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Linear response of a nonrelativistic hydrogenlike atom to a single-mode radiation field.
I. Exact theory: The atomic ground state

Tudor A. Marian 3
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In the framework of semiclassical theory we investigate the influence of a low-intensity monochromatic
electromagnetic plane wave on a nonrelativistic one-electron atom. The radiation field is switched on adiabati-
cally, while the atom is assumed to be initially in its ground state. We analyze their interaction to the first order
of perturbation theory, taking into account retardation effects. In the radiation gauge, the exact first-order
correction to the wave function consists of separate orbital and spin contributions which are determined,
respectively, by a vector and a scalar linear-response function. Starting from Hostler’s integral representation
of the Schrdinger Coulomb Green function in coordinate space, we have derived them, via a generating
function, as closed-form contour integrals. Then they have also been written explicitly, as double power series
involving linear combinations of Humbert hypergeometric functidns From the integral representation of
the linear-response wave function we have extracted the considerably simpler second-order retardation ap-
proach. We have subsequently translated it in a conveniently modified Poigaage, which we call a
multipolar gauge, in order to display the contributions of the genuine field-atom multipole couplings. The
relevant orbital and spin multipole terms are then recovered by employing directly the generating function of
the linear response. Their low- and high-frequency behavior is finally exan{i§&850-294®7)03711-9

PACS numbgs): 32.80-t, 42.50.Ct, 03.65-w

[. INTRODUCTION the radiation gauge can be expressed in terms of a vector

function W;oq and a scalar one; g, that we call linear-

The linear response of an atom to a classical radiatiofiesponse functionsLRF's). Section Il is devoted to the
field is described by the first-order perturbation correctionderivation of the LRF’s starting from a suitable generating
¥ to an initial bound-state wave function. Obviously, ana-function 7, determined in turn by the CGF. The functions
lytic expressions of such corrections cannot be even envisi100 ad S1go are calculated first as compact contour inte-
L grals and then explicitly as double series involving Humbert

aged for complex atoms. On the contrary, obtaining in anaz

e f he i f lativistic hvd functions®,. In Sec. IV we deal with the second-order re-
ytic form the linear response of a nonrelativistic Nydrogen;,yation approach to the linear-response wave function. Af-

atom, initially in a|nim) state, to a single-mode radiation ter taking it out in the radiation gauge, we write it also in the
field is a problem raised by Podolsky] soon after the ad- poincare gauge by applying the Power-Zienau-Woolley
vent of quantum mechanics. However, Podolsky solved thigPzw) transformation[5—7]. By means of an additional
problem only for the atomic ground state and in the electridJ (1) transformation, we find the linear response in what we
dipole approximatiodEDA). In fact, he succeeded in getting call amultipolar gauge Precisely in this gauge the multipole
the Coulomb Sturmian-function expansion of the corre-structure of the first-order Pauli Hamiltonian, truncated to a
sponding first-order correction, by solving appropriate inho-se€cond-order retardation approach, is laid out in Sec. V. We
mogeneous differential equatiofis]. Much later, the same take advantage of the generating functiénin Sec. VI to
correction has been found in a compact form, as an integrdlerive directly the relevant orbital and spin multipole terms
representation, and also explici{ig,3]. entering .the Imear—respon;e wave funqtlon in the same ap-
The purpose of this paper is to evaluate the linear repr.o>l<|mat|on. They are written both_as integrals and in ex-
sponse of a nonrelativistic hydrogenic atom to a single-mod@!iCit form. The latter is employed in Sec. VIl to evaluate
radiation field, when the initial atomic state is the groundthelr low- anq h|gh-_frequency behawor._ Section VIl surveys
state. We take full account of retardation and, in addition,the results with view to pos§|ble apphcatlons._ln Appendix
consider the magnetic coupling of the electron spin. ThéA‘ we get the generatlpg.functloﬁ as a contqur mtegra] by
starting point of our analytic developments is a compact in—makIng use qf Hostle_r s integral representation of the Schro
tegral representation of the Coulomb Green functicGF dlng_er CG'.: in coordinate space. Apper)dlx B is meant to be
in coordinate space discovered by Hosf: a brief review of some useful expressions of the Humbert

The resulting exact formulas being rather complicated amlj"lypergeom_e'frlc functm@l. Note that the Gauss_lan 'unllts
difficult to handle, we find it valuable to write them in the and Einstein’s summation convention for Cartesian indices
second-order approximation of retardation which is much?'® consistently utilized.
simpler and also reliable in the optical regime. We have ob-
tained approximate formulas in the radiation gauge, as well
as in a modified Poincargauge that has the virtue of dis-
playing the constituent multipole terms. We concern ourselves with a hydrogenlike atom whose

In Sec. Il we show that the wave-function correction in nucleus is fixed at the origin of the coordinate system and

Il. FIRST-ORDER CORRECTION TO THE WAVE
FUNCTION IN THE RADIATION GAUGE
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has the atomic numbe&t. The perturbing radiation field is a In Eq. (2.8), E; is the ground-state energy,
monochromatic plane wave with propagation veatorfre-

C 2
quencyw, and polarizatione: E,=— Z_e (2.9
1 2a '
w ~
K=o € k=0. (2.9 with
Its electrodynamic potentials in the radiation gauge are a= P (2.10
5 :
=0 22 mees

the scaled Bohr radiusy;o(r) is the corresponding eigen-

and function,

A(r,t)= % %So{exr[i(m r—wt)]%— c.ct (&>0),

Ugod )= (Tfas)llzex% - L) ,
(2.3 a

(2.11

and L, denotes a normalized eigenspinor of the Pauli opera-
tor o, :

with
divA=0. (2.9
(2.12

Uzgmsz stgms (mg== %)
Note that the field strengths of the mode,

According to time-dependent perturbation theory, the first-

E(r,t)=%go{exp[i(:c.r—wt)]%+c.c.} (2.5
and

B(r,t)= % geo{exr[i (kT —wt)] (KX €)+ c.c}, (2.6

have small amplitude and arbitrary frequency. As a side re-

order correction to the wave functid@.8) due to the inter-
action(2.7) is, fort=0,

Wb (r)=— ° 1 o - e
100mgt ™ Mew 2i hot
x{e e Wyod Q1,71s;1)

+i810d Q1. fire;T) (KX €)- S

mark, in Egs.(2.5 and (2.6), &, is the amplitude of the
oscillating field only in the particular case when its polariza-
tion is linear (* =¢). However, in any casé¢s is the time
average of the squared field strength.

— €' e - Wyod Qp, —fikc;r)

~iS10d Q2 ~firc;1) (X € ) - ST}m..

Dealing only with the atomidinear response, we are en- (2.13
titled to neglect theA? term in the field-atom interaction

Hamiltonian and keep only its terms that are linear in theWe have denoted

field: Q=E;+ho+i0, Q,=E;—ho,  (2.14

e
HY=—(A.-P+B-S). 2.7 3 _
meC Wiod Q,fike;r)=— | d°x'G(Q;r,r")exp(ir-r" )P updr’),
(2.15

In Eq.(2.7), — e is the electron charge, the electron mass,
while P and S=(%/2) o denote the momentum and spin op- and
erators of the electron, respectively. The first term in the
Hamiltonian(2.7) is due to the orbital motion of the electron,
while the second one describes the magnetic coupling of theSiod Q.7 k;1)= —f A3’ G(Q;r,r")explir- " )usdr'),
electron spin. (2.16

We shift the initial condition td— — o and suppose that
the field modg2.5) and(2.6) is turned on adiabatically, with  where G(Q;r,r’) is the CGF, Eq.(A2). Notice that the
an exponential switching factor in the time interval¢,0).  linear-response correctigq2.13 consists in fact of two Flo-
This means that in calculations, for negative times, oneuet terms, describing, respectively, one-photon absorption
should multiply the interaction Hamiltonia2.7) by a factor  and emission processes. Owing to the additive structure of
exd (1/f)et)] with e>0 and eventually take— +0. Inthe  the Pauli Hamiltoniani2.7), each Floquet term is a sum of an
remote pastt(— —), the atomic electron is assumed to be orbital and a spin contribution. These contributions are char-
in its ground state, described by the unperturbed wave funcacterized, respectively, by the vector LRE15 and the sca-
tion lar one, Eq.(2.16). It goes without saying that Eq&.13—
(2.16 can be extended to an arbitrary stationary sfisite),
whereN denotes the ensemble of quantum numbers associ-

28 ated to the orbital motion of the atomic electron.

[
W 5m, (1, 1) = exp( - gElt) Uzod ") ¢mg:
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Il. EXACT EXPRESSIONS OF THE LINEAR-RESPONSE 52
FUNCTIONS Wi Q,7ik;r)=(7a®) 12 quf(q,x,ﬂ;r) ,
=hK, \=H/
According to Eqgs(2.11) and(A10), we find . (33}3)
hZ
exp(ik: r)PulOO(r)=(7ra3)_l/2 -V , S10d Q2 hk;r)
a
{q=hx, N=hla}
d
au =—(wa®) Y h ——F(q\,Q;r) 3.4
explir-Nuydr)=—(ma) Y24 — . I\ {q=tir, \=h/a}
ON|, B
{q=hK, \=1la}
(3.2

Substitution of the expressiolid14)—(A16) of the generat-
On account of the identitie€3.1) and (3.2), the definitions ing function F into Egs.(3.3) and(3.4) gives the following
(A9), (2.195, and(2.16 yield the similar formulas closed-form representations:

AT 2 2
Waod O i) = (ma¥)-v2 Te, 17 [0 o 2 GNP P Y I PR
oS X " 2sin(m7) )1 Mizviv) \N1soin Ta 4

+p(l/7-)(r/a)_ (1—p) (kI F K1) ] F{_4ip(:<r11c-r) Nezipalor 35
—————Fp(l-p)—F—|viEXp F — - = .
Nl,TiiV P P Nl,'r+iv~/\/l,'r—iv Nl,T+iVN1,T—iV Nl,TiiV T a
and
2m, ie'™ [0+ 4 | 1-p  Fiv(1—p)?+2p(Un)(r/a)
S1od Q. fikr)=(mad) "2 — — dpp™ " +
10d 2 fo 1) = () X2 2sin(m7) )1 pp N1,7+in1,T—iVV\/1,T:iV NiriNistiv
4ip(1—p)K-r Avp(1—p)2(kr F K-T) Xp[_ Aip(krFrer)  Npzipal o 39
- -+ - - —. N
Nl,r+iVN1,T—iVN1,TiiV NiT-FiVNiT—iV Nl,T+iVNl,T—iV Nl,’T:iV T a
In the above equations we utilize the paramet&s) and (A6). Further, we have denoted
Ny =7"+7r+(r'—7)p (3.7
and
_ﬁK _ﬁ 3.8
v=ar v=e (38

Note also that one should employ consistently either upper or lower signs.

Using in Egs.(3.5) and(3.6) the Taylor expansion of the first exponential and then the expansions of the negative powers
of the ratioNy ,+;,/ N1 ,=;,, we reach the position to apply E@10). We finally get the explicit expressions of the LRF’s
(2.15 and(2.16 as double ascending power series, whose coefficients are linear combinations of Humbert fdngtiggs
(B5), of the dimensionless variables

1 . B 1r
,8125(1_7'—”/), Q:zzlgt;a- (3.9

Therefore, we have found
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2+ 1r
exp ———
Ta

2iv \#2 T(pq+2-7) [.1rq) v 1 3
F(M1+M2+3_7)ll;a l(lu“l T, —p1—1-7u T pot _Tlﬁiigi)

2
1+75iv

m +us+ ) 2i(kr ¥ K-r)|#1
Waod Q. fiir) = (ma%) M2 <27 (it ot DY 21t Z o)

+ —
i1=0 so=0 M!(u1+1)! [ 1+7¥iv

X| F .
1+7Fiv

ILL2+1 14 [ ,LL2+2
M1t puot3—7 1+ TIiV[,ul-i- 1-7

Oy(p+1l-—7,—p— 7T+t pp+4—78+,0+)

(p2t2)(pu1tuot2) 2i(kr+Kr)
(/.L1+2)(,U.1+,LL2+4_T) 1+TI|V

1r
+2; acpl(/_Ll+2_T,_lLLl_1_T,/.L1+/-L2+4_T;Bi ,Q:):

X¢1(Ml+2_71_ﬂl_l_T!M1+M2+5_T;IB+vQ+)H (3.10
and

o

- (potpot DY _2i(kr Fsen)]™
-+ —
o 2o mal (w1477

m 2 2% 1r
o) — 3y-1/2 e _Z_
S10d Q. fikc;r)=(m7a>) X2( 1+r$iv) ex;{ s

e : Fl— 7 — =T g+ o+ 3— T B 0
+1+TIIV M+ p,+3—1) [,ul-l—,uz-l—l Po(pat 17 =g =T paF pp+ 3= 7B Q)
ptmr Ll 2 1 t ot 3— T L H2t2 2
1l 7 a 1(pq T, ~ M1 Ty Mt M2 T,B+,0x) it gy 37 Tir5iv
v

X +§¢1(M1+1_Ty_ﬂl_TaM1+M2+4_T§ﬂ:'Q:)
pmitl-—

T -
W('K'r)®1(ﬂ1+2_Ta_/—Ll_l_TyM1+M2+4_T;Bt 0+)

(py+po+2)(u1+1—7) Kr¥w-r
_V(M1+2)(M1+M2+4_7) 1r=iv DOy(pur+2—7,— 1= 1—7T,u1+ pup+5-76-,0+) (. (3.1

In the EDA («=0, w#0), which is valid for wave- According to Eq.(3.10 it has the explicit form
lengths considerably larger than the linear dimensions of the
initial atomic state, the LRF'Y2.15 and (2.16 become i 2+7 1r
much simpler. First, as shown by E@.5), the orbital vector ~ Wiod ;1) = 2 Me( mad) Yerr| —— ex;{ --2

1+~
Wiod ©,0:1) =Wyod 1) (312 Xm0y r-1-n 3Ty, (314
lies along the position vectar: with
WlOO(Q;r)=;i—me(wa3)‘1’zrr% 1(O+)dp 15%(1—7), 0= 1;7 %. (3.15
X pl=7 2 ):Xi{ MNaalr . (313 Second, fork=0, the spin LRF(3.6) reduces, after an inte-
Ni, Ny, Ta gration by parts, to the explicit expression
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1 i 24
S10d2,0;r)=— =——=Usod ). (3.19 Wyod Q1) = —mg(ma3) ™ Y27y
Q_ El 100( ) h e(ﬂ- ) T (1_ 7_)2—7(1+ 7_)2+’r

Notice that Eq.(3.16 trivially follows from the definition Xf dt ti7(1—t)1+r

(2.16 by setting k=0 therein and then substituting the
eigenfunction expansiofA2) of the CGF.

We finally recall that Eqs(3.13 and(3.14) were written
in Ref. [8] as the ground-state case of our general formulas
regarding the linear response fronirdm) state in the EDA.

0

><exp[ —(1—2t)%ﬂ (0<7<1) (3.19

It is worth adding that Eq(3.13 invigorates the remarkable and
result reported by Luban, Nudler, and Freund in Réf.
Indeed, for real values af, 0<r<2, the integration path in i o4
Eg. (3.13 can be replaced by the interyd),1] on the reap Wiod Q1) = —me(mad) ™ Y27t
axis: h (7—1)2 7(1+7)2*7
i - 1 2\ (-1 1in
WlOO(Q;r)=gme(q-ra3) 1’Za-rfo dppt T(ler) XJO dt 1 7(1+0)*"
2(1- 1r 1r
Xexp{ _1+(N—T)p?5] (0<7<2). XeX[{—(l—i—Zt);a} (1< 7<2).
1,7
(3.17 (3.20
Now, two changes of the variable of integration in Eq. IV. SECOND-ORDER RETARDATION APPROACH
(3.17), A. Radiation gauge
Due to the intricacy of the explicit formula8.10 and
p= +1+7' t (3.19 (3.11), it is convenient to find the second-order retardation
“1l1-7 17t ' approach to the linear-response correcti@grl3 in the ra-

diation gauge. To this end, we write down the relevant ap-

where the upper signs must to be taken fer 6<1 and the proximations of the LRF’&%-WlOO and S;q9, making use of
lower ones for KX 7<2, allow us to retrieve the following their integral representations. Thus H.5 provides the
pair of twin compact formulag9]: approximate formula

Wl O i 0 el <0+>d L 2 2 \4
€ Wigd ,K,f)—gme(e-f)uloo(f)Te 2si(a) )1 pp~"ex NLTPQl N

X

| (2)2 1 2(2)42y2(2)2 1r 2 ,
1+i(ser) N, p=5(KT) Vo P2\ (1-p) (1—P)+;5NMP +O(v9) .

4.1

Having performed an integration by parts, we get from Eq.nsertion of Egs.(4.1) and (4.2) into Eq. (2.13 yields the
(3.6 linear response taken in the second-order approximation of
retardation:

1
S10d Q fike;r)=— Q——ElulOO(r)

1 oA
ieimr \If(l%))(ms|2(r,t)=—Eego[e"“"e-IC(Ql,x;r)
X{1+ikr—i(kr)re @1 ————
2sin(mr) N
+e et - IC(Qp,—r;r) ]P0 (1,1).
XJ(O+)d L p( 2 )( 2)4 ) »
Texpg —— — .
1 PP Nl,Tle Nl,T ( )
In the left-hand side of Eq4.3) the subscript 2 denotes the
+O(V2)} : (4.2 order of retardationiC is a 2X 2 vector matrix defined as an

integral representation:
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O 1 o ie'™” J<0+>d . 2 2 \4
( ’K’r)=Q—EllTe 2sinmn ), 9P SR N pes)|

_ 2 \? 2 \4 , v 2 2 2
X l+I(K'r)(AT’T) (K r) (N:h—) E(K—) (l—p)(V(l—p)'i‘Kr/\Tl’Tp)}”Q
- . o |e|7r7 (0+) . 2 4 2
+Q—El 1+ikr—i(k-r)yre 1m d eX%ATpgl)(N ) >m (KXO')} (4.4

We have denoted bl, the 2x2 unit matrix. By use of Eq(B10) we get the explicit form of the matriid.4):

1 2+7 1 2
K(Q, ;1) = Q—E1< Teel(lTT) {ZTT‘Pﬁ— nolmn3mn By e) il ) moE T

1 2 \21
X®(3—7,—-2—74—7,81,01)— = (K r? —) EQ)1(4—T,—3—7’,5—7‘;,81,91)
M2 2 o g s ®,(3—r,—2- 15— |
_E 1+ 7 (3_7)(4_7_)\‘2_7_ l( -7, 40T, _T!ﬁlugl)_l—’(r l( —T,T LT, _TvBl!Ql) ri,
2 2+T 1 ﬁ2
o 0 L _
+Q—E1 1+i(s I’)[l T€ 1(1-}-7’) 52 @1(2 7,—1—7,3— 7,81, Ql)” (kX o). (4.5
|
B. Multipolar gauge P ,(r, 1) =U, W' | 5(r,1). (4.10
We find it instructive to analyze the multipolar structure
of the_ correctior‘(4.3): With this aim in view, we first trans- |, Eq. (4.10, U, is the phase factor
form it from the radiation gauge to the Poincagauge by
carrying out the PZW mappindl0,11],
ie 47 1 >
ie U,=ex 7cc 30" r-J90o,t)| , (411
‘lf’(r,t)zex;{—%x(r,t)}‘lf(r,t). (4.6) cc
The generating function of the PZW transformat{di2], where
c
x(r,t)= f dur-A(ur, t)+cJ dt'®(0o,t"), (4.7 Jd(R,t)=EVRXB(R,t) 4.12
written with the potential€2.2) and (2.3) and taken in the
second-order retardation approach is is the displacement-current density of the given radiation
1 . field. It is worth stressing that one can regard Egl10 as a
c o i i :
___- —iwt % N T2 gauge transformation that is relevaonly in the second-
Xl2(r D) Ziwgo(e (e:1) 14510 N =g lser) } order approach of retardation:
S 1 1
—e"”t(e*-l’)[l—EI(K-F)—E(K-I’)2 ] (4.8 ie_
U,=ex —%Xz(r,t) . (4.13

In view of Egs. (2.8), (4.6), and (4.8), the analog of the
linear-response correctidd.3) in the Poincaregauge is the

sum Equations (4.11) and (4.12 specify its generating func-

tion,

W 10|21, 8) = Wi (1, t) = —xlz(r O {oon (1.1 _ 1
(4.9 Xa(r)=—3571 r-[VRXB(R)][g=o.  (4.19

According to our prescriptiofb) of Ref.[12], we need to
perform an additional unitary transformation of the truncatedMoreover, it can be inferred from Rdfl2] that starting from
wave function in the Poincargauge in order to get the ad- the Poincaregauge, a sequence of new gauges is gradually
equate multipole contributions within a second-order ap-generated when one increases the order of the retardation
proximation of retardation: approach. Each of them is associated to a given approxima-
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tion of retardation and will be called in what follovesmul-

tipolar gauge The first one refers to our retardation ap- H(ll)Z—(ij(X)

proach and is provided by the gauge transformataiO).
Taking into account Eq2.6), the generating functiod.14)
reads

- 1 2ra—ioty 2 ot Tx
Xalr.0)=— 5o o (k1) (o) ~ (& 1)

(4.19

We are left to apply the gauge transformati@nl0 to the

truncated linear-response wave function in the Poincare

gaugeV (G, + ¥ Gon 2. On account of Eqg4.9) and(4.13

we get the linear-response correction in the multipolar gaugepenoting byl the orbital angular momentum of the electron,

restricted to a second-order approach of retardation:

P D e >
Toomy| 21 1) = Wigan (1,1) = %[X|2(r,t)+X2(r,t)]

(4.19

X W oan (1, 1).

Making use of Egs(4.3), (4.8), and(4.15), we derive the
expression of the correction(4.16 to the unperturbed
ground-state wave functiof2.8):

n(1) L —iwt? .
q’locms o(r,t)= _Eego[e € L(Qq,K;1)
+ete - L(Qp,— 11 W G (1),
(4.17

In Eq. (4.17), L is a 2X2 vector matrix related tdC as
follows:

LQ,k;n=K(Q,k;r)—

Q-FE,

.

(4.18

By inserting first Eq.(4.4) and then Eq(4.5 into the defi-
nition (4.18 we find the vector operataf as an integral
representation and, respectively, in explicit form.

(:c-r)z—%(;cr)2

+§i(mr)—6

V. STRUCTURE OF THE TRUNCATED FIRST-ORDER
MULTIPOLAR PAULI HAMILTONIAN

Referencg12] provides the multipolar Pauli Hamiltonian,
linear in the field and truncated to a second-order approxi-

mation of retardation,
H” D,=HM+HP+HDY. (5.0

The subscript of a term in the right-hand side of E5}.1)

TUDOR A. MARIAN 56
er[M(x)JrMS] B(Rt)H
X g P
(5.2b
P’Ej(RY)
HYY=— [QJH(X)[?X—(?Xl
Bj(R1)
+[Mj(x) + M (x )]—
41
+—[C(x)+Cs(x)]-Jd(R,t)] (5.20
¢ R=0

we list below the observables introduced in E¢s2).
(i) Electric 2"-pole moment§L=1,2,3): dipole(E1),

Qj(x)=—ex, (5.33
quadrupoleE2),
1 1 )
Qjk(x)= ST XX 3 f Sik | (5.3b
octupole(E3),
1 1 )
Qju(X)= ey XX~ g (SjiXi+ O X+ 8 Xk)

(5.30

(i) Orbital magnetic 2"-pole momentg§L =1,2): dipole
(M1),

Mj(x):—miec—L- (5.43

guadrupoleM2),

1
a7 (XLt XL ).

m.C oC 3! (5.4

M (x) = —

( (i;i) Spin magnetic 2"-pole moments(L=1,2): dipole
M1),

M>= eh 55
quadrupolgM2),
s ei 1 2
Mjk(x): 2m C 2| XJO'k+Xk0'J 3 5]k(rﬂ') .
(5.5b

(iv) Orbital displacement-current dipole momei@l),

1
Cj(x)=——E(r><L—r2P)j. (5.6)

denotes the order of retardation. We write down the three (v) Spin displacement-current dipole moméat),

terms[13]

HY=—-Q(x)-E(0t) (5.23

C3x)=— (57
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Taking into account the expressions of the field strengthsHence, according to EGA9),
Egs. (2.5 and (2.6), we obtain the following form of the
multipolar Hamiltonian given by Eqg5.1) and(5.2):

_J A’ G, Qyg (X ) Uzod 1)

1 .
H" W=>[e'h(n)+e'“'h'(n)]. (5.8
— 312 _ - (L
In Eq. (5.8 h(r) is a sum of three operators, =(ma%) "X ﬁ)( i ) Cil---iLJ;---J’L
h(r)=hg(r)+hy(r)+hy(r), (5.9 It IF
X— — (6.4
each of them having a definite order of retardation: &QH' : 'f7qj'ﬁ 25
(g=0, N=1/a)

ho(n)=—&e- Q(x), (5.108

Making use of Eqs(A14)—(A16), we get

hl(r)E_gO{ieijij(X)+ %(KX €)-[M(x)+M]},

(5.100 —fdBX'G(Q;r,r')le...jL(x')uloo(r’)

c -
hz(r)E_go[ — €Kk Qji (X) +1 —(1X €)j ki M (X) Mg iel7”

w =— —(’7Ta llejl...jL(X)m

Cc ~
+M,-Sk(X)]—iZKZG'[C(XHCS(X)]]- (5.100 f<0+>d L1 of fag 1r L
o A | e el N
VI. MULTIPOLE TERMS IN THE LINEAR-RESPONSE 1r
WAVE FUNCTION ><exp( —g=— ] (L=0,1,2,3...).
Tal )l (g=0, \=t/a)

The truncated first-order correctign.17) to the ground-
state wave function in the multipolar gauge is expressible by 6.9
means of the CGKA2) and the two terms of the Hamil-

tonian(5.8) as On the other hand, there is no contribution of the orbital

magnetic moments in the ground state:

'“’tf d3x'G(Qq;r,rHh(r’")

11,00111)| rt)=5
Mj,j (OUdD=0 (L=1,23...). (6.6

XW Qo (1 +e"”‘f d3x' G(Qy;r,r)

By contrast, the orbital displacement-current dipole moment
has a nonvanishing effect:

xht(r")w O(m(r 1. (6.1)

e 1 (n\*
Two relevant quantities are to be evaluated in order to get &;(x)uyodr)= —(mwa®)~V2— 10&( )
compact form of the linear-response correcti@l). Re- MeC

mark first that a 2-pole electric moment can be written as a 93U
harmonic homogeneous polynomial of degtge X . 6.7
9999991 | (q=o, \=11a)
_ e~
le...jL(X)—le___]-Lj:,Lmjlr_in'"ler_. (62)
Equation(A9) yields the parallel relationshi
In Eq. (6.2) C) is a 2 -rank constant tensor, which is to- d (R9)y P P
tally symmetric and traceless with respect to Cartesian indi-
ces belonging to each of the s¢ts . ..,j, andji, ... ,j, .
respectively. In view of EqsA10) and (2.12), —f d*x"G(Q;r,r")Cy(x" )uyodr’)
Qi i, ) od D)= (ma®) 2L () T (ﬁ)“ FF
mgC 10a 4d;d9,9q, (q:O,)\:h/a),
R\t o+ u
7] ——— % (6.9
ﬁqj'i .. .o'?qjlr_

(g=0, N=rla)
(6.3  which becomes, upon using Eq&14)—(A16),
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5 After performing a suitable integration by parts in Eg.
—f d*x"G(€Q;r,r")Cj(X" )Ugodr’) (6.113, we find alternatively
1 e 1 14 ie™
=—(7ra3)‘1’2———.—xj.— 3
2Q meC 10 752 i ) 2sin(77) — | &' G(Q;r,r")Ci(X ) ugodr’)

iei‘ITT

1 a
:—rEl[cJ-(x)uloo(r)](l_Trele

S CONSIENES)
"ex —
L pPp Nl,rpel Nl,T

f(0+)d 1 1r
X exp —9—- <=
L pp e gTa

of fag 1r

Aq?) g Ta

><{f4 2—1%2{2

J

(g=0, A=r/a)
(6.9 1
X1 =5p+5(1=p)| 5N~ (1= 7)p
Substitution of Eqs(A15) and (A16) into Eq. (6.5 leads to
the following integral representation: 1r 2
+;ap[3—7—3(1—7)N1’TpH). (6.11b
- [ @ einra, . 0udr)
1 il ™ Now, by applying Eq.(B10), we obtain from the integral
=—55Qj..j, (X)Ujpdre 1o — representationgs.10 and(6.11) two pairs of equivalent ex-
2Q Tl 2sin(mr7) plicit formulas:
J4(0+) . F{ 2 )( 2 )2L+3
X dpp-""exp — —
1 PP lerpgl Nl,r
o 1: —f a3’ G(Q;r,1")Q;,..j (X )Uzodr”)
X (L+1)(1_p)+leTp;5:| (L:Ollizis) 1 Y L+2+7
610a 20 QitedDe T

L+1
(L+1-7)(L+2—17)

X®y(L+1-7,~L—7,L+3-781,01)

Integration by parts in Eq(6.109 allows us to write the

¢ X
equivalent formula

—fdsX'G(Q;T,r’)le---jL(X/)Uloo(r/) 1r 1

. T ral+2-s
=—Q_—Elel---jL(X)Uloo(f)
X®y(L+2—7,—L—1-7L+3—7;81,01)

iel™” o+
X 1—L7e’elmfl dpp-~7 (L=0,1,2,3...), (6.123
2 2 2L+2
XeXF(-AT,Tle)(AT,J (L=0,123...). or
(6.10b

Similarly, using Eq.(6.9), one gets directly the integral rep- _f d3x’G(Q;r,r’)le...,-L(x’)uloo(r’)
resentation

1
=—5—=Qj...j, X)Uodr)
—fd3x’G(Q;r,r’)Cj(x’)uloo(r’) Q-F; T
2 L+1+7 LT
1 a iei'n'T X 1—(l+ e_gl—_
e a o, '€ T L+1—7

20 LGt DITre B G

(0+) . 2 2 \6 , X®(L+1—7,—-L—7L+2—7;81,01)

Xf dpp™~"ex NPl v 5(1-p)
1 1,7 17 (L=0,1,2,3...). (6.12b

2

+51r 1 +1r
;ap( p)J\T,T

Ta

2 2 2
2 . A1
P (Nl,f) } (6113 Then
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Substitution of Egs(6.10Db, (6.6), and(6.113 into Eq.(6.1)

- j A3’ G(Q;r,r")Cj(X )Ugod 1) allows us to retrieve the structufé.17), where each operator
L is written as an integral representation which is precisely

atr that obtained by plugging E¢4.4) into Eq. (4.18. Finally,
insertion of the explicit formulag6.12b, (6.6), and (6.133
into Eq.(6.1) leads again to Eq4.17) with each operatoC

[ 10 given this time explicitly by Eqs(4.18 and(4.5).
X

(2—7)(3—7)(4—17)

_ 1 a Ql(
—_E[CJ(X)UNO(")]TFe 1++

X®(2—7,—1-7,5-7,61,01) VII. LOW- AND HIGH-FREQUENCY BEHAVIOR
OF THE MULTIPOLE TERMS
1r 5
i — — 7 —2—75—1r A. Low-frequency case
+7.a(3_7.)(4_7.)q)1(3 7,—2—7,5-7,81,01) q y
1112 1 As we have seen in Sec. VI, the linear-response correction
=r ——®,(4—7,-3-7,5—-7.81,01) (4.16, truncated to the second-order retardation approach in
ral 4-7 the multipolar gauge, has an orbital part which consists of
(6.133 electric 2-pole contributions(6.12 with L=1,2,3, and

displacement-current dipole terni6.13. Besides, its spin
or terms are linear combinations of the electric dipole compo-
nents, Eq.(6.12, with L=1. The low-frequency regime is
characterized by valuel in the vicinity of the ground-state

_f d3x’G(Q;r,r’)Cj(X’)uloo(r’) Bohr IeveIEl,
- o QO=E;+ 60 60 E 7.1
-~ _ic _a-0 =E.+ < _ _
Q_El[C](X)UIOO(r)](l e 1 1 (| 6Q|<|E4]) (7.1
5 .
Sk 3TT<D1(3— 7,—2—7,4—7,81,01) Consequently, we set in Eq&.12 and (6.13
+(2_7_)(3_7_)q)l(2_71_1_714_7;ﬁ1191)
=1+67 (|o71]<1), (7.2
ST 3er—1-75-r
_(3_7.)(4_7.) 1(83=7,—1-7,5—-7,61,01)

keeping all terms of orders not exceeding the ord@r)t,

+®,(3—-7,-2-7,4=7,61,01) which corresponds to 8Q/2|E,|)%. From Eq.(6.123 we
1— 1 have derived the following approximate formula valid for an
- 3E®1(4_ 7,—2—7,5— T;Bl,gl)] ) . (6.13b arbitrary multipole rank_:

—j d3x'G(E;+ 59;r.r,)le---jL(X,)ulo()(r,)

1 1 1 /rz

L'ir1a " Di+2la
1Jr 1 r
L L+la
3

1 1 roosQ(1 1 1

:m‘?u--u“)“wo“)(t*ma+m[(t+L+1+L+z
+( 5Q )2 {i+ LR S 9

2|Eql) [[L2 (L+1)2 (L+2)2 L(L+1) (L+1)(L+3)

1 (1.1 1 3
T LT e L2 Tt

60

3
2|E1|) D (L=123...).
(7.3

r\2 1 (r

TrDLr2L+3)\a

+0

a

Equation(6.12h was used to check the low-frequency expangiaf). Then we have found with E46.139 and checked by
means of Eq(6.13h the similar expansion of the displacement-current dipole term:
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—f A3’ G(E;+ 8Q;r,r")Cj(X )ugodr')

1 c a51+1r+1r2+5915 1+1r+19r2+1r3
=215, L Ci0Ud DI 31 1t 5 31 * 3l5) T2E 3611 2a) T36a) T12a
. 50 \? 464 1+1r+278 r2+137r3+1r4+o 50 \3 o
oE)) | 232\ " 23a) T 2160a) T 720a) T 60 a FIBIE 74
When employing the expansiofig.3 and(7.4) in Eq. (6.1), VIIl. CONCLUSIONS

we get the truncated linear-response correctfi?) to the
wave function in the range of low frequencies, which is ac-
curate to the orderi{(w/2|E,|)?.

We have obtained aexactlinear-response wave function
of a hydrogenlike atom perturbed by a single-mode radiation
field. In the remote pastt{ —o), the atom is in its unper-
turbed ground state, and for negative times the field evolves
adiabatically. The first-order correctigi2.13 to the wave

We analyze the relevant multipole ternt6.123 and function in the radiation gauge, with the closed-form expres-
(6.133 in the first-order correctiof6.1 to the ground-state sions(3.5) and(3.6) inserted, is the analytic solution of Pod-
wave function for frequencies which are high in comparisonolsky’s problem complemented with the first-order contribu-
with the characteristic atomic ones. Applying the asymptotiction due to the magnetic interaction of the electron spin. The
formula (B12) of the Humbert function®,, we obtain for  basic mathematical tool is the generating functi@®) of
—0 the linear response, which has been evaluated using Hostler’s

compact integral representatigA4) of the nonrelativistic
_ 3y O, ot / CGF in coordinate space. It will also be employed in the
J IXGULRIIQ,, . (X)) Uod ) following paper[14] to derive in the EDA the LRF’s asso-
1 ciated to any excited stationary state.
== Q. .3 QUdDIL+O(|7])] f The closed-form contour integra(8.5) and (3.6) are by
ar more important than the explicit expressidBsl0 and
(L=1,23...) (7.5  (3.1)) of the LRF's as double ascending power series. We
have started out with them to get the linear response in the
and second-order retardation approach in the radiation gauge, Eq.
(4.3, as well as in the multipolar gauge, Eg4.17). It is also
3, o , . worth adding that the exact nonrelativistic Rayleigh scatter-
_J’ d*x"G(Q;r,r)Cj(x )Uzod ) ing amplitude from the atomic ground stdtE5] can be re-
trieved such as to include the corrections due to the intrinsic
magnetic moment of the electr¢h6].

We have analyzed the first- and second-order corrections
of retardation in the multipolar gauge, split as they are into
Note that Eqs(7.5 and(7.6) are direct consequences of the orbital and spin contributions. The orbital part of the first-
asymptotic behavior of the CGF, E@A3). By inserting Egs.  order correction arises from the electric quadrupole coupling,
(7.5 and (7.6) into Eq. (6.1), we find the high-frequency while that of the second-order correction consists of electric
limit of the truncated linear-response correction in the mul-octupole and displacement-current dipole terms. The spin

B. High-frequency case

1
=~ g lCitULdNI[1+O(|)]. (7.6

tipolar gauge: second-order corrections can be described by means of the
electric dipole coupling. For low and high frequencies of the
P | rt) ~ —L (e ioth(r)— el thf(r applied field, the behavior of all the relevant quantities has
it 21,0, el " (n] been finally established.
X W G, (F,1). (7.7)
" . APPENDIX A: GENERATING FUNCTION
In addition, we use EqA3) to get the high-frequency be- OF THE LINEAR RESPONSE
havior of the exact first-order correctid@.13 in the radia-
tion gauge: We recall that the Schdinger CGF in coordinate space
G(Q;r,r") is a solution of the inhomogeneous differential
1) _ &% 1 { (41— wt) equation
‘Pﬁoms(r,t)wﬂx T e
1. R .
= —i(kr-ot)
X iE'P+(K><E)'S +e et (H(O)_Q)G(Q;r,r’):_5(r_r,), (Al)

X

1'\* e (0)
i—E 'P_(KXE )'S quoons(r,t). (7.8)

whose eigenfunction expansion is
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Uy (NUE, (1) feld [19] to the study of two-photon transitions between hy-
G(Qr,r')=> — (A2)  drogenics states. After inserting into EqA4) the integral
N’ Q-E, representatiorfA8) of the Bessel functiom,, substitution of

Eqg. (A4) into Eqg. (A9) leads to a space integral of the type
In Eq. (A1), H© s the field-free Coulomb Hamiltonian, a. (A4) 9. (A9) P g yp

while in Eq. (A2), E,, are its eigenvalues anfdiy/(r)} de- 5 1 ) 1

notes a complete orthonormal set of Coulomb energy eigen- fd x-exp(—Ar—B-r)=4m(A"-B-B)
functions. The CGF is defined for any complex valaenot

belonging to the energy spectrum. Note also its asymptotic (ReA>|ReB]|). (All)
behavior:

1 The integral(A11) is immediate ifB is a real vector; for a
G, )asa Sr—r'). (A3) qomplexB the rggult is then obt.ai.ned by a_nfalytic continua-
Q tion. In our specific case, a sufficient condition for the con-

L . _vergence of the space integral is
In what follows we employ Hostler’s integral representation

of the CGF[4]: A>|Imq|. (A12)
o, 2mg 1 X ie'™ [+ (¢+1\7 After computing successively the space integral with Eqg.
G(Q;r,r')=— 52 A f 2sinwT) 4o ¢ (—1 (Al11) and a closed-contour integral over the complex vari-

able s from Eq. (A8) by means of the residue theorem, we
change the variable of integration,

X !
X ex —g(r+r )¢

-1
X 0 P=ZT= (A13)
Xl 2%(rr’)1’2(§2—1)1’zcos§). (A4) el
and find
In Eq. (A4), the contour of integration in the complex L
plane starts at-oc+i0, runs down to the poinf=1 on the .. me e T [(0+) e,
upper side of the cut (%), with argf=0, encircles the F.q0) hX 2sin(77) )1 dpp f
point =1 in the counterclockwise sense, and then goes to
i i i X
+o—i0 along the cut (X =), below it. We have denoted ><exr<%fq-r—g%r>, (A14)
X=(-2m0)"* (ReX>0), (A5)
with
_h A6
T= ﬁy ( ) 4x2p
F(X, 0% \ip)= T
wherea is the scaled Bohr radiu®.10), and [X+N+(X=N)p]"+a7(1~p) (A15)
coB=r-r’. (A7) and

Io(2) is the modified Bessel function of zeroth order, which ) 2 2. 2 )
(X+N)"=(X=N)p°+q7(1—p°)

can be written as a contour integfal7], 23 N
| ) A+ (XN P FA—p)?
1 ctie ] 72 (A16)
IO(Z)_Z_ﬂ-iL,iw dsgex;{s+4—s , (A8)
In Eg. (A1l1) the integration path in the complgx plane
wherec is a positive number. begins at the poinp=1+i0, where the argument qgf is
We define the generating function zero, then encircles the origip=0 in the positive sense

within the unit circle, and terminates at the point1—i0.

To the best of our knowledge, the res{(#l14)—(A16) has
been first obtained by Kelsey and Macg0]. It is worth
emphasizing that we have previously utilized Schwinger’s
with integral representation of the GCF in momentum sg2dé

in order to derive Eqs(Al14)—(A16) [22]. However, the

]-"(Q,q,)\;r)z—jd3x’G(Q;r,r’)Z/{(q,)\;r’), (A9)

1 1 _ . . .
UGN:T)= FeXF{g(iq r—r)|. (A10) above-presented proof is conveniently straightforward.
. . " APPENDIX B: THE HUMBERT HYPERGEOMETRIC
In Eq. (A10), q is a complex vector andl is a positive real FUNCTION ®
scalar. In evaluating the integréd9) we follow a technique !
put forward by Hostler[18] in his derivation of the The function®, is obtained by confluence from the Ap-

momentum-space CGF, and subsequently adapted by Klarpell hypergeometric functiof 4:



3986

®,(a,b,c;x,y)= lim Fl( a;b,b’;c;x,%). (B1)

b’ —e

We recall the double ascending power series of the Appell

function F, [23],

[

Fi(ab,b’;c;x,x')= >,

v=0 ,—¢o

E (a)VJrV’(b)V(b, )V’ XV(X,)V,
(C)V+V’V!V !
(Jx|]<1, |x'|<1), (B2

and its integral representati¢@4]
Fi(a;b,b’;cix,x")
~ T(c)  —ie™'™ r(o%)
I'(@)'(c—a) 2sin(7a) J1

a—1

dpp

X(1=p)¢ 2 H1—xp) P(1—x'p)~®
[Relc—a)>0, a#1,23...,

larg —x)|<m, |arg —x')|<s]. (B3)

In Eq. (B2), as well as throughout this paper and the follow-

ing one[14], Pochhammer’s symbol

I'(a+n)

T(a) (B4)

(a)n=

is utilized. Taking the limit(B1), Egs.(B2) and (B3) be-
come, respectively25],

v+’ b ’
(@yer®y v 1<)

0 (C)ysprv!v'!

®,(a,b,cix,y)= Z Z
. (B5)

and

®y(a,b,c;x,y)
B I'(c) —ie
I'(a)I'(c—a) 2sin(7a)

(0+)
X f dpp?”
1

—ima

Y1-p)c 2 H(1—xp) PP

X)|<].
(B6)

[Re(c—a)>0, a#1,23..., |arg—
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®,(a,b,cix,y)= >, @ y"

v =0 (C)VI p'l

X,Fi(a+v',b+v';c+v';x). (B8

With the change of the variable of integration

(x#1), (B9)

P= 1—x+xt

Eq. (B6) yields another useful integral representation:

(Dl(alb!C;Xay)
I'(c) —je"im
I'(a)I'(c—a) 2sin(7a)

=(1-x)"@
(0+)
xf dtt*~H(1-t)°e 2t
1

b—c yt
X S —
€ 1—x+xt

X
(Re(c—a)>0, a#123..., x#1, ar%X

X
1-——t
X—

X
1

1

.|

(B10)

We finally remark that the dominant asymptotic behavior of
the Kummer functiorj 26],

I'(c)
1F1(a;c;z)=—r(c_a)(— z)731+0 | M
I'(c) 1
+me 7279 1+0 |Z|)
[|z| ==, —w<argz)<0],

(B11)

leads via Eq(B7) to the following asymptotically dominant
terms of the Humbert functio®;:

Note that Eq(B5) can be written out as a simple series either

of Kummer hypergeometric functiong-,

[

b),
®4(a,b,c;x,y)= Z a)V(

V!
X Fi(a+vic+ry)  (x[<1),
(B7)

or of Gauss hypergeometric functiopb 4,

I .

I'(c )
Ta®
|X|<1, |y|—>oo,

dy(a,b,c;Xy)=5—= 1+0

ly IH

y3 ¢(1-x)""1+0

ly IH

—m<argy)<0].
(B12)
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