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We study the connection of the high-frequency Floquet thebllyFT) and the wave-packet dynamics
(WPD) descriptions of laser-atom interactions. The analysis is motivated by the need to ascertain the realm of
validity of the current form of the HFFT and extend its scope. We test the general ideas on a one-dimensional
atomic model with soft Coulomb potential, frequently considered before. The comparison is carried out in two
stages of approximation. In the first stage, we compare WPD predictions for ionization with those from the
usual(single-statgform of the HFFT. To make the comparison meaningful, we use as initial conditions for the
WPD bound high-frequency “dressed states,” corresponding to the peak intensity of the field. The dressed
states play a special role in the HFFT and have direct physical interpretation at high frequencies. We show that,
under certain conditions, the decay rates extracted from WPD agree rather well with those from the HFFT.
Thus “adiabatic stabilization,” derived originally from the HFFT, results also from WPD. This form of the
phenomenon contrasts “dynamic stabilization,” the only form shown so far to follow from WPD. In the next
stage of the comparison, we extend the HFFT in two directions: we include results from the second iteration
within the theory, and we introduce a multistate HFFT analysis. As a test for the agreement of the HFFT and
WPD we compare the results regarding the populations in dressed states. In a variety of circumstances we find
striking agreement, indicating the potential of the multistate Floquet analysis. In addition, we study the char-
acteristics of the population trading among the dressed states during the ionization process. Although the
individual populations in bound states may fluctuate substantially, their sum decreases rather smoothly in time,
as predicted analytically by the HFFS1050-294{@7)02311-1

PACS numbd(s): 42.50.Hz, 32.80.Wr, 33.80.Wz

[. INTRODUCTION higher order inw~! [6]. A central role in the possibility of
comparing WPD and HFFT is played by the initial condition

The theory of laser-atom interactions at high intensitiesof WPD, which has to be adapted to the assumptions under
has been developed using basically two approathe©ne  which the HFFT operates. To make the comparison mean-
is Floguet theory, which assumes a regime of steady ionizangful, we shall analyze the initial condition in terms of su-
tion and calculates the constant decay rates from a spatigkrpositions of “dressed states,” which are limiting forms of
boundary-value problerf2]. The other is wave-packet dy- Floquet states at high frequency. These play a structural role
namics (WPD), i.e., the integration of the time-dependentin the HFFT and have direct physical interpretation.
Schralinger equation with given initial conditior[8]. The We shall proceed with the comparison of WPD and HFFT
information they give is of complementary nature in thein two stages, corresponding to two successive levels of ac-
guantum-mechanical sense: Floquet theory emphasizes tlearacy in the development of the HFFT. In tirst stage we
energy domain and WPD the time domain. Both have knowrshall be using the HFFT in its current fortne., single state
merits and limitations; e.g., sdd]. However, only a dual and including only the first iteration i ~1). We shall com-
approach based on both can give definitive answers to thgare the ionization rates of the two theories, corresponding to
delicate physical problems that abound in strong-field laserthe same initial condition and, in particular, we shall dwell
atom interactions. For example, Floguet theory has made exan the phenomenon of atomic stabilization. The HFFT has
otic predictions as to the behavior of atoms in intense fieldpredicted the existence of dtliabatic stabilizatioi [7],
(adiabatic stabilization, light-induced states, et&ome of characterized by the fact that, for individual atomic states
them may be hard to accept unless substantiated by standaadjusting adiabatically to the variation of the laser intensity,
WPD, particularly because Floquet theory with resonancdeyond a critical intensity the ionization rates start to de-
(Gamow-Siegejt boundary conditions operates with wave crease and the states become more stable. This has been
functions having unbounded behavior at infinity. The dualmeanwhile confirmed by all Floquet methods in existence
approach is needed also for understanding the conditions uf8]. Moreover, the onset of adiabatic stabilization was con-
der which an experimental confirmation of Floquet theoryfirmed experimentally for Rydberg atonmi8]. On the other
predictions can be expected. hand, WPD has produced its own version of stabilization,

We shall be interested here in the connection betweetermed “dynami¢ [10,11]. In this version, when an intense
Floguet theory and WPD at high frequencies and constaraser pulse is suddenly applied to an atom in the ground
field amplitude. A version of Floquet theory specifically state, its total ionization probability exhibits stabilization as
adapted for this case is the “high-frequency Floquet theory”the peak intensity is increased. It has not been shown, how-
(HFFT), developed by Gavrila and Kaminsf4,5]. It pro- ever, that adiabatic stabilization also followed from WPD.
ceeds iteratively, yielding successive approximations ofWe shall show here that this is indeed the case.

1050-2947/97/565)/3961(13)/$10.00 56 3961 © 1997 The American Physical Society



3962 J. C. WELLS, I. SIMBOTIN, AND M. GAVRILA 56

For the second stag®f our comparison, we extend the Il. SINGLE-STATE HFFT
HFFT theory_m t.WO,EeSPe.CtS' We include r?‘su'ts from the The space-translated form of the Sdfirger equation
second iteration ino™ * within the HFFT and introduce the [19] for the 1D case is
multistate HFFT Whereas the first extension is conceptually
simple, the second requires delicate mathematical arguments.
The extension relies on the mathematicampletenes®f [2PP+V(x+a(t)]¥ =i R (1)
Floquet(in our case high-frequency Floquetates, i.e., the
possibility of expanding wave packets in terms of suchwhere V(x) is the unperturbed potential; a.u. are used
states. For periodic time-dependent Hamiltonians, this is thénroughout. For monochromatic radiation with constant field
counterpart of the completeness property for time-amplitude,a(t) can be chosen as
independent Hamiltonians, which plays a fundamental role
in the interpretation of quantum mechanics. Whereas the a(t)=ag cofwt+x), 2
completeness property of Floquet states has been proven _ _
with full mathematical rigor by Sviridoy12] (see alsg13]) ~ Wherex is an arbitrary phase.
for Floquet states with realcontinuou$ energy, this was We insert in Eq(1) the Floquet ansatz

done in a somewhat different form than is of interest for the Fo
ionization problem. In this context it is desirable to make X t)=e iEt x)e~inot 3
appear explicitly in the expansion thiscrete quasienergy Yxb n;oc n(x) ' @

HFFT states corresponding to ionizatiémbeying Gamow-

Siegert boundary conditionsThe existence of such an ex- This yields the system of coupled equations for the Floguet

pansion is of importance for the assessment of Floquet pre&somponentsp,(X):

dictions for intense laser phenomena, e.g., the appearance

and disappearance of light-induced states, etc. As this form 1p2 _ __ '

of expansion does not seem to have been investigated rigor- [2P+ Vo= (E+no)ln= % Viemém- (@)

ously (see, howevel,13]), we shall explore its validity prag-

matically, with physical applications in mind. The compari- Here V,(«q;X) are the Fourier components Wi{x+ «(t)).

son will be carried out on the populations in bound dressed\s V(x) is real and assumed to be even, theare real and

states. We shall be finding striking agreement between thee have

two theories in a variety of situations, indicating the potential

of the multistate approach. Va(=X)=(=1)"Va(X), V_n(X)=V{5(X)=Vy(X). (5
Dressed-state populations have been considered before, . o

starting with the work by Reed, Knight, and Burngttf] and !N Ed. (4) and hereafter, a primed sul’ indicates that

LaW, Su1 and Eberl{lS] More recenﬂy, the problem was terms Conta|n|ng\/o should be omitted. For each solution

investigated by Sanpera, Su, and Roso-Frafits] and  #(X.t), the successivep,(x) have alternating parityip,

Vivirito and Knight[17], although not from the point of view (—X)=(—1)"""¢,(x), whereP=0,1 gives per definition

of the HFFT[18]. These investigations were made on one-the parity of the solution. For the case in which one-photon

dimensional(1D) model atoms, with either the “soft” Cou- ionization is possibleéhigh frequencies we label the chan-

lomb potential (i.e., with the singularity at the origin nels such that those with=1 are open and those with

smoothed ouyt[14,15 or short-range potential46,17. <0 are closed. We impose resonance st@@mow-Siegejt
We shall illustrate our two-stage comparison of the HFFTPoundary conditions on thep,(x) (see [5,6]). E=W

and WPD on the 1D model with soft Coulomb potential —i(I'/2) in Eg. (3) represents the “quasienergy” of the

mentioned. This model has proven capable of revealing imstate, wher&V is interpreted as its average energy in the field

portant physicge.g., dynamic stabilizatiofl0]), while be- andT is its total ionization rate. The Floquet stat® de-

ing simple enough computationally to allow extensive test-Scribes anonization modeconsisting of the constant flow of

ing. electron population from the vicinity of the nucleus to the
The paper is organized as follows. In Sec. Il we recall theasymptotic region, characterized by the quasiendiggnd

fundamentals ofsingle-state HFFT based on the first itera- the exponential decay law.

tion, as has been used so far, and present its extension to The HFFT proceeds by successive iterations, which give

include the second iteration within the theqdeveloped in  contributions that are of increasing dominant ordemin'.

the Appendiy. Section Ill contains the extension of the To lowest order(i.e., in the high-frequency limito—co at

theory to include superpositions of Floquet states. In Sec. IViixed ag) the HFFT extracts from Eq4) the atomic struc-

we discuss the strategy for comparing WPD and HFFT, andure equation5,20]

the role of the initial condition. The numerical methods used

and the atomic model considered are briefly described in [3P%+ Vo(ag;X)Ju=W(ag)u. (6)

Sec. V. In Secs. VI and VII we compare WPD to the two

stages of development of the HFFT envisaged. In Sec. VI w&Vith our labeling of the channels, we have to lowest order

discuss the agreement for ionization, in particular adiabatieho=u(ap,X), where the high-frequency dressed state

stabilization, within the context of the first stage. Then, inu(ag,X) is a solution of Eq.(6); all other ¢,=0. At aq

Sec. VII we discuss the population dynamics in the dressed0, u(«y,X) goes over into an eigenfunction of the field-

states within the context of the second stage. We draw corfree Hamiltonian[with potential V(x)]. The eigenvalues

clusions in Sec. VIII. W(ay) are real; hencE=W(ay) andl'=0. W(«y) is inde-
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pendent ofw at all @y. The successive dressed eigenfunc-accompanied by multiphoton absorption; $é@)]. The lat-
tionsu of Eq. (6) have alternating parity. It has been shownter set of solutions forms a continuum counterpart to the
[5] that at largeay, an even-oddgerade-ungeradlalegen-  discrete set of quasienergy states.

eracy sets in: The eigenvalues of Ef) coalesce in pairs,
one even with one odd, starting with the lowest oftbss

occurrence is coupled to the appearance of the “dichotomy” Il MULTISTATE HFFT

effect; sed5]). In order to extend the scope of the HFFT, we shall con-
The first iteration within the HFFT yields for thetotal  sider now the possibility of representing a wave packet
ionization rateof the stateu(aq,X): W(x,t), i.e., a square-integrable solution of the time-

dependent Schdinger equation(1), by a superposition of

r=2z> 3 KUP |V U)[2. (7) H(Ii;:T states Eq(3). The indiyidual states will be denoted by

m>0 P m $'" and a superscriptv) will be attached to the related

quantities, e.g.E™. [The state-labeling superscript) in-
Hereu, (ao,X) are final continuum dressed states, solutionsroduced here should not be confused with the iteration-
of the structure equatiof®); they are assumed to be normal- labeling superscript¢él) or (2) used in the Appendi}.By
ized in the energy scalf21]. The magnitude of the final definition, forw—, () goes over into the dressed eigen-
momentak, is determined by the energy conservation equastate of Eq(6), u,, discrete or continuoudor the continu-
tion (k3/2)=W+ mw. The summation ove should be car- ous case the subscriptstands forv={W,P}). We write the
ried out over the parity of the continuum states associateguperposition as
with k,,. Concomitantly with the nonzero value &f[Eq.
(7)], the first iteration yields non-vanishing expressions for T(x,t)=SC, M (x1), (9)
the componentg,(x), with n#0. v
Thus, to lowest orders im 1, the HFFT predicts that at
high frequencies the atom has a quasistable structure dwith constant coefficient€,. The symbolS emphasizes the
scribed by the dressed states of E6). The population in fact that the summation contains in general discrete and con-
these states decreases exponentially, with rBtegsven by tinuous contribut_i_ons. Note that E(R) will be an exact so-
Eq.(7) that are small at high frequenciésee[5], Sec. IIl B.  lution of the Schrdinger equatior(1) only if the amplitude
However, in the following we shall be needing results for g is constant.
the Floquet components to order 2, which are given by The general validity of expansia®) expresses theom-
the second iteratiorwithin the HFFT. The second iteration pletenesf the Floquet system of states. This is a delicate
obviously also improves the quasienergy. The general forninathematical property, which was rigorously proven by
of the second iteration expressions is derived in the AppenSviridov [12] for the case when the quasienergies are real,
dix; see Eqs(A6)—(A8). If the frequency is sufficiently high, i.€., only scattering Floquet states appear in the expansion.
one can use Eq$A10) and(A11). The convergence should be understood in the weak sense,
A priori arguments indicate that the HFFT formulasi.€., in terms of projections on given functions. In this case
should represent a valid approximation if the following high- the spectrum of the Floquet systeé#) is entirely continuous,

frequency condition is satisfiegee[5], Sec. IV D: extending on the real axis from > to +« [13]. We are,
. however, interested in a version of E() that brings in
0> |Wy(ap)|, (8) explicitly the contribution of the discrete quasienergy states.

This could be obtained, in principle, by distorting the inte-
Where|W0(a0)| is an average excitation energy of the sys-gration contour over the continuous spectrum in E9j,
tem. In general, this will be of the order of magnitude of thefrom the real energy axis into the complex plane, beyond the
binding energy of the ground state in the field. Note that Egsingularities of the continuum Floquet statéscated at the
(8) represents a sufficient condition and that in practicaldiscrete quasienergi¢23]), assuming that the required ana-
cases the validity condition appears to be wedlér We  lyticity conditions are mefsee, howevei,13]). Application
emphasize that there are no restrictionsay) as long as of the residue theorem would then allow one to single out
condition Eq.(8) is satisfied[22]; this was confirmed re- their pole contributions and Ed9) would thus contain a
cently by calculations on a 1D modgs]. discrete sum over quasienergy states plus an integral over a

General Floquet theory assumes that the radiation haslistorted continuum. The conditions of validity of an ex-
constant field amplitude. This is not the case when dealingpansion of this type do not seem to have been investigated in
with laser pulses. Nevertheless, if certain conditions are mehe Flogquet case, although a similar expansion was proven to
(see[5], Sec. Il A), the theory can be applied by simply exist for wave packets of time-independent Hamiltonians
ascribinga posterioritime dependence to the field amplitude with shape resonances, described in terms of Gamow states
contained in the Floquet statd). One of these conditions is [23,24]. We shall explore the possibility of such Floquet ex-
that the field amplitude variation be slow on the atomic timepansions in the following numerically, with physical appli-
scale, so that the atom have time to adjust adiabatically to ications in mind.

The HFFT as described above, with Gamow-Siegert Whereas the quasienergy stat¢S’ repeat themselves
boundary conditions, applies to ionization. By imposing scatidentically modw, the summation in Eq9) should be per-
tering boundary conditions on the Floguet componefits  formed only over states that are distinct. A consistent way to
the theory describes the related phenomenon of free-fregbtain them all, in the high-frequency case, is by identifying
transitions, i.e. scattering of the electron by the potentialthem by theirw—oe limit u,,, as we have done. We can then
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use for the discrete quasienergy staté8 the second-order
expressions given by Eq€3), (A10), and(All). X (UM|Vn|Uv>
On the other handunder conditions well understopd

any wave packe¥ (x,t) can be expanded in the complete set ,
of dressed state@1,(X)}: + % (U VoGl (W) Vlu ) [ (1)
W(x,t)= %AM(I)UM(X), (100  Expressions Egs(13) and (14) are valid to O(w 2) in-

cluded, if one assumes that coefficied@s are O(1) con-
where S again represents a summation over the discretstants.
spectrum plus an integration over the continuum. The con- We shall express the initial form oF (x,t) att=0 as

nection betwee , andC,, is
2 v Vo= %aMuM , (15)
Aﬂ(t)=§cu<uﬂ|‘/lm>- 1) wherea,=A,(0). By comparing with Eq(12),

The integrals representing the scalar prodyotg| ")) for a,= §TW(0)CV (16)

discrete quasienergy states may not be convergent in gene
because of the Gamow-Siegert boundary conditions obey
by (). However, this difficulty has already been taken care
of by the procedures of the HFFT for the calculation/é?, IV. WAVE-PACKET DYNAMICS
as shown in the Appendix.

By inserting the second iteration expression/é? [Egs.

LIaJﬂs linear relation allows the determination of t8¢ from
ea,, assumed known.

In the WPD approach, the time-dependent Sdhrger

; : -2 equation is integrated numerically starting from a square-

(A10) and(A1D)]into Eq. (11), we find toO(w ) integrable initial condition. Usually, the initial condition is
_ taken to be a field-free energy eigenstate of the atom. The
Ault) §T’”(t)c”’ (12) laser pulse is applied and the wave packet is propagated in

time until the pulse is turned off. lonization probabilities are
calculated at the end of the pulse according to the quantum-
mechanical laws, from the projections of the wave pagiket
TW(t)=e‘iEvt{ 5/“,‘?'<U,u|G’(E(V))V_1(E(V))|uV> the laboratory frameonto the field-free continuum states of
the atom. Under these conditions, the ionization probabilities
found describe global atomic behavior, depend on the shape
(u |G(E<V))V u,) of the pulse, and therefore are not characteristic quantities of
® UG the initial atomic stat¢14], [11], [17]. In particular, if the
laser field has a large peak value and is turned on rapidly
] (over a few cyclek it applies a sudden shock to the atom, so

with

+2’ e*inwt
n

+ 2 (U |[GWIV,_ oG (WEV U,

that the population is projected to higher discrete states, or to
the continuum(atomic “shake-up’), from the very begin-
(13 ning; it will be in these states that the population will evolve
during the rest of the pulse and not in the ground state.
where now we have define@{’=E™+nw, with the In contrast to the fully realistic approach of WPD, Floquet
quasienergyE(” calculated to first ordefwe recall that this theory, as well as the HFFT, operates with the individual
notation deviates from that in the Appentitlote that the idealized state$3). The disparity of the operating assump-
matrix elements appearing in EG.3) are well defined if the tions of the two theories is a handicap for their comparison.
potentialsV, are regularized according to the HFFT pre- The correct choice of the initial condition for WPD is there-
scription[25]. fore essential. For consistency, this should be taken not as a
We shall slightly simplify Eq(13) by replacingG(E{") field-free atomic state but rather as a state that describes the
atom already in the stationary regime imposed by a high-

. SN . frequency field of constant amplitude. States representing
[see the discussion in the Appendix, after E7)]. Whereas this kind of situation are the high-frequency bound dressed

this has oply a minor numerilcal Ef.fe(m view of the agree- statesu,, close approximations to the HFFT statg8
ment achieved in Sec. VI it avoids the complication of £26]. In fact, in the stationary approactt® describes pre-

working on the second Riemann sheet. We can express fufjsely the ionization mode, characterized by the quasienergy
ther the coefficient®\,,(t), using the eigenfunction expan- g(x) "consisting of the transfer of population from the bound

sions for the Green's operators involvgelg., se€5], EQS.  gressed statel,, (confined to the vicinity of the nucleus
(61) and (64)]: towards the asymptotic region. In this language, the signa-
ture of the ionization can be viewed as the time decrease of
A (t)=SC e BN S 4 (1-8,)(W,—~W,) 1 the “survival probability” P#(t):.|(uﬂ(x)|\lf(x,t))|2.
” v my proR Iy s As mentioned in the Introduction, we shall make the com-
_ parison of the theories in two stages. In the first stage, we
x(uM|V1(WV)|u,,) shall apply WPD to the case of an atom initially in the
dressed ground statg(x) and follow the subsequent evolu-
+2' e MW +nw—W,+ig) L tion of its population to check if it is indeed given by an
n a exponential decay law exp('t), as predicted by the single-

with its valueG(")(W(")) at the closely lying pointV{" +i e
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state HFFT(and by general single-state Floquet theoin 0.0 . .
the process, we shall compare the decay rates from the two
theories, which will enable us to ascertain if WPD confirms
the existence of adiabatic stabilizatiGsee Sec. Vi

One can anticipate, however, that the agreement of the
two theories will be necessarily handicapped by shortcom-
ings of the current form of the HFFT. These can be ascribed
to two independent causds) The use of the first iteration in
o~ ! of the HFFT has limited accuracy at finiig and higher
approximations within the HFFT may be needé). At fi-
nite » the dressed state used as initial condition is not an
exact solution of Eq(1), as is the Floquet state it approxi-
mates. Due to this mismatch, the wave packet cannot be
expected to coincide with a single Floquet state.

In the second stage of the comparison of the theories, we
shall try to overcome these deficiencies. To surgagswe
shall include in our calculation the second-order iteration
within the HFFT, developed in the Appendix. We conjecture
that(b) can be transcended by introducingnaltistate HFFT
description for the wave packet, of the form E§), which
includes discrete quasienergy states. In fact, we shall focus
here on the case when the contribution of the discrete spec- .
trum is dominant and the continuum contribution can be ne- 'S 1 Dressed energy levels of the high-frequency structure
glected (physically, discrete excitations dominate the con—equat'on(e) with the soft Coulomb potentigl?),
tinuum oneg One may expect that this will be the case if the
initial condition (15) contains only energetically low-lying
dressed states. The coefficiefts of the expansiori9) will
be determined via the HFFT with the help of the initial con-
dition (15), as shown in Sec. VII.

W, (au)

0 5 10 15
o, (a.u.)

parent in Fig. 1 for the=0 and 1 states; for the=2 and 3
states it barely starts af,=15.

The other quantities required by the HFFT calculation,
such as the widthE of Eq. (7) and the amplitudes, ,(t) of

. ... Eq. (14), have been computed using the methods described
We shall test the agreement of the multistate HFFT Wlthby Marinescu and Gavrilé6]. For example, in the expres-

WPD on the evolult|on. Of. the populaﬂorBM(.t). in bound sion of A ,(t), we have the recurrent matrix element
dressed states during ionization. We shall limit ourselves to m

the projections on bound states. For WPD thg(t) are _ ,

obtained by projecting the numerically integrated wave (U,|[Vi(W,)|u,)=2>" (u,|V,G (W, +nw)V,|u,)
packetW¥(x,t) onto the bound dressed states; for the multi- n

state HFFT they are given b, (t)=|A,(t)|* with the )

A, (t) from Eq.(14). For the purpose of the comparison, the => <UM|Vn|anv>

P.(t) can be regarded as merely mathematical tools, inde- "

pendently of their physical significance. _
—im 2 3 (U, Valu] (U [Valu,).

(18

V. ATOMIC MODEL: NUMERICAL METHODS

We shall illustrate the general ideas of the previous sec- i
tions on the case of 4D atomic modehaving as field-free We have made use here of H&4) and have defined

otential the soft Coulomb potential _
P P i V=AW, 4 no—H) Volu,), (19

V(X)= — L 1 where P is the principle value operator and
(x)= —r(1+xz)1 , 17
k2, =W, +no. (20)

which has been frequently used in the past; see e.g.,
[27,10. V(x) has a Coulomb tail and therefore supports aEquation(18) is thereby similar to the ones encountered in
Rydberg series of energy levels. The Coulomb singularity at6l; for the calculation ofx, ) [Eq. (19)], we have applied
the origin has been “softened,” so that there exists a groundhe Dalgarno-Lewis methof28]. Unlike in [6], however,
state with even parity; its energy Wy= —0.67. where a short-range potential was used, here we had to face

Let us now make a few comments on tgmerical meth- the difficulty of the long tail of the soft Coulomb potential.
ods for the HFFT calculationThe eigenvalues of the HFFT This was done using known asymptotic-expansion proce-
structure equatiof6), corresponding to the potentid(x) of  dures(e.g., sed29]).
Eq. (17), although calculated many times, will be reproduced We now comment on ourumerical methods for the WPD
in Fig. 1 for reference. The successive levels of the everalculation We solve the space-translated Schinger equa-
states will be labeled bg=0,2,... those for the odd states by tion (1) using lattice techniques to obtain a discrete represen-
n=1,3,... . The level coalescence mentioned in Sec. Il is aptation of the wave function, i.eg(x)= ¥ (x;)=;, and of
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all coordinate-space operators on a one-dimensional mesh. L.y
Local operators such as potentials simply become diagonal
matrices of their values at lattice points, i.¥(x)=V;J; .
Derivative operators, such as the kinetic energy, have lattice
representations in terms of matrices, i.ézax:ij"). In
particular, we use here the Fourier-collocation meth@d]

for the kinetic-energy operator. As a result, all calculations
discussed here implement uniform-mesh spacing.

Because of its efficiency, we apply the Fourier-collocation
method using the fast Fourier transform to evaluate the ac- 1.00
tion of the lattice kinetic-energy operator in momentum |
space, where it is diagonal. If only a few low-lying states are
desired, as is our case, these may be obtained efficiently
using iterative methods, such as the Lanczos algorithm for
partial eigensolutions of the HamiltonigB1]. The eigenvec-
tors are used as initial conditions for the time evolution and
for computing the time-dependent population of the wave
packet in a given dressed eigenstate. (b) a=1.0

The formal solution of the time-dependent Salirger 1.00 === :
equation is [

0.95

Py®

0.50

Py®

(1) =U(t,t0) ;(to), (21)

where we have omitted the spatial coordinates for simplicity 0.95
and the evolution operatdd(t,tg) is given by the time- | =2
ordered exponential

P,(0)

[ (2) @,=0.125
0 100 200
Time (a.u.)

U(t,to)ZTeXW’—iJ'tH(t’)dt']. (22 0.90
to

We discretize time in the sense that the electromagnetic in-
teraction is taken as constant in successive small intervals
At =t —t,_, (k=1,2,...K) and express the evolution op-
erator in successive infinitesimal factors

FIG. 2. Time dependence of the populati®g(t) in the dressed
ground state for a wave packet evolving from this state at two high
frequenciesw and threeag (in a.u). The field is described by Eg.

U(t,to) =U(t,tx—)U(tk_1,tk—2) - U(ty,tg). (23 (2), with ) == (/2).

In this case the time ordering can be ignored. gives the evolution of its populatioRy(t) for threeay. The
~ Two methods have been employed to approximate theurves shown have a rather smooth decay, but display in-
infinitesimal time-evolution operat¢B82] creasing jitter asy, increasegnote the change of scale in the

ordinate of Fig. 2)]. However, forag= 20 (not shown, the
jitter has practically disappeared.

a Taylor series expansion &f terms, where_ is chosen at ~ 1he curves for=0.125, 1, 20, can be fitted quite accu-
each step according to a convergence criterion on the wav@tely to decaying exponentials exg(t). Even for ag=5,
function (see[31]), and the symmetric split-operator propa- the avera_gepopu_latlon is rendered quite well by a decaying
gator of Feit, Fleck, and Steigé83]. The split operator is €XPonential. To increase the accuracy, the valueb were
explicitly unitary by construction and is accurate to orderéxtracted by following the evolution oPo(t) as long as
(At)2. The Taylor-series expansion is not explicitly unitary, POSSible, over thousands of cycles in some c434p

but in practice the norm of the wave function can be con- These facts confirm qualitatively the single-state HFFT,
served to high precision. which predicts exponential decay for the populations when

the validity criterion(8) is satisfied. The agreement does im-
prove with increasingyry, as predicted, and for the higher
frequencyw=4 the decay is considerably slower than for
In this section we study ionization rates and compare thev=2, also as predicted. Concerning the jitter superposed on
results of WPD with those of the first iteration within the the exponential decay, this is due to the coupling of the
single-state HFFT. We choose the frequencies2 and 4, ground state to excited states and cannot be accounted for by
which are, respectively, about three and six times larger thaa single-state HFFT description. The situation will be ana-
the binding energy of the field-free atom, and alleyy to  lyzed in detail in Sec. VII.
vary from 0 to 20. According to the criterio(8), the fre- We mention that the exponential decay of the dressed-
guencies are well suited for comparison with the HFFT, parstate populations in the stabilization regime has been studied
ticularly at largerag (see Fig. 1L We take as an initial con- earlier with WPD for a 1D model with &(x) potential by
dition for the wave packet the dressed ground state. Figure 3anpera, Su, and Roso-Frand®]. Rates were extracted,

U(ty, t—q) =exp{—iH (t) Aty}, (24

VI. IONIZATION RATES: ADIABATIC STABILIZATION
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L FIG. 4. lonization ratel’ of the dressed ground state for an
.FIG. 3. lonization ratd." of the dres.sed.ground state for a re- extended rangey, and two high frequencies (in a.u), according
stricted rangeyo and two high frequencies (in a.u). Wave-packet to WPD (open and closed circlgsand the HFFT(dotted and full
dynamics(WPD) results, open and closed circles; high-frequencycurveg_ Concerning the oscillatory behavior bfin the stabiliza-
Floquet theory(HFFT) results, dashed and full curves. The ascend-tion regime, seé35,6]
ing branches of the curves correspond to perturbation theory, the ' o

descending branches to the adiabatic stabilization regime.
VII. POPULATION DYNAMICS

but no reliable results from HFFT were available for com- We have studied the dynamics of the populations in
parison. dressed states for two kinds ioftial conditions one(i) con-

The values of " thus obtained from WPD are collected in taining only the ground state, the oth@n in which several
Fig. 3 for 0<ay<2 and in Fig. 4 for the extended interval low-lying bound states are present. C4§¢ represents a
0< ay<15; in the latter case a logarithmic scale is neededtather general situation. Indeed, when in WPD the field is
In the same figures we present also the results from the firsturned on rapidly upon an unperturbed atom, the population
order iteration of the HFFT, Ed7). As apparent, the WPD is projected out of the ground state into excited stéthake-
results are in good quantitative agreement with those of thep). After the peak of constant intensity has been reached at
HFFT, particularly atw=4. The agreement extends over atime 7, an analysis of the wave packet in terms of dressed
large ¢ range and four orders of magnitudelafas seen in ~ states shows that discrete as well as continuum states may be
Fig. 4. populated(e.g., sed¢14,15,11). However, if the shake-up is

These figures display the phenomenoradiabatic stabi- not too violent, most of the population will be found in
lization; see[5], Sec. VI. Following a parabolic increase at lower-lying bound states. By taking the situation at timas
small «, as predicted by perturbation thed3g], I' passes the initial condition for the subsequent evolution of the wave
a maximum aroundro=1 and thendecreasedo zero at packet, casgii) emerges.
larger a, albeit in an oscillatory manner. We have thus In case(i) we takeay=1 anda, (=0 in Eg. (15). We
demonstrated that adiabatic stabilization results also fronilustrate case(ii) by taking ap=a;=a,=1W3, with all
WPD, if the initial condition is adequately chosen, and hasothera, vanishing. The field parameters were taker 2
the features predicted by the HFFT. andap=5 in all cases. From Fig. 1 one gets a ratio of pho-

The oscillatory behavior of" beyond its maximum has ton energy to ground-state binding energy of approximately
been encountered also for short-rari@aussian 1D poten- 5, so that the high-frequency criterig8) is reasonably well
tial models[36,6]. It contrasts with the monotonically de- satisfied. Further, we have given two values to the phase
creasing behaviofalbeit with slight undulationsexisting in ~ Eq. (2), x=0 and—(#/2), which represent, from the WPD
the 3D Coulomb casf9(a)]. It was concluded ifi6] that the  and multistate HFFT points of view, two different physical
oscillations are a specific feature of 1D models. situations. The physical results of the single-state HFFT are,

To end this section we note that the discrepancies foundf course, independent of
between WPD and HFFT can be traced back to those antici- We shall now elaborate on the calculation of the popula-
pated in Sec. IV, referred to d8) and(b). We shall try to  tions P, according to the multistate HFFT. In order to de-
remedy them in the next section. termine the coefficient# ,(t) [Eq. (14)], the first step is to
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calculate the coefficient€, from Egq. (16). We have re-
stricted our initial conditions to contain only a few low-lying
dressed statas, , i.e., with only a few nonvanishing,, (for,

(7#0). (27

The expression ofAq(t)|? is similar and will not be given

say,u<M) in Eq. (15). We may assume, therefore, that only nere. Note that the individual populations have an oscillatory

low-lying HFFT states)(*) with »<N will be needed in Eq.

behavior with the field frequenay and its harmonics. More-

(9); N is chosen large enough as to ensure convergence @fser, the last term in Eq27) displaysbeatson top of the

the final resultgobviously, N>M). (In practice, in the fol-
lowing calculationsN was taken to be 1D.By restricting
also the coefficienta,, by the conditionu<N (setting, ob-
viously, those foru>M equal to zerp the matrixT ,,, (0) in
Eq. (16) becomes square. As it is also nonsingyi&#], this
allows the unique determination of the coefficiefts, ei-
ther numerically or analyticallyas expansions im~1). We
note that foro1—0 we haveT,,(0)=4,, andC,=a,.
Therefore, at nonvanishingy ™%, C,=0(1) for o<M,
while for 7>M, C, must beO(w 1) or higher. In fact,
calculations show that the order of magnitudeCofdepends
on the phasey of the field (2): If y#0, C, is effectively
O(w™ 1), but fory=0, it is of higher order. Considering then
Eq. (14), we infer that forc<M we have A,=0(1),
whereas forr>M, A_ must beO(w 1) or higher. Thus
|A,|?=0(1) and|A,|?=0(w™?). This means that only the
lowest nonvanishing order in the calculationfofis relevant
for consistency to orde® 2.

In case(i) we find from Eq.(14), by consistently extract-
ing the dominant terms i~ with the help of Eq.(8), the
analytic result

—inwt

(Uo| V| ug)

|

<U0|Vn|UV>, (25)

Ao(t)zcoeiEot[ 1+,
n

Nw

, 1
+% m <U0|Vn_me|U0>

. 1
+2 X' Ce

v>0 n Nw

‘ . , 1
A1) =C.e "1+ Coe P X" e M — (U |Vy|uo)
n

(7#0). (26

field oscillations, with a frequencyV,— W, corresponding to
the transition between the initially populated and the final
dressed state considered.

The existence of beats in the dressed-state populations has
been signaled, under similar initial conditions, by Vivirito
and Knight[17]. They used a two-state mod@lith no con-
tinuum) combined with perturbation theory to explain quali-
tatively their occurrence. In our case, they appear as a direct
consequence of the dominance of the state<0,1 in the
Floguet expansiof9), with no adjustments needed.

If one adds up the populations &l bound states, one
finds toO(w ?)

> Py)=2 [Cy%e ™
n n
1 24Tt ! 1
t3 |Col?e Mot =) (Uo|V_mQpVm|Uo)
m

; 1
+ —ikwt .
k#EO,m e m(k_m) <u0|kachVm|U0>

(28)

Here Q, and Q. are the projectors on all bound, and all
continuum states, respectivel@{+ Q.=1). The beat terms
O(w™?) contained in the individual populations with# 0
[see EQ.(27)] have canceled out against those existing in
Po(t). Equation(28) still contains oscillatory termgsum
overk in the curly bracket but these are numerically much
smaller than those giving the jitter in the individual popula-
tions, because the matrix elements of the former contain an
extraQ. sandwiched between bound states. The rest of the
terms in Eq.(28) have a smooth exponential decrease in
time.

The analytic result for cas@i) can be derived similarly.
From Eq.(14), for u<M we find

These expressions were written, taking into account the order

of magnitude of theC,, such thatAy(t) be valid toO(w ~?)
included, andA (t) be valid toO(w~1). The disparity in the

. 1
— —iE ! a—inw
AuD=Cpe™ B 14 X" et 2 (U, [Vilu,,)

two orders stems from the fact that we are interested in ob-

taining correct expressions ©(w ™ 2) for all populations
P.(t). Because of Eq(5) and the fact that the functions,
are real, the sum overin Eq. (26) is purely imaginary. Thus

|A(h)]?=]C|%e "+
1 R | 2
t 2 |Col?e 0! ; e ne! Y (u,|Vplug)

4
——|C,Cole™ T+ T 2Sinf (W, W)t

. 1
+arg CrCo)lim X e ™! —(u,|V,|ug)
n>0 n

M
+2> (1-6,,)C,e Ed
o=0

: 1
I A—inot
X En e — (u,|Vilug). (29

This expression i©(1), and isgiven here toO(w 1) in-
cluded. The corresponding populatioRg(t) contain oscil-
latory terms ofO(w 1) and display beatlike oscillations.
The amplitudesA ,(t) for u>M are O(w™Y), and will not
be given here; the corresponding populatioPg(t) are
thereforeO(w ~2). By adding up the populations in the ini-
tially populated stateg<M one finds
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FIG. 5. Populations in the first two dressed states0,1 of a FIG. 6. Populations in the first two dressed staies0,1 of a

wave packet evolving from the ground state, @2 and « wave packet evolving from the ground dressed statey-aR and
=5(a.u), in a field given by Eq.2) with xy=0. The sum=P, ap=5 (a.u), in a field given by Eq(2) with y=—(#/2). The sum
represents the population in all bound states. The curves represehf, represents the population in all bound states. The curves rep-
the coincident results of WPD and HFFT. Note the cancellation ofresent the coincident results of WPD and HFFT. Note the oscilla-
the oscillations oy and P4 in 2P, tions and beats iy and P, and their cancellation iX P, .

M that the agreement has not deteriorated in the meanwhile.

M
P.b)= > |IC.l%e T+ O(w™?). (30)  The results for caséi) are given in Fig. 7 fory=—(/2).
n=0 The populations for the initially present states0,1,2 are
shown; the sun>P,, is given in two versions, one for O
In this sum, the oscillatory term®(w ') contained in the < u=<2, the other for all boung.. The two theories are still
individual populationsP,,(t) have canceled, and we are left indistinguishable for thed=0 and 1 populations, but slight
with smoothly time-decreasing exponentials. The correctivealiscrepancies become visible for the state2 (WPD, dot-
O(w™?) terms of Eq.(30) introduce a small jitter. This will ted line; HFFT, full ling. Even in the latter case the differ-
be also the case when considering the sum of populaBgns ence amounts to less than 0.1%.
in all bound states t®(w2) included. From this and other similar cases analyzed, we conclude
We now address the issue of tagreement of WPD and that the two theories agree strikingly well when dealing with
the multistate HFFT taking the population® ,(t) as a test initial conditions involving low-lying dressed states. This
case. Beginning with casg), the P,(t) for the alternative implicitly confirms the multistate HFFT description and
x=0 are given in Fig. 5, and those fgr=— (7/2) in Fig. 6.  checks both numerical computations.
We show the populations in the ground state0, in the first We next focus attention on thieterpretation of the re-
excited staten=1, and the sum of the populations in all sults In case(i), only the first excited statéh=1, odd car-
bound state£ P,,. A striking fact is that the figures contain ries significant populatiofabout 2% of the total; see Figs. 5
the results of both WPD and HFFT, i.e., the results of theand 6 in addition to the ground state=0. The population in
two theories coincide within the accuracy of the graphicalhigher states is quite small, but was included in the sum
representation in all fine details. We have chosen to represeitP,,, given in Figs. §c) and &c). Thus only the states
the populations starting with the 80th cycle in order to stress=0 and 1 are involved in the population flopping during the

u=0
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1.0 _ e frequency fromn=0 to 1, as shown by Eq27). The sums
I over all populations2P,,, given in Figs. %) and &c),
shows practically no jitter, as discussed in connection with

~ 09 1 Eq. (28).
~— Turning to casdii), Fig. 7 for y=—(#/2) displays beats.
Ej]: 08 k ] (Their presence in a several-state superposition of dressed

] states was also signaled by Law, Su, and EbirB}). Here
(d) ] it is a general feature, independent yapfbecause all coeffi-

bttt cientsC,, in Eq. (29) areO(1). The sum of thgopulations

] in the initially represented states has indeed no oscillations or

beats, as predicted by E(Q), but does have a jitter repre-
senting theO(w~?) corrective terms in Eq(30). The addi-
tion of the other populations in dressed states increases little
the sum, but decreases the jitter level to a few tenths of a
percent. Hence, in cagé) as opposed to cas8, the popu-
] lation trading occurs among the initially populated states,
e with negligible contribution from the others. In both cases,
] however, the populations in all bound states decays rather
smoothly in time, corresponding to the steady transfer of
population to the continuum due to ionization.

P,(t)

VIIl. CONCLUSION

In this paper we have assessed the potential of the HFFT
in comparison to WPD. As a test ground for the comparison
we have used the well-known 1D potential model with soft
Coulomb potential, although the conclusions apply, undoubt-
edly, more generally.

The analysis was carried out in two stages at two levels of
accuracy within the HFFT. In the first stage, we have used its

02 F (a) ] current (single-statg form, valid to first order ino~*. To
oy e make the comparison meaningful, we have expressed the ini-
100 tial condition used for the WPD in terms of dressed states,
80 85' 20 95 which play a structural role in the HFFT. We have shown
Time (cycles) that the survival probability in the initial ground dressed state

at a givena, value follows the exponential law of decay,
FIG. 7. Populations in the first three dressed state§,1,2 ofa  with a rate that is in good agreement with that given by the

wave packet evolving from a superposition of these states case HFFT, provided the frequency is large enough. Since the
(ii), Sec. VII|, at =2 andap=5a.u., in a field given by Eq2)  HFFT rate manifestsdiabatic stabilization, we have thus
with = —(ar/2). The results of the WPD and the HFFT are coin- shown that this results from WPD too, and not only the al-
cident forn=0 and 1, but differ slightly fom=2 (WPD, dotted ready knowndynamicform.
curve; HFFT, full curvé Note the beats in the populationsP, For an improved agreement with WPD, in the second
repre_sents the sum of the populgtions in state®,1,2 (full line) stage of our comparison we have extended the HFFT in two
and in all dressed Sta.te(d.oneq ling. Note the nearly complete i e ctions: we have included the second-order corrections in
cancellation of the oscillations iRy,P,,P, in their sum. w~L within the theory, and we have introduced thaltistate

HFFT, i.e., the representation of wave packets as superposi-
ionization process. There is a significant difference betweefions of HFFT states; see E(). The second extension is
the way this occurs in the alternativgs=0 (Fig. 5 andy  based on the mathematical completeness for Floquet states.
=—(w/2) (Fig. 6. The latter shows manifestly beats, Although rigorous mathematical proofs guarantee this prop-
whereas the former does not. These are apparent also in Figrty for the case of Floguet states with real quasienergy, we
2 (@p=5, andw=2 and 4, which refers to the casg= have been interested here in the case more adapted to ioniza-
—(m/2) too. Their existence or nonexistence follows fromtion, when the expansion includes discrete quasienergy
Egs.(26) and(27). Indeed, ify=0, as already mentione@,, states. We have considered the case when the initial condi-
is higher tharO(w 1) and hence the first term in E(26) is  tion is expressible as a superposition of a number of bound
negligible with respect to the second, with the consequencdressed states, which in practice is a rather general situation.
that Eq.(27) displays an oscillatory behavior, but no beats.We have then compared the predictions of WPD and HFFT
If, on the other handy#0, C, is O(w 1), the two terms in  for the time evolution of the populations in bound dressed
Eq. (26) are of the same order of magnitude, and the beatstates. In the cases considered, the agreement was remark-
are indeed present in ER7). The frequency of the beats is able, thus implicitly confirming the potential of the multistate
obviously independent ab; this is illustrated by Fig. @) for ~ HFFT and our operational assumptions. However, more re-
the two cases=2,4. It coincides with the atomic transition mains to be done in order to assess the power of the method
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and, in particular, the importance of the continuum in thethe cut along the positive-energy axis, and for closed chan-
expansion(9). nels E, should lie on the physical sheet, just below the
From a dynamic point of view, our results have shownnegative-energy axis.
that there is considerable population flopping between Equation(Al) is a(nonlineaj eigenvalue equation, deter-
dressed states during the ionization, the characteristics @hining E(?) and the zeroth Floquet componeﬁgz); once
which are different for one- and several-state initial condi-this problem is solved, Eq(A2) yields all other Floquet
tions. As opposed to this, we have shown analyticeMith  components. In practice, E§A1) can be solved by taking
the multistate HFFY and confirmed numericallywith  into account that the term¢, andV, are perturbations, of
WPD) that thesumof the populations in all dressed bound fjrst and second order in 1, respectively. One can assume,

states undergoes a smooth decay in time. preliminarily, that the eigenvalug® is known and hence
also the term&/,(E) andV,(E®) are well defined. The
ACKNOWLEDGMENTS problem being perturbative, the eigenvalE&) and eigen-

The work of J.C.W. was supported by the NSF throughfunCtiO” ¢§)2) are related to their unperturbed cou_nterparts by
the Institute for Theoretical Atomic and Molecular Physics. he formulas of second-order standard perturbation theory, as
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APPENDIX: SECOND ITERATION WITHIN THE HFFT W as the case may be. The resul{39]

We develop here the second-order iteration within the @ — ) — L —
HFFT from the general formulas derived by Gavrila[8§], E =W+ (u|Vy(E™)|u) +(u|Vo(W)G" (W)V(W)|u)
Sec. IV B. To this order, Eq$81) and(82) of [5] become -

[H+Vi(E?)+Vo(E?) ~E?]g(P=0, (A1) _ _
P =[1+G"(EM)\V1(EM)+G' (W)V,(W)
7 =G(E)| Vot 2 Vo mB(ER)Vin(x) | 6 +G' (W)V1(W)G' (W)V4 (W)
—(UIV1(W)|u)G" 2 W)V (W) ]u. (A7)
(n#0). (A2)
Here G'(E) is the “reduced” form of G(E); see[38] and
[5], Eq. (64). V(W) and V,(W) are calculated from Egs.

(A4) and (A5), with G(E,) replaced byG(W,). If W+nw
>0, G(W,) represents a Green’'s function whose variable

Here H is the dressed Hamiltonian entering E®) and
G(E) is the Green’s operator associated with it. We are us
ing the notation

_ lies on the real positive axis of the enelgee Eq(A3)]. To
E,=E+no. (A3) _ X . .
determine on which Riemann sheet of the Green’s function
We have also denoted in EGAL), W, should lie, we recall that the origindt, lies on the

second sheet just underneath the energy cut, which is close to
_ W, +ie on the physical sheet. Therefore, we should be deal-
V,(E)=2, 'V_,G(E,)V,, (A4)  ing with GI)(W,)=G(W,+ie) [25]. Further, we note that
m the first-order quasienerdgy!) entering Eqs(A6) and (A7)
is obtained by solving EqA1) to first order(see[5], Sec.
VIV N N W IV C) or, equivalently, by retaining only the first two terms
Va(B) ; ; V-nGEVn-nG(EnlVin. (A5) in expression(A6) and replacingE® in V,(E®) by W
+ie.
Superscrip{2) in Egs.(Al) and(A2) labels the values dE Returning to Eq(A2), consistency of the equation to sec-
and ¢, of the second iteration. The order of magnitude of theond order inw ! allows ¢(()2) to be replaced by its first-order
terms is characterized by the numbewsflependent Green's  expression resulting from EqA7). Similarly, the operator
functions G(E,) they contain, becaus&(E,)~I(nw)™",  G,(E®?) acting on the bracket on the right-hand side of Eq.

for w—co. . N (A2) can be replaced b@,(E™)), whereas the one inside
The Gamow-Siegert boundary conditions on the compothe bracket, byG,(W). We find thus

nents ¢, require that for open channela=1, ReE,>0)

these should have an oscillatory exponential increase in the

asymptotic region, and for closed chann@ls<0, ReE,<0) P =G(EW)
they should have an oscillatory exponential decrease. The " A
boundary conditions can be satisfied by choosing appropri-

ately the location of, on the Riemann sheet &(E,,). For + E’ V,_ G (W )V,
open channelg,, should lie on the second sheet, just below m

Vit VoG’ (W)V(W)

u (n#0). (A8)
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Formulas (A6)—(A8) are the result of the complete dominant order ofV,(E) is higher than the anticipated
second-order iteration within the HFFT. As apparent, theD(w~2). Therefore, the terms containing twice the operator
successive iterations of the HFFT do not yield power series;, (w), as well as those containing,(W), can be dropped

expansions i~ *, but rather expressions having thédmi- iy Eqs. (A7) and (A8). This gives the substantially simpler
nantterms of increasingly higher order in~* (see alsd5], O(w™2) formulas

Sec. IV B. If, on the other hand, one is working at really

large w such that Eq(8) is quite well satisfied, one may E@ =W+ (u[V,(EV)|u), (A9)
eliminate from these formulas terms @i ! of higher order _
than the second. To this end one can use the fact, already ¢ =[1+G" (EM)V(EV)]u, (A10)

mentioned, that at large, we haveG(E,)~|(nw) 1. With
the help of Eq(5) one finds thus that the dominant behavior

P=GEM)| Vot Vo mG I (W)V #0).
of the operatol,(E) is higher than the anticipate@(w 1). on (Ex)| Vi Em: n-mG (W) ViU (n70)

Similarly, but with more bookkeeping, one can show that the (A11)

[1] See, for example, the volum&toms in Intense Laser Fields in Atoms in Intense Laser FieldRef.[1]), p. 301.
edited by M. Gavrila(Academic, New York, 1992 [112] 3D dynamic stabilization was shown by K. C. Kulander, K. J.
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also Shih-I Chu, Adv. At. Mol. Phys21, 197 (1985; Adv. [12] V. V. Sviridov, Dokl. Akad. Nauk SSSR74, 1366 (1983
Chem. Phys73, 739 (1989; R. M. Potvliege and R. Shake- [Sov. Phys. Dokl29, 139(1984]; see also P. Kuchmerfto-
shaft, Phys. Rev. A0, 3061(1989; 41, 1609(1990; and in guet Theory for Partial Differential EquationéBirkhauser,
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