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Linear response of a nonrelativistic hydrogenlike atom to a single-mode radiation field.
II. Electric dipole approximation: General formalism

Tudor A. Marian
Department of Physics, University of Bucharest, P.O. Box MG-11, R-76900 Bucharest-Ma˘gurele, Romania

~Received 2 June 1997!

The interaction of a low-intensity laser field with a nonrelativistic one-electron atom is considered to the first
order of perturbation theory and in the electric dipole approximation. The radiation field is turned on adiabati-
cally modifying the initial unperturbed atomic state, which is either an angular-momentum eigenstateunlm& or
a Stark stateunnem&. The first-order correction to the wave function is expressed both in the length and
velocity gauges in terms of a vector function called the linear-response vector and depending on the field-free
energy eigenstate. We derive in a unifying manner the linear-response vectors in the position representation, as
closed-form contour integrals, starting from a unique generating function built up with the Coulomb Green
function. The linear-response vectors are then evaluated in momentum space via a Fourier transformation: they
are obtained as integral representations and also in explicit form, as generalized hypergeometric functions.
With reference to the static limit, we complement earlier results and find the reduced linear-response vectors in
momentum space, as Fourier transforms of their coordinate-representation counterparts. The low-frequency
behavior of the length-gauge first-order correction to the ground-state wave function is established in coordi-
nate as well as in momentum space. We finally point out the high-frequency limit of the linear response in the
velocity gauge.@S1050-2947~97!03511-7#

PACS number~s!: 32.80.2t, 42.50.Ct, 03.65.2w
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I. INTRODUCTION

In this work we resume the problem of the linear respo
of a nonrelativistic hydrogenic atom to a classical sing
mode radiation field in theelectric dipole approximation
~EDA!. An account of the physical system has been given
our preceding paper@1#, which will be referred to in the
following as I. Although the basics will not be repeated he
we mention that an important issue which determines
extent of the topic is the choice of the initial atomic state

Beyond all question, our survey of previous work beg
with the classic paper written by Podolsky in the early ye
of quantum mechanics@2#: on the assumption that the ato
is initially in its ground state, he calculated the Sturmia
function expansion of the first-order perturbed wave funct
in the velocity gauge. Interest in this problem has been
vived by the outstanding result of Luban, Nudler, and Freu
@3#, who obtained the same correction in closed form. F
rescu and Marian@4# made use thereafter of the Coulom
Green function~CGF! to get compact solutions also in th
case of the first excitedunlm& states~with n52 andn53).
Besides, we have introduced in this preliminary work t
important concept of linear-response vector~LRV! associ-
ated to a given unperturbed energy eigenfunction. We h
subsequently reported a closed-form solution in the velo
gauge for an arbitraryunlm& state ~spherical bound state!,
evaluating also its static limit@5#. Florescu@6# has employed
this general result to find the LRV’s corresponding in t
velocity gauge to the Coulomb scattering waves by mean
their partial-wave series. Sturmian-function expansions
the linear-response corrections to both negative-
positive-energy spherical eigenstates have then been rep
in the length gauge by Maquet, Martin, and Ve´niard @7#. We
have presented in compact form the length-gauge LRV fo
561050-2947/97/56~5!/3988~24!/$10.00
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unlm& state, as well as the Coulomb Sturmian-function e
pansions of the LRV’s in both gauges mentioned above@8#.
In addition, starting from the LRV’s for a spherical sta
unlm&, we have succeeded in deriving those for a parab
stateunnem& by an operator method that makes noexplicit
use of the relation between such states. The same idea
been applied in the static limit. Unlike our method in Re
@8#, it is precisely the relation between spherical and pa
bolic stationary states that has been exploited by Flore
and Pa˘traşcu @9# in their independent derivation of th
velocity-gauge first-order correction to a Stark stateunnem&.
Along Podolsky’s line of argument, by using appropria
boundary conditions, Caˆmpeanu and Florescu@10# have
solved the inhomogeneous differential equations pertain
to the velocity-gauge LRV associated with an arbitra
unlm& state. Furthermore, the same method has been
ployed by Florescu, Halasz, and Marinescu@11# to evaluate
in the velocity gauge the quadratic atomic response to a
form harmonic electric field, from a stationary spheric
state, with emphasis on the ground-state case.

Meanwhile, most of the results enumerated above h
been applied to physical problems especially by Florescu
co-workers. The importance of the LRV’s as intermedia
for calculating in the EDA the two-photon transition amp
tudes of an electron in the Coulomb field of a fixed nucle
justifies the following brief overview. The invariant ampl
tudes for 1s→ns and 1s→nd two-photon absorption re
ported in Ref.@4# have been evaluated and analyzed num
cally by Florescu, Pa˘traşcu, and Stoican@12#. In the
meantime, employing the velocity-gauge LRV’s for the i
coming Coulomb scattering wave derived in Ref.@6#, Flo-
rescu and Djamo@13# have calculated the matrix element fo
two-photon bremsstrahlung in the Coulomb field. It is wor
stressing that by use of the LRV method, we have est
3988 © 1997 The American Physical Society
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56 3989LINEAR RESPONSE OF A . . . . II. . . .
lished general formulas for the amplitudes of bound-bou
two-photon transitions between spherical states, as we
between parabolic ones@14#. Special attention has been pa
to photon scattering from the atomic ground state. We h
also obtained and discussed the matrix element of a bo
free two-photon transition from an arbitraryunlm& state@15#.
Quite recently, Yakhontov and Jungmann@16# have used
linear-response functions to evaluate dynamic polarizabili
in hydrogenicns states.

We conclude this overview by mentioning two applic
tions of a different kind. The first one refers to the use
Cionga and Florescu@17# of the velocity-gauge LRV for a
unlm& state in calculating the cross section of the one-pho
excitation of atomic hydrogen by electron impact with fix
momentum transfer. In the second one, Cionga, Flore
Maquet, and Taı¨eb @18# evaluate the cross section of th
laser-assisted photoeffect at moderate intensities by emp
ing the velocity-gauge LRV’s associated to the ground s
and to the Coulomb scattering waves.

The present paper is intended as a comprehensive, bu
no means exhaustive treatment of the LRV’s, based on
consistent use of the CGF, via the already employed ge
ating functionF of the linear response@19#. The notations of
I and, to a large extent, those introduced in Refs.@5,8# are
preserved. In Sec. II we revisit the LRV’s in terms of whic
the first-order perturbed wave functions are expressed bo
the length and velocity gauges. In Secs. III and IV, we d
scribe our parallel three-step derivations of the LRV’s as
ciated in coordinate space to spherical and parabolic sta
ary states, respectively, whose common starting point is
generating functionF. The LRV’s are then evaluated also
momentum space as Fourier transforms of their integral
resentations in coordinate space. The momentum-sp
LRV’s are first written as closed-form contour integrals a
then explicitly in terms of generalized hypergeometric fun
tions with several parameters and variables. Sections V
VI are devoted to the evaluation of the momentum-sp
reduced LRV’s, by Fourier transformation, for both spheri
and parabolic energy eigenstates. In Sec. VII the general
mulas we have obtained are specialized to the atomic gro
state. Moreover, we point out the low-frequency behavior
the linear response from the ground state in the length ga
both in coordinate and momentum representations. The
locity gauge is chosen in Sec. VIII to discuss the hig
frequency limit of the linear response in coordinate space
any energy eigenstate. We afterwards summarize the re
and conclude by emphasizing briefly their relevance. App
dixes A and B collect some formulas needed for deriving
expressing the linear response in coordinate and momen
representation, respectively.

II. LINEAR-RESPONSE WAVE FUNCTIONS REVISITED

In the EDA the laser field acts on the atom as a unifo
harmonic electric field that is in general elliptically pola
ized:

E~ t !5
1

2
E0$exp~2 ivt !ê1exp~ ivt !ê* % ~E0.0!.

~2.1!
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The action of the magnetic field is systematically ignor
@20#:

B50. ~2.2!

As shown by Eq.~2.1!, E0 is the amplitude of the laser field
if and only if its polarization is linear:ê* 5 ê. However, in all
cases,12E0

2 is the time average of the squared electric fie
strength.

There are two usual choices of the electromagnetic po
tials from which the fields~2.1! and ~2.2! derive. They are
well known as@21# ~a! the length~Göppert-Mayer! gauge,

F8~r,t !52
1

2
E0@exp~2 ivt !~ ê•r!1exp~ ivt !~ ê* •r!#,

A850, ~2.3a!

and ~b! the velocity gauge,

F50, A~ t !5
c

2iv
E0@exp~2 ivt !ê2exp~ ivt !ê* #.

~2.3b!

The gauge transformation from Eq.~2.3b! to Eq. ~2.3a! has
the generating function

x0~r,t !52
c

2iv
E0@exp~2 ivt !~ ê•r!2exp~ ivt !~ ê* •r!#.

~2.4!

The field-atom interaction Hamiltonian in the length gauge

HL
~1!5eE~ t !•r, ~2.5a!

while in the velocity gauge, after removing theA2 term, it
reads

HV
~1!5

e

mec
A~ t !•P. ~2.5b!

Recall that in the EDA the radiation gauge goes into
velocity gauge, while the Poincare´ and any multipolar gauge
reduces to the length gauge@22#.

The electric field~2.1! is supposed to increase adiaba
cally in the time interval (2`,0). In the remote pas
(t→2`), the state of the electron is a stationary one:

CN
~0!~r,t !5expS 2

i

\
Ent DuN~r!. ~2.6!

The energy eigenfunctionuN(r), associated to thenth Bohr
level En , describes in coordinate space either an angu
momentum eigenstateuN&[unlm& or a Stark state
uN&[unnem&. In the latter case,ne denotes the electric quan
tum number, defined as the difference

ne[nj2nh , ~2.7!

wherenj andnh are the parabolic quantum numbers fulfi
ing the condition

nj1nh1umu115n. ~2.8!
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3990 56TUDOR A. MARIAN
According to Dirac’s perturbation theory, the first-order co
rections to the wave function~2.6! in the length and velocity
gauge read fort>0

C~L ! N
~1! ~v;r,t !52

1

2
eE0expS 2

i

\
Ent D

3@exp~2 ivt !ê•vN~V1 ;r!

1exp~ ivt !ê* •vN~V2 ;r!# ~2.9a!

and, respectively,

C~V! N
~1! ~v;r,t !52

e

2imev
E0expS 2

i

\
Ent D

3@exp~2 ivt !ê•wN~V1 ;r!

2exp~ ivt !ê* •wN~V2 ;r!#. ~2.9b!

The vector functions occurring in Eqs.~2.9!, which we call
linear-response vectors, are defined by means of the Schr¨-
dinger CGF in position representation@23# as

vN~V;r![2E d3x8G~V;r,r8!r 8uN~r8! ~2.10a!

and

wN~V;r![2E d3x8G~V;r,r8!P8uN~r8!. ~2.10b!

The parametersV1 and V2 are associated to thenth Bohr
level:

V15En1\v1 i0, V25En2\v. ~2.11!

We write out the gauge transformation connecting the c
rections~2.9a! and~2.9b! which is induced by the generatin
function ~2.4!:

C~L ! N
~1! ~v;r,t !5C~V! N

~1! ~v;r,t !2
eE0

2\v
@exp~2 ivt !~ ê•r!

2exp~ ivt !~ ê* •r!#CN
~0!~r,t !. ~2.12!

Owing to Eq. ~A1! of I, the LRV’s ~2.10! satisfy the
following inhomogeneous differential equations:

~H ~0!2V!vN~V;r!5ruN~r! ~2.13a!

and

~H ~0!2V!wN~V;r!5PuN~r!, ~2.13b!

whereH (0) is the unperturbed Coulomb Hamiltonian. Obv
ously, the LRV’s in momentum representation are the F
rier transforms of those in the coordinate space:
-

r-

-

ṽN~V;p![~2p\!23/2E d3xexpS 2
i

\
p•rDvN~V;r!

~2.14a!

and

w̃N~V;p![~2p\!23/2E d3xexpS 2
i

\
p•rDwN~V;r!.

~2.14b!

Further, we introduce the kets whose representatives in
ordinate space are the LRV’s~2.10! and in momentum spac
the LRV’s ~2.14!, namely,

uvN~V!&52G~V!RuN& ~2.15a!

and

uwN~V!&52G~V!PuN&. ~2.15b!

G(V) is thereupon the resolvent of the Coulomb Ham
tonian,

G~V!5~VI 2H ~0!!21, ~2.16!

while R and P denote the position vector and momentu
operators of the electron. The resolvent~2.16!, with I the unit
operator, is defined for any complex valueV other than an
energy eigenvalue. It has the spectral resolution

G~V!5(
N8

uN8&^N8u

V2En8

, ~2.17!

in terms of a complete orthonormal set of energy eigenv
tors uN8& @24#. We recall that the LRV’s~2.15! are connected
by the identity@25#

\

ime
uwN~V!&5RuN&1~V2En!uvN~V!&, ~2.18!

which results in the gauge transformation~2.12!.
The vectoruvN(V)& has a singular part when the param

eterV approaches the Bohr levelEn :

P~n!uvN~V!&52
1

V2En
P~n!RuN&. ~2.19!

In Eq. ~2.19!, P(n) denotes the orthogonal projection opera
onto thenth energy eigensubspaceUn ,

P~n!5 (
N8;~n85n!

uN8&^N8u. ~2.20!

Note that the only stationary state for which the secular te
~2.19! vanishes is the atomic ground stateu100&. For any
other stateuN& the LRV ~2.15a! includes a distinct regula
part,

uvN8 ~V!&[~ I 2P~n!!uvN~V!&, ~2.21!

belonging to the orthogonal complementUn
' of the eigensub-

spaceUn . We call its limit for V5En a reducedLRV:
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uvN8 ~En!&5 lim
V→En

~ I 2P~n!!uvN~V!&. ~2.22!

From Eq.~2.18! written in the form

\

ime
uwN~V!&5~ I 2P~n!!RuN&1~V2En!uvN8 ~V!&,

~2.23!

we get an alternative formula of a reduced LRV:

uvN8 ~En!&5
\

ime

]

]V
uwN~V!&uV5En

. ~2.24!

To write thenondivergentpart C (L) N
(1) 8 (v;r,t) of the length-

gauge correctionC (L) N
(1) (v;r,t), one should only replace in

Eq. ~2.9a! the LRV vN(V;r) by its regular termvN8 (V;r)
@26#. Just notice that the reduced LRV’s in coordinate sp
can be expressed in terms of the corresponding reduced
@27# as

vN8 ~En ;r!52E d3x8G~n!~En ;r,r8!r8uN~r8!. ~2.25!

The reduced LRV’s~2.25! have been evaluated for spheric
states in Ref.@5# and for parabolic ones in Ref.@8#. We
complement our previous results by deriving here their co
terparts in momentum space:

ṽN8 ~En ;p![~2p\!23/2E d3xexpS 2
i

\
p•rDvN8 ~En ;r!.

~2.26!

III. LINEAR-RESPONSE VECTORS FOR SPHERICAL
STATIONARY STATES

A. Position representation

We present our three-step method of deriving the LRV
vnlm(V;r) andwnlm(V;r) associated to an arbitrary angula
momentum eigenstateunlm&. The only prerequisite analytic
tool is the generating function of the linear respon
F(V,q,l;r), defined by Eqs.~A9! and ~A10! of I.

The first step consists of evaluating the integral

Flm~V,l;r ,u,w![2E d3x8G~V;r,r8!U~0,l;r8!

3~r 8! lYlm~u8,w8!, ~3.1!

built up with the homogeneous harmonic polynomial

r lYlm~u,w!5~4p!21/2Clm, j 1 . . . j l
xj 1

•••xj l

~ l 50,1,2,3, . . . ; m52 l ,2 l 11, . . . ,l !.

~3.2!

The coefficientsClm, j 1 . . . j l
in Eq. ~3.2! are totally symmet-

ric with respect to the Cartesian indices and have vanish
traces. From Eqs.~A10! of I and ~3.2! it follows that
e
GF

-

s

,

g

U~0,l;r!r lYlm~u,w!

5S \

i D
l

~4p!21/2Clm, j 1 . . . j l

] lU~q,l;r!

]qj 1
•••]qj l

U
q50

.

~3.3!

Taking note of the definitions~A9! of I and ~3.1!, we get the
parallel identity

Flm~V,l;r ,u,w!

5S \

i D
l

~4p!21/2Clm, j 1 . . . j l

] lF~V,q,l;r!

]qj 1
•••]qj l

U
q50

.

~3.4!

Combined with Eqs.~A14!–~A16! of I, Eq. ~3.4! yields the
integral representation

Flm~V,l;r ,u,w!5
t

Ze2
r l Ylm~u,w!

ieipt

2sin~pt!

3E
1

~01 !

drr212t @ f ~X,0,l;r!# l 11

3expF2g~X,0,l;r!
1

t

r

aG . ~3.5!

The second step aims to employ Eq.~3.5! for calculating
the function

Gnlm
~s! ~V;r ,u,w!

[2E d3x8G~V;r,r8!
1

r 8
exp~2knr 8!~2knr 8! l

31F1~ l 112n1s;2l 12;2knr 8!Ylm~u8,w8!

~s integer, n2 l 2s21>0!, ~3.6!

with

kn[
1

na
. ~3.7!

In Eq. ~3.7! a is the scaled Bohr radius, Eq.~2.10! of I. In
fact, the Kummer function1F1 in Eq. ~3.6! is proportional to
a Laguerre polynomial. By using the integral representat
~A5! of the Kummer hypergeometric function and the de
nition ~3.1!, we get the expression

Gnlm
~s! ~V;r ,u,w!5~2kn! l S 2

1

2p i D ~2l 11!! ~n2 l 2s!!

~n1 l 2s!!

3E
1

01

du~2u! l 2n1s~12u! l 1n2s

3Flm„V,~122u!\kn ;r ,u,w…. ~3.8!

Taking into account Eq.~3.5!, we notice that Eq.~3.8! is a
double contour integral that can be reduced to a single
by performing the integral~A6!:
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Gnlm
~s! ~V;r ,u,w!5

4n2t

Ze2
Ylm~u,w!

ieipa

2sin~pa!

3E
1

~01 !

drr2texpS 2
Nt,n

Nn,t

1

t

r

aD
3Nn,2t

n212sNn,t
2n211s~2kn,tr ! l

31F1~ l 112n1s;2l 12;2kn,tr !, ~3.9!
ns

r

po
-

with

kn,t[
4n2r

Nn,2tNn,t
kn . ~3.10!

The contour integral in Eq.~3.9! can be written in terms of
the generalized hypergeometric function1FH with five pa-
rameters and four variables@28#:
Gnlm
~s! ~V;r ,u,w!5

t

Ze2S n2t

2n D n2 l 212sS n1t

2n D 2n1s2t

expS 2
1

t

r

aD ~2knr ! l Ylm~u,w!
1

l 112t1

3FHS l 112t;2n111s2t,l 112n1s,2l 12;l 122t;
n2t

2n
,2

~n1t!2

2n~n2t!
,
n2t

t
knr ,

4n

n2t
knr D

~n2 l 212s>0!. ~3.11!
i-
e
n-
e,
ing
sis
q.
According to Eq.~A8!, the function 1FH occurring in Eq.
~3.11! reduces to a finite double sum of Humbert functio
F1 @29#.

As a third step, the finite expansions of the vecto
runlm(r ,u,w) and Punlm(r ,u,w) associated to anyunlm&
eigenstate@30# enable us to express the spherical com
nents ~A3! of the LRV’s in both gauges in terms of func
tions ~3.6!:

vnlm;
m~V;r ,u,w!

5S 2

kn
D 1/2 F ~n1 l !!

~n2 l 21!!2nG1/2

(
q51,21

~2q!

3S ul l 1q,l u
2l 11 D 1/2^ l 1q m2m, 1mu l 1q1, lm&

@2~ l 1q!11#!

3 (
s522

2

cn,l
~q,s!Gn,l 1q,m2m

~s! ~V;r ,u,w! ~m521,0,1!

~3.12a!

and

wnlm;
m~V;r ,u,w!

5
i

\
meu2EnuS 2

kn
D 1/2 F ~n1 l !!

~n2 l 21!!2nG1/2

(
q51,21

~2q!

3S ul l 1q,l u
2l 11 D 1/2^ l 1q m2m, 1mu l 1q1, lm&

@2~ l 1q!11#!

3 (
s521,1

dn,l
~q,s!Gn,l 1q,m2m

~s! ~V;r ,u,w! ~m521,0,1!.

~3.12b!

The symboll l 1q,l takes on the values

l l 1q,l5H 2~ l 11!, q51

l , q521
~3.13!
s

-

while the coefficientscn,l
(q,s) anddn,l

(q,s) are listed in Ref.@8#, in
Tables I and VI, respectively.

In order to simplify the presentation of complicated sim
lar formulas written in the length and velocity gauges, w
adopt in the remainder of the paper the following conve
tion: after writing explicitly an equation in the length gaug
we specify only the relative differences of the correspond
expression in the velocity gauge and replace by an ellip
the identical factors and terms. With this convention, E
~3.12b! is abbreviated to

wnlm;
m~V;r ,u,w!5

i

\
meu2Enu••• (

s521,1
dn,l

~q,s!
•••.

By insertion of Eq.~3.9! into Eqs. ~3.12!, we recover the
decomposition formula of the LRV’svnlm andwnlm in terms
of two vector spherical harmonics~A4!:

vnlm~V;r!5 (
q51,21

~2q!

3S ul l 1q,l u
2l 11 D 1/2

An l l 1q~V;r !Vl 1q l m~ r̂!

~3.14a!

and

wnlm~V;r!5
i

\
me (

q51,21
~2q!

3S ul l 1q,l u
2l 11 D 1/2

Bn l l 1q~V;r !Vl 1q l m~ r̂!.

~3.14b!

Notice that, by virtue of the identity

V100~ r̂!52~4p!21/2r̂, ~3.15!

in the special casel 50 Eqs.~3.14! are simply
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vn00~V;r!5~4p!21/2An01~V;r ! r̂ ~3.16a!

and

wn00~V;r!5
i

\
me~4p!21/2Bn01~V;r ! r̂. ~3.16b!

The scalar radial functions in Eqs.~3.14! and ~3.16! are
found as closed-form contour integrals:

Anll 1q~V;r !

5
1

2uEnu ~2kn!1/2
4nt

@2~ l 1q!11#! F ~n1 l !!

~n2 l 21!!2nG1/2

3 (
s522

2

cn,l
~q,s!

ieipt

2sin~pt!
E

1

~01 !

drr2t

3expS 2
Nt,n

Nn,t

1

t

r

aDNn,2t
n212sNn,t

2n211s~2kn,tr ! l 1q

31F1„l 1q112n1s;2~ l 1q!12;2kn,tr … ~3.17a!

and

Bnll 1q~V;r !52uEnu••• (
s521,1

dn,l
~q,s!

•••. ~3.17b!

Obviously, in Eqs.~3.17!, q51 for l 50 andq51,21 for
l .0. On the other hand, substituting Eq.~3.11! into Eqs.
~3.12!, we find the explicit formulas of the scalar radial fa
tors Anll 1q(V;r ) and Bnll 1q(V;r ) which have been re
ported before@31#. These include several functions1FH ,
each of them expressible as a finite double sum of Hum
functionsF1. Owing to the well-known identity

r̂Ylm~ r̂!5 (
q51,21

~2q!S ul l 1q,l u
2l 11 D 1/2

Vl 1qlm~ r̂!, ~3.18!

Eq. ~2.18!, when written for aunlm& eigenstate, reduces t
the relationship

Bnll 1q~V;r !5rRnl~r !1~V2En!Anll 1q~V;r !

~q51 for l 50, q51,21 for l .0!. ~3.19!

Note that Eqs.~3.19! have been checked by a direct meth
which employs the integral representations~3.17!. By using
some basic properties of the Kummer function@32#, both
integrands have been written in a convenient form in ter
of the function 1F1( l 112n;2l 12;2kn,tr ). A tedious cal-
culation involving several integrations by parts has led us
Eqs.~3.19!.

B. Momentum representation

We evaluate the Fourier transforms~2.14! for an angular-
momentum eigenstateuN&5unlm&. Combining the expan-
sions~3.14! and~A4! with the spherical-wave expansion of
scalar plane wave@33#, we get the following formulas:
rt

s

o

ṽnlm~V;p!5 (
q51,21

~2q!

3S ul l 1q,l u
2l 11 D 1/2

Ãn l l 1q~V;p!Vl 1q l m~ p̂!

~3.20a!

and

w̃nlm~V;p!5
i

\
me (

q51,21
~2q!

3S ul l 1q,l u
2l 11 D 1/2

B̃n l l 1q~V;p!Vl 1q l m~ p̂!.

~3.20b!

For l 50, Eqs.~3.20! read

ṽn00~V;p!5~4p!21/2Ãn01~V;p!p̂ ~3.21a!

and

w̃n00~V;p!5
i

\
me~4p!21/2 B̃n01~V;p!p̂. ~3.21b!

The scalar factors in Eqs.~3.20! and ~3.21! include the ra-
dial integrals

Ãnll 1q~V;p!5~2 i ! l 1q
4p

~2p\!3/2E0

`

dr r 2

3 j l 1qS p

\
r DAn l l 1q~V;r ! ~3.22a!

and

B̃nll 1q~V;p!5~2 i ! l 1q
4p

~2p\!3/2E0

`

dr r 2

3 j l 1qS p

\
r DBn l l 1q~V;r !. ~3.22b!

After substituting in Eqs.~3.22! relation~B1! and the integral
representations~3.17!, we carry out the radial integration
making use of Eqs.~B5!–~B7!. It is convenient to introduce
the dimensionless vector

z[
p

\k1
. ~3.23!

The scalar functions~3.22! are finally obtained as contou
integrals:
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Ãnll 1q~V;p!5
1

2uEnuS 1

pnD 1/2S 1

\k1
D 3/2 1

4k1

t

z2

~ l 1q11!!

@2~ l 1q!11#! F ~n1 l !!

~n2 l 21!!2nG1/2F 2 i24nt2z

~11t2z2!~n22t2!
G l 1q11

3 (
s522

2

(
s̃521,1

s̃ cn,l
~q,s!S n2t

n1t D n2sS 12 i tz

11 i tz D 2 s̃ ieipt

2sin~pt!
E

1

~01 !

drr l 1q2t

3@12x1~n,t,z!r#2~n2s2 s̃ !@12x2~n,2t,z!r#2~ l 1q111s2n!@12x2~n,t,z!r#2~ l 1q111 s̃ !

32F1S l 1q111s2n,l 1q111 s̃ ;2~ l 1q!12;
i24nt2z

~11t2z2!~n22t2!

3
r

@12x2~n,2t,z!r#@12x2~n,t,z!r# D ~3.24a!

and

B̃nll 1q~V;p!52uEnu••• (
s521,1

dn,l
~q,s!

•••. ~3.24b!

In Eqs.~3.24! we have introduced the dimensionless variables

x1~n,t,z![
~12 i tz!~n2t!

~11 i tz!~n1t!
, x2~n,t,z![

~11 i tz!~n2t!

~12 i tz!~n1t!
. ~3.25!

The scalar functions~3.24! can be expressed in terms of a previously introduced@34# generalized hypergeometric function1FE
with six parameters and four variables, as follows:

Ãnll 1q~V;p!5
1

2uEnuS 1

pnD 1/2S 1

\k1
D 3/2 1

4k1

t

z2

~ l 1q11!!

@2~ l 1q!11#! F ~n1 l !!

~n2 l 21!!2nG1/2F 2 i24nt2z

~11t2z2!~n22t2!
G l 1q11

3 (
s522

2

(
s̃521,1

s̃cn,l
~q,s!S n2t

n1t D n2sS 12 i tz

11 i tz D 2 s̃ 1

l 1q112t1FES l 1q112t;n2s2 s̃ ,l 1q111s2n,

l 1q111 s̃ ,2~ l 1q!12;l 1q122t;x1~n,t,z!,x2~n,2t,z!,x2~n,t,z!,
i24nt2z

~11t2z2!~n22t2!
D ~3.26a!
c-

ic

are
ian
and

B̃nll 1q~V;p!52uEnu••• (
s521,1

dn,l
~q,s!

•••. ~3.26b!

Notice that in Eqs.~3.26! the parametersl 1q111s2n are
nonpositive integers, so that, according to Eq.~B13!, each
function 1FE reduces to a finite double sum of Appell fun
tions F1.

IV. LINEAR-RESPONSE VECTORS FOR PARABOLIC
STATIONARY STATES

A. Position representation

The derivation of the LRV’svnnem(V;r) andwnnem(V;r)
associated to a parabolic stateunnem& parallels that pre-
sented in Sec. III for the case of a spherical stateunlm&. As
a first step, we calculate the integral
Fm~V,b,l;j,h,w!

[2E d3x8G~V;r,r8!U~ ib ẑ8,l;r8!~j8h8! umu/2Fm~w8!

~m integer!, ~4.1!

where we have denoted

Fm~w![~2p!21/2exp~ imw!. ~4.2!

The integrand in Eq.~4.1! includes a homogeneous harmon
polynomial in the Cartesian variablesx15x andx25y,

~jh! umu/2Fm~w!5~2p!21/2Dm, j 1 . . . j umu
xj 1

•••xj umu
.
~4.3!

The coefficientsD in Eq. ~4.3! are totally symmetric with
respect to the Cartesian indices and their contractions
zero. In addition, they vanish if at least one of the Cartes
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indices is equal to three. Upon use of the function~A10! of I,
Eq. ~4.2! is equivalent to the identity

U~ ib ẑ,l;r!~jh! umu/2Fm~w!

5S \

i D
umu

~2p!21/2Dm, j 1 . . . j umu

] umuU~q,l;r!

]qj 1
•••]qj umu

U
q5 ib ẑ

.

~4.4!

Taking note of the definitions~A9! of I and ~4.1!, we write
down the similar relation

Fm~V,b,l;j,h,w!

5S \

i D
umu

~2p!21/23Dm, j 1 . . . j umu

] umuF~V,q,l;r!

]qj 1
•••]qj umu

U
q5 ib ẑ

.

~4.5!
After substituting the integral~A14! of I into Eq. ~4.5!, we
exploit two properties of the functions~A15! and~A16! of I,

f ~X,2b2,l;r!5@ f ~X,0,l1b;r! f ~X,0,l2b;r!#1/2

~4.6!

and

bz f~X,2b2,l;r!1Xrg~X,2b2,l;r!

5
1

2
X@j g~X,0,l1b;r!1h g~X,0,l2b;r!#, ~4.7!

in order to factor the integrand of the resulting integral:
r

Fm~V,b,l;j,h,w!5
t

Ze2
~jh! umu/2Fm~w!

ieipt

2sin~pt!
E

1

~01 !

drr2t@ f ~X,0,l1b;r!#~ umu11!/2expF2g~X,0,l1b;r!
1

2t

j

aG
3@ f ~X,0,l2b;r!#~ umu11!/2expF2g~X,0,l2b;r!

1

2t

h

aG . ~4.8!

Second, Eq.~4.8! is employed to evaluate the integral

Gnj nh m
~s1 ,s2!

~V;j,h,w![2E d3x8G~V;r,r8!
1

r 8
exp~2knr 8!~kn

2j8h8! umu/2
1F1~2nj1s1 ;umu11;knj8!

31F1~2nh1s2 ;umu11;knh8!Fm~w8! ~s1 ,s2 integers, nj2s1>0, nh2s2>0!. ~4.9!

Both Kummer hypergeometric functions in the integrand of Eq.~4.9! are proportional to Laguerre polynomials. Applying fo
each of them the integral representation~A5!, we find

Gnj nh m
~s1 ,s2!

~V;j,h,w!5~kn! umu ~ umu!! ~nj112s1!!

~ umu1nj2s1!!

~ umu!! ~nh112s2!!

~ umu1nh2s2!! S 2
1

2p i D
2E

1

~01 !

dt~2t !2nj211s1~12t ! umu1nj2s1

3E
1

~01 !

du~2u!2nh211s2~12u! umu1nh2s2Fm@V,~u2t !\kn ,~12t2u!\kn ;j,h,w#. ~4.10!

The structure~4.8! of the functionFm allows us to factor in the triple contour integral~4.10! two integrals of the type~A6!
leading to the formula

Gnj nh m
~s1 ,s2!

~V;j,h,w!5
4n2t

Ze2
Fm~w!

ieipt

2sin~pt!
E

1

~01 !

drr2texpS 2
Nt,n

Nn,t

1

t

j1h

2a DNn,2t
n212s12s2Nn,t

2n211s11s2~kn,t
2 jh! umu/2

31F1~2nj1s1 ;umu11;kn,tj!1F1~2nh1s2 ;umu11;kn,th!. ~4.11!

We may express now the contour integral in Eq.~4.11! in terms of a generalized hypergeometric function2FH with seven
parameters and five variables@35#:
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Gnj nh m
~s1 ,s2!

~V;j,h,w!5
t

Ze2S n2t

2n D n2umu212s12s2S n1t

2n D 2n1s11s22t

expS 2
1

t

j1h

2a D ~kn
2jh! umu/2Fm~w!

1

umu112t

32FHS umu112t;2n1s11s2112t,2nj1s1 ,2nh1s2 ,umu11,umu11;umu122t;
n2t

2n
,

2
~n1t!2

2n~n2t!
,
n2t

2t
kn~j1h!,

2n

n2t
knj,

2n

n2t
knh D ~nj2s1>0, nh2s2>0!. ~4.12!

According to Eq.~A9!, the function2FH occurring in Eq.~4.12! reduces to a finite triple sum of Humbert functionsF1.
The third step consists of employing the finite expansions of the vectorsrunnem(j,h,w) andPunnem(j,h,w) associated to

any Stark stateunnem& @36#. They are used to express the spherical components~A3! of the corresponding LRV’s in both
gauges in terms of the functions~4.9!:

vnnem;
m~V;r!5~21!~m1umu!/222umu/2S 2

kn
D 1/2 1

@~ um2mu!! #2F ~nj1umu!! ~nh1umu!!
nj!nh!4n G1/2

(
M̃50,M

(
s522

2 S 12
1

2
dM2M̃1s,M̃ D

3@cnj ,nh ,umu
~M ,M̃ ,s! Gnj2M ,nh ,m2m

~s2M̃ ,M̃ ! ~V;j,h,w!2~21!m~j↔h,nj↔nh!# ~m521,0,1! ~4.13a!

and

wnnem;
m~V;r!5

i

\
me2uEnu••• (

s521,1
@dnj ,nh ,umu

~M ,M̃ ,s!
•••#. ~4.13b!

In Eqs.~4.13! we have used the parameter

M̃[um2mu2umu. ~4.14!

The coefficientscnj, nh, umu
(M ,M̃ ,s) anddnj, nh, umu

(M ,M̃ ,s) are listed in Ref.@8#, in Tables II and III, respectively. The symbol (j↔h,nj↔nh)

stands for the preceding expression inside the same brackets with the quoted quantities interchanged. Substituti
integral representation~4.11! into Eqs.~4.13! yields the LRV’s associated to a Stark state as compact contour integrals

vnnem;
m~V;r!5~21!~m1umu!/222umu/2 ~2kn!1/2

2uEnu
4nt

@~ um2mu!! #2F ~nj1umu!! ~nh1umu!!
nj!nh!4n G1/2

Fm2m~w!

3 (
M̃50,M

(
s522

2 S 12
1

2
dM2M̃1s,M̃ D Fcnj ,nh ,umu

~M ,M̃ ,s!
ieipt

2sin~pt!
E

1

~01 !

drr2t

3expS 2
Nt,n

Nn,t

1

t

j1h

2a DNn,2t
n212sNn,t

2n211s~kn,t
2 jh!~ umu2m!/2

1F1~2nj1M2M̃1s;um2mu11;kn,tj!

31F1~2nh1M̃ ;um2mu11;kn,th!2~21!m~j↔h,nj↔nh!G ~m521,0,1! ~4.15a!

and

wnnem;
m~V;r!5

i

\
2uEnu••• (

s521,1
@dnj ,nh ,umu

~M ,M̃ ,s!
•••#. ~4.15b!

Introducing finally Eq. ~4.12! into Eqs. ~4.13!, we find the explicit expressions of the LRV’svnnem(V;j,h,w) and

wnnem(V;j,h,w) @37#. For instance, the velocity-gauge LRV is
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wnnem~V;j,h,w!5
i

\
me~2kn!1/2

t

nF ~nj1umu!! ~nh1umu!!
nj!nh!4n G1/2

expS 2
1

t

j1h

2a D
3 (

m521

1 H ~21!~m1umu!/222umu/2 1

@~ um2mu!! #2
~kn

2jh! um2mu/2Fm2m~w! (
M̃50,M

(
s521,1

S 12
1

2
dM2M̃1s,M̃ D

3S n2t

2n D n2um2mu212sS n1t

2n D 2n1s2t 1

um2mu112tFdnj ,nh ,umu
~M ,M̃ ,s!

2FHS um2mu112t;2n1s112t,

2nj1M2M̃1s,2nh1M̃ ,um2mu11,um2mu11;um2mu122t;
n2t

2n
,

2
~n1t!2

2n~n2t!
,
n2t

2t
kn~j1h!,

2n

n2t
knj,

2n

n2t
knh D2~21!m~j↔h,nj↔nh!G J x̂m . ~4.16!
l
n

ve
e

eo-

er

nta-

our

e-
Note that the LRV~4.16! includes several functions2FH ,
each of them expressible as a finite triple sum~A9! of Hum-
bert functionsF1.

B. Momentum representation

We have to evaluate the Fourier transforms~2.14! for a
Stark eigenstateuN&5unnem&. We make use of the integra
representations~4.15!, performing the space integration i
parabolic coordinates. The cylindrical-wave expansion~B9!
of a plane wave allows one to carry out the integration o
the polar anglew. This is followed by an integration over th
r

coordinateh by applying termwise the integral~B8! to the
finite ascending power expansion of the Kummer hyperg
metric function with argumentkn,th in Eq. ~4.15a!. The in-
tegral~B7! is then employed to carry out the integration ov
the third parabolic coordinatej. To evaluate the remaining
finite sum mentioned above, we use the integral represe
tion ~B10! of the resulting Gauss function2F1, which allows
one to perform a binomial sum under the second cont
integral. Making use once again of Eq.~B10!, we are left
with a single contour integral. Two recurrence relations b
tween contiguous Gauss hypergeometric functions@38# fi-
nally lead to the following result:
ṽ nnem;
m~V;p!5~2 i !m2m~21!~1/2![ um2mu2~m1umu!]22umu/2 ~2kn!1/2

2uEnu
8p

~2p\!3/2S \

XD 3 4nt

~ um2mu!! F ~nj1umu!! ~nh1umu!!
nj!nh!4n G1/2

3~8nt2zr! um2muFm2m~w̃ ! (
M̃50,M

(
s522

2 S 12
1

2
dM2M̃1s,M̃ D ieipt

2sin~pt!
E

1

~01 !

drr um2mu2t

3F S cnj ,nh ,umu
~M ,M̃ ,s! (

nj50

1

(
nh50

1

gnjnh
$@12~nj1nh!#Nt,nNn,t1~nj1nh!~n22t2!~12r2!%

3@~Nt,n!21~tz!2~Nn,t!
2#nj1nh2~n2s11!@N2t,nNt,n1~tz!2Nn,tNn,2t1 i8nt2rzz#

nj2~M2M̃1s!2nj

3@N2t,nNt,n1~tz!2Nn,tNn,2t2 i8nt2rzz#
nh2M̃2nh

2F1„2nj1~M2M̃1s!1nj ,

2nh1M̃1nh ;um2mu11;y~r!…D 2~21!m~j↔h,nj↔nh!G , ~4.17a!

w̃nnem;
m~V;p!5

i

\
me2uEnu•••S (

s521,1
dnj ,nh ,umu

~M ,M̃ ,s!
••• D . ~4.17b!

In Eqs.~4.17!, along with already known symbols we have used the dimensionless variable

y~r![
~8nt2rzr!2

@N2t,nNt,n1~tz!2Nn,2tNn,t#
21~8nt2rzz!

2
~4.18!

built up with the cylindrical componentszr andzz of the vector~3.23!, as well as the four coefficientsgnjnh
:

g005n2s, g1052@nj2~M2M̃1s!#, g0152~nh2M̃ !, g1150. ~4.19!
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According to Eq.~B14!, the vectors~4.17! can be written out in terms of thenew generalized hypergeometric functionFF
having the explicit expression~B15!. We get

ṽ nnem;
m~V;p!5~2 i !m2m~21!~1/2![ um2mu2~m1umu!]22umu/2 ~2kn!1/2

2uEnu
8p

~2p\!3/2S \

XD 3 4nt

~ um2mu!! F ~nj1umu!! ~nh1umu!!
nj!nh!4n G1/2

3
@z~n,t,z!# um2mu

~n22t2!@11~tz!2#2
Fm2m~w̃ ! (

M̃50,M
(

s522

2 S 12
1

2
dM2M̃1s,M̃ D

3S n2t

n1t D n2sF S cnj ,nh ,umu
~M ,M̃ ,s! (

nj50

1

(
nh50

1

gnjnhH 1

um2mu112t
FF„um2mu112t;n2s112~nj1nh!;

2@nj2~M2M̃1s!2nj#,2~nh2M̃2nh!;um2mu11;um2mu122t;

x1~n,t,z!,x2~n,t,z!,y1~n,t,z!,y2~n,t,z!,y1~n,t,2z!,y2~n,t,2z!,z~n,t,z!…

2S n2t

n1t D 222~nj1nh! 1

um2mu132t
FF„um2mu132t;n2s112~nj1nh!;2@nj2~M2M̃1s!2nj#,

2~nh2M̃2nh!;um2mu11;um2mu142t;x1~n,t,z!,x2~n,t,z!,y1~n,t,z!,y2~n,t,z!,

y1~n,t,2z!,y2~n,t,2z!,z~n,t,z!…J D 2~21!m~j↔h,nj↔nh!G ~m521,0,1! ~4.20a!
-

and

w̃nnem;
m~V;p!5

i

\
me2uEnu•••S (

s521,1
dnj ,nh ,umu

~M ,M̃ ,s!
••• D .

~4.20b!

In Eqs. ~4.20!, besides using the variables~3.25!, we have
introduced the variablesy, which are determined by the con
ditions

y1~n,t,z!1y2~n,t,z!

5
@~n2t!21~n1t!2#@12~tz!2#2 i8nt2zz

~n22t2!@11~tz!2#

~4.21a!

and

y1~n,t,z! y2~n,t,z!51. ~4.21b!

We have further denoted

z~n,t,z![
8nt

n22t2

tzr

11~tz!2
. ~4.22!

As shown by Eq.~B16!, any functionFF entering Eqs.~4.20!
reduces to a finite quintuple sum of Appell functionsF1 of
the variables~3.25!.
V. REDUCED LINEAR-RESPONSE VECTORS
FOR SPHERICAL STATIONARY STATES

A. Position representation

Owing to the identity~3.18!, the divergent vector~2.19!
written for a stateunlm& has the structure

P~n!vnlm~V;r!5 (
q51,21

~2q!S ul l 1q,l u
2l 11 D 1/2

3DAn l l 1q~V;r !Vl 1q l m~ r̂!, ~5.1!

which for s states becomes

P~n!vn00~V;r!5~4p!21/2DAn01~V;r ! r̂. ~5.2!

In Eqs. ~5.1! and ~5.2!, the following singular radial func-
tions are involved:

DAn l l 1q~V;r !5
3

2kn

@n22~l l 1q,l !
2#1/2

V2En
Rn,l 1q~r !

~q51 for l 50; q51,21 for l .0!. ~5.3!

Taking the limit V5En of the identity ~3.19!, we find the
equation

Bn l l 1q~En ;r !5rRnl~r !1~V2En!DAn l l 1q~V;r !.
~5.4!

Substitution of Eqs.~A10! and ~5.3! into Eq. ~5.4! provides
the formula
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Bn l l 1q~En ;r !5~2kn!1/2
1

@2~ l 1q!11#! F ~n1 l !!

~n2 l 21!!2nG1/2

exp~2knr !~2knr ! l 1q

3 (
s521

1 S 12
3

2
ds0Den,l

~q,s!
1F1„l 1q112n1s;2~ l 1q!12;2knr … ~q51 for l 50; q51,21 for l .0!.

~5.5!
f

i

cit

of
s

The coefficientsen,l
(q,s) are listed in Table I. The projection o

the LRV ~3.14a! onto the subspaceUn
' has a similar struc-

ture, written previously@39#:

vnlm8 ~V;r!5 (
q51,21

~2q!

3S ul l 1q,l u
2l 11 D 1/2

An l l 1q8 ~V;r !Vl 1q l m~ r̂!.

~5.6!

When l 50, Eq. ~5.6! reads

vn008 ~V;r!5~4p!21/2An018 ~V;r ! r̂. ~5.7!

In Eqs.~5.6! and~5.7!, any factorAnll 1q8 (V;r ) is the regular
part of the corresponding scalar functionAnll 1q(V;r ),

An l l 1q8 ~V;r !5An l l 1q~V;r !2DAn l l 1q~V;r !. ~5.8!

The reduced LRV for a spherical eigenstate is the lim
V5En of Eq. ~5.6!,

vnlm8 ~En ;r!5 (
q51,21

~2q!

3S ul l 1q,l u
2l 11 D 1/2

An l l 1q8 ~En ;r !Vl 1q l m~ r̂!,

~5.9!

or, in the special casel 50, that of Eq.~5.7!,

vn008 ~En ;r!5~4p!21/2An018 ~En ;r ! r̂. ~5.10!

TABLE I. The coefficientsen,l
(q,s) in the expansions~A10! of the

function rRnl(r ).

q s en,l
(q,s)

1 21 (n1 l 11)(n1 l 12)
1 0 22(n1 l 11)(n2 l 21)
1 1 (n2 l 21)(n2 l 22)

21 21 1
21 0 22
21 1 1
t

The reduced scalar radial functionsAnll 1q8 (En ;r ) have been
evaluated in two different ways by making use of the expli
form either of the functionsAnll 1q(V;r ) or of the factors
Bnll 1q(V;r ) @31#.

~i! The first way consists of writing the right-hand side
Eq. ~5.8! explicitly and then selecting all nonvanishing term
of its limit t5n.

~ii ! The second way exploits the identity

An l l 1q8 ~En ;r !5
]Bnll 1q~V;r !

]V U
V5En

, ~5.11!

derived from Eqs.~3.19!, ~5.8!, and~5.3!. From the explicit
expression ofBnll 1q(En1dV;r ), we collect all terms pro-
portional todt[t2n owing to the relationship

dV5uEnuF12S 11
dt

n D 22G . ~5.12!

Both methods give a result reported previously@40#, that we
shall apply below:

An l l 1q8 ~En ;r !

5
~2kn!1/2

2uEnu@2~ l 1q!11#! F ~n1 l !!

~n2 l 21!!2nG1/2

3exp~2knr !~2knr ! l 1q (
s522

2

Cn,l
~0;q,s!

31F1„l 1q112n1s;2~ l 1q!12;2knr …

~q51 if l 50; q51,21 if l .0!. ~5.13!

TABLE II. The coefficientsCn,l
(0;q,s) in the expansions~5.13! of

the reduced linear-response radial functionsAnl l 1q8 (En ;r ).

q s Cn,l
(0;q,s)

1 22 2
1
2 (n1 l 11)(n1 l 12)(n1 l 13)

1 21 (n1 l 11)(n1 l 12)(n1 l 13)
1 0 (n1 l 11)(n2 l 21)(2l 15)
1 1 2(n2 l 21)(n2 l 22)(n2 l 23)
1 2 1

2 (n2 l 21)(n2 l 22)(n2 l 23)
21 22 2

1
2 (n1 l 11)

21 21 n2 l 12
21 0 2(2l 23)
21 1 2(n1 l 22)
21 2 1

2 (n2 l 21)



n

to
pr

4000 56TUDOR A. MARIAN
The coefficientsCn,l
(0;q,s) are listed in Table II. It is worth

noting that Jhanwar and Meath@41# derived thez-axis com-
ponent of the reduced LRV~5.9!. They found it by solving
the appropriate inhomogeneous radial differential equatio

B. Momentum representation

We employ the technique developed in Sec. III B
evaluate the Fourier transform of the coordinate-space
jection ~5.1! and find the expression
s.

o-

P~n!ṽnlm~V;p!5 (
q51,21

~2q!S ul l 1q,l u
2l 11 D 1/2

3DÃn l l 1q~V;p!Vl 1q l m~ p̂!, ~5.14!

which is simpler for ans state:

P~n!ṽn00~V;p!5~4p!21/2DÃn01~V;p!p̂. ~5.15!

The singular radial factors in Eqs.~5.14! and ~5.15! are
DÃn l l 1q~V;p!5~2 i ! l 1q
3

2kn

@n22~l l 1q,l !
2#1/2

V2En

22~ l 1q!13n

p1/2~\kn!3/2

~ l 1q!!

@2~ l 1q!11#! F ~n1 l 1q!!

~n2 l 2q21!!2nG1/2 ~nz! l 1q

@~nz!211# l 1q12

32F1S l 1q112n,l 1q111n; l 1q1
3

2
;

1

~nz!211
D . ~5.16!

Note that the secular term~5.16! vanishes forl 1q5n.
By Fourier transforming the vectorwnlm(En ;r) characterized by the scalar factors~5.5!, we get a similar structure in

momentum space, with the factors

B̃n l l 1q~En ;p!5~2 i ! l 1q
22~ l 1q!13n

p1/2~\kn!3/2kn

~ l 1q!!

@2~ l 1q!11#! F ~n1 l !!

~n2 l 21!!2nG1/2 ~nz! l 1q

@~nz!211# l 1q12

3 (
s521

1 S 12
3

2
ds0D ~n2s!en,l

~q,s!
2F1S l 1q112n1s,l 1q111n2s; l 1q1

3

2
;

1

~nz!211
D

~q51 if l 50; q51,21 if l .0!. ~5.17!

When applying the same transformations to the reduced LRVvnlm8 in coordinate space, Eq.~5.9!, we get its counterpart in
momentum space:

ṽnlm8 ~En ;p!5 (
q51,21

~2q!S ul l 1q,l u
2l 11 D 1/2

Ãn l l 1q8 ~En ;p!Vl 1q l m~ p̂!. ~5.18!

For l 50, Eq. ~5.18! reads

ṽn008 ~En ;p!5~4p!21/2Ãn018 ~En ;p!p̂. ~5.19!

The scalar functionsÃnll 1q8 (En ;p) in Eqs.~5.18! and ~5.19! are

Ãn l l 1q8 ~En ;p!5~2 i ! l 1q
1

2uEnu
22~ l 1q!11

p1/2~\kn!3/2kn

~ l 1q!!

@2~ l 1q!11#! F ~n1 l !!

~n2 l 21!!2nG1/2 ~nz! l 1q

@~nz!211# l 1q12

3 (
s522

2

~n2s!Cn,l
~0;q,s!

2F1S l 1q112n1s; l 1q111n2s; l 1q1
3

2
;

1

~nz!211
D

~q51 if l 50; q51,21 if l .0!. ~5.20!

Remark that, according to Eq.~B3!, all the Gauss hypergeometric functions included in Eqs.~5.16!, ~5.17!, and ~5.20! are
Gegenbauer polynomials of the dimensionless variableq05 @(nz)221#/@(nz)211#. @See Eq.~6.11! below.#
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VI. REDUCED LINEAR-RESPONSE VECTORS FOR PARABOLIC STATIONARY STATES

A. Position representation

The secular term~2.19! of the velocity-gauge vector for a Stark statevnnem(V;r) can be extracted from the explic
expression of the latter@37#:

P~n!vnnem~V;r!5
~2kn!1/2

V2En
F ~nj1umu!! ~nh1umu!!

nj!nh!4n G1/2S 2
1

nDexpS 2
1

2
kn~j1h! D (

m521

1

~21!~m1umu!/222umu/2

3
1

@~ um2mu!! #2
Fm2m~w!~kn

2jh! um2mu/2S 12
1

2
dM ,0D @cnj ,nh ,umu

~M ,0,0!
1F1~2nj1M ;um2mu11;knj!

31F1~2nh ;um2mu11;knh!2~21!m~j↔h,nj↔nh!#x̂m . ~6.1!

Equation~6.1! has been reported before@42#. The reduced LRV~2.25! for a Stark statevnnem8 (En ;r) has been evaluated in Re

@8# in three independent ways@43#. We need here its explicit expression:

vnnem8 ~En ;r!5
~2kn!1/2

4uEnu F ~nj1umu!! ~nh1umu!!
nj!nh!4n G1/2

expS 2
1

2
kn~j1h! D (

m521

1

~21!~m1umu!/222umu/2 1

@~ um2mu!! #2
Fm2m~w!

3~kn
2jh! um2mu/2H F22dm,0~ umu111nj!nh1F1~2nj21;umu11;knj!1F1~2nh11;umu11;knh!

1 (
M̃50,M

(
s522

2 S 12
1

2
dM2M̃1s,M̃ DCnj ,nh ,umu

~0;M ,M̃ ,s!
1F1~2nj1M2M̃1s;um2mu11;knj!

31F1~2nh1M̃ ;um2mu11;knh!G2~21!m~j↔h,nj↔nh!J x̂m . ~6.2!

The coefficientsCnj ,nh ,umu
(0;M ,M̃ ,s) are listed in Table V of Ref.@8#. Notice that each Kummer function in Eqs.~6.1! and ~6.2! is

proportional to a Laguerre polynomial.

B. Momentum representation

We carry out the Fourier transformations of the vectors~6.1! and~6.2! along the lines presented in Sec. IV B. We get t
divergent projection ontoUn ,

P~n!ṽnnem~V;p!5
1

V2En

24

p1/2~\kn!3/2kn
F ~nj1umu!! ~nh1umu!!

nj!nh!4n G1/2 1

@~nz!211#n11

3 (
m521

1

~21! [ um2mu2~m1m!]/2~2 i !m2m22umu/2 1

~ um2mu!!
Fm2m~w̃ !~2nzr! um2muS 12

1

2
dM ,0D

3H Fcnj ,nh ,umu
~M ,0,0! @~nz!22112inzz#

nj2M@~nz!22122inzz#
nh

32F1S 2nj1M ,2nh ;um2mu11;2
~2nzr!2

@~nz!221#21~2nzz!
2D G2~21!m@zj↔zh ,nj↔nh#J x̂m ,

~6.3!

and the reduced LRV
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ṽnnem8 ~En ;p!5
1

2uEnu
2

p1/2~\kn!3/2kn
F ~nj1umu!! ~nh1umu!!

nj!nh!4n G1/2

3 (
m521

1

~21!~1/2![ um2mu2~m1umu!]~2 i !m2m22umu/2 1

~ um2mu!!
Fm2m~w̃ !~2nzr! um2mu

3H F22dm,0~ umu111nj!nh

n

@~nz!211#n11
@~nz!22112inzz#

nj11@~nz!22122inzz#
nh21

32F1S 2nj21,2nh11;umu11;2
~2nzr!2

@~nz!221#21~2nzz!
2D 1 (

M̃50,M
(

s522

2 S 12
1

2
dM2M̃1s,M̃ D

3Cnj ,nh,umu
~0;M ,M̃ ,s!

n2s

@~nz!211#n2s11
@~nz!22112inzz#

nj2~M2M̃1s!@~nz!22122inzz#
nh2M̃

32F1S 2nj1M2M̃1s,2nh1M̃ ;um2mu11;2
~2nzr!2

@~nz!221#21~2nzz!
2D G

2~21!m@zj↔zh ,nj↔nh#J x̂m . ~6.4!
y- n-
u-

-

The vectors~6.3! and~6.4! can be expressed via Jacobi pol
nomials, Eq.~B2!, in terms of matrix elements of theSU~2!
irreducible representations,

Dmn
~ j ! ~a,b,g!5exp~2 ima!dmn

~ j ! ~b!exp~2 ing!, ~6.5!

wherea,b,g are the Euler angles@44#. These are introduced
as follows:

a5c̃1S w̃2
p

2 D , b5arccosS 12
8~nzr!2

@~nz!211#2D ,

g5c̃2S w̃2
p

2 D . ~6.6!
The anglew̃ is already known to be the longitude in mome
tum space, whilec̃ denotes the principal value of the arg
ment of a complex number occurring in Eqs.~6.3! and~6.4!:

c̃[arg@~nz!22112inzz#. ~6.7!

Using the Euler angle parametrization of anSU~2! transfor-
mation

U5U~a,b,g! ~6.8!

that is specified by Eqs.~6.6!, we find the alternative expres
sions
P~n!ṽnnem~V;p!5
1

V2En

21

pkn~\kn!3/2

1

@~nz!211#2 (
m521

1

~21!~m1umu!/222umu/211/2S 12
1

2
dM ,0D

3F H cnj ,nh ,umu
~M ,0,0! S ~nj2M !! ~nh1umu!!

nj! ~nh1umu1M !!n D 1/2

D2~m2m1ne2M !/2,~m2m2ne1M !/2
„~n21!/2… ~U !J

2~21!m$zj↔zh ,nj↔nh%G x̂m ~6.9!

and
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ṽnnem8 ~En ,p!5
1

2uEnu
1

pkn~\kn!3/2S 1

4nD 1/2 1

@~nz!211#2 (
m521

1

~21!~m1umu!/222umu/211/2

3F H 22dm,0n@~ umu111nj!nj~nj11!~nh1umu!#1/2D2~m1ne12!/2,~m2ne22!/2
„~n21!/2… ~U !

1 (
M̃50,M

(
s522

2 S 12
1

2
dM2M̃1s,M̃ D ~n2s!Cnj ,nh ,umu

~0;M ,M̃ ,s!S ~nj11! umu~nh11! umu

„nj2~M2M̃1s!11… um2mu~nh2M̃11! um2mu
D 1/2

3D
2[m2m1ne2~M22M̃1s!]/2,[m2m2ne1~M22M̃1s!]/2
„~n2s21!/2…

~U !J 2~21!m$zj↔zh ,nj↔nh%G x̂m . ~6.10!
o

e

nte-

the

oth
the
Notice that the momentump equally determines the
Euler-Rodrigues parameters@45# of theSU~2! operator~6.8!:

q05
~nz!221

~nz!211
, q5

2nz

~nz!211
p̂. ~6.11!

Accordingly, we get the corresponding unit vectorû of the
rotation axis as well as the rotation angleA @45#:

û5p̂, cot
A

4
5nz. ~6.12!

VII. LINEAR RESPONSE FROM THE ATOMIC GROUND
STATE

A. Position representation

In the special case of the ground state the LRV’s are
the type~3.16!

v100~V;r!5~4p!21/2A101~V;r ! r̂ ~7.1a!

and

w100~V;r!5
i

\
me~4p!21/2B101~V;r ! r̂. ~7.1b!

According to Eqs.~3.17!, the scalar radial functions have th
following integral representations: in the length gauge,

A101~V;r !5
1

2uE1u
a23/22tr

ieipt

2sin~pt!

3E
1

~01 !

drr12texpS 2
Nt,1

N1,t

1

t

r

aD
3S 2

N1,t
D 5F2t~12r!1

2

N1,t
r

r

aG ~7.2a!

and in the velocity gauge,
f

B101~V;r !5a23/22tr
ieipt

2sin~pt!
E

1

~01 !

drr12t

3expS 2
Nt,1

N1,t

1

t

r

aD S 2

N1,t
D 4

. ~7.2b!

Consequently, they have simple explicit expressions@31# in
terms of Humbert hypergeometric functionsF1:

A101~V;r !

5
1

2uE1u
a23/2S 2

11t D 31t

2trexpS 2
1

t

r

aD 1

32t

3F 2t

22t
F1S 22t,212t,42t;

12t

2
,
12t

t

r

aD
1

r

a
F1S 32t,222t,42t;

12t

2
,
12t

t

r

aD G
~7.3a!

and

B101~V;r !5a23/2S 2

11t D 21t

2trexpS 2
1

t

r

aD 1

22t

3F1S 22t,212t,32t;
12t

2
,
12t

t

r

aD .

~7.3b!

It goes without saying that we find Eqs.~7.1! and~7.2! again
when we specialize to the case of the ground state the i
gral representations~4.15! of the LRV’s for an arbitrary
Stark state. Similarly, Eqs.~7.1! and~7.3! are obtained by the
same particularization from the explicit expressions of
vectorsvnnem(V;r) @37# andwnnem(V;r), Eq. ~4.16!. Recall
that the neglect of retardation amounts to replacing b
Poincare´ and multipolar gauges by the length gauge, and
radiation gauge by the velocity gauge@22#. As a conse-
quence, Eqs.~6.10a! and ~6.12a! from I, written with L51,
are equivalent to Eqs.~7.1a!, ~7.2a!, and~7.3a!, while Eqs.
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~3.13!–~3.15! from I coincide with Eqs.~7.1b!, ~7.2b!, and
~7.3b!. Note also that relation~3.18!, when taken for the
ground state,

B101~V;r !5rR10~r !1~V2E1!A101~V;r !, ~7.4!

is obtained directly after an integration by parts in Eq.~7.2a!.
However, it is also retrievable upon comparison betwe
Eqs.~6.10a! and~6.10b! from I or between Eqs.~6.12a! and
~6.12b! from I, when both pairs are written forL51.
n

B. Momentum representation

The LRV’s for the ground state are of the form~3.21!:

ṽ100~V;p!5~4p!21/2Ã101~V;p!p̂ ~7.5a!

and

w̃100~V;p!5
i

\
me~4p!21/2B̃101~V;p!p̂. ~7.5b!

The integral representations~3.24! of the scalar functions
from the right-hand sides of Eqs.~7.5! are
s.
Ã101~V;p!5
1

2uE1u
1

~2p!1/2~\k1!3/2k1

28t5

~11t!4@11~tz!2#2 (
s̃521,1

s̃ S 12 i tz

11 i tz D 2 s̃ ieipt

2sin~pt!

3E
1

~01 !

drr12tH 12t

11tS 12
1

x2
r D ~12x1r!2~32 s̃ !~12x2r!2~21 s̃ !2~21 s̃ !

4i t2z

~11t!2@11~tz!2#

3r~12x1r!2~32 s̃ !~12x2r!2~31 s̃ !2~12x1r!2~22 s̃ !~12x2r!2~21 s̃ !J , ~7.6a!

and

B̃101~V;p!52
1

~2p!1/2~\k1!3/2k1

27t5

~11t!4@11~tz!2#2 (
s̃521,1

s̃ S 12 i tz

11 i tz D 2 s̃ ieipt

2sin~pt!

3E
1

~01 !

drr12t~12x1r!2~22 s̃ !~12x2r!2~21 s̃ !. ~7.6b!

The explicit expressions of the linear-response scalar functions~7.6! can be found either directly or by particularization of Eq
~3.26!. We get

Ã101~V;p!5
1

2uE1u
1

~2p!1/2~\k1!3/2k1

28t5

~11t!4@11~tz!2#2 (
s̃521,1

s̃ S 12 i tz

11 i tz D 2 s̃

3H 12t

11tF 1

22t
F1~22t;32 s̃ ,21 s̃ ;32t;x1 ,x2!2

1

x2

1

32t
F1~32t;32 s̃ ,21 s̃ ;42t;x1 ,x2!G

2
4i t2z

~11t!2@11~tz!2#

21 s̃

32t
F1~32t;32 s̃ ,31 s̃ ;42t;x1 ,x2!2

1

22t
F1~22t;22 s̃ ,21 s̃ ;32t;x1 ,x2!J

~7.7a!

and
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B̃101~V;p!52
1

~2p!1/2~\k1!3/2k1

27t5

~11t!4@11~tz!2#2 (
s̃521,1

s̃ S 12 i tz

11 i tz D 2 s̃ 1

22t
F1~22t;22 s̃ ,21 s̃ ;32t;x1 ,x2!.

~7.7b!
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In Eqs.~7.6! and~7.7!, the variablesx1 andx2 correspond to

x15x1~1,t,z!, x25x2~1,t,z!. ~7.8!

Obviously, Eqs.~7.5! and~7.6! have been retrieved from th
general formulas~4.17! which present the LRV’s for a Star
state as contour integrals. Specialization to the ground s
of the explicit formulas~4.20! of the LRV’s ṽnnem(V;p) and

w̃nnem(V;p) yields alternative explicit expressions of the sc

lar functionsÃ101(V;p) and B̃101(V;p) which are equiva-
lent to Eqs.~7.7!. Here we only mention that they are writte
in terms of seven and, respectively, two Appell functionsF1,
Eq. ~B2! of I, with b85b.

C. Low-frequency behavior: Position representation

The ground state is the only atomic stationary state
which the projection~2.19! vanishes,

P~1!uv100&50, ~7.9!

so that the LRV

uv100~V!&5uv1008 ~V!& ~7.10!

has a finite static limit~2.22!, which in coordinate space
reads

v100~E1 ;r!5~4p!21/2A101~E1 ;r ! r̂. ~7.11!

Consequently, the length-gauge linear-response correc
~2.9a! to the ground-state wave function,

C~L ! 100
~1! ~v;r,t !52

1

2
~4p!21/2eE0expS 2

i

\
E1t D

3@exp~2 ivt !~ ê• r̂!A101~E11\v1 i0;r !

1exp~ ivt !~ ê* • r̂!A101~E12\v;r !#

~7.12!

is regular in the range of low frequencies. In Eq.~7.12! we
replace the functionA101(E11dV;r ) by the first three terms
in its Taylor series, which is a good approximation wh
udVu!uE1u. We get these terms from Eq.~7.3! of I taken for
L51:
te

-

r

on

A101~E11dV;r !5
1

2uE1u
a23/2expS 2

r

aD2r H 11
1

2

r

a

1
dV

2uE1uF11

6
1

11

12

r

a
1

1

6S r

aD 2G
1S dV

2uE1u D
2F287

72
1

287

144

r

a
1

31

72S r

aD 2

1
1

24S r

aD 3G1OF S dV

2uE1u D
3G J . ~7.13!

Therefore, for low frequencies (\v!uE1u) and in the special
case of linear polarization, Eq.~7.12! becomes

C~L ! 100
~1! ~v;r,t !52

eE0

2uE1u ~ ê• r̂!S H 11
1

2

r

a
1S \v

2uE1u D
2

3F287

72
1

287

144

r

a
1

31

72S r

aD 2

1
1

24S r

aD 3G J
3cos~vt !2 i

\v

2uE1uF11

6
1

11

12

r

a
1

1

6S r

aD 2G
3sin~vt !1OF S \v

2uE1u D
3G DC100

~0! ~r,t !.

~7.14!

According to Eq.~2.9a!, the atomic linear response from th
ground state to astatic uniform electric fieldE5E0ê is de-
termined by the reduced LRV~7.11!:

uC~L ! 100
~1! ~0;t !&52expS 2

i

\
E1t DeE•uv100~E1!&.

~7.15!

To find the static limit~7.15! of the length-gauge correctio
to the wave function we have to setv50 in Eq. ~7.14!:

C~L ! 100
~1! ~0;r,t !52

e

2uE1u ~E•r!S 11
1

2

r

aDC100
~0! ~r,t !.

~7.16!

As a side remark, evaluation of the correction~7.16!, by
solving Eq. ~2.13a! in the special caseuN&5u100& and
V5E1, has become a standard textbook application of c
ventional stationary perturbation theory@46–48#. Appar-
ently, use is made of the ingenious method devised by D
garno and Lewis@49# that emphasizes ageneral sum rule
permitting, in particular, the perturbative calculation of t
long-range forces between a proton and a hydrogen atom
the ground state.
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D. Low-frequency behavior: Momentum representation

The momentum-space counterpart of the linear-respo
correction~7.12! is its Fourier transform:

C̃~L ! 100
~1! ~v;p,t !52

1

2
~4p!21/2eE0expS 2

i

\
E1t D

3@exp~2 ivt !~ ê•p̂!Ã101~E11\v1 i0;p!

1exp~ ivt !~ ê* •p̂!Ã101~E12\v;p!#.

~7.17!

We substitute the expansion~7.13! into Eq. ~3.22a! written
for the ground state. By employing Eq.~B1!, the integral
~B4!, and then applying a quadratic transformation and
analytic-continuation property of the Gauss hypergeome
function @50#, we finally get the approximate formula

Ã101~E11dV;p!

52
i

2uE1u
24a5/2

~2p!1/2\3/2

z

~z211!3H 11
6

z211
1

dV

2uE1u

3F11

6
1

5

z211
1

16

~z211!2G1S dV

2uE1u D
2

3F287

72
1

119

12

1

z211
1

52

3

1

~z211!2
1

40

~z211!3G
1OF S dV

2uE1u D
3G J . ~7.18!

Recall the ground-state energy eigenfunction that para
Eq. ~2.11! of I:

ũ100~p!5
1

pS 2
a

\ D 3/2 1

~z211!2
. ~7.19!

Accordingly, the momentum-space analog of Eq.~7.14! is

C̃~L ! 100
~1! ~v;p,t !5 i

eE0a

2uE1u
1

z211
~ ê•z!S H 11

6

z211

1S \v

2uE1u D
2F287

72
1

119

12

1

z211

1
52

3

1

~z211!2
1

40

~z211!3G J cos~vt !

2 i
\v

2uE1uF11

6
1

5

z211
1

16

~z211!2G
3sin~vt !1OF S \v

2uE1u D
3G D C̃100

~0! ~p,t !.

~7.20!

The first-order correction to the wave function in the sta
limit, Eq. ~7.15!, is built up with the reduced LRV

ṽ100~E1 ;p!5~4p!21/2Ã101~E1 ;p!p̂ ~7.21!
se

n
ic

ls

and is obtained as the limitv50 of Eq. ~7.20!:

C̃~L ! 100
~1! ~0;p,t !5 i

ea

2uE1u ~E•z!
2

z211
S 11

6

z211
D C̃100

~0! ~p,t !.

~7.22!

VIII. DISCUSSION AND SUMMARY

A. High-frequency limit

We consider the high-frequency limit of the velocity
gauge correction~2.9b! to the wave function. By use of Eq
~A3! of I or inspection of Eq.~2.13b!, we find the behavior
of the LRV ~2.10b! at large values of the parameteruVu:

wN~V;r! ;
uVu→`

2
1

V
PuN~r!. ~8.1!

Now, taking notice of Eqs.~2.1! and ~2.11!, the wave func-
tion ~2.9b! behaves in the range of high frequenci
(\v@uE1u) as

C~V!N
~1! ~v;r,t ! ;

uVu→`

2
i

\

e

mev
2

E~ t !•PCN
~0!~r,t !. ~8.2!

We denote bya(t) the radius vector of a classical electron
its quiver motion produced by the electric field~2.1!:

a~ t ![
e

mev
2
E~ t !. ~8.3!

The real amplitude of this motion when the electron is driv
by a linearly polarized electric field is

a05
eE0

mev
2

. ~8.4!

Consequently, a linear-response wave function in the ve
ity gauge has the behavior

CN
~0!~r,t !1C~V!N

~1! ~r,t ! ;
uVu→`

@ I 2a~ t !•“#CN
~0!~r,t !.

~8.5!

Remark that, by using the asymptotic expression of a Hu
bert function F1, Eq. ~B12! of I, we have recovered the
prediction ~8.5! for an arbitrary angular-momentum eige
stateunlm&, as well as for any Stark stateunnem&.

On the other hand, theexacthigh-frequency limit of Flo-
quet theory in the oscillating~Kramers-Henneberger! refer-
ence frame is equivalent to an energy eigenvalue problem
the potentialdressedby the radiation field@51#:

V~a0 ;r8!5
v

2pE0

2p/v

dtV@r81a~ t !#. ~8.6!

In Eq. ~8.6!, r8 is the electron position vector in the oscilla
ing reference frame, while the amplitudea0 is supposed
fixed. To get the linear-response approach, which is va
only at low values of the parametera0, one has to neglect in
the exact theory all terms whose order ina0 exceeds one.
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Within this approximation, the atomic dressed potential~8.6!
reduces to the pure Coulomb potential:

V~a0 ;r 8!52
Ze2

r 8
1O~a0

2!. ~8.7!

Accordingly, the energy eigenvalue problem in the oscill
ing frame becomes that of the field-free Hamiltonian in t
laboratory reference frame. It follows that a wave function
the laboratory frame is approximately

CN~r,t !5CN
~0!@r2a~ t !,t#1O~a0

2!. ~8.8!

To lowest order in perturbation theory, one has to keep in
right-hand side of Eq.~8.8! just the first two terms in the
Taylor expansion ofCN

(0) : they are precisely those written a
the linear-response wave function~8.5!.

B. Summary

Within the semiclassical theory of the photon-atom int
action, in nonrelativistic treatment, the EDA plays the role
the simplest, yet accurate approach. We have compleme
earlier work on hydrogenic atoms, Refs.@5,8#, deriving in a
unified way the LRV’s in coordinate space. Our starti
point has been their generating functionF, built up in I with
the Schro¨dinger Coulomb Green function. We have treat
the length and velocity gauges on an equal footing. In e
of them, we have established closed-form integral repres
tations of the LRV’s associated to any spherical eigens
unlm&, Eqs.~3.14! and~3.17!, as well as to any parabolic on
unnem&, Eqs.~4.15!. Both have been used to evaluate th
momentum-space counterparts via Fourier transformat
We have obtained the latter first as contour integrals and
explicitly in terms of two generalized hypergeometric fun
tions with several parameters and variables,1FE and FF ,
respectively. The linear response from an atomic stateuN& to
a uniform static electric field is determined by the reduc
LRV uvN8 (En)&. The reduced LRV’s in coordinate space, a
ready evaluated in Refs.@5,8#, have been used to find thos
in momentum space, as their Fourier transforms. The ato
ground state is very special not only because we may be
from the results established in I: it also lies at the intersec
of our two sets of formulas regarding the spherical and pa
bolic stationary states, respectively. We have pointed out
low-frequency behavior of the linear response from
ground state in the length gauge, both in coordinate and
mentum representations. An analysis of the high-freque
limit of the linear response has been finally made in
coordinate space and velocity gauge.

The above-presented study of the linear response in
EDA is extensive albeit not complete. For instance, we h
not dealt with the Sturmian expansions of the LRV’s whi
have been established in Refs.@7,8# only for spherical states
unlm& in coordinate space. Neither have we derived
LRV’s associated to the Coulomb scattering waves of wh
only the velocity-gauge vector has been reported in Ref.@6#.
Nevertheless, both topics deserve special analysis.

We stress that Sturmian series of the LRV’s for spheri
states in momentum space, as well as for parabolic state
both the position and momentum representations, are st
-
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be explored. In spite of their noncompact character, s
expansions are expected to be efficient in numerical calc
tions. As a related matter, we mention two recent pap
dealing with the series expansion of the first-order Dir
CGF in coordinate space in terms of relativistic Coulom
Sturmians @52,53#.The obtained formulas are applied
evaluate relativistic effects on the static electric polarizabi
in the ground state@52# and on two-photon transitions from
the ground state towards low-lying excited atomic sta
@53#.

To conclude, the LRV’s for one electron in a pure Co
lomb field are basic analytic tools in atomic physics. A
pointed out in the Introduction, their compact expressions
contour integrals considerably simplify the evaluation of t
two-photon amplitudes@13–15#. In addition, they are usefu
in the study of laser-assisted processes like photon-atom
teractions or electron-atom collisions.
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APPENDIX A: FORMULAS CONNECTED WITH THE
LINEAR RESPONSE IN COORDINATE SPACE

We recall that any complex vectorv can be decompose
with respect to the orthonormal basis

x̂215221/2~ x̂2 i ŷ!, x̂5 ẑ, x̂152221/2~ x̂1 i ŷ!,
~A1!

as

v5 (
m521

1

vmx̂m , ~A2!

wherevm are its contravariant spherical components:

v215221/2~vx1 ivy!, v05vz, v152221/2~vx2 ivy!.
~A3!

For instance, the decomposition~A2! of the vector spherica
harmonics reads

Vl jm~ r̂!5 (
m521

1

^ l m2m ,1mu l1, jm&Yl m2m~ r̂!x̂m .

~A4!

It is indispensable to write down two integral represen
tions of the Kummer hypergeometric function1F1 that are
valid only in the special case when it is proportional to
Laguerre polynomial:

1F1~a;c;y!52
1

2p i

G~c!G~12a!

G~c2a!

3E
1

~01 !

du~2u!a21~12u!c2a21eyu
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@Re~c2a!.0, a nonpositive integer#

~A5!

and

1F1~a;c;y!5~12x!2aS 2
1

2p i DG~c!G~12a!

G~c2a!

3E
1

~01 !

dt~2t !a21~12t !c2a21

3S 12
x

x21
t D 2c

expS yt

12x1xtD
S Re~c2a!.0, a nonpositive integer,

xÞ1, argU x

x21U,p D . ~A6!

Equation~A6! is obtained from Eq.~A5! by a change of the
variable of integration,

u5
t

12x1xt
~xÞ1!, ~A7!

which introduces the redundant parameterx.
We mention the finite expansions of the generalized

pergeometric functions1FH and 2FH in terms of Humbert
functionsF1:

1FH~a;b,a1 ,c1 ;c;x,x8,y,z!

5 (
n850

`

(
n150

` ~a!n81n1
~a1!n81n1

~c!n81n1
~c1!n1

~x8!n8zn1

n8!n1!

3F1~a1n81n1 ,b1n8,c1n81n1 ;x,y!

~A8!

and

2FH~a;b,a1 ,a2 ,c1 ,c2 ;c;x,x8,y,z1 ,z2!

5 (
n850

`

(
n150

`

(
n250

` ~a!n81n11n2
~a1!n1

~a2!n2

~c!n81n11n2
~c1!n1

~c2!n2

3~a11a21n11n2!n8

~x8!n8z1
n1z2

n2

n8!n1!n2!

3F1~a1n81n11n2 ,b1n8,c1n81n11n2 ;x,y!.

~A9!

In Eqs.~A8! and ~A9!, a1 anda2 are nonpositive integers.
A pair of finite expansions which is alternative to th

written as Eq.~A6! in Ref. @8# can be found by combining
two recurrence relations between contiguous Kummer hy
geometric functions†Ref. @32#, p. 254, Eqs.~4! and ~5!‡:
-

r-

rRnl~r !5~2kn!1/2
1

@2~ l 1q!11#! F ~n1 l !!

~n2 l 11!!2nG1/2

3exp~2knr !~2knr ! l 1q (
s521

1

en,l
~q,s!

31F1„l 1q111s2n;2~ l 1q!12;2knr …

~q51, if l 50, and q51,21 if l .0!.

~A10!

The coefficientsen,l
(q,s) are listed in Table I.

APPENDIX B: FORMULAS CONNECTED WITH THE
LINEAR RESPONSE IN MOMENTUM SPACE

We recall the expressions in terms of hypergeome
functions of~1! a spherical Bessel function,

j l~z!5
l !

~2l 11!!
eiz~2z! l

1F1~ l 11;2l 12;22iz!

~ l 50,1,2,3, . . . !, ~B1!

~2! a Jacobi polynomial,

Pl
~a,b!~w!5S l 1a

a D S 11w

2 D l

2F1S 2 l ,2 l 2b;a11;
w21

w11D ,

~B2!

and ~3! a Gegenbauer polynomial@54#,

Cn
l~w!5

~2l!n

n! 2F1S 2n,n12l;l1
1

2
;
1

2
~12w! D .

~B3!

The following infinite integrals proved to be necessary. Fi
@55#,

E
0

`

dye2lyyn
1F1~a;c;my!5

G~n11!

ln11 2F1S a,n11;c;
m

l D
@Re~l!.uRe~m!u, Re~n!.21,

Re~c2a!.0, aÞ1,2,3, . . . ]. ~B4!

Second, consider

Jc21
~s,0!~l;a8,a;m8,m!

[E
0

`

dye2lyyc211s
1F1~a8;c;m8y! 1F1~a;c;my!

@s50,1; Re~c!.0, Re~c2a!.0#. ~B5!

In Eq. ~B5!, a8 and/ora are nonpositive integers: Re(l).0
if a8 anda are both integers, Re(l2m).0 if only a8 is an
integer, and Re(l2m8).0 if only a is an integer. We note
the expression
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Jc21
~0,0!~l;a8,a;m8,m!

5G~c!la1a82c~l2m8!2a8~l2m!2a

32F1S a8,a;c;
m8m

~l2m8!~l2m!
D . ~B6!

Then, a recurrence relation between contiguous Kummer
pergeometric functions†Ref. @32#, p. 254, Eq.~2!‡ yields the
identity

Jc21
~1,0!~l;a8,a;m8,m!5

1

m
@2~c2a!Jc21

~0,0!~l;a8,a21;m8,m!

1~c22a!Jc21
~0,0!~l;a8,a;m8,m!

1aJc21
~0,0!~l;a8,a11;m8,m!#. ~B7!

Third, Hankel’s formula@56# leads to the integral@57#

E
0

`

dye2lyy~c21!/21nJc21@2~my!1/2#

5~c!nm~c21!/2l2~c1n!expS 2
m

l D 1F1S 2n;c;
m

l D
@Re~l!.0, Re~m!.0, Re~c!.0, n50,1,2,3, . . . #.

~B8!

In Eq. ~B8!, Jn is a Bessel function of the first kind.
A prerequisite for evaluating the Fourier transform of

energy eigenfunction or of a LRV in parabolic coordinates
the expansion of a plane wave into cylindrical waves:

expS i

\
p•rD52pexpS i

\
pzzD

3 (
m52`

`

i mJmS 1

\
prr DFm~ w̃ !Fm* ~w!.

~B9!

In Eq. ~B9!, r,w,z, andpr ,w̃ ,pz are the cylindrical coordi-
nates in position and momentum space, respectively.Fm(w)
is a Fourier function~4.2!. Equation~B9! originates in the
Laurent series of the generating function of the Bessel c
ficients @58#.
y-

s

f-

Remark that Eq.~A5! can be retrieved by confluence from
an appropriate integral representation of a Gauss hyper
metric function@59#:

2F1~a,b;c;x!

52
1

2p i

G~c!G~12a!

G~c2a!

3E
1

~01 !

du~2u!a21~12u!c2a21~12xu!2b

@Re~c2a!.0, a nonpositive integer#. ~B10!

We also recall the definition of a Lauricella hypergeomet
function FD with n variables@60#,

FD~a;b1 , . . . ,bn ;c;x1 , . . . ,xn!

5
G~c!

G~a!G~c2a!

2 ie2 ipa

2sin~pa!
E

1

~01 !

3drra21~12r!c2a21~12x1r!2b1
•••~12xnr!2bn

@Re~c2a!.0; aÞ1,2,3, . . . ;

uarg~2xp!u<p, p51, . . . ,n], ~B11!

as well as its multiple ascending power series,

FD~a;b1 , . . . ,bn ;c;x1 , . . . ,xn!

5 (
n150

`

••• (
nn50

` ~a!n11•••1nn

~c!n11•••1nn

3
~b1!n1

•••~bn!nn

n1! •••nn!
x1

n1
•••xn

nn

~ uxpu,1, p51, . . . ,n!.
~B12!

Notice that in the particular casesn51 andn52 the Lauri-
cella functionFD reduces to the Gauss function2F1 and the
Appell functionF1, respectively.

It is worth writing down the finite expansion of the gen
eralized hypergeometric function1FE @34# in terms of Ap-
pell functionsF1:
1FE~a;b,a1 ,b1 ,c1 ;c;x,x8,x9,z!5 (
n850

`

(
n150

` ~a!n81n1
~a1!n81n1

~b1!n1

~c!n81n1
~c1!n1

~x8!n8zn1

~n8!!n1!
F1~a1n81n1 ;b,b1n1 ;c1n81n1 ;x,x9!

~a1 nonpositive integer,x8Þx9, x8Þ1, x9Þ1!. ~B13!
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We finally introduce a new generalized hypergeometric functionFF , with six parameters and seven variables, defined a
contour integral:

FF~a;b;a8,b8;c8;c;x1 ,x2 ,y1 ,y2 ,y18 ,y28 ,z!

[
G~c!

G~a!G~c2a!

2 ie2 ipa

2sin~pa!
E

1

~01 !

drra21~12r!c2a21@~12x1r!~12x2r!#2b@~12y1r!~12y2r!#2a8

3@~12y18r!~12y28r!#2b8
2F1S a8,b8;c8;

2z2r2

~12y1r!~12y2r!~12y18r!~12y28r!
D

@Re~c2a!.0; aÞ1,2,3, . . . ; a8, b8 nonpositive integers#. ~B14!

Making use of the power series expansion of the Gauss function in the integrand on the right-hand side of Eq.~B14!, we find
the finite expansion of the functionFF in terms of Lauricella functionsFD of six variables:

FF~a;b;a8,b8;c8;c;x1 ,x2 ,y1 ,y2 ,y18 ,y28 ,z!

5 (
m50

`
~a!2m

~c!2m

~a8!m~b8!m

~c8!m m!
~2z2!mFD~a12m;b,b,a81m,a81m,b81m,b81m;c12m;x1 ,x2 ,y1 ,y2 ,y18 ,y28!. ~B15!

In this paper we contemplate only the case in whicha8 andb8 are nonpositive integers. According to Eqs.~B15! and~B12!,
such a functionFF is a finite quintuple sum of Appell functionsF1:

FF~a;b;a8,b8;c8;c;x1 ,x2 ,y1 ,y2 ,y18 ,y28 ,z!

5 (
m50

`

(
n150

`

(
n250

`

(
n1850

`

(
n2850

` ~a!2m1n11n21n
181n

28

~c!2m1n11n21n
181n

28

~a8!m1n1
~a8!m1n2

~a8!mn1!n2!

~b8!m1n
18
~b8!m1n

28

~b8!m n8!n9!

3
1

~c8!m m!
y1

n1y2
n2~y18!n18~y28!n28~2z2!mF1~a12m1n11n21n181n28 ;b,b;c12m1n11n21n181n28 ;x1 ,x2!.

~B16!
s

ys
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interaction Hamiltonian in the Poincare´ gauge, Eq.~2.7! of I
subject to the gauge transformation~4.7! of I, and of the trun-
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@57# A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricom
Higher Transcendental Functions~Ref. @32#!, Vol. 1. See p.
272, Eq.~5!.

@58# Reference@56#. See p. 14, Eq.~1!.
@59# Reference@55#. See p. 501, Eq.~e.3!.
@60# P. Appell and J. Kampe´ de Fériet, Fonctions Hyper-
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