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Linear response of a nonrelativistic hydrogenlike atom to a single-mode radiation field.
I. Exact theory: The atomic ground state

Tudor A. Marian
Department of Physics, University of Bucharest, P.O. Box MG-11, R-76900 Bucharest-Ma˘gurele, Romania

~Received 2 June 1997!

In the framework of semiclassical theory we investigate the influence of a low-intensity monochromatic
electromagnetic plane wave on a nonrelativistic one-electron atom. The radiation field is switched on adiabati-
cally, while the atom is assumed to be initially in its ground state. We analyze their interaction to the first order
of perturbation theory, taking into account retardation effects. In the radiation gauge, the exact first-order
correction to the wave function consists of separate orbital and spin contributions which are determined,
respectively, by a vector and a scalar linear-response function. Starting from Hostler’s integral representation
of the Schro¨dinger Coulomb Green function in coordinate space, we have derived them, via a generating
function, as closed-form contour integrals. Then they have also been written explicitly, as double power series
involving linear combinations of Humbert hypergeometric functionsF1. From the integral representation of
the linear-response wave function we have extracted the considerably simpler second-order retardation ap-
proach. We have subsequently translated it in a conveniently modified Poincare´ gauge, which we call a
multipolar gauge, in order to display the contributions of the genuine field-atom multipole couplings. The
relevant orbital and spin multipole terms are then recovered by employing directly the generating function of
the linear response. Their low- and high-frequency behavior is finally examined.@S1050-2947~97!03711-6#

PACS number~s!: 32.80.2t, 42.50.Ct, 03.65.2w
tio
io
a
vi
na
en
n

th
tri
g
re
o

gr

re
od
nd
on
h
in

an
e
c

ob
e
-

in

ctor

ng
s

te-
ert
e-
Af-

he
y

l
we
e

a
We

s
ap-
x-

te
ys
ix

ro
be
ert
s
ces

se
nd
I. INTRODUCTION

The linear response of an atom to a classical radia
field is described by the first-order perturbation correct
C (1) to an initial bound-state wave function. Obviously, an
lytic expressions of such corrections cannot be even en
aged for complex atoms. On the contrary, obtaining in a
lytic form the linear response of a nonrelativistic hydrog
atom, initially in a unlm& state, to a single-mode radiatio
field is a problem raised by Podolsky@1# soon after the ad-
vent of quantum mechanics. However, Podolsky solved
problem only for the atomic ground state and in the elec
dipole approximation~EDA!. In fact, he succeeded in gettin
the Coulomb Sturmian-function expansion of the cor
sponding first-order correction, by solving appropriate inh
mogeneous differential equations@1#. Much later, the same
correction has been found in a compact form, as an inte
representation, and also explicitly@2,3#.

The purpose of this paper is to evaluate the linear
sponse of a nonrelativistic hydrogenic atom to a single-m
radiation field, when the initial atomic state is the grou
state. We take full account of retardation and, in additi
consider the magnetic coupling of the electron spin. T
starting point of our analytic developments is a compact
tegral representation of the Coulomb Green function~CGF!
in coordinate space discovered by Hostler@4#.

The resulting exact formulas being rather complicated
difficult to handle, we find it valuable to write them in th
second-order approximation of retardation which is mu
simpler and also reliable in the optical regime. We have
tained approximate formulas in the radiation gauge, as w
as in a modified Poincare´ gauge that has the virtue of dis
playing the constituent multipole terms.

In Sec. II we show that the wave-function correction
561050-2947/97/56~5!/3974~14!/$10.00
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the radiation gauge can be expressed in terms of a ve
function W100 and a scalar oneS100 that we call linear-
response functions~LRF’s!. Section III is devoted to the
derivation of the LRF’s starting from a suitable generati
function F, determined in turn by the CGF. The function
W100 andS100 are calculated first as compact contour in
grals and then explicitly as double series involving Humb
functionsF1. In Sec. IV we deal with the second-order r
tardation approach to the linear-response wave function.
ter taking it out in the radiation gauge, we write it also in t
Poincare´ gauge by applying the Power-Zienau-Woolle
~PZW! transformation@5–7#. By means of an additiona
U~1! transformation, we find the linear response in what
call amultipolar gauge. Precisely in this gauge the multipol
structure of the first-order Pauli Hamiltonian, truncated to
second-order retardation approach, is laid out in Sec. V.
take advantage of the generating functionF in Sec. VI to
derive directly the relevant orbital and spin multipole term
entering the linear-response wave function in the same
proximation. They are written both as integrals and in e
plicit form. The latter is employed in Sec. VII to evalua
their low- and high-frequency behavior. Section VIII surve
the results with a view to possible applications. In Append
A we get the generating functionF as a contour integral by
making use of Hostler’ s integral representation of the Sch¨-
dinger CGF in coordinate space. Appendix B is meant to
a brief review of some useful expressions of the Humb
hypergeometric functionF1. Note that the Gaussian unit
and Einstein’s summation convention for Cartesian indi
are consistently utilized.

II. FIRST-ORDER CORRECTION TO THE WAVE
FUNCTION IN THE RADIATION GAUGE

We concern ourselves with a hydrogenlike atom who
nucleus is fixed at the origin of the coordinate system a
3974 © 1997 The American Physical Society
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56 3975LINEAR RESPONSE OF A . . . . I. . . .
has the atomic numberZ. The perturbing radiation field is a
monochromatic plane wave with propagation vectork, fre-
quencyv, and polarizationê:

k5
v

c
, ê•k50. ~2.1!

Its electrodynamic potentials in the radiation gauge are

F50 ~2.2!

and

A~r,t !5
c

v

1

2i
E0$exp@ i ~k•r2vt !# ê2c.c.% ~E0.0!,

~2.3!

with

divA50. ~2.4!

Note that the field strengths of the mode,

E~r,t !5
1

2
E0$exp@ i ~k•r2vt !# ê1c.c.% ~2.5!

and

B~r,t !5
1

2

c

v
E0$exp@ i ~k•r2vt !#~k3 ê!1c.c.%, ~2.6!

have small amplitude and arbitrary frequency. As a side
mark, in Eqs.~2.5! and ~2.6!, E0 is the amplitude of the
oscillating field only in the particular case when its polariz
tion is linear (ê* 5 ê). However, in any case,12E0

2 is the time
average of the squared field strength.

Dealing only with the atomiclinear response, we are en
titled to neglect theA2 term in the field-atom interaction
Hamiltonian and keep only its terms that are linear in
field:

H ~1!5
e

mec
~A•P1B•S!. ~2.7!

In Eq. ~2.7!, 2e is the electron charge,me the electron mass
while P andS5(\/2)s denote the momentum and spin o
erators of the electron, respectively. The first term in
Hamiltonian~2.7! is due to the orbital motion of the electron
while the second one describes the magnetic coupling of
electron spin.

We shift the initial condition tot→2` and suppose tha
the field mode~2.5! and~2.6! is turned on adiabatically, with
an exponential switching factor in the time interval (2`,0).
This means that in calculations, for negative times, o
should multiply the interaction Hamiltonian~2.7! by a factor
exp@(1/\)«t)] with «.0 and eventually take«→10. In the
remote past (t→2`), the atomic electron is assumed to
in its ground state, described by the unperturbed wave fu
tion

C100ms

~0! ~r,t !5expS 2
i

\
E1t Du100~r!zms

. ~2.8!
-

-

e

e

e

e

c-

In Eq. ~2.8!, E1 is the ground-state energy,

E152
Ze2

2a
, ~2.9!

with

a5
\2

mee
2Z

~2.10!

the scaled Bohr radius;u100(r) is the corresponding eigen
function,

u100~r!5~pa3!21/2expS 2
r

aD , ~2.11!

andzms
denotes a normalized eigenspinor of the Pauli ope

tor sz :

szzms
52mszms

~ms56 1
2 !. ~2.12!

According to time-dependent perturbation theory, the fir
order correction to the wave function~2.8! due to the inter-
action ~2.7! is, for t>0,

C100ms

~1! ~r,t !52
eE0

mev

1

2i
expS 2

i

\
E1t D

3$e2 ivt@ ê•W100~V1 ,\k ;r!

1 iS100~V1 ,\k ;r!~k3 ê!•S#

2eivt@ ê* •W100~V2 ,2\k ;r!

2 iS100~V2 ,2\k ;r!~k3 ê* !•S#%zms
.

~2.13!

We have denoted

V15E11\v1 i0, V25E12\v, ~2.14!

W100~V,\k ;r![2E d3x8G~V;r,r8!exp~ i k•r8!P8u100~r8!,

~2.15!

and

S100~V,\k ;r![2E d3x8G~V;r,r8!exp~ i k•r 8!u100~r8!,

~2.16!

where G(V;r,r8) is the CGF, Eq.~A2!. Notice that the
linear-response correction~2.13! consists in fact of two Flo-
quet terms, describing, respectively, one-photon absorp
and emission processes. Owing to the additive structure
the Pauli Hamiltonian~2.7!, each Floquet term is a sum of a
orbital and a spin contribution. These contributions are ch
acterized, respectively, by the vector LRF~2.15! and the sca-
lar one, Eq.~2.16!. It goes without saying that Eqs.~2.13!–
~2.16! can be extended to an arbitrary stationary stateuNms&,
whereN denotes the ensemble of quantum numbers ass
ated to the orbital motion of the atomic electron.
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III. EXACT EXPRESSIONS OF THE LINEAR-RESPONSE
FUNCTIONS

According to Eqs.~2.11! and ~A10!, we find

exp~ i k•r!Pu100~r!5~pa3!21/2
\2

a
¹qU U

$q5\k, l5\/a%

,

~3.1!

exp~ i k•r!u100~r!52~pa3!21/2 \
]U
]l U

$q5\k, l5\/a%

.

~3.2!

On account of the identities~3.1! and ~3.2!, the definitions
~A9!, ~2.15!, and~2.16! yield the similar formulas
W100~V,\k ;r!5~pa3!21/2
\2

a
¹qF~q,l,V;r!U

$q5\k, l5\/a%

,

~3.3!

S100~V,\k ;r!

52~pa3!21/2 \
]

]l
F~q,l,V;r!U

$q5\k, l5\/a%

. ~3.4!

Substitution of the expressions~A14!–~A16! of the generat-
ing functionF into Eqs.~3.3! and ~3.4! gives the following
closed-form representations:
owers
’s
W100~V,\k ;r!5~pa3!21/2
me

X
t

ieipt

2sin~pt!
E

1

~01 !

drr2tS 2

N1,t1 in
D 2S 2

N1,t2 in
D 2H ir

1

t

r

a
22~12r!F1

4
~12r!

1
r~1/t!~r /a!

N1,t7 in
7r~12r!

i ~kr 7k•r!

N1,t1 inN1,t2 in
GnJ expF7

4ir~kr 7k•r!

N1,t1 inN1,t2 in
2
Nt7 in,1

N1,t7 in

1

t

r

aG ~3.5!

and

S100~V,\k ;r!5~pa3!21/2
2me

X2

ieipt

2sin~pt!
E

1

~01 !

drr2t
4

N1,t1 in N1,t2 in
F 12r

N1,t7 in
1

7 in~12r!212r~1/t!~r /a!

N1,t2 inN1,t1 in

1
4ir~12r!k•r

N1,t1 in N1,t2 in N1,t7 in
2

4nr~12r!2~kr 7k•r!

N 1,t1 in
2 N 1,t2 in

2 GexpF7
4ir~kr 7k•r!

N1,t1 in N1,t2 in
2
Nt7 in,1

N1,t7 in

1

t

r

aG . ~3.6!

In the above equations we utilize the parameters~A5! and ~A6!. Further, we have denoted

Nt8,t[t81t1~t82t!r ~3.7!

and

n[
\k

X
, n[

\k

X
, ~3.8!

Note also that one should employ consistently either upper or lower signs.
Using in Eqs.~3.5! and~3.6! the Taylor expansion of the first exponential and then the expansions of the negative p

of the ratioN1,t6 in /N1,t7 in , we reach the position to apply Eq.~B10!. We finally get the explicit expressions of the LRF
~2.15! and~2.16! as double ascending power series, whose coefficients are linear combinations of Humbert functionsF1, Eq.
~B5!, of the dimensionless variables

b6[
1

2
~12t6 in!, %6[2b6

1

t

r

a
. ~3.9!

Therefore, we have found
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W100~V,\k ;r!5~pa3!21/2
me

X
tS 2

11t7 in D 21t

expS 2
1

t

r

aD (
m150

`

(
m250

`
~m11m211!!

m1! ~m111!! F7
2i ~kr 7k•r!

11t7 in Gm1

3S 7
2in

11t7 in D m2 G~m1122t!

G~m11m2132t!H i
1

t

r

a
F1~m1122t,2m1212t,m11m2132t;b6 ,%6!

2
m211

m11m2132t

n

11t7 inF m212

m1112t
F1~m1112t,2m12t,m11m2142t;b6 ,%6!

12
1

t

r

a
F1~m1122t,2m1212t,m11m2142t;b6 ,%6!7

~m212!~m11m212!

~m112!~m11m2142t!

2i ~kr 7k•r!

11t7 in

3F1~m1122t,2m1212t,m11m2152t;b6 ,%6!G J ~3.10!

and

S100~V,\k ;r!5~pa3!21/2
me

X2S 2

11t7 in D 21t

expS 2
1

t

r

aD (
m150

`

(
m250

`
~m11m211!!

m1! ~m111!! F7
2i ~kr 7k•r!

11t7 in Gm1

3F7
2in

11t7 inGm2 ~m211!G~m1112t!

G~m11m2132t! H m111

m11m211
F1~m1112t,2m12t,m11m2132t;b6 ,%6!

1
m1112t

m211

1

t

r

a
F1~m1122t,2m1212t,m11m2132t;b6 ,%6!1

m212

m11m2132t

2

11t7 in

3F7
in

2
F1~m1112t,2m12t,m11m2142t;b6 ,%6!

1
m1112t

m212
~ i k•r!F1~m1122t,2m1212t,m11m2142t;b6 ,%6!

2n
~m11m212!~m1112t!

~m112!~m11m2142t!

kr 7k•r

11t7 in D F1~m1122t,2m1212t,m11m2152t;b6 ,%6!G J . ~3.11!
th

-

In the EDA (k50, vÞ0), which is valid for wave-
lengths considerably larger than the linear dimensions of
initial atomic state, the LRF’s~2.15! and ~2.16! become
much simpler. First, as shown by Eq.~3.5!, the orbital vector

W100~V,0;r![w100~V;r! ~3.12!

lies along the position vectorr :

w100~V;r!5
i

\
me~pa3!21/2tr

ieipt

2sin~pt!
E

1

~01 !

dr

3r12tS 2

N1,t
D 4

expS 2
Nt,1

N1,t

1

t

r

aD . ~3.13!
e
According to Eq.~3.10! it has the explicit form

w100~V;r!5
i

\
me~pa3!21/2trS 2

11t D 21t

expS 2
1

t

r

aD
3

1

22t
F1~22t,212t,32t;b1 ,%1!, ~3.14!

with

b1[
1

2
~12t!, %1[

12t

t

r

a
. ~3.15!

Second, fork50, the spin LRF~3.6! reduces, after an inte
gration by parts, to the explicit expression
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S100~V,0;r!52
1

V2E1
u100~r!. ~3.16!

Notice that Eq.~3.16! trivially follows from the definition
~2.16! by setting k50 therein and then substituting th
eigenfunction expansion~A2! of the CGF.

We finally recall that Eqs.~3.13! and ~3.14! were written
in Ref. @8# as the ground-state case of our general formu
regarding the linear response from aunlm& state in the EDA.
It is worth adding that Eq.~3.13! invigorates the remarkabl
result reported by Luban, Nudler, and Freund in Ref.@2#.
Indeed, for real values oft, 0,t,2, the integration path in
Eq. ~3.13! can be replaced by the interval@0,1# on the realr
axis:

w100~V;r!5
i

\
me~pa3!21/2trE

0

1

drr12tS 2

N1,t
D 4

3expH F211
2~12t!r

N1,t
G1t r

aJ ~0,t,2!.

~3.17!

Now, two changes of the variable of integration in E
~3.17!,

r56
11t

12t

t

17t
, ~3.18!

where the upper signs must to be taken for 0,t,1 and the
lower ones for 1,t,2, allow us to retrieve the following
pair of twin compact formulas@9#:
q

s

.

w100~V;r!5
i

\
me~pa3!21/2tr

24

~12t!22t~11t!21t

3E
0

~1/2!~12t!

dt t12t~12t !11t

3expF2~122t !
1

t

r

aG ~0,t,1! ~3.19!

and

w100~V;r!5
i

\
me~pa3!21/2tr

24

~t21!22t~11t!21t

3E
0

~1/2!~t21!

dt t12t~11t !11t

3expF2~112t !
1

t

r

aG ~1,t,2!.

~3.20!

IV. SECOND-ORDER RETARDATION APPROACH

A. Radiation gauge

Due to the intricacy of the explicit formulas~3.10! and
~3.11!, it is convenient to find the second-order retardati
approach to the linear-response correction~2.13! in the ra-
diation gauge. To this end, we write down the relevant
proximations of the LRF’sê•W100 andS100, making use of
their integral representations. Thus Eq.~3.5! provides the
approximate formula
ê•W100~V,\k ;r!5
i

\
me~ ê•r!u100~r!te2%1

ieipt

2sin~pt!
E

1

~01 !

drr12texpS 2

N1,t
r%1D S 2

N1,t
D 4

3H 11 i ~k•r!S 2

N1,t
D 2

r2
1

2
~k•r!2S 2

N1,t
D 4

r22
n2

2 S 2

N1,t
D 2

~12r!F ~12r!1
1

t

r

a

2

N1,t
rG1O~n3!J .

~4.1!
n of

e
n

Having performed an integration by parts, we get from E
~3.6!

S100~V,\k ;r!52
1

V2E1
u100~r!

3H 11 i k•r2 i ~k•r!te2%1
ieipt

2sin~pt!

3E
1

~01 !

drr12texpS 2

N1,t
r%1D S 2

N1,t
D 4

1O~n2!J . ~4.2!
.Insertion of Eqs.~4.1! and ~4.2! into Eq. ~2.13! yields the
linear response taken in the second-order approximatio
retardation:

C100ms

~1! u2~r,t !52
1

2
eE0@e2 ivtê•K~V1 ,k ;r!

1eivtê* •K~V2 ,2k ;r!#C100ms

~0! ~r,t !.

~4.3!

In the left-hand side of Eq.~4.3! the subscript 2 denotes th
order of retardation.K is a 232 vector matrix defined as a
integral representation:



56 3979LINEAR RESPONSE OF A . . . . I. . . .
K~V,k ;r![
1

V2E1
H te2%1

ieipt

2sin~pt!
E

1

~01 !

drr12texpS 2

N1,t
r%1D S 2

N1,t
D 4

3F11 i ~k•r!S 2

N1,t
D 2

r2
1

2
~k•r!2S 2

N1,t
D 4

r22
n

2S 2

N1,t
D 2

~12r!S n~12r!1kr
2

N1,t
r D G rI 2

1
1

V2E1
F11 i k•r2 i ~k•r!te2%1

ieipt

2sin~pt!
E

1

~01 !

drr12texpS 2

N1,t
r%1D S 2

N1,t
D 4G \2

2me
~k3s!J . ~4.4!

We have denoted byI 2 the 232 unit matrix. By use of Eq.~B10! we get the explicit form of the matrix~4.4!:

K~V,k ;r!5
1

V2E1
S te2%1S 2

11t D 21tH 1

22t
F1~22t,212t,32t;b1 ,%1!1 i ~k•r!

2

~11t!~32t!

3F1~32t,222t,42t;b1 ,%1!2
1

2
~k•r!2S 2

11t D 2 1

42t
F1~42t,232t,52t;b1 ,%1!

2
n

2S 2

11t D 2 1

~32t!~42t!F 2n

22t
F1~22t,212t,52t;b1 ,%1!1krF1~32t,222t,52t;b1 ,%1!G J rI 2

1
1

V2E1
H 11 i ~k•r!F12te2%1S 2

11t D 21t 1

22t
F1~22t,212t,32t;b1 ,%1!G J \2

2me
~k3s! D . ~4.5!
re

te
-

ap
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-
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ma-
B. Multipolar gauge

We find it instructive to analyze the multipolar structu
of the correction~4.3!. With this aim in view, we first trans-
form it from the radiation gauge to the Poincare´ gauge by
carrying out the PZW mapping@10,11#,

C8~r,t !5expF2
ie

\c
x~r,t !GC~r,t !. ~4.6!

The generating function of the PZW transformation@12#,

x~r,t !52E
0

1

du r•A~ur,t !1cE
0

t

dt8F~0,t8!, ~4.7!

written with the potentials~2.2! and ~2.3! and taken in the
second-order retardation approach is

xu2~r,t !52
c

2iv
E0H e2 ivt~ ê•r!F11

1

2
i ~k•r!2

1

6
~k•r!2G

2eivt~ ê* •r!F12
1

2
i ~k•r!2

1

6
~k•r!2G J . ~4.8!

In view of Eqs. ~2.8!, ~4.6!, and ~4.8!, the analog of the
linear-response correction~4.3! in the Poincare´ gauge is the
sum

C100ms
8~1! u2~r,t !5C100ms

~1! u2~r,t !2
ie

\c
xu2~r,t !C100ms

~0! ~r,t !.

~4.9!

According to our prescription~b! of Ref. @12#, we need to
perform an additional unitary transformation of the trunca
wave function in the Poincare´ gauge in order to get the ad
equate multipole contributions within a second-order
proximation of retardation:
d

-

C9u2~r,t !5U2C8u2~r,t !. ~4.10!

In Eq. ~4.10!, U2 is the phase factor

U25expF ie

\c

4p

c

1

30
r 2r•Jd~0,t !G , ~4.11!

where

Jd~R,t !5
c

4p
“R3B~R,t ! ~4.12!

is the displacement-current density of the given radiat
field. It is worth stressing that one can regard Eq.~4.10! as a
gauge transformation that is relevantonly in the second-
order approach of retardation:

U25expF2
ie

\c
x̃2~r,t !G . ~4.13!

Equations ~4.11! and ~4.12! specify its generating func
tion,

x̃2~r,t !52
1

30
r 2r•@“R3B~R,t !#uR50 . ~4.14!

Moreover, it can be inferred from Ref.@12# that starting from
the Poincare´ gauge, a sequence of new gauges is gradu
generated when one increases the order of the retarda
approach. Each of them is associated to a given approxi
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tion of retardation and will be called in what followsa mul-
tipolar gauge. The first one refers to our retardation a
proach and is provided by the gauge transformation~4.10!.
Taking into account Eq.~2.6!, the generating function~4.14!
reads

x̃2~r,t !52
c

2iv
E0

1

30
~kr !2@e2 ivt~ ê•r!2eivt~ ê* •r!#.

~4.15!

We are left to apply the gauge transformation~4.10! to the
truncated linear-response wave function in the Poinc´
gaugeC100ms

(0) 1C100ms
8(1) u2. On account of Eqs.~4.9! and~4.13!

we get the linear-response correction in the multipolar gau
restricted to a second-order approach of retardation:

C100ms
9~1! u2~r,t !5C100ms

~1! ~r,t !2
ie

\c
@xu2~r,t !1 x̃2~r,t !#

3C100ms

~0! ~r,t !. ~4.16!

Making use of Eqs.~4.3!, ~4.8!, and~4.15!, we derive the
expression of the correction~4.16! to the unperturbed
ground-state wave function~2.8!:

C100ms
9~1! u2~r,t !52

1

2
eE0@e2 ivtê•L~V1 ,k ;r!

1eivtê* •L~V2 ,2k ;r!#C100ms

~0! ~r,t !.

~4.17!

In Eq. ~4.17!, L is a 232 vector matrix related toK as
follows:

L~V,k ;r![K~V,k ;r!2
1

V2E1

3H 11
1

2
i ~k•r!2

1

6F ~k•r!22
1

5
~kr !2G J rI 2 .

~4.18!

By inserting first Eq.~4.4! and then Eq.~4.5! into the defi-
nition ~4.18! we find the vector operatorL as an integral
representation and, respectively, in explicit form.

V. STRUCTURE OF THE TRUNCATED FIRST-ORDER
MULTIPOLAR PAULI HAMILTONIAN

Reference@12# provides the multipolar Pauli Hamiltonian
linear in the field and truncated to a second-order appr
mation of retardation,

H9 ~1!u25H0
~1!1H1

~1!1H2
~1! . ~5.1!

The subscript of a term in the right-hand side of Eq.~5.1!
denotes the order of retardation. We write down the th
terms@13#

H0
~1!52Q~x!•E~0,t ! , ~5.2a!
re

e,

i-

e

H1
~1!52H Qjk~x!

]Ej~R,t !

]Xk
1@M~x!1Ms#•B~R,t !J U

R50

,

~5.2b!

H2
~1!52H Qjkl~x!

]2Ej~R,t !

]Xk]Xl

1@M jk~x!1M jk
s ~x!#

]Bj~R,t !

]Xk

1
4p

c
@C~x!1Cs~x!#•Jd~R,t !J U

R50

. ~5.2c!

Denoting byL the orbital angular momentum of the electro
we list below the observables introduced in Eqs.~5.2!.

~i) Electric 2L-pole moments(L51,2,3): dipole~E1!,

Qj~x!52exj , ~5.3a!

quadrupole~E2!,

Qjk~x!52e
1

2!S xjxk2
1

3
r 2d jkD , ~5.3b!

octupole~E3!,

Qjkl~x!52e
1

3!Fxjxkxl2
1

5
r 2~d jkxl1dklxj1d l j xk!G .

~5.3c!

~ii) Orbital magnetic 2L-pole moments(L51,2): dipole
~M1!,

M j~x!52
e

mec

1

2!
L j , ~5.4a!

quadrupole~M2!,

M jk~x!52
e

mec

1

3!
~xjLk1xkL j !. ~5.4b!

~iii) Spin magnetic2L-pole moments(L51,2): dipole
~M1!,

M j
s52

e\

2mec
s j , ~5.5a!

quadrupole~M2!,

M jk
s ~x!52

e\

2mec

1

2!Fxjsk1xks j2
2

3
d jk~r•s!G .

~5.5b!

~iv) Orbital displacement-current dipole moment~C1!,

Cj~x!52
e

mec

1

10
~r3L2r 2P! j . ~5.6!

~v) Spin displacement-current dipole moment~C1!,

Cj
s~x!52

e

2mec

1

2!
~r3s! j . ~5.7!
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Taking into account the expressions of the field streng
Eqs. ~2.5! and ~2.6!, we obtain the following form of the
multipolar Hamiltonian given by Eqs.~5.1! and ~5.2!:

H9 ~1!u25
1

2
@e2 ivth~r!1eivth†~r!#. ~5.8!

In Eq. ~5.8! h(r) is a sum of three operators,

h~r!5h0~r!1h1~r!1h2~r!, ~5.9!

each of them having a definite order of retardation:

h0~r![2E0ê•Q~x!, ~5.10a!

h1~r![2E0H i e jkkQjk~x!1
c

v
~k3 ê!•@M~x!1Ms#J ,

~5.10b!

h2~r![2E0H 2e jkkk lQjkl~x!1 i
c

v
~k3 ê! jkk@M jk~x!

1M jk
s ~x!#2 i

c

v
k2ê•@C~x!1Cs~x!#J . ~5.10c!

VI. MULTIPOLE TERMS IN THE LINEAR-RESPONSE
WAVE FUNCTION

The truncated first-order correction~4.17! to the ground-
state wave function in the multipolar gauge is expressible
means of the CGF~A2! and the two terms of the Hamil
tonian ~5.8! as

C100ms
9 ~1!u2~r,t !5

1

2Fe2 ivtE d3x8G~V1 ;r,r8!h~r8!

3C100ms

~0! ~r8,t !1eivtE d3x8G~V2 ;r,r8!

3h†~r8!C100ms

~0! ~r8,t !G . ~6.1!

Two relevant quantities are to be evaluated in order to g
compact form of the linear-response correction~6.1!. Re-
mark first that a 2L-pole electric moment can be written as
harmonic homogeneous polynomial of degreeL,

Qj 1••• j L
~x!5Cj 1••• j L j

18••• j
L8

~L !
xj

18
•••xj

L8
. ~6.2!

In Eq. ~6.2! C(L) is a 2L-rank constant tensor, which is to
tally symmetric and traceless with respect to Cartesian in
ces belonging to each of the setsj 1 , . . . ,j L and j 18 , . . . ,j L8 ,
respectively. In view of Eqs.~A10! and ~2.11!,

Qj 1••• j L
~x!u100~r!5~pa3!21/2Cj 1••• j L j

18••• j
L8

~L !
~2\!

3S \

i D
L ]L

]qj
18

. . . ]qj
L8

]U
]l U

~q50, l5\/a!

.

~6.3!
s,

y

a

i-

Hence, according to Eq.~A9!,

2E d3x8G~V;r,r8!Qj 1••• j L
~x8!u100~r8!

5~pa3!21/2~2\!S \

i D
L

Cj 1••• j L j
18••• j

L8
~L !

3
]L

]qj
18
•••]qj

L8

]F
]l U

~q50, l5\/a!

. ~6.4!

Making use of Eqs.~A14!–~A16!, we get

2E d3x8G~V;r,r8!Qj 1••• j L
~x8!u100~r8!

52
me

X
~pa3!21/2Qj 1••• j L

~x!
ieipt

2sin~pt!

3E
1

~01 !

drr212tH F ~L11!
] f

]l
2 f

]g

]l

1

t

r

aG f L

3expS 2g
1

t

r

aD J U
~q50, l5\/a!

~L50,1,2,3, . . . !.

~6.5!

On the other hand, there is no contribution of the orbi
magnetic moments in the ground state:

M j 1••• j L
~x!u100~r!50 ~L51,2,3, . . . !. ~6.6!

By contrast, the orbital displacement-current dipole mom
has a nonvanishing effect:

Cj~x!u100~r!52~pa3!21/2
e

mec

1

10aS \

i D
4

3
]3U

]qj]ql]ql
U

~q50, l5\/a!

. ~6.7!

Equation~A9! yields the parallel relationship

2E d3x8G~V;r,r8!Cj~x8!u100~r8!

52~pa3!21/2
e

mec

1

10aS \

i D
4 ]3F
]qj]ql]ql

U
~q50, l5\/a!

,

~6.8!

which becomes, upon using Eqs.~A14!–~A16!,
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2E d3x8G~V;r,r8!Cj~x8!u100~r8!

5
1

2V
~pa3!21/2

e

mec

1

10

1

ta2

\

i
xj

ieipt

2sin~pt!

3E
1

~01 !

drr212texpS 2g
1

t

r

aD
3H f 4r 2210\2F2

] f

]~q2!
2 f

]g

]~q2!

1

t

r

aG J U
~q50, l5\/a!

.

~6.9!

Substitution of Eqs.~A15! and ~A16! into Eq. ~6.5! leads to
the following integral representation:

2E d3x8G~V;r,r8!Qj 1••• j L
~x8!u100~r8!

52
1

2V
Qj 1••• j L

~x!u100~r!e2%1
ieipt

2sin~pt!

3E
1

~01 !

drrL2texpS 2

N1,t
r%1D S 2

N1,t
D 2L13

3F ~L11!~12r!1
2

N1,t
r

1

t

r

aG ~L50,1,2,3, . . . !.

~6.10a!

Integration by parts in Eq.~6.10a! allows us to write the
equivalent formula

2E d3x8G~V;r,r8!Qj 1••• j L
~x8!u100~r8!

52
1

V2E1
Qj 1••• j L

~x!u100~r!

3F12Lte2%1
ieipt

2sin~pt!
E

1

~01 !

drrL2t

3expS 2

N1,t
r%1D S 2

N1,t
D 2L12G ~L50,1,2,3, . . . !.

~6.10b!

Similarly, using Eq.~6.9!, one gets directly the integral rep
resentation

2E d3x8G~V;r,r8!Cj~x8!u100~r8!

52
1

2V
@Cj~x!u100~r!#t

a

r
e2%1

ieipt

2sin~pt!

3E
1

~01 !

drr12texpS 2

N1,t
r%1D S 2

N1,t
D 6F5~12r!2

15
1

t

r

a
r~12r!

2

N1,t
1S 1

t

r

aD 2

r2S 2

N1,t
D 2G . ~6.11a!
After performing a suitable integration by parts in E
~6.11a!, we find alternatively

2E d3x8G~V;r,r8!Cj~x8!u100~r8!

52
1

V2E1
@Cj~x!u100~r!#S 12t

a

r
e2%1

ieipt

2sin~pt!

3E
1

~01 !

drr12texpS 2

N1,t
r%1D S 2

N1,t
D 6

3H 25r15~12r!F1

2
N1,t2~12t!rG

1
1

t

r

a
rF32t23~12t!

2

N1,t
rG J D . ~6.11b!

Now, by applying Eq.~B10!, we obtain from the integra
representations~6.10! and~6.11! two pairs of equivalent ex-
plicit formulas:

2E d3x8G~V;r,r8!Qj 1••• j L
~x8!u100~r8!

52
1

2V
Qj 1••• j L

~x!u100~r!e2%1S 2

11t D L121t

3F L11

~L112t!~L122t!

3F1~L112t,2L2t,L132t;b1 ,%1!

1
1

t

r

a

1

L122t

3F1~L122t,2L212t,L132t;b1 ,%1!G
~L50,1,2,3, . . .!, ~6.12a!

or

2E d3x8G~V;r,r8!Qj 1••• j L
~x8!u100~r8!

52
1

V2E1
Qj 1••• j L

~x!u100~r!

3F12S 2

11t D L111t

e2%1
Lt

L112t

3F1~L112t,2L2t,L122t;b1 ,%1!G
~L50,1,2,3, . . . !. ~6.12b!

Then,
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2E d3x8G~V;r,r8!Cj~x8!u100~r8!

52
1

2V
@Cj~x!u100~r!#t

a

r
e2%1S 2

11t D 41t

3F 10

~22t!~32t!~42t!

3F1~22t,212t,52t;b1 ,%1!

1
1

t

r

a

5

~32t!~42t!
F1~32t,222t,52t;b1 ,%1!

1S 1

t

r

aD 2 1

42t
F1~42t,232t,52t;b1 ,%1!G

~6.13a!

or

2E d3x8G~V;r,r8!Cj~x8!u100~r8!

52
1

V2E1
@Cj~x!u100~r!#S 12e2%1S 2

11t D 31t

3H t
a

r F2
5

32t
F1~32t,222t,42t;b1 ,%1!

1
5

~22t!~32t!
F1~22t,212t,42t;b1 ,%1!

2
5~12t!

~32t!~42t!
F1~32t,212t,52t;b1 ,%1!G

1F1~32t,222t,42t;b1 ,%1!

23
12t

42t
F1~42t,222t,52t;b1 ,%1!J D . ~6.13b!
Substitution of Eqs.~6.10b!, ~6.6!, and~6.11a! into Eq. ~6.1!
allows us to retrieve the structure~4.17!, where each operato
L is written as an integral representation which is precis
that obtained by plugging Eq.~4.4! into Eq. ~4.18!. Finally,
insertion of the explicit formulas~6.12b!, ~6.6!, and ~6.13a!
into Eq.~6.1! leads again to Eq.~4.17! with each operatorL
given this time explicitly by Eqs.~4.18! and ~4.5!.

VII. LOW- AND HIGH-FREQUENCY BEHAVIOR
OF THE MULTIPOLE TERMS

A. Low-frequency case

As we have seen in Sec. VI, the linear-response correc
~4.16!, truncated to the second-order retardation approac
the multipolar gauge, has an orbital part which consists
electric 2L-pole contributions~6.12! with L51,2,3, and
displacement-current dipole terms~6.13!. Besides, its spin
terms are linear combinations of the electric dipole com
nents, Eq.~6.12!, with L51. The low-frequency regime is
characterized by valuesV in the vicinity of the ground-state
Bohr levelE1,

V5E11dV ~ udVu!uE1u!. ~7.1!

Consequently, we set in Eqs.~6.12! and ~6.13!

t[11dt ~ udtu!1!, ~7.2!

keeping all terms of orders not exceeding the order (dt)2,
which corresponds to (dV/2uE1u)2. From Eq. ~6.12a! we
have derived the following approximate formula valid for a
arbitrary multipole rankL:
2E d3x8G~E11dV;r,r8!Qj 1••• j L
~x8!u100~r8!

5
1

2uE1u
Qj 1••• j L

~x!u100~r!S 1

L
1

1

L11

r

a
1

dV

2uE1uF S 1

L
1

1

L11
1

1

L12D S 1

L
1

1

L11

r

aD1
1

~L11!~L12!S r

aD 2G
1S dV

2uE1u D
2H F 1

L2
1

1

~L11!2
1

1

~L12!2
1

3

L~L11!
1

9

~L11!~L13!G S 1

L
1

1

L11

r

aD
1

1

~L11!~L12!S 1

L
1

1

L11
1

1

L12
1

3

L13D S r

aD 2

1
1

~L11!~L12!~L13!S r

aD 3J 1OF S dV

2uE1u D
3G D ~L51,2,3, . . .!.

~7.3!

Equation~6.12b! was used to check the low-frequency expansion~7.3!. Then we have found with Eq.~6.13a! and checked by
means of Eq.~6.13b! the similar expansion of the displacement-current dipole term:
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2E d3x8G~E11dV;r,r8!Cj~x8!u100~r8!

5
1

2uE1u @Cj~x!u100~r!#
a

r H 5

3S 11
1

2

r

aD1
1

3S r

aD 2

1
dV

2uE1uF155

36 S 11
1

2

r

aD1
19

36S r

aD 2

1
1

12S r

aD 3G
1S dV

2uE1u D
2F4643

432S 11
1

2

r

aD1
2783

2160S r

aD 2

1
137

720S r

aD 3

1
1

60S r

aD 4G1OF S dV

2uE1u D
3G J . ~7.4!
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When employing the expansions~7.3! and~7.4! in Eq. ~6.1!,
we get the truncated linear-response correction~4.17! to the
wave function in the range of low frequencies, which is a
curate to the order (\v/2uE1u)2.

B. High-frequency case

We analyze the relevant multipole terms~6.12a! and
~6.13a! in the first-order correction~6.1! to the ground-state
wave function for frequencies which are high in comparis
with the characteristic atomic ones. Applying the asympto
formula ~B12! of the Humbert functionF1, we obtain for
t→0

2E d3x8G~V;r,r8!Qj 1 , . . . ,j L
~x8!u100~r8!

52
1

V
Qj 1 , . . . ,j L

~x!u100~r!@11O~ utu!#

~L51,2,3, . . .! ~7.5!

and

2E d3x8G~V;r,r8!Cj~x8!u100~r8!

52
1

V
@Cj~x!u100~r!#@11O~ utu!#. ~7.6!

Note that Eqs.~7.5! and~7.6! are direct consequences of th
asymptotic behavior of the CGF, Eq.~A3!. By inserting Eqs.
~7.5! and ~7.6! into Eq. ~6.1!, we find the high-frequency
limit of the truncated linear-response correction in the m
tipolar gauge:

C100ms
9~1! u2~r,t ! ;

v→`
1

2\v
@e2 ivth~r!2eivth†~r!#

3C100ms

~0! ~r,t !. ~7.7!

In addition, we use Eq.~A3! to get the high-frequency be
havior of the exact first-order correction~2.13! in the radia-
tion gauge:

C100ms

~1! ~r,t ! ;
v→`

eE0

mev
1

2\v
Hei ~k•r2vt !

3F1

i
ê•P1~k3 ê!•SG1e2 i ~k•r2vt !

3F1

i
ê* •P2~k3 ê* !•SG J C100ms

~0! ~r,t !. ~7.8!
-

n
c

-

VIII. CONCLUSIONS

We have obtained anexactlinear-response wave functio
of a hydrogenlike atom perturbed by a single-mode radiat
field. In the remote past (t→2`), the atom is in its unper-
turbed ground state, and for negative times the field evol
adiabatically. The first-order correction~2.13! to the wave
function in the radiation gauge, with the closed-form expr
sions~3.5! and~3.6! inserted, is the analytic solution of Pod
olsky’s problem complemented with the first-order contrib
tion due to the magnetic interaction of the electron spin. T
basic mathematical tool is the generating function~A9! of
the linear response, which has been evaluated using Host
compact integral representation~A4! of the nonrelativistic
CGF in coordinate space. It will also be employed in t
following paper@14# to derive in the EDA the LRF’s asso
ciated to any excited stationary state.

The closed-form contour integrals~3.5! and ~3.6! are by
far more important than the explicit expressions~3.10! and
~3.11! of the LRF’s as double ascending power series. W
have started out with them to get the linear response in
second-order retardation approach in the radiation gauge
~4.3!, as well as in the multipolar gauge, Eq.~4.17!. It is also
worth adding that the exact nonrelativistic Rayleigh scatt
ing amplitude from the atomic ground state@15# can be re-
trieved such as to include the corrections due to the intrin
magnetic moment of the electron@16#.

We have analyzed the first- and second-order correct
of retardation in the multipolar gauge, split as they are in
orbital and spin contributions. The orbital part of the firs
order correction arises from the electric quadrupole coupli
while that of the second-order correction consists of elec
octupole and displacement-current dipole terms. The s
second-order corrections can be described by means o
electric dipole coupling. For low and high frequencies of t
applied field, the behavior of all the relevant quantities h
been finally established.

APPENDIX A: GENERATING FUNCTION
OF THE LINEAR RESPONSE

We recall that the Schro¨dinger CGF in coordinate spac
G(V;r,r8) is a solution of the inhomogeneous differenti
equation

~H ~0!2V!G~V;r,r8!52d~r2r8!, ~A1!

whose eigenfunction expansion is
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G~V;r,r8!5(
N8

uN8~r!uN8
* ~r8!

V2En8

. ~A2!

In Eq. ~A1!, H (0) is the field-free Coulomb Hamiltonian
while in Eq. ~A2!, En8 are its eigenvalues and$uN8(r)% de-
notes a complete orthonormal set of Coulomb energy eig
functions. The CGF is defined for any complex valueV not
belonging to the energy spectrum. Note also its asympt
behavior:

G~V;r,r8! uVu→`̃

1

V
d~r2r8!. ~A3!

In what follows we employ Hostler’s integral representati
of the CGF@4#:

G~V;r,r8!52
2me

\2

1

4p

X

\

ieipt

2sin~pt!
E

1`

~11!

dzS z11

z21D t

3expF2
X

\
~r 1r 8!z G

3I 0S 2
X

\
~rr 8!1/2~z221!1/2cos

Q

2 D . ~A4!

In Eq. ~A4!, the contour of integration in the complexz
plane starts at1`1 i0, runs down to the pointz51 on the
upper side of the cut (1,1`), with argz50, encircles the
point z51 in the counterclockwise sense, and then goe
1`2 i0 along the cut (1,1`), below it. We have denoted

X[~22meV!1/2 ~ReX.0!, ~A5!

t[
\

aX
, ~A6!

wherea is the scaled Bohr radius~2.10!, and

cosQ[ r̂• r̂8. ~A7!

I 0(z) is the modified Bessel function of zeroth order, whi
can be written as a contour integral@17#,

I 0~z!5
1

2p i Ec2 i`

c1 i`

ds
1

s
expS s1

z2

4sD , ~A8!

wherec is a positive number.
We define the generating function

F~V,q,l;r![2E d3x8G~V;r,r8!U~q,l;r8!, ~A9!

with

U~q,l;r![
1

r
expF1

\
~ iq•r2lr !G . ~A10!

In Eq. ~A10!, q is a complex vector andl is a positive real
scalar. In evaluating the integral~A9! we follow a technique
put forward by Hostler @18# in his derivation of the
momentum-space CGF, and subsequently adapted by K
n-

ic

to

rs-

feld @19# to the study of two-photon transitions between h
drogenics states. After inserting into Eq.~A4! the integral
representation~A8! of the Bessel functionI 0, substitution of
Eq. ~A4! into Eq. ~A9! leads to a space integral of the typ

Ed3x
1

r
exp~2Ar2B•r!54p~A22B•B!21

~ReA.uReBu!. ~A11!

The integral~A11! is immediate ifB is a real vector; for a
complexB the result is then obtained by analytic continu
tion. In our specific case, a sufficient condition for the co
vergence of the space integral is

l.uImqu. ~A12!

After computing successively the space integral with E
~A11! and a closed-contour integral over the complex va
able s from Eq. ~A8! by means of the residue theorem, w
change the variable of integration,

r5
z21

z11
, ~A13!

and find

F~V,q,l;r!5
me

\X

ieipt

2sin~pt!
E

1

~01 !

drr212t f

3expS i

\
f q•r2g

X

\
r D , ~A14!

with

f ~X,q2,l;r![
4X2r

@X1l1~X2l!r#21q2~12r!2
,

~A15!

and

g~X,q2,l;r![
~X1l!22~X2l!2r21q2~12r2!

@X1l1~X2l!r#21q2~12r!2
.

~A16!

In Eq. ~A11! the integration path in the complexr plane
begins at the pointr511 i0, where the argument ofr is
zero, then encircles the originr50 in the positive sense
within the unit circle, and terminates at the pointr512 i0.

To the best of our knowledge, the result~A14!–~A16! has
been first obtained by Kelsey and Macek@20#. It is worth
emphasizing that we have previously utilized Schwinge
integral representation of the GCF in momentum space@21#
in order to derive Eqs.~A14!–~A16! @22#. However, the
above-presented proof is conveniently straightforward.

APPENDIX B: THE HUMBERT HYPERGEOMETRIC
FUNCTION F1

The functionF1 is obtained by confluence from the Ap
pell hypergeometric functionF1:
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F1~a,b,c;x,y!5 lim
b8→`

F1S a;b,b8;c;x,
y

b8
D . ~B1!

We recall the double ascending power series of the Ap
function F1 @23#,

F1~a;b,b8;c;x,x8!5 (
n50

`

(
n850

`
~a!n1n8~b!n~b8!n8

~c!n1n8n!n8!
xn~x8!n8

~ uxu,1, ux8u,1!, ~B2!

and its integral representation@24#

F1~a;b,b8;c;x,x8!

5
G~c!

G~a!G~c2a!

2 ie2 ipa

2sin~pa!
E

1

~01 !

drra21

3~12r!c2a21~12xr!2b~12x8r!2b8

@Re~c2a!.0, aÞ1,2,3, . . . ,

uarg~2x!u<p, uarg~2x8!u<p#. ~B3!

In Eq. ~B2!, as well as throughout this paper and the follo
ing one@14#, Pochhammer’s symbol

~a!n[
G~a1n!

G~a!
~B4!

is utilized. Taking the limit~B1!, Eqs. ~B2! and ~B3! be-
come, respectively@25#,

F1~a,b,c;x,y!5 (
n50

`

(
n850

`
~a!n1n8~b!n

~c!n1n8n!n8!
xnyn8 ~ uxu,1!

~B5!

and

F1~a,b,c;x,y!

5
G~c!

G~a!G~c2a!

2 ie2 ipa

2sin~pa!

3E
1

~01 !

drra21~12r!c2a21~12xr!2beyr

@Re~c2a!.0, aÞ1,2,3, . . . , uarg~2x!u<p#.

~B6!

Note that Eq.~B5! can be written out as a simple series eith
of Kummer hypergeometric functions1F1,

F1~a,b,c;x,y!5 (
n50

`
~a!n~b!n

~c!n

xn

n!

31F1~a1n;c1n;y! ~ uxu,1!,

~B7!

or of Gauss hypergeometric functions2F1,
ll

-

r

F1~a,b,c;x,y!5 (
n850

`
~a!n8

~c!n8

yn8

n8!

32F1~a1n8,b1n8;c1n8;x!. ~B8!

With the change of the variable of integration

r5
t

12x1xt
~xÞ1!, ~B9!

Eq. ~B6! yields another useful integral representation:

F1~a,b,c;x,y!

5~12x!2a
G~c!

G~a!G~c2a!

2 ie2 ipa

2sin~pa!

3E
1

~01 !

dtta21~12t !c2a21

3S 12
x

x21
t D b2c

expS yt

12x1xtD
S Re~c2a!.0, aÞ1,2,3, . . . , xÞ1, argU x

x21U,p D .

~B10!

We finally remark that the dominant asymptotic behavior
the Kummer function@26#,

1F1~a;c;z!5
G~c!

G~c2a!
~2z!2aF11OS 1

uzu D G
1

G~c!

G~a!
ezza2cF11OS 1

uzu D G
@ uzu→`, 2p,arg~z!<0#,

~B11!

leads via Eq.~B7! to the following asymptotically dominan
terms of the Humbert functionF1:

F1~a,b,c;x,y!5
G~c!

G~c2a!
~2y!2aF11OS 1

uyu D G
1

G~c!

G~a!
eyya2c~12x!2bF11OS 1

uyu D G
@ uxu,1, uyu→`, 2p,arg~y!<0#.

~B12!
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