cloud. Since the damping constant appears in the exp
sion for the width of the collective resonance, the damp
mechanism, indirectly, also determines the width of the c
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lective resonance as a function of the excitation voltage.
most promising direction for future research is an investi
tion of the nonlinear dynamics of the cloud motion in t
vicinity of the 2v r resonance, as well as an investigation
the bistability, and possibly multistability, of the cloud in th
vicinity of both the 2v r and 2vz resonances.
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