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High-frequency Floquet-theory content of wave-packet dynamics
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We study the connection of the high-frequency Floquet theory~HFFT! and the wave-packet dynamics
~WPD! descriptions of laser-atom interactions. The analysis is motivated by the need to ascertain the realm of
validity of the current form of the HFFT and extend its scope. We test the general ideas on a one-dimensional
atomic model with soft Coulomb potential, frequently considered before. The comparison is carried out in two
stages of approximation. In the first stage, we compare WPD predictions for ionization with those from the
usual~single-state! form of the HFFT. To make the comparison meaningful, we use as initial conditions for the
WPD bound high-frequency ‘‘dressed states,’’ corresponding to the peak intensity of the field. The dressed
states play a special role in the HFFT and have direct physical interpretation at high frequencies. We show that,
under certain conditions, the decay rates extracted from WPD agree rather well with those from the HFFT.
Thus ‘‘adiabatic stabilization,’’ derived originally from the HFFT, results also from WPD. This form of the
phenomenon contrasts ‘‘dynamic stabilization,’’ the only form shown so far to follow from WPD. In the next
stage of the comparison, we extend the HFFT in two directions: we include results from the second iteration
within the theory, and we introduce a multistate HFFT analysis. As a test for the agreement of the HFFT and
WPD we compare the results regarding the populations in dressed states. In a variety of circumstances we find
striking agreement, indicating the potential of the multistate Floquet analysis. In addition, we study the char-
acteristics of the population trading among the dressed states during the ionization process. Although the
individual populations in bound states may fluctuate substantially, their sum decreases rather smoothly in time,
as predicted analytically by the HFFT.@S1050-2947~97!02311-1#

PACS number~s!: 42.50.Hz, 32.80.Wr, 33.80.Wz
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I. INTRODUCTION

The theory of laser-atom interactions at high intensit
has been developed using basically two approaches@1#. One
is Floquet theory, which assumes a regime of steady ion
tion and calculates the constant decay rates from a sp
boundary-value problem@2#. The other is wave-packet dy
namics ~WPD!, i.e., the integration of the time-depende
Schrödinger equation with given initial conditions@3#. The
information they give is of complementary nature in t
quantum-mechanical sense: Floquet theory emphasizes
energy domain and WPD the time domain. Both have kno
merits and limitations; e.g., see@1#. However, only a dual
approach based on both can give definitive answers to
delicate physical problems that abound in strong-field las
atom interactions. For example, Floquet theory has made
otic predictions as to the behavior of atoms in intense fie
~adiabatic stabilization, light-induced states, etc.!. Some of
them may be hard to accept unless substantiated by stan
WPD, particularly because Floquet theory with resona
~Gamow-Siegert! boundary conditions operates with wav
functions having unbounded behavior at infinity. The du
approach is needed also for understanding the conditions
der which an experimental confirmation of Floquet theo
predictions can be expected.

We shall be interested here in the connection betw
Floquet theory and WPD at high frequencies and cons
field amplitude. A version of Floquet theory specifical
adapted for this case is the ‘‘high-frequency Floquet theo
~HFFT!, developed by Gavrila and Kaminski@4,5#. It pro-
ceeds iteratively, yielding successive approximations
561050-2947/97/56~5!/3961~13!/$10.00
s

a-
ial

the
n

he
r-
x-
s

ard
e

l
n-

n
nt

’’

f

higher order inv21 @6#. A central role in the possibility of
comparing WPD and HFFT is played by the initial conditio
of WPD, which has to be adapted to the assumptions un
which the HFFT operates. To make the comparison me
ingful, we shall analyze the initial condition in terms of s
perpositions of ‘‘dressed states,’’ which are limiting forms
Floquet states at high frequency. These play a structural
in the HFFT and have direct physical interpretation.

We shall proceed with the comparison of WPD and HF
in two stages, corresponding to two successive levels of
curacy in the development of the HFFT. In thefirst stage, we
shall be using the HFFT in its current form~i.e., single state
and including only the first iteration inv21!. We shall com-
pare the ionization rates of the two theories, correspondin
the same initial condition and, in particular, we shall dw
on the phenomenon of atomic stabilization. The HFFT h
predicted the existence of ‘‘adiabatic stabilization’’ @7#,
characterized by the fact that, for individual atomic sta
adjusting adiabatically to the variation of the laser intens
beyond a critical intensity the ionization rates start to d
crease and the states become more stable. This has
meanwhile confirmed by all Floquet methods in existen
@8#. Moreover, the onset of adiabatic stabilization was co
firmed experimentally for Rydberg atoms@9#. On the other
hand, WPD has produced its own version of stabilizati
termed ‘‘dynamic’’ @10,11#. In this version, when an intens
laser pulse is suddenly applied to an atom in the grou
state, its total ionization probability exhibits stabilization
the peak intensity is increased. It has not been shown, h
ever, that adiabatic stabilization also followed from WP
We shall show here that this is indeed the case.
3961 © 1997 The American Physical Society
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For the second stageof our comparison, we extend th
HFFT theory in two respects: We include results from t
second iteration inv21 within the HFFT and introduce the
multistate HFFT. Whereas the first extension is conceptua
simple, the second requires delicate mathematical argum
The extension relies on the mathematicalcompletenessof
Floquet~in our case high-frequency Floquet! states, i.e., the
possibility of expanding wave packets in terms of su
states. For periodic time-dependent Hamiltonians, this is
counterpart of the completeness property for tim
independent Hamiltonians, which plays a fundamental r
in the interpretation of quantum mechanics. Whereas
completeness property of Floquet states has been pr
with full mathematical rigor by Sviridov@12# ~see also@13#!
for Floquet states with real~continuous! energy, this was
done in a somewhat different form than is of interest for
ionization problem. In this context it is desirable to ma
appear explicitly in the expansion thediscretequasienergy
HFFT states corresponding to ionization~obeying Gamow-
Siegert boundary conditions!. The existence of such an ex
pansion is of importance for the assessment of Floquet
dictions for intense laser phenomena, e.g., the appear
and disappearance of light-induced states, etc. As this f
of expansion does not seem to have been investigated r
ously ~see, however,@13#!, we shall explore its validity prag
matically, with physical applications in mind. The compa
son will be carried out on the populations in bound dres
states. We shall be finding striking agreement between
two theories in a variety of situations, indicating the poten
of the multistate approach.

Dressed-state populations have been considered be
starting with the work by Reed, Knight, and Burnett@14# and
Law, Su, and Eberly@15#. More recently, the problem wa
investigated by Sanpera, Su, and Roso-Franco@16# and
Vivirito and Knight @17#, although not from the point of view
of the HFFT@18#. These investigations were made on on
dimensional~1D! model atoms, with either the ‘‘soft’’ Cou-
lomb potential ~i.e., with the singularity at the origin
smoothed out! @14,15# or short-range potentials@16,17#.

We shall illustrate our two-stage comparison of the HF
and WPD on the 1D model with soft Coulomb potent
mentioned. This model has proven capable of revealing
portant physics~e.g., dynamic stabilization@10#!, while be-
ing simple enough computationally to allow extensive te
ing.

The paper is organized as follows. In Sec. II we recall
fundamentals of~single-state! HFFT based on the first itera
tion, as has been used so far, and present its extensio
include the second iteration within the theory~developed in
the Appendix!. Section III contains the extension of th
theory to include superpositions of Floquet states. In Sec
we discuss the strategy for comparing WPD and HFFT,
the role of the initial condition. The numerical methods us
and the atomic model considered are briefly described
Sec. V. In Secs. VI and VII we compare WPD to the tw
stages of development of the HFFT envisaged. In Sec. VI
discuss the agreement for ionization, in particular adiab
stabilization, within the context of the first stage. Then,
Sec. VII we discuss the population dynamics in the dres
states within the context of the second stage. We draw c
clusions in Sec. VIII.
ts.
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II. SINGLE-STATE HFFT

The space-translated form of the Schro¨dinger equation
@19# for the 1D case is

@ 1
2 P21V„x1a~ t !…#C5 i

]C

]t
, ~1!

where V(x) is the unperturbed potential; a.u. are us
throughout. For monochromatic radiation with constant fie
amplitude,a(t) can be chosen as

a~ t !5a0 cos~vt1x!, ~2!

wherex is an arbitrary phase.
We insert in Eq.~1! the Floquet ansatz

c~x,t !5e2 iEt (
n52`

1`

fn~x!e2 invt. ~3!

This yields the system of coupled equations for the Floq
componentsfn(x):

@ 1
2 P21V02~E1nv!#fn52(

m
8Vn2mfm . ~4!

HereVn(a0 ;x) are the Fourier components ofV„x1a(t)….
As V(x) is real and assumed to be even, theVn are real and
we have

Vn~2x!5~21!nVn~x!, V2n~x!5Vn* ~x!5Vn~x!. ~5!

In Eq. ~4! and hereafter, a primed sum(8 indicates that
terms containingV0 should be omitted. For each solutio
c(x,t), the successivefn(x) have alternating parity:fn
(2x)5(21)n1Pfn(x), where P50,1 gives per definition
the parity of the solution. For the case in which one-pho
ionization is possible~high frequencies!, we label the chan-
nels such that those withn>1 are open and those withn
<0 are closed. We impose resonance state~Gamow-Siegert!
boundary conditions on thefn(x) ~see @5,6#!. E[W
2 i (G/2) in Eq. ~3! represents the ‘‘quasienergy’’ of th
state, whereW is interpreted as its average energy in the fie
and G is its total ionization rate. The Floquet state~3! de-
scribes anionization modeconsisting of the constant flow o
electron population from the vicinity of the nucleus to th
asymptotic region, characterized by the quasienergyE and
the exponential decay law.

The HFFT proceeds by successive iterations, which g
contributions that are of increasing dominant order inv21.
To lowest order~i.e., in the high-frequency limitv→` at
fixed a0! the HFFT extracts from Eq.~4! the atomic struc-
ture equation@5,20#

@ 1
2 P21V0~a0 ;x!#u5W~a0!u. ~6!

With our labeling of the channels, we have to lowest ord
f0>u(a0 ,x), where the high-frequency dressed sta
u(a0 ,x) is a solution of Eq.~6!; all other fn>0. At a0
50, u(a0 ,x) goes over into an eigenfunction of the field
free Hamiltonian @with potential V(x)#. The eigenvalues
W(a0) are real; henceE>W(a0) andG>0. W(a0) is inde-
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pendent ofv at all a0 . The successive dressed eigenfun
tions u of Eq. ~6! have alternating parity. It has been show
@5# that at largea0 , an even-odd~gerade-ungerade! degen-
eracy sets in: The eigenvalues of Eq.~6! coalesce in pairs
one even with one odd, starting with the lowest ones~this
occurrence is coupled to the appearance of the ‘‘dichotom
effect; see@5#!.

The first iteration within the HFFT yields for thetotal
ionization rateof the stateu(a0 ,x):

G52p (
m.0

(
P

z^ukm

P uVmuu& z2. ~7!

Hereukm

P (a0 ,x) are final continuum dressed states, solutio

of the structure equation~6!; they are assumed to be norma
ized in the energy scale@21#. The magnitude of the fina
momentakm is determined by the energy conservation eq
tion (km

2 /2)5W1mv. The summation overP should be car-
ried out over the parity of the continuum states associa
with km . Concomitantly with the nonzero value ofG @Eq.
~7!#, the first iteration yields non-vanishing expressions
the componentsfn(x), with nÞ0.

Thus, to lowest orders inv21, the HFFT predicts that a
high frequencies the atom has a quasistable structure
scribed by the dressed states of Eq.~6!. The population in
these states decreases exponentially, with ratesG given by
Eq. ~7! that are small at high frequencies~see@5#, Sec. III B!.

However, in the following we shall be needing results f
the Floquet components to orderv22, which are given by
the second iterationwithin the HFFT. The second iteratio
obviously also improves the quasienergy. The general fo
of the second iteration expressions is derived in the App
dix; see Eqs.~A6!–~A8!. If the frequency is sufficiently high
one can use Eqs.~A10! and ~A11!.

A priori arguments indicate that the HFFT formul
should represent a valid approximation if the following hig
frequency condition is satisfied~see@5#, Sec. IV D!:

v@uW̄0~a0!u, ~8!

whereuW̄0(a0)u is an average excitation energy of the sy
tem. In general, this will be of the order of magnitude of t
binding energy of the ground state in the field. Note that
~8! represents a sufficient condition and that in practi
cases the validity condition appears to be weaker@6#. We
emphasize that there are no restrictions ona0 , as long as
condition Eq. ~8! is satisfied@22#; this was confirmed re-
cently by calculations on a 1D model@6#.

General Floquet theory assumes that the radiation
constant field amplitude. This is not the case when dea
with laser pulses. Nevertheless, if certain conditions are
~see @5#, Sec. II A!, the theory can be applied by simp
ascribinga posterioritime dependence to the field amplitud
contained in the Floquet state~3!. One of these conditions i
that the field amplitude variation be slow on the atomic tim
scale, so that the atom have time to adjust adiabatically t

The HFFT as described above, with Gamow-Sieg
boundary conditions, applies to ionization. By imposing sc
tering boundary conditions on the Floquet componentsfn ,
the theory describes the related phenomenon of free-
transitions, i.e. scattering of the electron by the potent
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accompanied by multiphoton absorption; see@4~a!#. The lat-
ter set of solutions forms a continuum counterpart to
discrete set of quasienergy states.

III. MULTISTATE HFFT

In order to extend the scope of the HFFT, we shall co
sider now the possibility of representing a wave pac
C(x,t), i.e., a square-integrable solution of the tim
dependent Schro¨dinger equation~1!, by a superposition of
HFFT states Eq.~3!. The individual states will be denoted b
c (n) and a superscript~n! will be attached to the related
quantities, e.g.,E(n). @The state-labeling superscript~n! in-
troduced here should not be confused with the iterati
labeling superscripts~1! or ~2! used in the Appendix.# By
definition, forv→`, c (n) goes over into the dressed eige
state of Eq.~6!, un , discrete or continuous~for the continu-
ous case the subscriptn stands forn[$W,P%!. We write the
superposition as

C~x,t !5S
n

Cnc~n!~x,t !, ~9!

with constant coefficientsCn . The symbolS emphasizes the
fact that the summation contains in general discrete and c
tinuous contributions. Note that Eq.~9! will be an exact so-
lution of the Schro¨dinger equation~1! only if the amplitude
a0 is constant.

The general validity of expansion~9! expresses thecom-
pletenessof the Floquet system of states. This is a delica
mathematical property, which was rigorously proven
Sviridov @12# for the case when the quasienergies are re
i.e., only scattering Floquet states appear in the expans
The convergence should be understood in the weak se
i.e., in terms of projections on given functions. In this ca
the spectrum of the Floquet system~4! is entirely continuous,
extending on the real axis from2` to 1` @13#. We are,
however, interested in a version of Eq.~9! that brings in
explicitly the contribution of the discrete quasienergy stat
This could be obtained, in principle, by distorting the int
gration contour over the continuous spectrum in Eq.~9!,
from the real energy axis into the complex plane, beyond
singularities of the continuum Floquet states~located at the
discrete quasienergies@23#!, assuming that the required an
lyticity conditions are met~see, however,@13#!. Application
of the residue theorem would then allow one to single
their pole contributions and Eq.~9! would thus contain a
discrete sum over quasienergy states plus an integral ov
~distorted! continuum. The conditions of validity of an ex
pansion of this type do not seem to have been investigate
the Floquet case, although a similar expansion was prove
exist for wave packets of time-independent Hamiltonia
with shape resonances, described in terms of Gamow s
@23,24#. We shall explore the possibility of such Floquet e
pansions in the following numerically, with physical app
cations in mind.

Whereas the quasienergy statesc (n) repeat themselves
identically modv, the summation in Eq.~9! should be per-
formed only over states that are distinct. A consistent way
obtain them all, in the high-frequency case, is by identifyi
them by theirv→` limit un , as we have done. We can the
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use for the discrete quasienergy statesc (n) the second-orde
expressions given by Eqs.~3!, ~A10!, and~A11!.

On the other hand~under conditions well understood!,
any wave packetC(x,t) can be expanded in the complete s
of dressed states$um(x)%:

C~x,t !5S
m

Am~ t !um~x!, ~10!

where S again represents a summation over the disc
spectrum plus an integration over the continuum. The c
nection betweenAm andCn is

Am~ t !5S
n

Cn^umuc~n!&. ~11!

The integrals representing the scalar products^umuc (n)& for
discrete quasienergy states may not be convergent in ge
because of the Gamow-Siegert boundary conditions obe
by c (n). However, this difficulty has already been taken ca
of by the procedures of the HFFT for the calculation ofc (n),
as shown in the Appendix.

By inserting the second iteration expression ofc (n) @Eqs.
~A10! and ~A11!# into Eq. ~11!, we find toO(v22)

Am~ t !5S
n

Tmn~ t !Cn , ~12!

with

Tmn~ t !5e2 iEntH dmn1^umuG8~E~n!!V̄1~E~n!!uun&

1(
n

8 e2 invtF ^umuG~En
~n!!Vnuun&

1(
m

8 ^umuG~Wn
~n!!Vn2mG~1 !~Wm

~n!!Vmuun&G J ,

~13!

where now we have definedEn
(n)[E(n)1nv, with the

quasienergyE(n) calculated to first order~we recall that this
notation deviates from that in the Appendix!. Note that the
matrix elements appearing in Eq.~13! are well defined if the
potentialsVn are regularized according to the HFFT pr
scription @25#.

We shall slightly simplify Eq.~13! by replacingG(En
(n))

with its valueG(1)(Wn
(n)) at the closely lying pointWn

(n)1 i e
@see the discussion in the Appendix, after Eq.~A7!#. Whereas
this has only a minor numerical effect~in view of the agree-
ment achieved in Sec. VII!, it avoids the complication of
working on the second Riemann sheet. We can express
ther the coefficientsAm(t), using the eigenfunction expan
sions for the Green’s operators involved@e.g., see@5#, Eqs.
~61! and ~64!#:

Am~ t !5S
n

Cne2 iEntH dmn1~12dmn!~Wn2Wm!21

3^umuV̄1~Wn!uun&

1(
n

8 e2 invt~Wn1nv2Wm1 i«!21
t

te
-

ral
ed
e

r-

3F ^umuVnuun&

1(
m

8^umuVn2mGm
~1 !~Wn!Vmuun&G J . ~14!

Expressions Eqs.~13! and ~14! are valid to O(v22) in-
cluded, if one assumes that coefficientsCn are O(1) con-
stants.

We shall express the initial form ofC(x,t) at t50 as

C05S
m

amum , ~15!

wheream[Am(0). By comparing with Eq.~12!,

am5S
n

Tmn~0!Cn . ~16!

This linear relation allows the determination of theCn from
the am , assumed known.

IV. WAVE-PACKET DYNAMICS

In the WPD approach, the time-dependent Schro¨dinger
equation is integrated numerically starting from a squa
integrable initial condition. Usually, the initial condition i
taken to be a field-free energy eigenstate of the atom.
laser pulse is applied and the wave packet is propagate
time until the pulse is turned off. Ionization probabilities a
calculated at the end of the pulse according to the quant
mechanical laws, from the projections of the wave packet~in
the laboratory frame! onto the field-free continuum states o
the atom. Under these conditions, the ionization probabili
found describe global atomic behavior, depend on the sh
of the pulse, and therefore are not characteristic quantitie
the initial atomic state@14#, @11#, @17#. In particular, if the
laser field has a large peak value and is turned on rap
~over a few cycles!, it applies a sudden shock to the atom,
that the population is projected to higher discrete states, o
the continuum~atomic ‘‘shake-up’’!, from the very begin-
ning; it will be in these states that the population will evol
during the rest of the pulse and not in the ground state.

In contrast to the fully realistic approach of WPD, Floqu
theory, as well as the HFFT, operates with the individu
idealized states~3!. The disparity of the operating assum
tions of the two theories is a handicap for their comparis
The correct choice of the initial condition for WPD is ther
fore essential. For consistency, this should be taken not
field-free atomic state but rather as a state that describes
atom already in the stationary regime imposed by a hi
frequency field of constant amplitude. States represen
this kind of situation are the high-frequency bound dres
statesum , close approximations to the HFFT statesc (m)

@26#. In fact, in the stationary approach,c (m) describes pre-
cisely the ionization mode, characterized by the quasiene
E(m), consisting of the transfer of population from the bou
dressed stateum ~confined to the vicinity of the nucleus!
towards the asymptotic region. In this language, the sig
ture of the ionization can be viewed as the time decreas
the ‘‘survival probability’’ Pm(t)5 z^um(x)uC(x,t)& z2.

As mentioned in the Introduction, we shall make the co
parison of the theories in two stages. In the first stage,
shall apply WPD to the case of an atom initially in th
dressed ground stateu0(x) and follow the subsequent evolu
tion of its population to check if it is indeed given by a
exponential decay law exp(2Gt), as predicted by the single
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state HFFT~and by general single-state Floquet theory!. In
the process, we shall compare the decay rates from the
theories, which will enable us to ascertain if WPD confirm
the existence of adiabatic stabilization~see Sec. VI!.

One can anticipate, however, that the agreement of
two theories will be necessarily handicapped by shortco
ings of the current form of the HFFT. These can be ascri
to two independent causes.~a! The use of the first iteration in
v21 of the HFFT has limited accuracy at finitev, and higher
approximations within the HFFT may be needed.~b! At fi-
nite v the dressed state used as initial condition is not
exact solution of Eq.~1!, as is the Floquet state it approx
mates. Due to this mismatch, the wave packet canno
expected to coincide with a single Floquet state.

In the second stage of the comparison of the theories
shall try to overcome these deficiencies. To surpass~a!, we
shall include in our calculation the second-order iterat
within the HFFT, developed in the Appendix. We conjectu
that~b! can be transcended by introducing amultistate HFFT
description for the wave packet, of the form Eq.~9!, which
includes discrete quasienergy states. In fact, we shall fo
here on the case when the contribution of the discrete s
trum is dominant and the continuum contribution can be
glected ~physically, discrete excitations dominate the co
tinuum ones!. One may expect that this will be the case if t
initial condition ~15! contains only energetically low-lying
dressed states. The coefficientsCn of the expansion~9! will
be determined via the HFFT with the help of the initial co
dition ~15!, as shown in Sec. VII.

We shall test the agreement of the multistate HFFT w
WPD on the evolution of the populationsPm(t) in bound
dressed states during ionization. We shall limit ourselves
the projections on bound states. For WPD thePm(t) are
obtained by projecting the numerically integrated wa
packetC(x,t) onto the bound dressed states; for the mu
state HFFT they are given byPm(t)5uAm(t)u2 with the
Am(t) from Eq. ~14!. For the purpose of the comparison, t
Pm(t) can be regarded as merely mathematical tools, in
pendently of their physical significance.

V. ATOMIC MODEL: NUMERICAL METHODS

We shall illustrate the general ideas of the previous s
tions on the case of a1D atomic modelhaving as field-free
potential the soft Coulomb potential

V~x!52
1

~11x2!1/2, ~17!

which has been frequently used in the past; see e
@27,10#. V(x) has a Coulomb tail and therefore supports
Rydberg series of energy levels. The Coulomb singularity
the origin has been ‘‘softened,’’ so that there exists a grou
state with even parity; its energy isW0520.67.

Let us now make a few comments on thenumerical meth-
ods for the HFFT calculation. The eigenvalues of the HFFT
structure equation~6!, corresponding to the potentialV(x) of
Eq. ~17!, although calculated many times, will be reproduc
in Fig. 1 for reference. The successive levels of the e
states will be labeled byn50,2,... those for the odd states b
n51,3,... . The level coalescence mentioned in Sec. II is
o
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parent in Fig. 1 for then50 and 1 states; for then52 and 3
states it barely starts ata0515.

The other quantities required by the HFFT calculatio
such as the widthsG of Eq. ~7! and the amplitudesAm(t) of
Eq. ~14!, have been computed using the methods descri
by Marinescu and Gavrila@6#. For example, in the expres
sion of Am(t), we have the recurrent matrix element

^umuV̄1~Wn!uun&[(
n

8 ^umuVnG~1 !~Wn1nv!Vnuun&

5(
n

8 ^umuVnuxknn
&

2 ip (
n.0

(
P

^umuVnuuknn

P &^uknn

P uVnuun&.

~18!

We have made use here of Eq.~A4! and have defined

uxknn
&[P@~Wn1nv2H !21#Vnuun&, ~19!

where P is the principle value operator and

1
2 knn

2 [Wn1nv. ~20!

Equation~18! is thereby similar to the ones encountered
@6#; for the calculation ofuxknn

& @Eq. ~19!#, we have applied
the Dalgarno-Lewis method@28#. Unlike in @6#, however,
where a short-range potential was used, here we had to
the difficulty of the long tail of the soft Coulomb potentia
This was done using known asymptotic-expansion pro
dures~e.g., see@29#!.

We now comment on ournumerical methods for the WPD
calculation. We solve the space-translated Schro¨dinger equa-
tion ~1! using lattice techniques to obtain a discrete repres
tation of the wave function, i.e.,c(x)⇒c(xi)[c i , and of

FIG. 1. Dressed energy levels of the high-frequency struct
equation~6! with the soft Coulomb potential~17!.
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all coordinate-space operators on a one-dimensional m
Local operators such as potentials simply become diag
matrices of their values at lattice points, i.e.,V(x)⇒Vid i j .
Derivative operators, such as the kinetic energy, have la
representations in terms of matrices, i.e.,]/]x⇒Di j

(x) . In
particular, we use here the Fourier-collocation method@30#
for the kinetic-energy operator. As a result, all calculatio
discussed here implement uniform-mesh spacing.

Because of its efficiency, we apply the Fourier-collocati
method using the fast Fourier transform to evaluate the
tion of the lattice kinetic-energy operator in momentu
space, where it is diagonal. If only a few low-lying states a
desired, as is our case, these may be obtained efficie
using iterative methods, such as the Lanczos algorithm
partial eigensolutions of the Hamiltonian@31#. The eigenvec-
tors are used as initial conditions for the time evolution a
for computing the time-dependent population of the wa
packet in a given dressed eigenstate.

The formal solution of the time-dependent Schro¨dinger
equation is

c j~ t !5U~ t,t0!c j~ t0!, ~21!

where we have omitted the spatial coordinates for simplic
and the evolution operatorU(t,t0) is given by the time-
ordered exponential

U~ t,t0!5T expH 2 i E
t0

t

H~ t8!dt8J . ~22!

We discretize time in the sense that the electromagnetic
teraction is taken as constant in successive small inter
Dtk5tk2tk21 (k51,2,...,K) and express the evolution op
erator in successive infinitesimal factors

U~ t,t0!5U~ t,tK21!U~ tK21 ,tK22!•••U~ t1 ,t0!. ~23!

In this case the time ordering can be ignored.
Two methods have been employed to approximate

infinitesimal time-evolution operator@32#

U~ tk ,tk21!5exp$2 iH ~ tk!Dtk%, ~24!

a Taylor series expansion ofL terms, whereL is chosen at
each step according to a convergence criterion on the w
function ~see@31#!, and the symmetric split-operator prop
gator of Feit, Fleck, and Steiger@33#. The split operator is
explicitly unitary by construction and is accurate to ord
(Dt)2. The Taylor-series expansion is not explicitly unitar
but in practice the norm of the wave function can be co
served to high precision.

VI. IONIZATION RATES: ADIABATIC STABILIZATION

In this section we study ionization rates and compare
results of WPD with those of the first iteration within th
single-state HFFT. We choose the frequenciesv52 and 4,
which are, respectively, about three and six times larger t
the binding energy of the field-free atom, and allowa0 to
vary from 0 to 20. According to the criterion~8!, the fre-
quencies are well suited for comparison with the HFFT, p
ticularly at largera0 ~see Fig. 1!. We take as an initial con
dition for the wave packet the dressed ground state. Figu
sh.
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gives the evolution of its populationP0(t) for threea0 . The
curves shown have a rather smooth decay, but display
creasing jitter asa0 increases@note the change of scale in th
ordinate of Fig. 2~b!#. However, fora0520 ~not shown!, the
jitter has practically disappeared.

The curves fora050.125, 1, 20, can be fitted quite acc
rately to decaying exponentials exp(2Gt). Even for a055,
the averagepopulation is rendered quite well by a decayin
exponential. To increase the accuracy, the values ofG were
extracted by following the evolution ofP0(t) as long as
possible, over thousands of cycles in some cases@34#.

These facts confirm qualitatively the single-state HFF
which predicts exponential decay for the populations wh
the validity criterion~8! is satisfied. The agreement does im
prove with increasinga0 , as predicted, and for the highe
frequencyv54 the decay is considerably slower than f
v52, also as predicted. Concerning the jitter superposed
the exponential decay, this is due to the coupling of
ground state to excited states and cannot be accounted fo
a single-state HFFT description. The situation will be an
lyzed in detail in Sec. VII.

We mention that the exponential decay of the dress
state populations in the stabilization regime has been stu
earlier with WPD for a 1D model with ad(x) potential by
Sanpera, Su, and Roso-Franco@16#. Rates were extracted

FIG. 2. Time dependence of the populationP0(t) in the dressed
ground state for a wave packet evolving from this state at two h
frequenciesv and threea0 ~in a.u.!. The field is described by Eq
~2!, with x52(p/2).
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but no reliable results from HFFT were available for co
parison.

The values ofG thus obtained from WPD are collected
Fig. 3 for 0,a0,2 and in Fig. 4 for the extended interva
0,a0,15; in the latter case a logarithmic scale is need
In the same figures we present also the results from the fi
order iteration of the HFFT, Eq.~7!. As apparent, the WPD
results are in good quantitative agreement with those of
HFFT, particularly atv54. The agreement extends over
largea0 range and four orders of magnitude ofG, as seen in
Fig. 4.

These figures display the phenomenon ofadiabatic stabi-
lization; see@5#, Sec. VI. Following a parabolic increase
small a0 , as predicted by perturbation theory@35#, G passes
a maximum arounda051 and thendecreasesto zero at
larger a0 , albeit in an oscillatory manner. We have th
demonstrated that adiabatic stabilization results also f
WPD, if the initial condition is adequately chosen, and h
the features predicted by the HFFT.

The oscillatory behavior ofG beyond its maximum has
been encountered also for short-range~Gaussian! 1D poten-
tial models @36,6#. It contrasts with the monotonically de
creasing behavior~albeit with slight undulations! existing in
the 3D Coulomb case@9~a!#. It was concluded in@6# that the
oscillations are a specific feature of 1D models.

To end this section we note that the discrepancies fo
between WPD and HFFT can be traced back to those an
pated in Sec. IV, referred to as~a! and ~b!. We shall try to
remedy them in the next section.

FIG. 3. Ionization rateG of the dressed ground state for a r
stricted rangea0 and two high frequenciesv ~in a.u.!. Wave-packet
dynamics~WPD! results, open and closed circles; high-frequen
Floquet theory~HFFT! results, dashed and full curves. The asce
ing branches of the curves correspond to perturbation theory,
descending branches to the adiabatic stabilization regime.
-

.
st-

e

m
s

d
i-

VII. POPULATION DYNAMICS

We have studied the dynamics of the populations
dressed states for two kinds ofinitial conditions, one~i! con-
taining only the ground state, the other~ii ! in which several
low-lying bound states are present. Case~ii ! represents a
rather general situation. Indeed, when in WPD the field
turned on rapidly upon an unperturbed atom, the popula
is projected out of the ground state into excited states~shake-
up!. After the peak of constant intensity has been reache
time t, an analysis of the wave packet in terms of dress
states shows that discrete as well as continuum states ma
populated~e.g., see@14,15,11#!. However, if the shake-up is
not too violent, most of the population will be found i
lower-lying bound states. By taking the situation at timet as
the initial condition for the subsequent evolution of the wa
packet, case~ii ! emerges.

In case~i! we takea051 andamÞ050 in Eq. ~15!. We
illustrate case~ii ! by taking a05a15a251/), with all
other am vanishing. The field parameters were takenv52
anda055 in all cases. From Fig. 1 one gets a ratio of ph
ton energy to ground-state binding energy of approximat
5, so that the high-frequency criterion~8! is reasonably well
satisfied. Further, we have given two values to the phasex in
Eq. ~2!, x50 and2(p/2), which represent, from the WPD
and multistate HFFT points of view, two different physic
situations. The physical results of the single-state HFFT
of course, independent ofx.

We shall now elaborate on the calculation of the popu
tions Pm according to the multistate HFFT. In order to d
termine the coefficientsAm(t) @Eq. ~14!#, the first step is to

-
he

FIG. 4. Ionization rateG of the dressed ground state for a
extended rangea0 and two high frequenciesv ~in a.u.!, according
to WPD ~open and closed circles! and the HFFT~dotted and full
curves!. Concerning the oscillatory behavior ofG in the stabiliza-
tion regime, see@35,6#.
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calculate the coefficientsCn from Eq. ~16!. We have re-
stricted our initial conditions to contain only a few low-lyin
dressed statesum , i.e., with only a few nonvanishingam ~for,
say,m<M ! in Eq. ~15!. We may assume, therefore, that on
low-lying HFFT statesc (n) with n<N will be needed in Eq.
~9!; N is chosen large enough as to ensure convergenc
the final results~obviously,N.M !. ~In practice, in the fol-
lowing calculations,N was taken to be 10.! By restricting
also the coefficientsam by the conditionm<N ~setting, ob-
viously, those form.M equal to zero!, the matrixTmn ~0! in
Eq. ~16! becomes square. As it is also nonsingular@37#, this
allows the unique determination of the coefficientsCn , ei-
ther numerically or analytically~as expansions inv21!. We
note that forv21→0 we haveTmn(0)5dmn and Cn5an .
Therefore, at nonvanishingv21, Cs5O(1) for s<M ,
while for t.M , Ct must beO(v21) or higher. In fact,
calculations show that the order of magnitude ofCt depends
on the phasex of the field ~2!: If xÞ0, Ct is effectively
O(v21), but forx50, it is of higher order. Considering the
Eq. ~14!, we infer that for s<M we have As5O(1),
whereas fort.M , At must beO(v21) or higher. Thus
uAsu25O(1) anduAtu25O(v22). This means that only the
lowest nonvanishing order in the calculation ofAt is relevant
for consistency to orderv22.

In case~i! we find from Eq.~14!, by consistently extract-
ing the dominant terms inv21 with the help of Eq.~8!, the
analytic result

A0~ t !5C0e2 iE0tH 11(
n

8
e2 invt

nv F ^u0uVnuu0&

1(
m

8
1

mv
^u0uVn2mVmuu0&G J

1 (
n.0

(
n

8 Cne2 iEnt
1

nv
^u0uVnuun&, ~25!

At~ t !5Cte
2 iEtt1C0e2 iE0t(

n
8 e2 invt

1

nv
^utuVnuu0&

~tÞ0!. ~26!

These expressions were written, taking into account the o
of magnitude of theCn , such thatA0(t) be valid toO(v22)
included, andAt(t) be valid toO(v21). The disparity in the
two orders stems from the fact that we are interested in
taining correct expressions toO(v22) for all populations
Pm(t). Because of Eq.~5! and the fact that the functionsut
are real, the sum overn in Eq. ~26! is purely imaginary. Thus

uAt~ t !u25uCtu2e2Gtt

1
1

v2 uC0u2e2G0tU(
n

8 e2 invt
1

n
^utuVnuu0&U2

2
4

v
uCtC0ue2~Gt1G0!t/2sin@~Wt2W0!t

1arg~Ct* C0!#Im (
n.0

e2 invt
1

n
^utuVnuu0&
of

er

b-

~tÞ0!. ~27!

The expression ofuA0(t)u2 is similar and will not be given
here. Note that the individual populations have an oscillat
behavior with the field frequencyv and its harmonics. More-
over, the last term in Eq.~27! displaysbeatson top of the
field oscillations, with a frequencyWt2W0 corresponding to
the transition between the initially populated and the fin
dressed state considered.

The existence of beats in the dressed-state populations
been signaled, under similar initial conditions, by Vivirit
and Knight@17#. They used a two-state model~with no con-
tinuum! combined with perturbation theory to explain qua
tatively their occurrence. In our case, they appear as a d
consequence of the dominance of the statesn50,1 in the
Floquet expansion~9!, with no adjustments needed.

If one adds up the populations inall bound states, one
finds toO(v22)

(
n

Pn~ t !5(
n

uCnu2e2Gnt

1
1

v2 uC0u2e2G0t(
m

8 H 1

m2 ^u0uV2mQbVmuu0&

1 (
kÞ0,m

e2 ikvt
1

m~k2m!
^u0uVk2mQcVmuu0&J .

~28!

Here Qb and Qc are the projectors on all bound, and a
continuum states, respectively (Qb1Qc5I ). The beat terms
O(v22) contained in the individual populations withnÞ0
@see Eq.~27!# have canceled out against those existing
P0(t). Equation ~28! still contains oscillatory terms~sum
over k in the curly bracket!, but these are numerically muc
smaller than those giving the jitter in the individual popul
tions, because the matrix elements of the former contain
extra Qc sandwiched between bound states. The rest of
terms in Eq.~28! have a smooth exponential decrease
time.

The analytic result for case~ii ! can be derived similarly.
From Eq.~14!, for m<M we find

Am~ t !5Cme2 iEmtF11(
n

8 e2 invt
1

nv
^umuVnuum&G

1 (
s50

M

~12dsm!Cse2 iEst

3(
n

8 e2 invt
1

nv
^umuVnuus&. ~29!

This expression isO(1), and isgiven here toO(v21) in-
cluded. The corresponding populationsPm(t) contain oscil-
latory terms ofO(v21) and display beatlike oscillations
The amplitudesAm(t) for m.M areO(v21), and will not
be given here; the corresponding populationsPm(t) are
thereforeO(v22). By adding up the populations in the in
tially populated statesm<M one finds
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(
m50

M

Pm~ t !5 (
m50

M

uCmu2e2Gmt1O~v22!. ~30!

In this sum, the oscillatory termsO(v21) contained in the
individual populationsPm(t) have canceled, and we are le
with smoothly time-decreasing exponentials. The correc
O(v22) terms of Eq.~30! introduce a small jitter. This will
be also the case when considering the sum of populationsPm
in all bound states toO(v22) included.

We now address the issue of theagreement of WPD and
the multistate HFFT, taking the populationsPm(t) as a test
case. Beginning with case~i!, the Pm(t) for the alternative
x50 are given in Fig. 5, and those forx52(p/2) in Fig. 6.
We show the populations in the ground staten50, in the first
excited staten51, and the sum of the populations in a
bound states(Pn . A striking fact is that the figures contai
the results of both WPD and HFFT, i.e., the results of
two theories coincide within the accuracy of the graphi
representation in all fine details. We have chosen to repre
the populations starting with the 80th cycle in order to str

FIG. 5. Populations in the first two dressed statesn50,1 of a
wave packet evolving from the ground state, atv52 and a0

55 ~a.u.!, in a field given by Eq.~2! with x50. The sum(Pn

represents the population in all bound states. The curves repre
the coincident results of WPD and HFFT. Note the cancellation
the oscillations ofP0 andP1 in (Pn .
e

e
l
nt
s

that the agreement has not deteriorated in the meanw
The results for case~ii ! are given in Fig. 7 forx52(p/2).
The populations for the initially present statesn50,1,2 are
shown; the sum(Pn is given in two versions, one for 0
<m<2, the other for all boundm. The two theories are stil
indistinguishable for then50 and 1 populations, but sligh
discrepancies become visible for the staten52 ~WPD, dot-
ted line; HFFT, full line!. Even in the latter case the differ
ence amounts to less than 0.1%.

From this and other similar cases analyzed, we concl
that the two theories agree strikingly well when dealing w
initial conditions involving low-lying dressed states. Th
implicitly confirms the multistate HFFT description an
checks both numerical computations.

We next focus attention on theinterpretation of the re-
sults. In case~i!, only the first excited state~n51, odd! car-
ries significant population~about 2% of the total; see Figs.
and 6! in addition to the ground staten50. The population in
higher states is quite small, but was included in the s
(Pn , given in Figs. 5~c! and 6~c!. Thus only the statesn
50 and 1 are involved in the population flopping during t

ent
f

FIG. 6. Populations in the first two dressed statesn50,1 of a
wave packet evolving from the ground dressed state, atv52 and
a055 ~a.u.!, in a field given by Eq.~2! with x52~p/2!. The sum
(Pn represents the population in all bound states. The curves
resent the coincident results of WPD and HFFT. Note the osc
tions and beats inP0 andP1 and their cancellation in(Pn .
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ionization process. There is a significant difference betw
the way this occurs in the alternativesx50 ~Fig. 5! and x
52(p/2) ~Fig. 6!. The latter shows manifestly beat
whereas the former does not. These are apparent also in
2 ~a055, andv52 and 4!, which refers to the casex5
2(p/2) too. Their existence or nonexistence follows fro
Eqs.~26! and~27!. Indeed, ifx50, as already mentioned,Ct
is higher thanO(v21) and hence the first term in Eq.~26! is
negligible with respect to the second, with the conseque
that Eq.~27! displays an oscillatory behavior, but no bea
If, on the other hand,xÞ0, Ct is O(v21), the two terms in
Eq. ~26! are of the same order of magnitude, and the be
are indeed present in Eq.~27!. The frequency of the beats i
obviously independent ofv; this is illustrated by Fig. 2~c! for
the two casesv52,4. It coincides with the atomic transitio

FIG. 7. Populations in the first three dressed statesn50,1,2 of a
wave packet evolving from a superposition of these states@see case
~ii !, Sec. VII#, at v52 anda055 a.u., in a field given by Eq.~2!
with x52(p/2). The results of the WPD and the HFFT are co
cident for n50 and 1, but differ slightly forn52 ~WPD, dotted
curve; HFFT, full curve!. Note the beats in the populations.(Pn

represents the sum of the populations in statesn50,1,2 ~full line!
and in all dressed states~dotted line!. Note the nearly complete
cancellation of the oscillations inP0 ,P1 ,P2 in their sum.
n

ig.

ce
.

ts

frequency fromn50 to 1, as shown by Eq.~27!. The sums
over all populations(Pn , given in Figs. 5~c! and 6~c!,
shows practically no jitter, as discussed in connection w
Eq. ~28!.

Turning to case~ii !, Fig. 7 forx52(p/2) displays beats.
~Their presence in a several-state superposition of dre
states was also signaled by Law, Su, and Eberly@15#!. Here
it is a general feature, independent ofx, because all coeffi-
cientsCm in Eq. ~29! areO(1). The sum of thepopulations
in the initially represented states has indeed no oscillation
beats, as predicted by Eq.~30!, but does have a jitter repre
senting theO(v22) corrective terms in Eq.~30!. The addi-
tion of the other populations in dressed states increases
the sum, but decreases the jitter level to a few tenths o
percent. Hence, in case~ii ! as opposed to case~i!, the popu-
lation trading occurs among the initially populated stat
with negligible contribution from the others. In both case
however, the populations in all bound states decays ra
smoothly in time, corresponding to the steady transfer
population to the continuum due to ionization.

VIII. CONCLUSION

In this paper we have assessed the potential of the H
in comparison to WPD. As a test ground for the comparis
we have used the well-known 1D potential model with s
Coulomb potential, although the conclusions apply, undou
edly, more generally.

The analysis was carried out in two stages at two levels
accuracy within the HFFT. In the first stage, we have used
current ~single-state! form, valid to first order inv21. To
make the comparison meaningful, we have expressed the
tial condition used for the WPD in terms of dressed stat
which play a structural role in the HFFT. We have show
that the survival probability in the initial ground dressed st
at a givena0 value follows the exponential law of decay
with a rate that is in good agreement with that given by
HFFT, provided the frequency is large enough. Since
HFFT rate manifestsadiabatic stabilization, we have thus
shown that this results from WPD too, and not only the
ready knowndynamicform.

For an improved agreement with WPD, in the seco
stage of our comparison we have extended the HFFT in
directions: we have included the second-order correction
v21 within the theory, and we have introduced themultistate
HFFT, i.e., the representation of wave packets as superp
tions of HFFT states; see Eq.~9!. The second extension i
based on the mathematical completeness for Floquet st
Although rigorous mathematical proofs guarantee this pr
erty for the case of Floquet states with real quasienergy,
have been interested here in the case more adapted to io
tion, when the expansion includes discrete quasiene
states. We have considered the case when the initial co
tion is expressible as a superposition of a number of bo
dressed states, which in practice is a rather general situa
We have then compared the predictions of WPD and HF
for the time evolution of the populations in bound dress
states. In the cases considered, the agreement was rem
able, thus implicitly confirming the potential of the multista
HFFT and our operational assumptions. However, more
mains to be done in order to assess the power of the me
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and, in particular, the importance of the continuum in t
expansion~9!.

From a dynamic point of view, our results have show
that there is considerable population flopping betwe
dressed states during the ionization, the characteristic
which are different for one- and several-state initial con
tions. As opposed to this, we have shown analytically~with
the multistate HFFT! and confirmed numerically~with
WPD! that thesumof the populations in all dressed boun
states undergoes a smooth decay in time.
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APPENDIX: SECOND ITERATION WITHIN THE HFFT

We develop here the second-order iteration within
HFFT from the general formulas derived by Gavrila in@5#,
Sec. IV B. To this order, Eqs.~81! and ~82! of @5# become

@H1V̄1~E~2!!1V̄2~E~2!!2E~2!#f0
~2!50, ~A1!

fn
~2!5G~En

~2!!FVn1(
m

8 Vn2mG~Em
~2!!Vm~x!Gf0

~2!

~nÞ0!. ~A2!

Here H is the dressed Hamiltonian entering Eq.~6! and
G(E) is the Green’s operator associated with it. We are
ing the notation

En[E1nv. ~A3!

We have also denoted in Eq.~A1!,

V̄1~E![(
m

8V2nG~En!Vn , ~A4!

V̄2~E![(
n

8 (
m

8 V2nG~En!Vn2mG~Em!Vm . ~A5!

Superscript~2! in Eqs.~A1! and~A2! labels the values ofE
andfn of the second iteration. The order of magnitude of t
terms is characterized by the number ofv-dependent Green’s
functions G(En) they contain, becauseG(En);I (nv)21,
for v→`.

The Gamow-Siegert boundary conditions on the com
nents fn require that for open channels~n>1, ReEn.0!
these should have an oscillatory exponential increase in
asymptotic region, and for closed channels~n<0, ReEn,0!
they should have an oscillatory exponential decrease.
boundary conditions can be satisfied by choosing appro
ately the location ofEn on the Riemann sheet ofG(En). For
open channelsEn should lie on the second sheet, just belo
n
of
-

h
.

-

e

-

e

-

he

he
ri-

the cut along the positive-energy axis, and for closed ch
nels En should lie on the physical sheet, just below t
negative-energy axis.

Equation~A1! is a ~nonlinear! eigenvalue equation, deter
mining E(2) and the zeroth Floquet componentf0

(2) ; once
this problem is solved, Eq.~A2! yields all other Floquet
components. In practice, Eq.~A1! can be solved by taking
into account that the termsV̄1 and V̄2 are perturbations, of
first and second order inv21, respectively. One can assum
preliminarily, that the eigenvalueE(2) is known and hence
also the termsV̄1(E(2)) and V̄2(E(2)) are well defined. The
problem being perturbative, the eigenvalueE(2) and eigen-
functionf0

(2) are related to their unperturbed counterparts
the formulas of second-order standard perturbation theory
given in @38#, for example. Using these formulas,E(2) and
f0

(2) are expressed in terms of matrix elements ofV̄1(E(2))
andV̄2(E(2)), which obviously depend onE(2). Consistency
to dominant order inv21 allowsE(2) to be replaced in these
matrix elements by its lower-order approximations,E(1) or
W as the case may be. The result is@39#

E~2!5W1^uuV̄1~E~1!!uu&1^uuV̄1~W!G8~W!V̄1~W!uu&

1^uuV̄2~W!uu&, ~A6!

f0
~2!5@ I 1G8~E~1!!V̄1~E~1!!1G8~W!V̄2~W!

1G8~W!V̄1~W!G8~W!V̄1~W!

2^uuV̄1~W!uu&G82~W!V̄1~W!#u. ~A7!

Here G8(E) is the ‘‘reduced’’ form ofG(E); see@38# and
@5#, Eq. ~64!. V̄1(W) and V̄2(W) are calculated from Eqs
~A4! and ~A5!, with G(En) replaced byG(Wn). If W1nv
.0, G(Wn) represents a Green’s function whose varia
lies on the real positive axis of the energy@see Eq.~A3!#. To
determine on which Riemann sheet of the Green’s funct
Wn should lie, we recall that the originalEn lies on the
second sheet just underneath the energy cut, which is clo
Wn1 i« on the physical sheet. Therefore, we should be de
ing with G(1)(Wn)[G(Wn1 i«) @25#. Further, we note tha
the first-order quasienergyE(1) entering Eqs.~A6! and ~A7!
is obtained by solving Eq.~A1! to first order~see@5#, Sec.
IV C! or, equivalently, by retaining only the first two term
in expression~A6! and replacingE(1) in V̄1(E(1)) by W
1 i e.

Returning to Eq.~A2!, consistency of the equation to se
ond order inv21 allowsf0

(2) to be replaced by its first-orde
expression resulting from Eq.~A7!. Similarly, the operator
Gn(E(2)) acting on the bracket on the right-hand side of E
~A2! can be replaced byGn(E(1)), whereas the one insid
the bracket, byGn(W). We find thus

fn
~2!5G~En

~1!!FVn1VnG8~W!V̄1~W!

1(
m

8 Vn2mG~1 !~Wm!VmGu ~nÞ0!. ~A8!
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Formulas ~A6!–~A8! are the result of the complet
second-order iteration within the HFFT. As apparent,
successive iterations of the HFFT do not yield power se
expansions inv21, but rather expressions having theirdomi-
nant terms of increasingly higher order inv21 ~see also@5#,
Sec. IV B!. If, on the other hand, one is working at real
large v such that Eq.~8! is quite well satisfied, one ma
eliminate from these formulas terms inv21 of higher order
than the second. To this end one can use the fact, alre
mentioned, that at largev, we haveG(En);I (nv)21. With
the help of Eq.~5! one finds thus that the dominant behav
of the operatorV̄1(E) is higher than the anticipatedO(v21).
Similarly, but with more bookkeeping, one can show that
u

-

r

ki

a
s

o
M

ila
.

ao

an

. G

u

u

e
s

dy

e

dominant order ofV̄2(E) is higher than the anticipate
O(v22). Therefore, the terms containing twice the opera
V̄1(W), as well as those containingV̄2(W), can be dropped
in Eqs. ~A7! and ~A8!. This gives the substantially simple
O(v22) formulas

E~2!5W1^uuV̄1~E~1!!uu&, ~A9!

f0
~2!5@ I 1G8~E~1!!V̄1~E~1!!#u, ~A10!

fn
~2!5G~En

~1!!FVn1(
m

8 Vn2mG~1 !~Wm!VmGu ~nÞ0!.

~A11!
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