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Linear response of a nonrelativistic hydrogenlike atom to a single-mode radiation field.
Il. Electric dipole approximation: General formalism
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The interaction of a low-intensity laser field with a nonrelativistic one-electron atom is considered to the first
order of perturbation theory and in the electric dipole approximation. The radiation field is turned on adiabati-
cally modifying the initial unperturbed atomic state, which is either an angular-momentum eigénktater
a Stark statdnn,m). The first-order correction to the wave function is expressed both in the length and
velocity gauges in terms of a vector function called the linear-response vector and depending on the field-free
energy eigenstate. We derive in a unifying manner the linear-response vectors in the position representation, as
closed-form contour integrals, starting from a unique generating function built up with the Coulomb Green
function. The linear-response vectors are then evaluated in momentum space via a Fourier transformation: they
are obtained as integral representations and also in explicit form, as generalized hypergeometric functions.
With reference to the static limit, we complement earlier results and find the reduced linear-response vectors in
momentum space, as Fourier transforms of their coordinate-representation counterparts. The low-frequency
behavior of the length-gauge first-order correction to the ground-state wave function is established in coordi-
nate as well as in momentum space. We finally point out the high-frequency limit of the linear response in the
velocity gauge[S1050-294{®7)03511-7

PACS numbgs): 32.80—t, 42.50.Ct, 03.65-w

I. INTRODUCTION Inlm) state, as well as the Coulomb Sturmian-function ex-
pansions of the LRV’s in both gauges mentioned ab@je
In this work we resume the problem of the linear responsén addition, starting from the LRV’s for a spherical state
of a nonrelativistic hydrogenic atom to a classical single-|nim), we have succeeded in deriving those for a parabolic
mode radiation field in theelectric dipole approximation state|nn,m) by an operator method that makes explicit
(EDA). An account of the physical system has been given iruse of the relation between such states. The same idea has
our preceding papefrl], which will be referred to in the been applied in the static limit. Unlike our method in Ref.
following as I. Although the basics will not be repeated here[8], it is precisely the relation between spherical and para-
we mention that an important issue which determines théolic stationary states that has been exploited by Florescu
extent of the topic is the choice of the initial atomic state. and P#agu [9] in their independent derivation of the
Beyond all question, our survey of previous work beginsvelocity-gauge first-order correction to a Stark s{ate,m).
with the classic paper written by Podolsky in the early yearsAlong Podolsky’s line of argument, by using appropriate
of quantum mechanid®]: on the assumption that the atom boundary conditions, @apeanu and Floresc{i10] have
is initially in its ground state, he calculated the Sturmian-solved the inhomogeneous differential equations pertaining
function expansion of the first-order perturbed wave functiorto the velocity-gauge LRV associated with an arbitrary
in the velocity gauge. Interest in this problem has been refnim) state. Furthermore, the same method has been em-
vived by the outstanding result of Luban, Nudler, and Freungloyed by Florescu, Halasz, and Marinegéu] to evaluate
[3], who obtained the same correction in closed form. Flo-n the velocity gauge the quadratic atomic response to a uni-
rescu and Mariari4] made use thereafter of the Coulomb form harmonic electric field, from a stationary spherical
Green function(CGF to get compact solutions also in the state, with emphasis on the ground-state case.
case of the first excitethIm) states(with n=2 andn=3). Meanwhile, most of the results enumerated above have
Besides, we have introduced in this preliminary work thebeen applied to physical problems especially by Florescu and
important concept of linear-response vectbRV) associ- co-workers. The importance of the LRV’s as intermediates
ated to a given unperturbed energy eigenfunction. We haveor calculating in the EDA the two-photon transition ampli-
subsequently reported a closed-form solution in the velocityudes of an electron in the Coulomb field of a fixed nucleus
gauge for an arbitrarynim) state (spherical bound state justifies the following brief overview. The invariant ampli-
evaluating also its static lim[6]. Florescu 6] has employed tudes for 5—ns and 1s—nd two-photon absorption re-
this general result to find the LRV's corresponding in theported in Ref[4] have been evaluated and analyzed numeri-
velocity gauge to the Coulomb scattering waves by means afally by Florescu, P@agu, and Stoican[12]. In the
their partial-wave series. Sturmian-function expansions ofmeantime, employing the velocity-gauge LRV's for the in-
the linear-response corrections to both negative- andoming Coulomb scattering wave derived in Ri], Flo-
positive-energy spherical eigenstates have then been reportegscu and Djam@13] have calculated the matrix element for
in the length gauge by Maquet, Martin, andi¥@rd[7]. We  two-photon bremsstrahlung in the Coulomb field. It is worth
have presented in compact form the length-gauge LRV for stressing that by use of the LRV method, we have estab-
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lished general formulas for the amplitudes of bound-boundrhe action of the magnetic field is systematically ignored
two-photon transitions between spherical states, as well 0]

between parabolic ong¢44]. Special attention has been paid

to photon scattering from the atomic ground state. We have B=0. (2.2
also obtained and discussed the matrix element of a bound- . . )
free two-photon transition from an arbitrarylm) state[15]. S shown by Eq(2.1), & is the amplitude of the laser field
Quite recently, Yakhontov and Jungmafib6] have used if and only if its polarization is lineare* = €. However, in all
linear-response functions to evaluate dynamic polarizabilitie§ases,3&; is the time average of the squared electric field
in hydrogenicns states. strength.

We conclude this overview by mentioning two applica- There are two usual choices of the electromagnetic poten-
tions of a different kind. The first one refers to the use bytials from which the field<2.1) and (2.2) derive. They are
Cionga and Florescfil7] of the velocity-gauge LRV for a well known as[21] (a) the length(Goppert-Mayef gauge,
[nIm) state in calculating the cross section of the one-photon 1
excitation of atomic hydrogen by electron impact with fixed , __= s -~ ; ol
momentum transfer. In the second one, Cionga, Florescu, erny= 2€O[exp( lot)(e-n)+expiot)(e"-n],
Maquet, and Tab [18] evaluate the cross section of the
laser-assisted photoeffect at moderate intensities by employ-
ing the velocity-gauge LRV’s associated to the ground stat
and to the Coulomb scattering waves.

A'=0, (2.39

@nd (b) the velocity gauge,

The present paper is intended as a comprehensive, but by c ) )
no means exhaustive treatment of the LRV'’s, based on the ®=0, A(t)= 2.—50[exp(—iwt)e— expiwt)€*].
. . )
consistent use of the CGF, via the already employed gener- (2.30)

ating functionF of the linear respongd 9]. The notations of

| and, to a large extent, those introduced in R§%8] are  The gauge transformation from E@.3b to Eq. (2.3 has
preserved. In Sec. Il we revisit the LRV’s in terms of which the generating function

the first-order perturbed wave functions are expressed both in

the length and velocity gauges. In Secs. Ill and IV, we de- c _ A _ -

scribe our parallel three-step derivations of the LRV's asso- Xo(l:1)= = 5—Elexpl—iwt)(e-1) —expliwt)(€” - 1)].
ciated in coordinate space to spherical and parabolic station- (2.4
ary states, respectively, whose common starting point is the

generating functiorf. The LRV’s are then evaluated also in The field-atom interaction Hamiltonian in the length gauge is
momentum space as Fourier transforms of their integral rep-

resentations in coordinate space. The momentum-space HY=eE(t)r, (2.59
LRV’s are first written as closed-form contour integrals and ) ) )
then explicitly in terms of generalized hypergeometric func-While in the velocity gauge, after removing tw€ term, it
tions with several parameters and variables. Sections V an@ads

VI are devoted to the evaluation of the momentum-space

reduced LRV'’s, by Fourier transformation, for both spherical Hﬁ,l)— € A(t)-P. (2.5b

and parabolic energy eigenstates. In Sec. VII the general for- meC

mulas we have obtained are specialized to the atomic ground ) o )

state. Moreover, we point out the low-frequency behavior ofR€call that in the EDA the radiation gauge goes into the
the linear response from the ground state in the length gaug¥elocity gauge, while the Poincassd any multipolar gauge
both in coordinate and momentum representations. The vé€duces to the length gaug@2]. _ o
locity gauge is chosen in Sec. VIII to discuss the high- Th(ﬂT electrlc. fleld-(2.1) is supposed to increase adiabati-
frequency limit of the linear response in coordinate space fofally in the time interval {,0). In the remote past
any energy eigenstate. We afterwards summarize the resufts— — ). the state of the electron is a stationary one:

and conclude by emphasizing briefly their relevance. Appen- .

dixes A _and B cpllect some formulas negded for deriving or VO (r,t)= exp{ _ I_Ent> un(r). (2.6
expressing the linear response in coordinate and momentum f

representation, respectively.
P P Y The energy eigenfunctiony(r), associated to theth Bohr

level E,,, describes in coordinate space either an angular-
ll. LINEAR-RESPONSE WAVE FUNCTIONS REVISITED momentum eigenstate]N)=|nlm) or a Stark state

i ) IN)=|nngm). In the latter case), denotes the electric quan-
In the EDA the laser field acts on the atom as a uniformy,, number. defined as the difference

harmonic electric field that is in general elliptically polar-
ized: Ne=nNs—n,, (2.7

1 wheren, andn,, are the parabolic quantum numbers fulfill-
E()= 5¢{exp —ioetexpiot) &} (£>0). ing the condition
(2.0 ng+n,+[m[+1=n. (2.8
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According to Dirac’s perturbation theory, the first-order cor- - o [ 3 i
rections to the wave functiof2.6) in the length and velocity on(Q;p)=(27h)~ J d xex;{ 7P f) on( ;)
gauge read fot=0 (2.14a

g (@; __E _i_E and
iy (o t) = 2eé’oex 7 nt

VVN(Q;p)E(Zwﬁ)’wJ d3xex;{ - ;,L—p- r)WN(Q;r).
(2.14b

X[exp(—iwt)e vy(Qq;r)

+expliot) e -on(Q;n]  (2.93
N 2 . . .
Further, we introduce the kets whose representatives in co-
ordinate space are the LRVW(&.10 and in momentum space

and, respectively,
pectively the LRV’s (2.14), namely,

e I
vy N(w;r,t)z_mgoem(_ hE”t> [on(©2)) =~ G(Q)RIN) (2.153

R and
X[exp(—iwt)e Wy(Qq;r)
. [Wn(0))=—G(Q)P|N). (2.15B
—expliot) e -wy(Qsy;r)]. (2.9b
G(Q) is thereupon the resolvent of the Coulomb Hamil-
The vector functions occurring in Eq&.9), which we call ~ tonian,
linear-response vectorsre defined by means of the Schro

_ (01
dinger CGF in position representatif23] as G(Q)=(QI=H")™, (2.16

while R and P denote the position vector and momentum
UN(Q;f)E—f A3 G(Q:r,r)r'uy(r')  (2.108 operators of the electron. The resolvéntl6), with | the unit

operator, is defined for any complex valfe other than an

energy eigenvalue. It has the spectral resolution

and
N"){N’
o(o)-3 NI (2.17

WN(Q;r)E—f d3x'G(Q;r,r" )P up(r'). (2.10p N Q—Ey

in terms of a complete orthonormal set of energy eigenvec-

The parameter§); and (), are associated to theth Bohr  tors|N’) [24]. We recall that the LRV'$2.15 are connected
level: by the identity[25]

_ h
M =Eptho+i0, Q=E,~fio. (211 W|WN(Q))=R|N>+(Q—En)|vN(Q)>, (2.18

We write out the gauge transformation connecting the cor
rections(2.99 and(2.9b which is induced by the generating
function (2.4):

which results in the gauge transformatih12).
The vector|vy(Q)) has a singular part when the param-
eter() approaches the Bohr levEl,:

e&
(1) )= . 0 i p
V) N ) =Yy n(wirt) — o [exp —iot)(eT) PM|oy(Q))=— 0-E. PMR|N). (2.19
—expliot)(e - N](r,1). (212  InEq.(2.19, P" denotes the orthogonal projection operator

onto thenth energy eigensubspatg,
Owing to Eq.(Al) of I, the LRV's (2.10 satisfy the
following inhomogeneous differential equations: p= S INY(N'| (2.20
N’;(n"=n)

(HO =)oy (Q;r)=ruy(r) (2.133 _ _
Note that the only stationary state for which the secular term

(2.19 vanishes is the atomic ground stat00). For any
other statgN) the LRV (2.153 includes a distinct regular
part,

and

(HO—Q)wy(Q;r)=Puy(r), (2.13n
lo ()= (1—P™) oy (Q)), (2.29)
whereH© is the unperturbed Coulomb Hamiltonian. Obvi-
ously, the LRV’s in momentum representation are the Foubelonging to the orthogonal complemeit of the eigensub-
rier transforms of those in the coordinate space: spaceld, . We call its limit for Q =E,, areducedLRV:



56 LINEAR RESPONSEOF A ... . 1. ... 3991

[o(Ep)) = lim (1=P™)|uy(Q)). (2.22 UON;DIY (6, ¢)
O—E
" n\! AU(,N;T)
_| " —1/ ) ) L] H
From Eq.(2.18 written in the form _< i ) (4m) " Cin, '1""'5%1' -+ a4, o
q=
(3.3

f
[ wy(©))= (1= P)RIN) + (0~ Ey)[p{()), | .
e Taking note of the definition6A9) of | and (3.1), we get the
(223 parallel identity

we get an alternative formula of a reduced LRV: Fim(Q,\:r,6,0)

dFQ,q\;r)

hooo A
lon(En))= im. m|WN(Q)>|Q:En- (2.24 :(i_> (4m) llzclm,il T 39, - q;,

gq=0

To write thenondivergenpart {) {(w;r,t) of the length- 34

gauge correction? (] \(w;r,t), one should only replace in Combined with Eqs(A14)—(A16) of I, Eq. (3.4) yields the

Eqg. (2.99 the LRV vy (Q;r) by its regular termoy(Q;r) integral representation
[26]. Just notice that the reduced LRV'’s in coordinate space

can be expressed in terms of the corresponding reduced CGF T el
[27] as flm(ka,fﬁ,(P):Z—ezf Ylm(0,¢>)m
(0+) -1- I+1
v,’\,(En;r)z—J d3' GM(E,;r,r')r'uy(r’). (2.29 XL dpp™ " T[F(X,0\;p)]
The reduced LRV’$2.25 have been evaluated for spherical Xexp{ —g(X Oh'p)l r _ (3.5
states in Ref[5] and for parabolic ones in Ref8]. We T ra

complement our previous results by deriving here their coun- ) ,
terparts in momentum space: The second step aims to employ E§.5 for calculating
the function

5,’\‘(En;p)z(27rh)_3/2f d3xeXp< - ;—lp- r)v,’\](En ). Ga(;r,60,0)

(2.29 1
E—f a3’ G(Q;r,r")—exp(— knr ) (2knr )
I1l. LINEAR-RESPONSE VECTORS FOR SPHERICAL '
STATIONARY STATES X F1(1+1—-n+8;214+2; 26, )Y m(60",0")
A. Position representation (s integer, n—I—s—1=0), (3.6
We present our three-step method of deriving the LRV’s
Unim(€2;r) andw,,(Q2;r) associated to an arbitrary angular- With
momentum eigenstai@lm). The only prerequisite analytic
tool is the generating function of the linear response, _ i 3.7
F(Q,q,\;r), defined by Egs(A9) and (A10) of I. = ha '
The first step consists of evaluating the integral
In Eq. (3.7) a is the scaled Bohr radius, E(R.10 of I. In
fact, the Kummer functionF; in Eq. (3.6) is proportional to
a Laguerre polynomial. By using the integral representation
(A5) of the Kummer hypergeometric function and the defi-
nition (3.1), we get the expression

ﬁm(Q,A;r,a,go)E—f d3x' G(Q;r,rUON;r")
X(r’)IYIm(G,1¢,)! (31)

built up with the homogeneous harmonic polynomial

ggSI?n(Q;l’,H,(p):(ZKny( _ 1 )(2|+1)!(n—|_s)!

Yim(6,0)=(4m) YCin | XX - 27| (ntl1-9)!
(1=0,1,2,3...; m=—1I,—1+1,...)). X ) du(—u) ~"ts(1—u)'tn-s
(3.2 X Fim(Q,(1=2Whk,;r,0,0). (3.8

The coefficient<C,, ; .. j in Eq.(3.2) are totally symmet-  Taking into account Eq(3.5), we notice that Eq(3.8) is a
ric with respect to the Cartesian indices and have vanishingouble contour integral that can be reduced to a single one
traces. From EqgA10) of | and (3.2) it follows that by performing the integralA6):
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59 (ir g 4nzTY , jeima with
nlm( 1r! (P)_ Zez Im( !(P) 28”(776.)
4n2p (3.10
(0+) Nondr Kne= N _ N _Kn: :
Xf dppTeX[(— Nz No,—Na,z
1 Nﬂ,’r Ta

XANR LN (26 1)
X Fi(l1+1-n+s;214+2;2k, 1), (3.9

n+r\

Grim( €21, 0,0) = T

n— 7_)nlls

=
e?l 2n

XDy

(n—=1-1-s=0).

According to Eq.(A8), the function;® occurring in Eq.

n+s—r 1r
ex;{ - 5)(2an)| Yim(6,¢)

l+1-7—-n+1+s—7l+1-n+s2+2;1+2—7 .-

The contour integral in E¢3.9) can be written in terms of
the generalized hypergeometric functie® with five pa-
rameters and four variabl¢&8]:

[+1—7
n—r (n+7-)2 n—r 4n
2n 2n(n—-7)" 1 K“r’n—rK”r
(3.1

while the coefficients!%> andd{%® are listed in Ref[8], in

(3.11) reduces to a finite double sum of Humbert functionsTables | and VI, respect|ve|y_

@, [29].

In order to simplify the presentation of complicated simi-

As a third step, the finite expansions of the vectorslar formulas written in the length and velocity gauges, we

MUnm(r,8,¢) and Pu,m(r,0,¢) associated to anynim)

adopt in the remainder of the paper the following conven-

eigenstatg 30] enable us to express the spherical compo+ion: after writing explicitly an equation in the length gauge,
nents (A3) of the LRV’s in both gauges in terms of func- we specify only the relative differences of the corresponding

tions (3.6):
Unim“(21,0,0)

2 1/2
(<]

(n+hHr 2

(n—=1-=1)!12n

Mgl | Y51 +9 m—p, 1ufl+q1,1m)
21+1 [2(I+qg)+1]!
X 2 G s qm (i1, 0,0) (u=—1,0,1)
(3.123
and
Waim“(€;1,6,¢)
i 2\Y21  (n+l)r M2
:%m‘-"ZE“'(K_n) (n—1—1)12n q:%l(_q)
Mgl | 20149 m—p, 1xfl +q1,1m)
21+1 [2(I+q)+1]!
X 2 d<q3> Gl s qm (i1, 0,0) (u=-1,0,1).
(3.12b
The symbol\; , 4, takes on the values
—(I+1), q=1
)\|+q’|: I, q:—l (3.13

expression in the velocity gauge and replace by an ellipsis
the identical factors and terms. With this convention, Eq.
(3.12b is abbreviated to

Whim; Hr,0,0)=+ me|2En|

=Zl 1 dg?IVS)' o

By insertion of Eq.(3.9) into Eqs.(3.12, we recover the
decomposition formula of the LRV’8,,, andw,,,, in terms
of two vector spherical harmonidg\4):

Uam(Qi1)= > (=0
q=1-1
INsqal |
z|++q1 At Qg 1ol
(3.14a
and
i
Wam(Qin)=3me 2 (—0)
q=1-1
INigqul |2
2|:qu Bai1+q( 0V qim(D).
(3.14h
Notice that, by virtue of the identity
ViodF)=—(4m) " Y%, (3.19

in the special cask=0 Eqgs.(3.14 are simply
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Cey -12 r\r
Unoo({2;1) = (4) Anoa(£2;1)r (3163 vnlm(Q = 21: 1 (—a)

and N IS
I+q,l D)V
i s X 21+1 nII+q( p) I+q|m(p)
Wioo( ;1) = - m(477) Boor(Q:r)r.  (3.160
n00! e n01 (3.203
The scalar radial functions in Eq$3.14 and (3.16 are d
found as closed-form contour integrals: an
Anii+q(Q51) ~ i
m Wnin(Qip)=me 3 (—0)
1 24 )12 4nt [ (n+D) V2 a=1-1
_2|E |( “n) [2(+q)+1]![(n—1—1)!2n Nl | Y2
ielTT 04 STl By i144(5P)Viiqim(P).
X 2 chi¥oo—=]| dop "
=22 2sin(77) J1 (3.20n
N 1r
><ex;< : 732 NSNS (20, 1) A For =0, Egs.(3.20 read
I’lT
X +q+1-n+s;2(l+q)+2; . ~ 12 -
Falrariznts2lro+22a,.n (173 oo 2iP) = (4m) Yoo ip)p (321
and
and

Boito( i1 =2/Egl--+ X dpf¥. (3170
' Whoo Q5 p) = me<4w> V2B 0i(Q;p)p.  (3.21B

Obviously, in Egs.(3.17, g=1 for |=0 andgq=1,—1 for

1>0. On the other hand, substituting E@.11) into Egs.  The scalar factors in Eq$3.20 and (3.21) include the ra-
(3.12, we find the explicit formulas of the scalar radial fac- gja| integrals

tors Ay 4q(;r) and Byy14(2;r) which have been re-

ported before[31]. These include several functiongb,,,

each of them expressible as a finite double sum of Humbert 7 Qp)=(—i)*a °°d 2
functions®,. Owing to the well-known identity nil+q(€1:P)=(=1) (27h)¥2) 0 rr

A - Nqul\ ! . p

rYlm(r):q:;‘_l (_q) 2|+q1 VI+qu(r) (3.18 ><Jl+q %r AnIH—q(Q;r) (3.223

Eq. (2.18, when written for anlm) eigenstate, reduces to gnq
the relationship

Bhii+q(Q;1)=rRp(r) + (Q—Ep)Apjj+o(Q;r) ~ ) g AT (™
e | I Buii+o(Q:p)= (1) quodffz

(q=1 for I=0, g=1,—1 for 1>0). (3.19
. p

Note that Eqs(3.19 have been checked by a direct method XJ'“‘(%r)Bn a4 (3.22D
which employs the integral representatid3sl?). By using
some basic properties of the Kummer functi@g], both
integrands have been written in a convenient form in terms
of the function;F,(1+1—n;21+2;2«, ,r). A tedious cal-
culation involving several integrations by parts has led us t
Egs.(3.19.

After substituting in Eqs(3.22) relation(B1) and the integral

representatlon$3 17, we carry out the radial integration
making use of Eqs(B5)—(B7). It is convenient to introduce
%he dimensionless vector

B. Momentum representation _ b (3.23

We evaluate the Fourier transforr&14) for an angular- ﬁKl

momentum eigenstatfN)=|nIm). Combining the expan-
sions(3.14) and(A4) with the spherical-wave expansion of a The scalar function$3.22 are finally obtained as contour
scalar plane wavg33], we get the following formulas: integrals:
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~ Orp)— 1 /1\Y2 1\32 1 7 (I+q+1)! [ (n+D)! 172 _i2ns2g I+q+1
Ao P ZSE T ) o dry 2 201+ @)+ 11 (n=1=1)12n] | (1+ 272)(n?— 2)
2 n-s I -5 iaimr
= n—-r 1-iv¢ e (0+)
(a,s) I+q—7
XSgZE:—l,lscn'l n+r (1+i7§ 2sin(w7) )1 dep

X[L=%(n,7,0)p] ™" I L=Xp(n, = 7,0)p] " FIF ISV 1—x(n, 7,0)p] 1AL

~ i2n72¢
[+g+1+s—n,l+qg+1+s;2(1+q)+2;

F
XZ 1 ’(1+72§2)(n2_T2)

p
X[l_xz(”v—T,é)p][l—xz(n,f,é“)p]) (3.24a

and
gn||+q(Qip)=2|En|' : 's=211 dEﬁ(S)- i (3.240

In Egs.(3.249 we have introduced the dimensionless variables

(1—ird)(n—7) (1+i70)(n—17)
A+icnmrs’ A= T gme

(3.29

Xl(n!Tig)E

The scalar functioné3.24) can be expressed in terms of a previously introdyGddigeneralized hypergeometric functigh ¢
with six parameters and four variables, as follows:

A Q)= 1 1\ 1\%”2 1 7 (I+q+1)! [ (n+1)! 1/2) —i2%n72¢ I+g+1
il +q( .p)—zlEnI m| \hxi) 4k 2 [20+ )+ 1 (n=1=D)12n] | (1+ 272 (n?- 2)
2 n—-s ; -5
~ n—-r 1-i7¢ _
(a,) o ~
ngzggl,lscn’l (n+7 1+i7¢ |+q+1_TlFE l[+g+1-7n—s—s,l+q+1+s—n,

i2°n72¢
(1+ 720 (n*~72)

l+q+1+s,2(l+q)+2:1+q+2—7x(N,7,0),Xa(N, = 7,0) , Xp(N, 7,0), ) (3.263

and fm(Q:Bv)\ngvn!(P)

z—f A3 G(Q;r, 1)U BZ Nt ) (€ p")MP2d (o)

Boisg(Qip)=2|Ey--- > d9®.... (3.26b |
st (m integed, (4.1)

Notice that in Eqs(3.26) the parameters+q+1+s—n are  Where we have denoted

nonpositive integers, so that, according to E§13), each

function ;F¢ reduces to a finite double sum of Appell func- O (e)=(27) Y2expime). (4.2
tions F4.

The integrand in Eqi4.1) includes a homogeneous harmonic

olynomial in the Cartesian variablggs=x andx,=y,
IV. LINEAR-RESPONSE VECTORS FOR PARABOLIC poly 2 2=y

STATIONARY STATES ol12 1
A. Position representation (&n) " Pnle)=(2m) Dm’jl "‘jlm\le. ' 'lem\' 4.3

The derivation of the LRV'svnnem(Q;r) andwnnem(Q;r)
associated to a parabolic stgten,m) parallels that pre- The coefficientsD in Eq. (4.3 are totally symmetric with
sented in Sec. Ill for the case of a spherical stalen). As  respect to the Cartesian indices and their contractions are
a first step, we calculate the integral zero. In addition, they vanish if at least one of the Cartesian



56 LINEAR RESPONSEOF A ... . 1. ... 3995

indices is equal to three. Upon use of the funciiéi0) of I, After substituting the integralA14) of | into Eq. (4.5), we
Eq. (4.2 is equivalent to the identity exploit two properties of the function®15) and(A16) of |,

Ui Bz ;0 (Em) 2D (@)

" f(X,— BZN;p)=[F(X,0N+ B;p)F(X,0N— B;p) ]2

dmzd(g,n;r)

[m|
. -12n e b L (4.6)
(i) (27) Dm,Jl...J\mmqjl...(9q]_‘m‘ B} -
q=iBz
(449  and
Taking note of the definition§A9) of | and (4.1), we write
down the similar relation
BzZf(X,— B%\;p)+Xrg(X,— B \;p)
fm(Qiﬂ’)\’g”rIYQD) l
M FQ,q N0 =5 X[E9X0A+Bip)+ 7 9(X0A=Bip)], (47

£\ Iml
:<|_) (zw)ilIZXDm,jl,

< iml T )
O iy s

(4.5 in order to factor the integrand of the resulting integral:

Fo( QBN E )=i(g ym2g ( e f dpp” TH(X,0N+ B;p)]IM+D2exg —g(X,0\ + B; )i§
m\34,0,A, 6,7, ¢ 72 n m(PZSII‘(’TTT) pPp 1y P g(X,0, ’p27'a

4.9

><[f<><,0m—ﬂ;p>]<m'“”zexp[—g(x,o,\—ﬁ;p)z%g

Second, Eq(4.8) is employed to evaluate the integral
(S1.Sp) . 3,7 . ’ 1 ’ 2¢&r ry|m|/2 . . '
G Qiim, @)= = | I GUirr) = expl = sl ) (sa’¢ 7') A1~ ngt syl ml+ Lo )
><1F1(—n,7+sz;|m|+1;Kn77’)<13m(<p’) (s1,s; integers, n;—s,;=0, n,—s,=0). (4.9

Both Kummer hypergeometric functions in the integrand of @cP) are proportional to Laguerre polynomials. Applying for
each of them the integral representati{@®), we find

(ImH'(ng+1—sy)! (JmP)!(n +1—sz)!/ 1 )2 (0+) o )
(51.52) : = [m ¢ 7 _ - _ ng—1+sy/1 _+\Iml+ngs—s
Ongin, m 1:607:0) = (x0) (Im[+ng—s;)! (Im[+n,—sp)! | 27 L Q=D

(0+)
X f du(—u) M 121 —u)ME S E 1O (Uu-t Ak, (L—t— Uik, & 7, 0] (4.10
1

The structurg4.8) of the functionF,, allows us to factor in the triple contour integr@.10 two integrals of the typ€A6)
leading to the formula

4n?r iel™  r(o+) Nonlé+ny
(S1,S2) . _ —r 7,N 1-s1-5s) n—1+s;+sy, 2 [m|/2
Gng e Qim0 =— 5 Pul@)zgos | = dpp exp( N7 2a M N (o, £7)

X Fi(=ngts;m[+ 15k €)1 F1(—n,+ o5 m[+ 15k 7). (4.11)

We may express now the contour integral in E§11) in terms of a generalized hypergeometric functigh,, with seven
parameters and five variablE35]:
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n+r7\
2n

n— 7_)n—lml—l—sl—sz

2n

n+s;+s,— 7 1 &+ 1
(1,52) _ T R/ A T PN [
gn n, m(Q &)= ( exp{ r 2a )(anﬂ) (I)m((P)|m|+1_T

n—r
XZQ)H(|m|+1—7-;—n+sl+sz+1—7-,—n§+sl,—n,]+sz,|m|+1,|m|+1;|m|+2—7-;W,
(n+7? n-r 2n 2n
—m,?Kn(ﬁﬁ),EKn&EKnﬁ (ng=s,=0, n,—s,=0). (4.12

According to Eq.(A9), the function,® occurring in Eq.(4.12) reduces to a finite triple sum of Humbert functiobs.

The third step consists of employing the finite expansions of the veuhqggn(g, n,¢) and Punnem(g, 7,¢) associated to
any Stark staténnsm) [36]. They are used to express the spherical compor(@d®s of the corresponding LRV’s in both
gauges in terms of the functiot4.9):

nngn (030 = (— 1)1 272 Ki) 1/2[<|m—1m>!]2{(n§+|nmg|!)r!1$2: - mm_zo,M si (1_ ;5MM*S'M)
XLep G o (236 7,0) = (~ VMg ngon,)]  (n=-10,1 (4.133
and
Wi m “(Q31) = m2|En| 2 [<MM7’m| -1 (4.13D
In Egs.(4.13 we have used the parameter
M=|m—pu|—|m|. (4.14

The CoeffICIents:ﬁM ,'Y' Sf | andd("’I M, Sf | are listed in Ref[8], in Tables Il and Ill, respectively. The symbd« 7,n;~n,)

stands for the precedlng expressmn inside the same brackets with the quoted quantities interchanged. Substitution of the
integral representatiot.1l) into Eqgs.(4.13 yields the LRV’s associated to a Stark state as compact contour integrals:

1/2 | 11172
Vnn m.M(Q;I’):(—l)(MHM‘)/ZZ*‘M/Z(ZKn) 4n7t “n§+|m|) (n, +[mD! } D, (0
o™ 2[Edl [(jm—p|)! A ngn,l4n #
1 iel™™  [(o+)
(MMS) -7
X E 52_2( 5M M+5M) n, 2 sin rr) ), dpp
N.plé+ ~
xexp( -~ 52;’ N NG S &) I (=gt M= M+ 55 M= ] + L, £)
nT
X 1F(=n,+Mi|m=pul+ Lk ) — (= D*(é=pngon,) | (p=-1,0,1) (4.158
and
Wi pgn#(€251) = 2|E| 2 [d SRR (4.15H

Introducing finally Eq.(4.12 into Egs. (4.13, we find the explicit expressions of the LRV, m(2;€,7,¢) and
Wnn m(€2:€,7,9) [37]. For instance, the velocity-gauge LRV is
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Wnn m(Q; € m,0)= me(z n)ll2

7l (ngH M), +mDUY2 (1 g+
ngn,l4n T 2a

1
X 2 [ (— l)(MHM‘)/ZZ*\M/Z

uw=-1

1
(krgmlm Py (o) > X (1—§6Mms,m)

[(Im— )7 e

_ A n=Im-u|-1-s —n+s—r _
X nr g nrr —1 dMMS oyl Im—u|+1-7—n+s+l-7
2n 2n [m— [+ 21— 7] Nenylml 27H ’ :
~ —~ n—r
—nngM—M+s,—n,7+M,|m—,u|+1,|m—,u|+1;|m—,u|+2—r;—2n ,
(n+7)? n-r 2n n -
2n(n ’T) Kn(f‘l‘ 77) —r nfvEKnﬁ _(_1)#(§<_)771n§(_>n7]) Xy - (416)

Note that the LRV(4.16 includes several functiong®y,  coordinaten by applying termwise the integr&B8) to the
each of them expressible as a finite triple s(&8) of Hum-  finite ascending power expansion of the Kummer hypergeo-

bert functions®;. metric function with argumenk, .7 in Eq. (4.153. The in-
tegral(B7) is then employed to carry out the integration over
B. Momentum representation the third parabolic coordinaté. To evaluate the remaining

) finite sum mentioned above, we use the integral representa-
We have to evaluate the Fourier transforf@sl4) for a  tjon (B10) of the resulting Gauss functiosF,, which allows
Stark eigenstatgN)=|nn.m). We make use of the integral one to perform a binomial sum under the second contour
representation$4.15, performing the space integration in integral. Making use once again of E(10), we are left
parabolic coordinates. The cylindrical-wave expangiB8)  with a single contour integral. Two recurrence relations be-
of a plane wave allows one to carry out the integration ovetween contiguous Gauss hypergeometric functif®® fi-
the polar anglep. This is followed by an integration over the nally lead to the following result:

3 1/2
’Jnnem;“m;p>=(—i>m*ﬂ(—1)(1’2”'”"*“‘*<m+lm>lz*lm/2(2"”) om (h) dnr_[(ngt|mbi(n, +|m))!

2[E0l  (2mm)¥2 X) (Im—u])!| ngn,t4an
1 Iei'n'T (0+)
2 Ml - [m—u|—r7
X(8n7°¢,) D, (@)MEOM SZ ( 5M M+s, M)ZSIF(WT) dpp

1 1
X c“””\m\E E Vo 11— (vt ) IN NG o+ (vt ) (02— 72) (1= )}

X[(Nr,n) +(7{) (Nn,r)z]V§+Vﬂi(nierl)[Nfr,an,n"'(Tg)an,an,fr"'i8n7 sz]n((M7M+S)7V§
X[N_T,n./\fm-i-(T{)ZNHVT/\/n’_T—i8n72pgz]”n_m_”7/2F1(—n§+(M—m-i-s)-i— Ve,

—n,+M+v,;m—pu| +1;y(p))) —(=1D)*(é< n.nann)}. (4.173

Wonm“(Q;p) = 7 mez|En| <s_211d(”hg"”hl’j)ml”')' (4.17b

In Egs.(4.17), along with already known symbols we have used the dimensionless variable

(8n7°p¢,)?
[,/\/’, r,an,n'}_(Tg)an,ern,r]z_*' (8n72p§z)2

y(p)= (4.18
built up with the cylindrical components, and {, of the vector(3.23), as well as the four coefficientﬁvgyn:

Yoo=N—S, 1= —[N;=(M—M+s)], yp=—(n,—M), y1,=0. (4.19
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According to Eq.(B14), the vectorg4.17) can be written out in terms of theew generalized hypergeometric functiét

having the explicit expressiofB15). We get

1/2 3 | | 1/2
> .M(Q-p):(_i)m—u(_1)(1/2)[\m—/«tl—(m+|m)]2—|m/2(2K) 8m f anz [(n§+|m|)'(n”+|m|)'
ngm; 225 2[E)l (2a)¥2 X] (Jm—u])!| ngn,l4n
[z(n,7,0)]m 1
X (o) > E — S Ot
(n?= )1+ (7% Pmoul )2 om 5~ 2 MMM
n—7\""% ~ ! ! 1
(M,M,s) _ PN _ .
X|o— C”a”n"m'yézo V;O yV§V”|—|m_M|+1_TFF(|m pl+1—mn—s+1—(ve+v,);

—[n;—(M=M+s)—v.],—(n,

Xl(n!T!§)1X2(n!Tlg)vyl(n!T!Q!yZ(anig)ryl(nlTl

n— ’T) 2*2(V§+ V,7)

n+r

|m—,u,|+3—7'

—(n

yi(n,7,=9).y2(n, 7.~ ),2(n, 7,2))

and

Me2|Ey| - -

Fongn (0190~ 2| 3, ot

(4.200

In Egs. (4.20), besides using the variablés3.25, we have

introduced the variableg, which are determined by the con-

ditions

yl(n171§)+y2(n!71§)
_[(n=%+(n+D2[1- ()] -i8n7¢,
- (n2—2)[1+(70)?]

(4.213
and
Y1(n,7',§) y2(n!Tl§)=1- (421b
We have further denoted
8n
z(n,7,0)= T2 i (4.22

n?—r 1+(T§)2.

As shown by Eq(B16), any functionF entering Eqs(4.20
reduces to a finite quintuple sum of Appell functiofsg of
the variableq3.25.

Fe(m—ul+3—mn—s+1—(vgtv,);

M—v,);m—pu|+1;|m—pu|+2-7;

_Q!yZ(anv_g)lZ(n!Tlg))

—[n;—(M=M+s)—r],

n_lvl - Vn);|m_,u|+1;|m_,LL|+4_’T;Xl(n,T,g),Xz(n,T,g),yl(n,’T,{),yz(n,T,g),

)_

—1)#(gop,ngen,) (u=—1,0,1) (4.203

V. REDUCED LINEAR-RESPONSE VECTORS
FOR SPHERICAL STATIONARY STATES

A. Position representation

Owing to the identity(3.18), the divergent vecto(2.19
written for a statgnlm) has the structure

Nl |t
(n) ) — _ gl
PPoym(Qin=_ 2 (-a)| 571
XD An11+q( N Visqim(, (5.1
which for s states becomes
PMoo( Q1) = (47) 2D Anoy(Q:1)T. (5.2

In Egs. (5.1) and (5.2), the following singular radial func-
tions are involved:

3 [N =(N\pq)?Y?
2Kp O—-E,
(g=1 for I1=0; q=1,—1 for 1>0).

DA, 114q(Q51)= Rn,i+q(1)

(5.3

Taking the limit Q=E, of the identity(3.19, we find the
equation

Bai14+q(Enir) =rRp(r) +(Q—Ep)DAp i 14(Q;r).

(5.9

Substitution of Eqs(A10) and (5.3) into Eq. (5.4) provides
the formula
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N 1 [ (ntDr ]

BnlI+q(En'r)_(ZK”)m[Z(I+q)+1]![(n—|—1)!2n
: 3
X3;1(1_§5SO

3999

exp(— kpl)(2k,r)' 8

el%¥F1(1+g+1-n+s;2(1+q)+2;2«,r) (q=1 for 1=0; q=1,~1 for 1>0).

(5.5

The coefficientseﬁﬁl’s) are listed in Table I. The projection of The reduced scalar radial functios, . o(E,;r) have been
the LRV (3.14a onto the subspack, has a similar struc- evaluated in two different ways by making use of the explicit

ture, written previously39]:

vpm(Q0N= 2 (-9
q=1-1
Naqul\ M2 R
2|:_q1 nII+q(Q;r)VI+qu(r)-
(5.6)
Whenl| =0, Eq.(5.6) reads
)0 51) = (4m) " V2AL 0, (Q;)T (5.7

In Egs.(5.6) and(5.7), any factorAy , 4({2;r) is the regular
part of the corresponding scalar functighy ; o(€2;r),

A q( D)= An 14 g(Qi1) =D Ay 144(Qi1). (5.8)

The reduced LRV for a spherical eigenstate is the limit

QO =E, of Eq. (5.9,

vhm(EniD= > (—Q)

|)\I+q,l| v ’ . ~
2+ 1 Anl|+q(Envr)Vl+q|m(r)v
(5.9
or, in the special case=0, that of Eq.(5.7),
Vo EniD)=(4m) A1 (Epir)r. (510

TABLE I. The coefficiente{}® in the expansiongA10) of the
functionrR,(r).

q S el’”
1 —1 (N+1+1)(n+1+2)
1 0 —2(n+1+1)(n—1-1)

1 1 (—1-1)(n—1-2)
-1 -1 1
-1 0 -2
-1 1 1

form either of the functionsd,; , ({2;r) or of the factors
B+ q(€2;1) [31].

(i) The first way consists of writing the right-hand side of
Eq. (5.8 explicitly and then selecting all nonvanishing terms
of its limit 7=n.

(i) The second way exploits the identity

3B +q(;1)

) , (5.11

n

derived from Egs(3.19), (5.8), and(5.3). From the explicit
expression of3, . 4(E,+ 64;r), we collect all terms pro-
portional to 7= 7—n owing to the relationship

'ArIIIIJrq(En;r):
O=E

-2

80 =|E,||1— (5.12

1+ —
n

Both methods give a result reported previoygt], that we
shall apply below:

Ar,1|I+q(En;r)
B (2k,)*? (n+1)!
“2|E[2(1+q)+ 1] (n—1—1)!2n

2
Xexp(— kpl )(ZKnr)' +q522 Cﬁ{).;q's)

1/2

X F1(l+g+1—n+s;2(l+q)+2;2k,r)

(g=1 if 1=0; qg=1,—-1 if 1>0). (5.13

TABLE II. The coefficientsC{’/*® in the expansion$5.13 of
the reduced linear-response radial functiotfg, ;. 4(E,;r).

q s cas
1 -2 —3(n+1+1)(n+1+2)(n+1+3)
1 -1 (n+1+1)(n+1+2)(n+1+3)
1 0 (n+1+1)(n—1-1)(21+5)
1 1 —(n=1=-1)(n—1-2)(n—1-3)
1 2 i(h—1-1)(n—1-2)(n—1-3)

-1 -2 —3(n+1+1)

-1 -1 n—1+2

-1 0 —(21-3)

-1 1 —(n+1-2)

-1 2 i(n—-1-1)
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1/2

The coefficientsC{j*¥ are listed in Table II. It is worth . Mgl
noting that Jhanwar and Mealih1] derived thez-axis com- P Umm(Q;p):q;lL D\ S
ponent of the reduced LRV5.9). They found it by solving '
the appropriate inhomogeneous radial differential equations. XDA,, 1 q(QiP)Visq) (D), (5.14)
B. Momentum representation which is simpler for ars state:

We employ th(_a technique developed in Sec. llIB to P(n)';noo(ﬂ?p)z(477)71/2D:Zln01(9;0)f>- (5.15
evaluate the Fourier transform of the coordinate-space pro-
jection (5.1) and find the expression The singular radial factors in Eqé.14) and (5.15 are

|
[M®= (2] 22079750 (4t [ (ntl+g)t [¥2 ('™

Do 0P = ) e R R 20 @) L (- 1-a- 112N (gt

3
XoF | 1+g+1— nl+q+1+nl+q+— (5.1

2" (ng)%+ 1)

Note that the secular ter(®%.16) vanishes fol +qg=n.
By Fourier transforming the vectom,(E,, ;r) characterized by the scalar factd&5), we get a similar structure in
momentum space, with the factors

2211 0+3n (I+a)! [ (n+D)!
7M2(h 1) 3, [2(1+0) + 1] (n—=1-1)!2n

1/2 (n§)|+q
[(né«)Z_’_ 1]I+q+2

’éanq(En;p):(_i)Hq

1

3
X 21(1_2 sO)(n S)e(nq|52

s=—

3 1

|I+g+1—n+s,l+g+1+n—-sl+q+-;———
q q q 2(§)2+1

(q=1 if 1=0; q=1-1 if 1>0). (5.17)

When applying the same transformations to the reduced bRY in coordinate space, E¢5.9), we get its counterpart in
momentum space:

1/2

~, N qal) o, ~
vnlm(En;p):q:;_l (_q)( 2|:_ql Anll+q(En;p)VI+qlm(p)- (5.18
Forl=0, Eq.(5.18 reads
Vhoo EniP) = (4m) " ZA501(En; P)P. (5.19
The scalar functions?lr’”Hq(En;p) in Egs.(5.18 and(5.19 are
~ . B g 22(|+q)+l (|+q)| [ (n+|)| 1/2 (nér)l-%—q
Ao En i) =) o T 3 (207 Q)+ 101 (-1 1)120] [ (ng)24 1] 702
3
X 2 (n=8)CR,F | 1+ g+ 1-—n+s;l+q+1+n—sl+q+ 35—
2'(ng)
(q=1 if 1=0; q=1,—1 if 1>0). (5.20

Remark that, according to EGB3), all the Gauss hypergeometric functions included in E§sl6), (5.17), and (5.20 are
Gegenbauer polynomials of the dimensionless variggte [(n)?—1]/[(n¢)?+ 1]. [See Eq(6.11) below]
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VI. REDUCED LINEAR-RESPONSE VECTORS FOR PARABOLIC STATIONARY STATES
A. Position representation

The secular tern{2.19 of the velocity-gauge vector for a Stark stat@nem((l;r) can be extracted from the explicit
expression of the lattdB7]:

(2Kn)1’2[(n§+|m|)!(n +m)t]¥2 1 1 !
(n) )= 7 N N — 1\ (wtluhi2zo—|pu|/2
P 0nngm(£2r) QO-E,| ngn,l4n } ( n)exp( 2"n(5+7’))21( AR

1
xm m— (@) (khEM!™ “"2(1——5 )[c p (P (=Nt MM = |+ 15 k0)

X 1F (=N, Im=pl+ Likam) = (= 1)*(E= n.ng=n,) X, (6.2)

Equation(6.1) has been reported befd42]. The reduced LRY2.25 for a Stark stattiar’mem(En ;) has been evaluated in Ref.
[8] in three independent way43]. We need here its explicit expression:

1

1
_1)(M+|M\)/22—\M|/2—<Dm_ )
2 m—i?

C @)™ (gD (n DR
vnnem(Enar)_ 4|En| [ ng!nn!zn } exl{_z"n(g"_ﬂ)

26, o(Ilm+1+ngn,,F

xo«ﬁfmm—ﬂ'/z[

2
1 ~
+ > > (1—§5M,\7,+S',\7,)C(2MM S1F (=Nt M—M+s;|m—pu|+1;k,)

M=0M S=~2

X 1 Fy(—n,+M;|m= |+ Lik,m) | — (—)*(Eopng=n,) X, 6.2

The coefﬂuentsc(0 M. “’i,ﬁ( are listed in Table V of Ref{8]. Notice that each Kummer function in Eg®.1) and (6.2) is
7/
proportional to a Laguerre polynomial.

B. Momentum representation

We carry out the Fourier transformations of the vect@4) and(6.2) along the lines presented in Sec. IV B. We get the
divergent projection ontdf,, ,

—4 [(ngt[mi(n,+mhe 1
Q—En 7Y2(f 1) ¥ [ ngn,l4n [(ng)2+1]"+t

1
X E (_1)[\m—.u|—(m+,u)]/2(_i)m—uz—lu\/Z
u=-1

|

XoF,

P( )vnn m(Q p)

! p moul 1 1
mq’m—u(fp)@%) 1-5dm0

Ch SO m[(N)2=1+2in¢, 1" ()2~ 1~2in¢,I™

(2ng,)?
[(n)?=1]1%+(2n¢y)?

—Nng+M,—n ;[m—u|+1;—

)]—(—1>“[4§H4,7.nﬁn,,]]5@,

6.3

and the reduced LRV
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O, En'iP) 2 [(ngt]mDin,+[m)t]*?
v P)=
nnom{En: P 2[E,] 771/2(hKn)3/2Kn[ ngn,lan
1 1
% — 1)@m= p|=(m+ e _jym-po—lul2__— @ (g)(2ns,)Im-al
2 Y =D (=t s #)(20%)

[(n)?=1+2in,]"  (n)?—1-2ing, ™

|

n
_26#’0(|m|+1+ ng)nnm

it (2n¢,)? & ( 1
X ,F —n,f—l,—n,7+1,|m|+1,—[(Ing)z_l]q(zr]zz)z)JFMZOVM S:Z_Z 1= 5 Ow-ii+si
o n—s = =
O e (0= L 2N O )2 1 ing
_ . (2ng,)?
X ,Fy _n§+M_M+S'_n”+M;|m_M|+1;_[(n§)2—1]21(2n§2)2)]
—(—1)"[§g<—>§n,n§<—>nn]]5@- (6.4

The vectorg6.3) and(6.4) can be expressed via Jacobi poly- The anglep is already known to be the longitude in momen-

non;alsblEq (B2), in terms of matrix elements of tHBU2) tum space, whiley denotes the principal value of the argu-
irreducible representations, ment of a complex number occurring in E¢6.3) and(6.4):

D@, B,y)=exp(—ima)d(B)exp(—iny), (6.5 N
y=ard (nf)?>—1+2ins,]. (6.7
wherea, 8,y are the Euler angldgl4]. These are introduced

as follows: Using the Euler angle parametrization of 8b\2) transfor-
mation
_ [~ 8(n¢,)?
a= (/I+( - 5) , Bzarcco{ 1—%) ,
[(n)+1] U=U(a,B,7) (6.9
I E that is specified by Eq$6.6), we find the alternative expres-
v=1 = (6.6 .
2 sions
|
1 -1 1 ! 1
p(Mg Q:p)= M+|M|)/22 ,u|/2+1/2( - )
) e (024 12 2 2710

X

_ 12
oo [ (Ne M)!(n,+[m])! pn-112) L)
ng,nn,|m| nf!(n,,+|m|+M)!n (M= u+ng—M)/2(m—pu—ng+M)/2

—(—1)M{ e Ly et X (6.9

and
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1 1 (1 )1’2 1 é 2ol
l;’ E ,P)= J— -1 (u+ ,41)/227 wll2+1/2
e En )= 57 ] (i) 3240 [(ng)2+1]2 M:fl( :

X [ —258, on[(Im|+1+n)n(ng+1)(n,+|m)]¥2D 7 D2

—(m+ngt2)/2(m—ng— 2)/2( U )

2 1/2
1 = n.+1 n,+1
+ > 3 (1——5M_m+sﬂ>(n—s)c(°“”” F( e il D )
Mi—om S=—2 2 (N;=(M=M+38)+1) j_ (N, = M+1)5_
((n—s—1)/2) ~
XD [m- p+ng—(M—2N +8)]/2,[m—pu— n+(M—2l\7I+s)]/2(U)]_(_1)M{§§H§7}’n§<_>n7l} Xy (6.10
|
Notice that the momentunp equally determines the ap iel™™ oo+ .
Euler-Rodrigues parametd5] of the SU(2) operator(6.9): Bioi(;r)=a ZTFW . dpp™ 7
Noalryl 2 4
(ng)*- 2ng . xexp( o ) (7.2b
= Q= 6.1 - :
0 (n§)2+1 (n§)2+1p ( :D N]_T T a N]_’T

Accordingly, we get the corresponding unit vectoof the
rotation axis as well as the rotation angig45]:

(6.12

VII. LINEAR RESPONSE FROM THE ATOMIC GROUND
STATE

A. Position representation

In the special case of the ground state the LRV's are of

the type(3.16

v10d ;1) = (A7) VP Aoy Q)T (7.1a

and

Wiod (2 r)— me(477) Y2801 Q)T (7.1b

According to Eqs(3.17), the scalar radial functions have the
following integral representations: in the length gauge,

iei‘ITT
2|E4] 2sin( )

o) N 1r
X dpp " "exp — —
1

N, Ta
27(1-p)+ 2t
7(1-p) N.Pa

Aroi( Q)= a %22qr

(7.28

<)
Nl,T

and in the velocity gauge,

Consequently, they have simple explicit expressi@1g in
terms of Humbert hypergeometric functiofhs :

3+
27rexp(

2—7,—-1—-74—7,——

A101(£2;1)

1

_ a-32
2|E4]

1+71

1r
Ta

1-7 1—77r
2 Ta)
1-7 1—771
2

3—71

2T

— %1

+ CI)l(S 7,—2— 1,47,

T a

(7.38

and

1
2—T

Bioy(Q;r)=a 3

2+
— 27rex;<

1r
1+7 Ta
1- 7'1 Tr
2

X® 2—7,—-1-73—7,——

e
(7.3b

T

It goes without saying that we find E(§..1) and(7.2) again
when we specialize to the case of the ground state the inte-
gral representation$4.15 of the LRV’'s for an arbitrary
Stark state. Similarly, Eq$7.1) and(7.3) are obtained by the
same particularization from the explicit expressions of the
VeCtorsvn, m(£2;r) [37] andwnn m(£2;1), Eq. (4.16. Recall
that the neglect of retardation amounts to replacing both
Poincareand multipolar gauges by the length gauge, and the
radiation gauge by the velocity gaug22?]. As a conse-
guence, Eqs(6.10g and(6.123 from |, written withL=1,

are equivalent to Eq47.19, (7.239, and(7.3a, while Egs.
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(3.13—(3.19 from | coincide with Egs(7.1b, (7.2b, and B. Momentum representation

(7.3b. Note also that relatior3.18, when taken for the The LRV's for the ground state are of the for(®.22):
ground state,

U10d Q;p) = (47) " Y2410/(Q;p)p (7.59

Bioi(Q;r)=rRyo(r) +(Q—Ey) A104(Q;r), (7.4  and

i
~ o 173 o
is obtained directly after an integration by parts in E&j2a. Wiod €;p) = 7-Me(4m)~ ““Baol(Qip)p. (7.5H

However, it is also retrievable upon comparison between
Eqgs.(6.109 and(6.10b from | or between Eq96.128 and  The integral representation8.24 of the scalar functions
(6.12b from I, when both pairs are written fdr=1. from the right-hand sides of Eqé7.5) are

-s iei7T’T

2sin( )

1 2875 -
S
2[Eal (2m) Y hiey) ¥y (14 1)L+ (7021?5514

er)d e, L
1 PP 1+71

Xp<1—x1p)<3S><1—x2p><3+S>—<1—xlp><25><1—x2p><2+S>}, (7.68

1-i7g

:lem(Qip): 1+irl

4j 7'25

_ (3-8 _ —(2+s)_ s
(1—x31p) (1—x2p) (2+S)(1+7)2[1+(T§)2]

_X_2p

and

-s iei7TT

2sin(w7)

- 1 277 ~[1-i7¢
Bioi(2;p)=

@) i) ey (L+ 114 (107 50y | IF I

(0+4) _ -
X fl dpp'” (1—x1p) 279 (L—xpp) 2", (7.6b

The explicit expressions of the linear-response scalar funcfibfscan be found either directly or by particularization of Egs.
(3.26. We get

Aot 2:p) = 51 = 27 S|
‘p)= S -
101 p 2|E1| (27T)l/2(ﬁK1)3/2K1 (1_’_7_)4[1_’_(7.4/)2]2 S--11 1+i7¢
1-7 F(2—73-35,2+5:3—7 ! Fi(3-73—5,2+5;4—1;
X m E 1( T s,2+s; 7-,X1,X2) X_2 E 1( T, S, S; T,Xj_,XZ)

Airg 2+EF(3 3-3,3+5:4 oL (2-r2-52+%:3 )
— —T7T,9— S, S 4—T,X1,X9)— —T,24— S, S;0—T7,;X1,X
(A+n)21+(r0%) 377 N2 o

(7.79

and
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Bro(2:p) ! 2’ 5[Lin) Fi(2—72-5,2+5;3 )
p)=- S - = — 72— 8,2+ 5;3—7;X1,X).
o 2 m ey ¥, (L4 Lt ()P 5y \LFIeE) 277! o
(7.7b
|
In Egs.(7.6) and(7.7), the variablex; andx, correspond to r r
Aroi(E1+6Q;r)= a %exp ——|2r{1+ 5 =
2|E4] a a
X1=X1(1,7,0), Xo=Xx(1,7,{). (7.8
50 [11 11r 1(r\2
Obviously, Eqs(7.5) and(7.6) have been retrieved from the + 2[E, 5 " 12a"6la
general formulag4.17) which present the LRV's for a Stark
state as contour integrals. Specialization to the ground state 50 \2287 2871 31r\2
of the explicit formulag4.20 of the LRV's v, n(2;p) and T
~ P #4.20 of the L gl 2:P) * 2E1|) [72+144a+72 a
Wnnem(Q; p) yields alternative explicit expressions of the sca-
lar functions 4,0,(Q;p) and Eml(Q;p) which are equiva- r\3 50 \3
lent to Eqs.(7.7). Here we only mention that they are written + 24 a o (m ] (7.13
1

in terms of seven and, respectively, two Appell functiéns
Eq. (B2) of I, with b’ =b.

C. Low-frequency behavior: Position representation

The ground state is the only atomic stationary state for\pu)

which the projection2.19 vanishes,

(1)|U100>:0, (79)

so that the LRV

|10 Q2)) =010 1)) (7.10

has a finite static limit(2.22, which in coordinate space
reads

U1od E1;1) = (47) Y2 A101(Eq;0)T. (7.1

Consequently, the length-gauge linear-response correction

(2.99 to the ground-state wave function,

i
i

1
V(L) wod @irt) == 5 (4m) 1/2e50exp( -z

X[exp(—iwt)(e ) A Ei+hw+i0;r)

+expliot)(€ 1) A E;—fw;r)]

(7.12

is regular in the range of low frequencies. In E@.12 we
replace the functiotdo4(E1+ 6Q;r) by the first three terms
in its Taylor series, which is a good approximation when
| 5Q| <|E,|. We get these terms from E(}.3) of | taken for
L=1:

Therefore, for low frequenciediw<|E4|) and in the special
case of linear polarization, E¢7.12 becomes

ho |2

100(w;r,t) 2|E |(€ r) + m)

287 287r 31/r\%2 1(r\3

X[ﬁ Tada 723l 24 a ]
Kcogot)—i e 1L, 1T L

2|E,]| 6 12a 6l\a

; AN (0)

Xsin(wt)+0 2|E1|> D\Ifloo(r,t).

(7.14

According to Eq.(2.93, the atomic linear response from the

ground state to atatic uniform electric fieI(E=50% is de-
termined by the reduced LR¥7.11):

i
7 Elt)eE'|Uloo(E1)>-
(7.15

To find the static limit(7.15 of the length-gauge correction
to the wave function we have to set=0 in Eq.(7.14:

|‘I’(L) 10d05t)) = — ex%

1r
(E- r)(l+——

wOr1).
(7.16

As a side remark, evaluation of the correctighl6, by
solving Eg. (2.133 in the special casgN)=|100 and
QO =E,, has become a standard textbook application of con-
ventional stationary perturbation theof#6—48. Appar-
ently, use is made of the ingenious method devised by Dal-
garno and Lewid49] that emphasizes general sum rule
permitting, in particular, the perturbative calculation of the
long-range forces between a proton and a hydrogen atom in
the ground state.

(1) oy —
\If(,_)loo(o,r,t)— 2|E|
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D. Low-frequency behavior: Momentum representation and is obtained as the limid=0 of Eq.(7.20:
The momentum-space counterpart of the linear-response
correction(7.12 is its Fourier transform: (1) FO
\P(L) 10d0;p,) = 2|E |(E ?52_'_1\ 1+ 21 Wiod P.t)
{f}(l) ‘n.t __l 4 —-1/2 £ _I_E t (722
(L) 10d @;P,t) = 2( ™) Tekoex 7 E1

X[exq—iwt)(;' f)):ilol(El-FthO;p) VIIl. DISCUSSION AND SUMMARY

Nl A~ A. High-frequency limit
H * _ .
Fexpion (€l A B —foip)]. We consider the high-frequency limit of the velocity-
(7.17  gauge correctiori2.9b to the wave function. By use of Eq.

. . . . (A3) of | or inspection of Eq(2.13h, we find the behavior
We substitute the expansidid.13 into Eq. (3.229 written )
for the ground state. By employing E@B1), the integral of the LRV (2.101 at large values of the parameie?:

(B4), and then applying a quadratic transformation and an 1
analytic-continuation property of the Gauss hypergeometric wn(Q;r) ~ — ﬁPuN(r). (8.1
function [50], we finally get the approximate formula [Q]—e
;{101(E1+ 5Q:p) Now, taking notice of Eqs(2.1) and(2.11), the wave func-
tion (2.9b behaves in the range of high frequencies
i 24 5/2 g [1 50O (ﬁa)>|El|) as
+
24| (2m) V232 (22 +1>3[ 711 2]
w;r,t - . (8.2
E+ > ( V)N( )|Q\~>ac f Mgw ( )
6 211 (g2+1) 2|E1|

We denote by(t) the radius vector of a classical electron in
its quiver motion produced by the electric figl2l.1):

287 119 1 52 1 40
2 2 20 3 A2 (1)
2+l 3 (2412 (P4 V=% e 83
69 (44 = > . .
+0 7.1 Mew
2|E1|) } (719

The real amplitude of this motion when the electron is driven
Recall the ground-state energy eigenfunction that parallelgy 5 |inearly polarized electric field is

Eqg. (2.1 of I:
32 q ey

~ 1/ a ap= . (8.4
=l — 2
U100 P) - zh 1) (7.19 Mo
Accordingly, the momentum-space analog of E14) is _Consequently, a Iinear-rgsponse wave function in the veloc-
ity gauge has the behavior
T odoipn =i gl — (A'Q([” YR+ ~ [1-at)- VPR,
2|E | 22+1 ’+1 (VN Q] o
8.
ho \?287 119 1 ®9
+ 2|E,| EZRER) 241 Remark that, by using the asymptotic expression of a Hum-
bert function®,, Eq. (B12) of I, we have recovered the
52 1 40 prediction (8.5 for an arbitrary angular-momentum eigen-

]cos{ wt) state|nIm), as well as for any Stark stafpn,m).

vt 3 a2 2
I+ (°+1) On the other hand, thexacthigh-frequency limit of Flo-

5 [11 5 16 quet theory in the oscillatingKramers-Hennebergerefer-
i @ g + ence frame is equivalent to an energy eigenvalue problem for
2[E)l[ 6 " f2+1  (£2+1)2 the potentialdressedby the radiation field51]:
Xsi ol |5 v -'—wfmwdtv '+ aft 8.6
sin(wt) +0| | 1] | [ ViodpD). (agir)=5—| = dVr'+a®]. (86

(7.20 In Eqg. (8.6), r' is the electron position vector in the oscillat-

The first-order correction to the wave function in the staticing reference frame, while the amplitude, is supposed
limit, Eq. (7.15), is built up with the reduced LRV fixed. To get the linear-response approach, which is valid
only at low values of the parameteaf, one has to neglect in

U10d E1:p) = (47) " Y2 A 0/(E1;p)P (7.21)  the exact theory all terms whose orderdg exceeds one.
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Within this approximation, the atomic dressed poter(Baf) be explored. In spite of their noncompact character, such
reduces to the pure Coulomb potential: expansions are expected to be efficient in numerical calcula-
tions. As a related matter, we mention two recent papers

dealing with the series expansion of the first-order Dirac

V(ag;r')=——+0(ap). (8.7 CGF in coordinate space in terms of relativistic Coulomb

' Sturmians [52,53.The obtained formulas are applied to

Accordingly, the energy eigenvalue problem in the OSCiIIat_evaluate relativistic effects on the static electric polarizability

ing frame becomes that of the field-free Hamiltonian in the't?] the gI’OLénd tsttatéfz] aréd oln tV\llq—photon.ttrgns![tlon.s fr?n:
laboratory reference frame. It follows that a wave function in € ground state towards low-lying excited atomic states

; ; [53].
the laboratory frame is approximately To conclude, the LRV’s for one electron in a pure Cou-
‘I’N(r,t)=‘I’§\,°)[r—a(t),t]+0(a§). 8.9 lomb field are basic analytic tools in atomic physics. As

pointed out in the Introduction, their compact expressions as
ontour integrals considerably simplify the evaluation of the
wo-photon amplitudef13—15. In addition, they are useful

in the study of laser-assisted processes like photon-atom in-

teractions or electron-atom collisions.

To lowest order in perturbation theory, one has to keep in th
right-hand side of Eq(8.8) just the first two terms in the
Taylor expansion oﬁff\,o) : they are precisely those written as
the linear-response wave functi¢d.5).
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Within the semiclassical theory of the photon-atom inter-
action, in nonrelativistic treatment, the EDA plays the role of
the simplest, yet accurate approach. We have complement
earlier work on hydrogenic atoms, Ref$,8], deriving in a
unified way the LRV’s in coordinate space. Our starting
point has been their generating functigibuilt up in | with
the Schrdinger Coulomb Green function. We have treated APPENDIX A: FORMULAS CONNECTED WITH THE
the length and velocity gauges on an equal footing. In each LINEAR RESPONSE IN COORDINATE SPACE
of them, we have established closed-form integral represen- \yg recall that any complex vectercan be decomposed
tations of the LRV's associated to any spherical eigenstat§ith respect to the orthonormal basis
[nIm), Egs.(3.14) and(3.17), as well as to any parabolic one
[nngm), Egs.(4.15. Both have begn used_ to evaluate th(_eir )‘(71:2—1/2(;(_@, )“(: 2 5(1:_271/2(;(“9),
momentum-space counterparts via Fourier transformation. (A1)
We have obtained the latter first as contour integrals and then
explicitly in terms of two generalized hypergeometric func- as
tions with several parameters and variablgg and F,
respectively. The linear response from an atomic gtajeto -
a uniform static electric field is determined by the reduced v= ;1 U (A2)
LRV |vy(E,)). The reduced LRV's in coordinate space, al- g
ready evaluated in Ref§5,8], have been used to find those wherev* are its contravariant spherical components:
in momentum space, as their Fourier transforms. The atomic
ground state is very special not only because we may benefit '=2""4v,+iv,), v°=v, v'=-2"Y4v,~iv,).
from the results established in [: it also lies at the intersection (A3)
of our two sets of formulas regarding the spherical and para- N )
bolic stationary states, respectively. We have pointed out thEOF instance, the decompositi¢A2) of the vector spherical
low-frequency behavior of the linear response from theh@rmonics reads
ground state in the length gauge, both in coordinate and mo- 1
mentum representations. An analysis of the high-frequency Vljm(r):MZ:L (' m=p ,1ullL, jmY, (DX

1

limit of the linear response has been finally made in the
coordinate space and velocity gauge. (A4)
The above-presented study of the linear response in the
EDA is extensive albeit not complete. For instance, we have It is indispensable to write down two integral representa-
not dealt with the Sturmian expansions of the LRV’s whichtions of the Kummer hypergeometric functiqfr, that are
have been established in Reff,8] only for spherical states Vvalid only in the special case when it is proportional to a
[nIm) in coordinate space. Neither have we derived the-aguerre polynomial:
LRV’s associated to the Coulomb scattering waves of which
only the velocity-gauge vector has been reported in F&f. Fiacy)=— i I'(e)l'(1-a)
Nevertheless, both topics deserve special analysis. ihacy 2@ T'(c—a)
We stress that Sturmian series of the LRV'’s for spherical (01)
states in momentum space, as well as for pa_rabohc states in XJ’ du(—u)@ Y(1—u)c-a-Lew
both the position and momentum representations, are still to
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Rec—a)>0, a nonpositive integdr 1 n+h  ]¥2
[Re(c—a) p 9d R(1) = (212 [ (n+])
(A5) [2(0+qg)+1]![(n—1+1)!2n
and 1
X exp(— kol (21a)' 79 el
s=—-1 '
Eolaeyv)e(1 a 1 \I'(c)I'(1—a) | - .
1Fi(a;c;y)=( X) ﬁ W X1F1(l+g+1+s—n;2(l1+Qq)+2;2k,r)
(0+) (g=1, if I=0, and g=1,—1 if 1>0).
XJ dt(—t)a_l(l—t)c_a_l (A].O)
1
X )‘C l{ yt ) The coefficient{% are listed in Table I.
1-——t] exp———
x—1 1—x+xt
o APPENDIX B: FORMULAS CONNECTED WITH THE
Re(c—a)>0, a nonpositive integer, LINEAR RESPONSE IN MOMENTUM SPACE
X We recall the expressions in terms of hypergeometric
x#1, ar% — 1 (AB) functions of(1) a spherical Bessel function,
Equation(A6) is obtained from Eq(A5) by a change of the . I . o
variable of integration, h(@)= (21+1)! ¢%(22)' Fy(1+1;2+2;-2i2)
(l _011!213 .. ')! (Bl)
t
u= 1—x+xt (x#1), (A7) (2) a Jacobi polynomial,
which introduces the redundant parameter b) I+a)/1+w) _ W
We mention the finite expansions of the generalized hy— (w)= a 2 2F1 —I,—I—b,a+1,W+1 g
pergeometric functiong®y and ,®,, in terms of Humbert (B2)
functions®:
and(3) a Gegenbauer polynomifh4],
1®Pu(asb,ag,cy;c5x,x,y,2)
o] <] ’ 2)\ 1
SIS (@), 10,(a1) 40y (x)" 21 cg(w)=( n!)“ oF1 ( nn+20N+ 5 (1 w))
/20770 (C)y4yy(C1)yy VWY (B3)

X®y(at+ v +vy,btv’,ctv’ +viixy) The following infinite integrals proved to be necessary. First
(A8)  [55],

and
\ I'(v+1)
f dye My Fi(ac;uy)= N 2F1

a,v+1:.c; /;)
,®y(a;b,a;,a,,61,C2;C;%,X",Y,21,2Z5)

.. [ReV)>[Re(w)], Rev)>-1,
-2 2

@)+, (31)y,(82),, Rec—a)>0, a#123...]. (B4)

0 v,=0 (C)V’+v1+ Vz(cl)vl(CZ)Vz

(Xr)V’ZVlez Second, consider
1 72
X (a1+ a2+ V1+ Vz)y/

vyl Jr9\;al,au pm)
Xq)l(a+ V’+V1+ V2,b+ V’,C"’ V’+V1+ VZ;X,y). w0 N i
(A9) Efo dye My T F(a’icu'y) iFa(ascny)
[0=0,1; Rdc)>0, Rdc—a)>0]. (B5)

In Egs.(A8) and(A9), a; anda, are nonpositive integers.

A pair of finite expansions which is alternative to that In Eq. (B5), a’ and/ora are nonpositive integers: Re(>0
written as Eq.(A6) in Ref.[8] can be found by combining if a’ anda are both integers, Re(u)>0 if only a’ is an
two recurrence relations between contiguous Kummer hypeiinteger, and Re{— u')>0 if only a is an integer. We note
geometric function§Ref.[32], p. 254, Eqs(4) and(5)]: the expression
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Remark that Eq(A5) can be retrieved by confluence from
an appropriate integral representation of a Gauss hypergeo-
metric function[59]:

I29nalau )

=LA = p) ¥ (A=) 7?

! b;c;
X ,Fq a’,a;c;L . (B6) 2F1(a,bic:x)
(A=) (N—pu) 1 I(or(1-a)
T 2@ TI(c—a)

Then, a recurrence relation between contiguous Kummer hy-
pergeometric functiongRef.[32], p. 254, Eq(2)] yields the

(0+) a—-1 c—a-1 -b
identity XL du(—u)* *(1-u) (1-xu)

[Re(c—a)>0, a nonpositive integdr  (B10)

1
1,0/ eaq’ 4,1 T (~_ O00/y eq’ a_1-,,7
Jolnalau' u)= M[ (c=a)dcri(ha’a=1iu" ) \we also recall the definition of a Lauricella hypergeometric

function F5 with n variables[60],
+(c—2a)327(nia’ au’ )

00y g -
+tal.si(valatliu'w)]. (B7) Fo(a;by, ... bpiCiXe, ... Xp)
Third, Hankel's formulg56] leads to the integrd57] _ T ie_iwaJ'(OH
I'(a)I'(c—a) 2sin(7a) J1
e Xdpp® H(1=p)° 2 (1 =xyp) "1 (1= Xpp) O
jo dye )\yy(c 1)/2+nJc71[2(MY)1/2] 1 n
[Rec—a)>0; a#123...;
_ (c—1)/2y —(c+n) _ M R
[Re(\)>0, Rdw)>0, Rec)>0, n=0,1,2,3...].
(Bg) as well as its multiple ascending power series,
In Eq. (B8), J, is a Bessel function of the first kind.
A prerequisite for evaluating the Fourier transform of an Fpo(a;by, ... .bniCiXe, + ot Xp)
energy eigenfunction or of a LRV in parabolic coordinates is . .
the expansion of a plane wave into cylindrical waves: (a) vyt oy,
v1=0 v,=0 (C)v1+-~~+yn
[ [ b.). ---(b
ex%g p-r) =27-rexp<g pzz> ><( 1)VI1 ( T)anzl‘ . -x;“
[ ZLEERN 2N
c 1 ~ (Ixo]<1, p=1, ... n).
Xm;_m Ime(g Ppp)q)m(@)@&(cp)- P (B12)

(B9)
_ Notice that in the particular cases=1 andn=2 the Lauri-
In Eq. (BY), p,¢,z, andp,,¢,p, are the cylindrical coordi-  cella functionFp reduces to the Gauss functigk, and the

nates in position and momentum space, respectiely(.o)
is a Fourier function4.2). Equation(B9) originates in the

Appell functionF 4, respectively.
It is worth writing down the finite expansion of the gen-

Laurent series of the generating function of the Bessel coeferalized hypergeometric functiopFg [34] in terms of Ap-

ficients[58].

© o0

pell functionsF:

(a)v’+vl(al)v’+vl(bl)vl (X’)V’ZVJ-

Fe(asb,a;,by,ciicix,x ,x",2)= >,
y' =0 v1=0

(C) v+ Vl(cl) vy

- Fi(a+v' +vy;bb+vic+v + v ;x,xX")
(v')wy!

(a; nonpositive integer,x’ #x”, x'#1, x"#1). (B13)
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We finally introduce a new generalized hypergeometric funckign with six parameters and seven variables, defined as a
contour integral:

Fe(a;b;a’,b’;c’;c;Xq,X2,Y1,Y2,Y1,Y5,2)

- I'(c) —ie '™ (Oﬂd a-1 c-a—-1 -b -a’

_22p2

x[(l—y'm(l—y’p)]‘b'zﬂ(a',b';c'; , ,
' ? (1=y1p)(1=y2p) (1= yip) (1= y5p)
[Re(c—a)>0; a#1,23...; a’, b’ nonpositive integells (B14)

Making use of the power series expansion of the Gauss function in the integrand on the right-hand sid8d#)Ege find
the finite expansion of the functidfg in terms of Lauricella function§ of six variables:

Fe(a;b;a’,b’;c’;ci%q,X2,Y1,Y2,Y1,Y5,2)

_ 5 (@2, (@)u(b"),,
#=0 (Cl2u (c'), w!

(=2 Fp(a+2u;b,b,a’ + w,a’ + u,b"+ u,b" + w;C+2u; X1, X2,Y1,Y2,Y1,Y4)- (B15)

In this paper we contemplate only the case in wha¢handb’ are nonpositive integers. According to E¢B15) and(B12),
such a functiorF¢ is a finite quintuple sum of Appell functiors;:

Fe(a;b;a’,b’;c’;c;%q,X0,Y1,Y2,Y1,Y2,2)
oo o0 oo o0 o0
w=0v1=0 v,=0 Vi:O Vé:O (C)2y+vl+vz+vi+vé (a’)#Vl! VZ! (b,),u. v’

(a)2,u+ V1+ V2+ V£+Vé (a’),qu Vl(a’)M+V2 (b,),u,-%-vi(bl);l,-%—vé

1 / /
x—'yzlygz(yi)ﬂ(yé)%(—ZZ)MFl(a+ 2utvitvotvitryibbic+2ut+ vt vat v+ vyiX X)),

(€' m
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