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Quantum transport of atoms in an optical lattice

P. M. Visser and G. Nienhuis
Huygens Laboratorium, Rijksuniversiteit Leiden, Postbus 9504, 2300 RA Leiden, The Netherlands

~Received 4 February 1997!

Quantum-mechanical transport of atoms in an optical lattice in one dimension is described in an exactly
solvable model. The atoms are tightly bound and they are sufficiently cooled so that they are restricted only to
the lowest Bloch band in a single adiabatic potential. The coherent spreading of an atomic wave packet by
tunneling is counteracted by the localizing effect of photon emission that accompanies optical pumping. The
time evolution of the quasimomentum distribution, the coherence length, and the spatial width of the atomic
state are evaluated analytically. These quantities depend strongly on the statistics of photon emissions.
@S1050-2947~97!01811-8#

PACS number~s!: 42.50.Vk, 32.80.Pj, 05.60.1w
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I. INTRODUCTION

A monochromatic radiation field, composed of a fe
plane traveling waves, may present a periodic potentia
atoms as a result of spatially varying light shifts. In the p
few years, it has become feasible to trap atoms in the po
tials wells and to form an optical lattice@1–6#. The long-
range order of this lattice is imposed by the radiation fi
and it does not depend on the interatomic interactions. Mo
over, the filling factor of the lattice sites is usually low.
such a situation, the transport properties of atoms in an
tical lattice are governed entirely by the atom-field intera
tion. Recently, the loss rate by spontaneous emission o
atoms trapped in an optical lattice has been measured@7#.
The successive escape of a Rb atom from a well and
recapture by a neighboring one have been investigated
observing polarization-dependent intensity correlations
the emitted fluorescence@8#. Other recent work of dynamic
of atoms in periodic optical potentials include the obser
tion of Bloch oscillations@9# and the observation of atomi
Wannier-Stark ladders@10,11#.

When an atom is deeply cooled, the wave nature of
translational degree of freedom must be accounted for
the wave function can be expected to extend over vari
lattice sites. The time-dependent evolution of an atom
wave packet under the combined influence of the perio
potential and spontaneous emission can be viewed as a
totypical case of quantum transport. In a recent paper@12#,
Marksteineret al.study the anomalous diffusion of two-leve
atoms in optical molasses by the quantum Monte Ca
method. This anomalous diffusion, which can be pictured
a Lévy walk in space, occurs when atoms get excited
above the potential barrier.

In the present paper we consider a model system tha
sufficiently simple to be treated analytically and contai
nonetheless, essential ingredients of experimental situat
The lattice is modeled as a periodic adiabatic potential in
dimension. We assume that cooling is sufficiently effect
so that only the lowest-energy band in the potential is oc
pied. We evaluate the time evolution of the translational s
in the tight-binding limit, where the lowest state of the ato
in one potential well is only coupled to its nearest neighbo
The adiabatic internal state of the atom has a positi
561050-2947/97/56~5!/3950~11!/$10.00
to
t
n-

e-

p-
-
Li

ts
by
f

-

s
d
s

c
ic
ro-

o
s

o

is
,
s.
e

e
-

te

.
-

dependent admixture of the excited state, which gives ris
spontaneous emission. In the presence of sufficiently str
cooling, this may be viewed as optical pumping within t
lowest-energy band. The coherent process of tunneling
tween neighboring wells, which generally increases the
herence length, and the dissipative process of optical pu
ing, which tends to localize the atom, are the ma
ingredients of the transport process. We apply the model
trajectory description of the atomic motion, where optic
pumping is represented as a quantum jump interrupting
coherent evolution between jumps. We compare t
complementary but equivalent pictures of optical pumpin
In one, the momenta of the emitted photons are measu
which results in a Brownian motion of the atomic mome
tum. In the other picture, the positions are measured fr
where the photons originate, which has the effect of loca
ing the atom in a single well. The jump-free evolution allow
atoms to tunnel from one well to the next.

We also study the situation that a dark state is presen
the energy band. This case is modeled by setting the de
rate at the bottom edge of the band equal to zero. Fo
nearby Bloch state, the average waiting time between
jumps becomes infinite and the jumps are governed by L´vy
statistics@13#.

II. BLOCH AND WANNIER STATES
IN A PERIODIC POTENTIAL

A. General transformation properties

The translational motion of atoms in a spatially period
light field with variation in one dimension is described by t
effective Hamiltonian

H5
P2

2m
1V~x!,

with V(x) a real periodic potential with perioda. The energy
eigenstates can be chosen to be also eigenstates of the
placement operatorT, which translates a wave function ove
a, according to the relation

Tux&5ux1a&.
3950 © 1997 The American Physical Society
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56 3951QUANTUM TRANSPORT OF ATOMS IN AN OPTICAL LATTICE
The combined eigenstates ofH andT have energy eigenval
uesEj (p) that separate in a discrete set of energy bands.
energy eigenvalue equation is then

HuEj~p!&5Ej~p!uEj~p!&. ~2.1!

For each value of the discrete indexj , the energy is a func-
tion of the Bloch indexp, which is determined by the unitar
eigenvalue ofT, according to the relation@14#

TuEj~p!&5e22p ipuEj~p!&. ~2.2!

We shall assume that sub-Doppler cooling is sufficien
strong so that only the first energy band is populated ap
ciably. While this assumption may seem rather optimis
compared to present-day experiments, it is not fully unre
istic, and progress in this direction is substantial@15–18#.
Then we consider only this lowest band and we suppress
band indexj . We can restrictp to the first Brioullin zone
@2 1

2 , 1
2 #. The quasimomentum of a state with Bloch indexp

is equal tobp, with b52p/a the reciprocal lattice constan
Since the Hamiltonian is real in coordinate representation
obeys time-reversal invariance, so that the energyE(p) is an
even function ofp.

The Bloch condition~2.2! definesp only mod1, so that
the eigenstatesE(p) and eigenvectorsuE(p)& are periodic
functions of the Bloch indexp with period 1. Therefore, they
can be expanded as Fourier series. This gives for the en
band

E~p!5(
n

e2p inpEn , ~2.3!

with real coefficientsEn5E2n . For the Bloch states we find

uE~p!&5(
n

e2p inpufn&. ~2.4!

The coefficientsufn& form a discrete set of states, calle
Wannier states@14#. The inverse relation of Eq.~2.4! is

ufn&5E dpe22p inpuE~p!&. ~2.5!

The integration overp extends over the Brillouin zone in thi
and all subsequent integrals.

Since the Bloch states are spatially unbounded, they m
be normalized to ad function, and we take

^E~p8!uE~p!&5d~p82p!. ~2.6!

From the orthonormality relation~2.6! of the Bloch states
one shows that

^fn8ufn&5dn8n , ~2.7!

so that the Wannier states are also orthonormal. This imp
that they have a finite spatial extent. Substitution of Bloc
theorem~2.2! into Eq. ~2.5! shows that

Tufn&5ufn11&,
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y
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so thatufn& is related byuf0& by a translation overna. The
properties of Bloch and Wannier states are illustrated in F
1.

Since the Wannier states form an orthonormal basis
states in the energy band, one may conclude that the si
stateuf0& completely defines all states in the energy ba
This statement is illustrated by expanding the Bloch state
plane wavesuk&. It is obvious from Eq.~2.2! that uE(p)&
contains only the discrete set of plane-wave compone
u(n1p)b&. To be specific, when the plane-wave states
normalized aŝk8uk&5d(k82k), we find from Eq.~2.4! the
equality

uE~p!&5b(
n

u~n1p!b&^~n1p!buf0&.

If we substitute the expansion~2.4! in the eigenvalue re-
lation ~2.1! and take the inner product with the Wannier sta
^fn8u, we find with the orthonormality relation~2.7! that

^fn8uHufn&5En2n8 .

FIG. 1. Sketch of energy bands and Wannier and Bloch w
functions in a cosine potentialV(x). The barrier height is chosen a
2b2/m. The Wannier wave functionsufn& are localized around the
potential minimaxn5na, as demonstrated in the top two figures f

n50 and 1. The Bloch statesuE(0)& and uE( 1
2 )& lie at the bottom

and top of the first energy band. Their real wave functions
extended over all the wells as indicated in the bottom two plots
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3952 56P. M. VISSER AND G. NIENHUIS
Hence the Fourier coefficientsEn of the energy coincide
with the matrix elements of the Hamiltonian between Wa
nier states.

B. Tight-binding model

The relations between the Bloch and Wannier states
discussed so far are exact. We want to consider in partic
the situation that the atoms are tightly bound near the bot
of the potential wells, which can be assumed to be locate
the positionsxn5na. This tight-binding assumption is justi
fied when the depth of the potential wells is large compa
to the minimal kinetic energy of a particle localized in
well, which is of the order ofb2/2m (\51). Then we may
assume that the Wannier stateufn& is mainly located within
a single well, which we can take to be the well atxn . This
implies that the Fourier coefficientsEn fall off with increas-
ing values ofn, and we take only the coupling betwee
neighboring wells into account. The dispersion relation~2.3!
is then parametrized as

E~p!52E cos2pp, ~2.8!

with E522E1.0. The energy band extends from th
ground stateuE(0)&, with Bloch index p50 and energy

2E, to the stateuE( 1
2 )&, which is located at energyE at the

top of the band edge. These states are sketched in Fi
along with the Wannier statesuf0& and uf1&.

When spontaneous emission is neglected and the
evolution is governed by the Hamiltonian, the spreading
an initially localized state in this tight-binding limit is ver
simple. When the initial stateuc(0)&5uf0& is localized in
well 0, the time-dependent state is immediately found a
using the expansion~2.5! in Bloch states and using the en
ergy eigenvalue relation~2.1!. After using the defining rela-
tion of the Bessel functionsJn , which follows from Eq.~A2!
after substitutingG15 iE while usingI n(G1t)5 i nJn(Et), we
obtain the time-dependent state

uc~ t !&5(
n

i nJn~Et!ufn&. ~2.9!

This result describes the time-dependent spreading of an
tially localized state over the wells by tunneling through t
barriers. The resulting distribution over the wells has an a
lytic behavior very similar to the distribution over transver
momentum of atoms diffracted by a standing wave@19#.

III. SPONTANEOUS DECAY

As noted above, the present model is based on the
sumption that an atom is at all times in the internal st
corresponding to an adiabatic periodic potential and tha
resides in the lowest-energy band in this potential. Due to
small excited-state amplitudes in the adiabatic internal st
the atom has a finite probability of spontaneous emission
the presence of a sub-Doppler cooling mechanism we
assume that this emission process corresponds to op
pumping within the lowest-energy band. Typical for situ
tions of sub-Doppler cooling is that the rate of optical pum
ing depends on both position and velocity. For example,
syphus cooling requires that the optical pumping rate
-
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higher at positions with a high optical potential, which lea
to a highly sensitive dependence of the net force on the
locity. Then Bloch states that are better localized near
potential minima can be expected to have smaller de
rates. This justifies the assumption that the rate of opt
pumpingG(p) of the Bloch stateuE(p)& will depend on the
indexp. In the tight-binding limit, it is reasonable to assum
that the decay operator couples only nearest-neighbor W
nier states. In analogy to Eq.~2.8!, this leads to the param
etrization

G~p!5G02G1cos2pp ~3.1!

for the optical pumping rate.
Interesting effects can arise when the atom is pumped

a dark state. This is the case when the carrier waves of
optical lattice drive a transition between levels with angu
momentaJ→J21 and J→J for integer J values. In this
case an effective periodic potential can still arise due t
magnetic field@5# or due to nonadiabatic interactions@20#.
We will also consider the case of the presence of an ex
black state to study velocity-selective coherent populat
trapping~VSCPT!. We model this situation by takingG(0)
50. The resulting tight-binding form~3.1! with G05G1 is
realized in the periodic gauge potential of the VSCPT syst
@20#. In this case, also the form~2.8! for the energy holds.

The dynamics in the fundamental energy band is g
erned by the master equation for the reduced density ope
r for the first energy band alone:

d

dt
r~ t !5 i @r~ t !,H#2 1

2 @Gr~ t !1r~ t !G#1Gr~ t !, ~3.2!

where G is an optical pumping operator. On the basis
Bloch states, the Hamiltonian and the optical pumping o
erators are diagonal, so that

HuE~p!&5E~p!uE~p!&, GuE~p!&5G~p!uE~p!&,

where the energyE(p) is given by Eq.~2.8! and the decay
rateG(p) by Eq.~3.1!. The~super!operatorG, which acts on
density matrices, describes the gain that results from the
tical pumping process. Its action is the multiplication of t
atomic wave function with the mode function of the optic
mode from which the atom absorbs a photon and the c
plex conjugate of the mode function in which the atom em
The net result of the optical pumping cycle is a moment
recoil of the atom, which we model by a shift of the wav
function in quasimomentum space byq. In the spirit of our
assumption that the atomic state remains in the low
energy band, this effect is modeled by changing the s
uE(p)& into the stateuE(p2q)&. When we assume for sim
plicity that the distribution over the momentum recoilq is
uniform over the Brillouin zone, both the loss and the ga
term in the master equation~3.2! can be expressed in th
q-dependent operatorA(q) defined by

A~q!uE~p!&5uE~p2q!&AG~p!. ~3.3!

We may write
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56 3953QUANTUM TRANSPORT OF ATOMS IN AN OPTICAL LATTICE
Gr5E dqA~q!rA†~q!, G5E dqA†~q!A~q!. ~3.4!

After substitution of Eq.~3.4!, the master equation~3.2! has
its standard Lindblad form, where the operatorsA(q) serve
as the jump operators@21#. The total photon emission rate

f ~ t !5trGr~ t !5trGr~ t ! ~3.5!

is the integral over the partial rate with recoilq,

f ~q,t !5trA~q!r~ t !A†~q!.

The decomposition of the master equation in jump ope
tors is not unique and the general form remains invari
under an arbitrary unitary transformation@22–24#. A
complementary expansion of the gain and loss terms is
tained by the unitary transformation

An5E dqe2p inqA~q!. ~3.6!

The gain operator and the optical pumping operator~3.4! can
alternatively be expressed in terms of the jump operatorsAn ,
with the result

Gr5(
n

AnrAn
† , G5(

n
An

†An . ~3.7!

The operatorAn represents optical pumping, where the em
ted photon is detected near the well atxn5na. As a result of
this detection, the atom is localized in the Wannier st
ufn&. This can be seen by expressing the operator in term
the Wannier states. After substituting Eq.~2.4! in the right-
hand side of Eq.~3.3!, one finds from Eq.~3.6!

Anufn8&5ufn&E dpAG~p!e2p i ~n2n8!p.

For a uniform decay rateG(p)5G0 , the operatorAn is equal
to AG0 times the projector on the Wannier stateufn&. In this
case, optical pumping does not lead to diffusion of the at
~see Sec. VI B!.

The detection rate of photons that localize the atom
ufn& is

f n~ t !5trAnr~ t !An
† , ~3.8!

which adds up to the total detection rate~3.5!, as

f ~ t !5E dq f~q,t !5(
n

f n~ t !.

When the jump rateG is independent ofp, the operatorAn is
simply a projector on the Wannier stateufn&. In this case a
localized photon detection is just equivalent to the detec
of the atom in the corresponding Wannier state. Due to thp
dependence ofG, also the population of neighboring stat
contributes to the photon detection ratef n(t). When the dis-
tribution over the values of the recoilq is not uniform over
the Brillouin zone, the jump rateG in Eq. ~3.3! will be a
function of bothp andq. In that case, the operatorAn will
-
t

b-

-

e
of

n

n

not localize the atom exactly in the Wannier stateufn&, but
in a linear superposition of neighboring states.

The two sets of jump operatorsA(q) andAn , as given by
Eqs. ~3.3! and ~3.6!, may be viewed as corresponding
detection of a photon with a well-determined momentumbq
or a photon at a well-determined locationn. This may be
identified by a detection in the far or the near field. T
relation betweenA(q) andAn generalizes a similar distinc
tion between two detection schemes as discussed by Hol
et al. @25# for free atoms.

IV. TRAJECTORIES

The master equation~3.2! is equivalent to the integra
equation of the Dyson type

r~ t !5r0~ t !1E
0

t

dt8U~ t2t8!Gr~ t8!, ~4.1!

where the first term

r0~ t !5U~ t !r~0! ~4.2!

represents the contribution to the density matrix from
situation of zero jumps in the time interval@0,t# in terms of
the linear evolution operatorU(t), defined by

U~ t !r5e2 iHt2Gt/2re1 iHt2Gt/2.

The norm of the operatorp0(t)5trr0(t) is the zero-jump
probability. The iterated solution of the Dyson equation~4.1!
represents the density matrix directly as a weighted aver
over pure states@26#. In this way the concept of quantum
trajectories as pure-state realizations of the evolution of
system is recovered@22,24,27#. Each trajectory consists of
continuous evolution during finite time intervals, which a
separated by quantum jumps at random instants of time.
an initially pure stater0(0)5uc(0)&^c(0)u, the time-
dependent normalized pure-state density matrix up to the
stant of the first jump is

r8~ t !5uc~ t !&^c~ t !u, ~4.3!

where the state vector can be chosen as

uc~ t !&5
1

Ap0~ t !
e2 iHt2Gt/2uc~0!&.

The time dependence ofuc(t)& is governed by a nonlinea
evolution equation@26#. The instant of the first jump is sto
chastically determined by the waiting-time distribution

w~ t !52
d

dt
p0~ t !5trGr0~ t !5trGr0~ t !, ~4.4!

which is thea priori probability density that the first jump
occurs at timet. A quantity of physical interest is the jum
rate at timet under the condition that no jump has occurr
in the interval@0,t#. This conditional photon emission rate
denoted as

f 8~ t !5trGr8~ t !5
w~ t !

p0~ t !
.
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In this and following equations, the prime indicates the n
jump condition. When the gain and loss operators are
pressed as an integral overq, or as a summation overn as in
Eq. ~3.4! or ~3.7!, the waiting-time distributionw(t) is sepa-
rated into partial waiting-time distributionswn(t) or w(q,t).
With the form~3.3! of the jump operatorA(q), it is easy to
check that

w~q,t !5trA~q!r0~ t !A†~q!5w~ t !,

so that the partial waiting-time distributionw(q,t) is always
uniform over the recoil. The conditional rates are likewi
separated into partial contributionsf n8(t) or f 8(q,t). Note
that p0(t), w(t), f 8(t), as well as the partial distribution
and rates depend in general on the initial state at the be
ning of the time interval.

A realization of a trajectory is generated by drawing
series of random numbers« i from the interval@0,1#. After a
jump, at the beginning of each jump-free interval at timet i ,
the length of the jump-free intervalt5t i 112t i to the next
jump at timet i 11 can be determined fromp0(t)5« i . In this
way the jump times are distributed according to the waitin
time distributionw(t). At each jump instant, the value of th
recoil q or the locationn of the emitted photon has to b
determined by drawing another random number, accord
to the relative probabilities of these values. The jumps
then described by applying the jump operatorsA(q) or An .
The resulting quantum trajectories are quite different,
pending on which one of the two photon detection schem
is chosen for representing the gain term in the master e
tion. Trajectories corresponding to a localized photon de
tion have also been applied to evaluate anomalous diffu
in optical lattices@12#.

A. Localization picture

When a photon is detected at timet at the locationn, the
atom is localized in the Wannier stateufn&, as expressed by
the jump operator

uc~ t !&→
1

Af n8~ t !
Anuc~ t !&5ufn&. ~4.5!

For an initial Wannier stateuc(0)&5uf0& at time zero, the
zero-jump probability is given by

p0~ t !5E dpe2G~p!t5e2G0tI 0~G1t !, ~4.6!

whereI n are the modified Bessel functions. The last equa
follows from the particular form~3.1! of the decay rate
G(p). For the waiting-time distribution we find with Eq
~4.4!

w~ t !5e2G0t@G0I 0~G1t !2G1I 1~G1t !#,

which is the sum over the partial distributions for the ne
detection of a photon at locationn,
-
x-

in-
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g
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s
a-
c-
n
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t

wn~ t !5trAnr0~ t !An
†

5U E dpe2 iE~p!t2G~p!t/2AG~p!e2p inpU2

. ~4.7!

Naturally, this depends only on the difference in locationn.
The total conditional emission rate is then

f 8~ t !5G02G1

I 1~G1t !

I 0~G1t !
, ~4.8!

which is the sum of the conditional partial emission rates

f n8~ t !5trAnr8~ t !An
†5^c~ t !uAn

†Anuc~ t !&5
wn~ t !

p0~ t !
.

These partial emission rates as a function of time reflect
spreading of an initially localized atomic state during
jump-free time interval.

A trajectory is thus completely determined by the ser
of events at timest1 ,t2 ,..., where the atom is detected a
well n1 ,n11n2 ,... . Immediately after the jump at timet i ,
the atom is localized in a Wannier state.

B. Recoil picture

Detection at timet of a photon with momentumbq gives
a recoil on the atomic state, as expressed by the jump op
tor

uc~ t !&→
1

Af 8~q,t !
A~q!uc~ t !&.

When the initial state at time zero is the Bloch stateuE(p)&,
the state is unchanged until the first jump. The zero-ju
probability is then

p0~ t !5e2G~p!t

and the partial waiting-time distribution is

w~q,t !5w~ t !5G~p!e2G~p!t.

This implies that the conditional jump rate

f 8~q,t !5 f 8~ t !5G~p!

is constant in time and uniform in the recoil. These quantit
give the statistics of the jump instantst1 ,t2 ,... and theval-
ues of the recoilsq1 ,q2 ,..., which completely determine the
trajectories in the recoil picture. In this picture, the atom is
a Bloch state at all times. Although the distribution over t
quasimomentum shiftq is uniform, the statistics of the wait
ing times depends on the indexpi , which is different for
each jump-free time interval. A Bloch state has an infin
coherence length and a homogeneous spatial distribu
Therefore, a single trajectory in the recoil picture does
give information on the evolution of spatial distribution o
spatial coherence. On the other hand, the ensemble ave
of the trajectories in each picture coincides with the solut
of the master equation and therefore contains complete in
mation.



e
e
n

um
m

h.
ith
-

io

rre

tio

p

tio
ta
g
p

d

te

nc-

-

-

56 3955QUANTUM TRANSPORT OF ATOMS IN AN OPTICAL LATTICE
V. MOMENTUM DISTRIBUTION
AND COHERENCE LENGTH

A. General expressions

The localization picture of trajectories can be conv
niently applied to discuss the evolution of the spatial coh
ence properties of an atom, as described by the solutio
the full master equation~3.2!. For a given density matrix
r(t), we introduce the distribution over the Bloch states

r~p,t !5^E~p!ur~ t !uE~p!&. ~5.1!

The spatial coherence is characterized by the functions

Rm~ t !5(
n

^fnur~ t !ufn1m&5E dpe22p impr~p,t !,

~5.2!

which are the Fourier coefficients of the quasimoment
distribution~5.1!. This shows that a narrow quasimomentu
distribution corresponds to a wide characteristic width ofRm
as a function ofm, which reflects a large coherence lengt

We consider the solution of the master equation w
Wannier stateuf0& as the initial state. Hence the initial mo
mentum distribution is uniform, according to Eq.~2.4!. In
this case, we wish to evaluate the momentum distribut
r(p,t) and the total emission ratef (t). First, we notice that
the time-dependent zero-jump momentum distribution co
sponding to the zero-jump density matrix~4.2! is

r0~p,t !5^E~p!ur0~ t !uE~p!&5e2G~p!t. ~5.3!

When we take the diagonal elements of the Dyson equa
~4.1! for a Bloch state, while using Eq.~3.5!, we obtain the
equation

r~p,t !5r0~p,t !1E
0

t

dt8r0~p,t2t8! f ~ t8!. ~5.4!

We used that in the form~3.7! of the gain operatorG, each
summand projects the atom in a Wannier stateufn&, with a
uniform momentum distribution immediately after the jum
As we have shown before@28#, a relation similar to Eq.~5.4!
holds for the density matrix in the case of a master equa
when the gain term puts the system in a unique target s
In the present case, the momentum distribution followin
jump is always the same, at least when the jumps are re
sented in the localization picture. Equation~5.4! expresses
the momentum distributionr(p) in the zero-jump distribu-
tion r0(p) and the jump ratef . In its turn, the jump rate is
determined by the waiting-time distributionw. Substitution
of Eq. ~5.4! into Eq. ~3.5! while using Eq.~4.4! leads to the
integral equation for the jump rate

f ~ t !5w~ t !1E
0

t

dt8w~ t2t8! f ~ t8!.

B. Jump rate, momentum distribution, and coherence length

For the Laplace transforms of these quantities, define
the Appendix, we obtain the standard relations@28–30#
-
r-
of

n

-

n

.

n
te.
a
re-

in

11 f̂ ~n!5
1

12ŵ~n!
5

1

n p̂0~n!
, ~5.5!

which expresses thef to p0 in the Laplace domain. The
momentum distributionr(p) in Laplace transform is found
from Eq. ~5.4! as

r̂~p,n!5 r̂0~p,n!@11 f̂ ~n!#5
r̂0~p,n!

n p̂0~n!
.

Use of Eq. ~A3! in the Appendix form50 gives the
Laplace transform of the zero-jump probability~4.6! in the
form

p̂0~n!5
1

A~n1G0!22G1
2

5
1

G1sinhb~n!
,

where the parameterb is defined as coshb(n)5(n1G0)/G1.
Then Eq.~5.5! gives the Laplace transform of the jump ra

f̂ ~n!5
G02G1e2b~n!

n
, ~5.6!

and by using Eq. ~5.3!, we obtain for the Laplace-
transformed momentum distribution

r̂~p,n!5
1

n

sinhb~n!

coshb~n!2cos2pp
.

According to Eq.~5.2!, the coefficients in the expansion~A1!
are precisely the Laplace transforms of the coherence fu
tions Rm , so that we find

R̂m~n!5
e2umub~n!

n
. ~5.7!

By using Eq.~A4! for m51 one obtains an explicit inte
gral expression for the jump ratef , by Laplace inversion of
Eq. ~5.6!, with the result

f ~ t !5G02G1E
0

t

dt8
e2G0t8

t8
I 1~G1t8!. ~5.8!

Substitution of Eq.~5.8! into Eq. ~5.4! gives the correspond
ing integral expression for the momentum distribution

r~p,t !5e2G~p!t1G0

12e2G~p!t

G~p!

2G1E
0

t

dt8
e2G0t8

t8

12e2G~p!~ t2t8!

G~p!
I 1~G1t8!.

~5.9!

Integral expressions for the coherence functionsRm(t) fol-
low directly after Laplace inversion of Eq.~5.7!, by applica-
tion of Eq. ~A4!. The result is

Rm~ t !5umu E
0

t

dt8
e2G0t8

t8
I m~G1t8! if mÞ0.

~5.10!
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Note that the coherence functions are non-negative a
times. These expressions~5.8!–~5.10! can be directly evalu-
ated numerically. Some results are plotted in Figs. 2 an
The integrals in Eqs.~5.8!–~5.10! vanish whenG150, so
that G(p)5G0 is uniform over the Brillouin zone. Thenf
5G0 , r(p)51, andRm50 at all times.

The steady-state values off , r(p), andRm are found by
multiplying their Laplace transforms withn and taking the
limit n↘0, with the result

f̄ 5AG0
22G1

2, r̄~p!5
f̄

G~p!
, R̄m5S G02 f̄

G1
D umu

.

Since the lattice sites are fully equivalent, the steady-s
density operatorr̄ is translationaly invariant, so that it i

FIG. 2. Quasimomentum distributionr(p,t) plotted as a func-
tion of time on a double logarithmic scale forp50 to p5

1
2 with

steps 1
10. ParametersG0 ,G1 are such thatG( 1

2 )5100G(0).

FIG. 3. Spatial coherence functionsRm(t) as a function of time,
for m50 ~top curve! to m56 ~bottom curve!, with the same pa-
rameters as in Fig. 2.
ll

3.

te

diagonal in Bloch states. Hencer̄ is fully determined by the
steady-state quasimomentum distributionr̄(p).

The asymptotic behavior off for t→` is found from Eq.
~5.6! by applying Eq.~A5! in the casen51 andg5G(0)
5G02G1 . The result is

f ~ t !2 f̄ '
e2G~0!t

G~0!
A G1

2pt3.

The asymptotic behavior of the momentum distribution
found in the same fashion, with the result

r~p,t !2 r̄~p!'
f ~ t !2 f̄

G~p!2G~0!
if pÞ0,

r~0,t !2 r̄~0!'2
e2G~0!t

G~0!
A2G1

pt
.

The population in all the Bloch states withpÞ0 decreases
asymptotically towards their steady-state value.

As a reasonable measure for the coherence length we
fine the quantity

L~ t !5(
m

umRm~ t !u. ~5.11!

Its Laplace transform

L̂~n!5
1

n

1

coshb~n!21

follows directly after using Eq.~5.7!. Laplace inversion gives
the simple expression

L~ t !5
G1

G~0!
~12e2G~0!t!, ~5.12!

which demonstrates that the time-dependent cohere
length increases exponentially to its steady-state va
G1 /G(0). We notice that the variation of the rateG(p) of
the optical pumping with the quasimomentum is essential
the creation of both a nonuniform momentum distributi
and a finite coherence length. The finite steady-state va
may be viewed as resulting from the balance between
unbound increase during a jump-free period~see Sec. V D!
and the localizing effect of quantum jumps.

C. Dark state and Lévy statistics

The periodic potentialV(x) does not have to arise from
position-dependent light shift. As demonstrated by Dum a
Ol’shanii @20#, even for a dark internal state at all positions
gauge potential arises due to nonadiabatic effects.
ground state in this gauge potential does not decay at
which gives rise to velocity-dependent coherent populat
trapping@31#.

In the expressions so far it has been tacitly assumed
the decay rateG(p) is positive for all values of the Bloch
parameterp. Now we consider the situation that the atom
the lattice has a nondecaying ground state atp50, which is
the case whenG05G1 . In the presence of a dark state, o
might expect that the overlap of the initial state with the da
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state gives a nonzero probabilityp0(`) that no jump occurs
at any time@28#. In the present case, however, the dark st
corresponds to a singlep value in a continuum andp0(`)
50. As follows from Eq.~5.5! in the limit n↘0, this means
that the total number of jumpsf̂ (0) is infinite. The waiting-
time distributionw is normalized to one, but it decays s
slowly that the average waiting time for the next jump b
comes infinite, which implies that the time-averaged jum
rate f̄ is zero@28#. Then the jump statistics is described by
Lévy distribution @13#.

The Lévy statistics does not give rise to a stationary d
tribution over the quasimomentum. ForpÞ0, the time-
dependent distribution is given by the integral express
~5.9!. Since G(0)50 for the ground state, the zero-jum
momentum distribution~5.3! is unity for p50 and we obtain
with Eq. ~5.4!

r~0,t !511E
0

t

dt8 f ~ t8!,

which grows monotonically and indefinitely. The long-tim
behavior is found by applying Eq.~A5! in the Appendix,
which gives for the jump rate

f ~ t !'A2G1

pt
,

and for the quasimomentum distribution

r~p,t !'
f ~ t !

G~p!
if pÞ0, r~0,t !'A8G1t

p
.

This distribution is plotted in Fig. 4. The distinctly differen
asymptote forp50 shows up most prominently on th
double logarithmic scale. The width of the distribution d
creases to zero fort→`. The coherence length~5.11! now
increases linearly in time, according to

L~ t !5G1t.

FIG. 4. Time-dependent behavior ofr(p,t) in the presence of a
dark ground state. The values ofp are the same as in Fig. 2.
e

-
p

-

n

-

In the localization picture of quantum trajectories, ea
quantum jump puts the atom in a Wannier state, which ha
uniform distribution over the quasimomentump. Hence a
quantum jump corresponds to a complete reset of the sys
The duration of the jump-free time intervals is governed
the single waiting-time distributionw(t) and the behavior of
the quasimomentum distribution is the same during each
terval. Nevertheless, the ensemble-averaged quasimome
density nearp50 increases with timet. This can be ex-
plained by noticing that the probability that the last jum
took place a long time ago increases with timet. This favors
small values of the quasimomentum. In the recoil picture
the trajectories the perspective is dramatically different. Th
the quasimomentum has a constant well-defined value du
each jump-free period, which suffers a random change
quantum jump. Atoms accumulate near the dark state sim
because there the jump rate is vanishingly low.

D. Conditional distributions

The quantities calculated in the previous subsections w
averaged over the full ensemble of trajectories, which co
sponds to the solution of the master equation~3.2!. It is
illuminating to compare these results to the evolution cor
sponding to the conditional density operatorr8(t), defined in
Eq. ~4.3!, which refers only to the subensemble of trajec
ries with no photon emission in the time@0,t#. These inter-
vals can be selected in principle by a continuous observa
of the atom with photon detectors@32#. The uniform compo-
nent G0 of the emission rate affects the zero-jump dens
operatorr0 only as an overall factor, so that the condition
density operatorr8 does not depend onG0 . The conditional
jump rate f 8(t) has already been given in Eq.~4.8!. The
conditional coherence functionsRm8 (t) are defined as in Eq
~5.2!, with r8 replacingr. From the Fourier expansion~A2!
of r0(p) and the normalization constant~4.6! we obtain

Rm8 ~ t !5
I m~G1t !

I 0~G1t !
.

Notice thatRm8 (t) is positive definite.
The corresponding conditional coherence lengthL8(t) as

defined in analogy to Eq.~5.11! can be calculated after no
ticing that Eq. ~A3! gives the Laplace transform o
p0(t)Rm8 (t), while Eq. ~A4! is the Laplace transform o
Rm(t). By comparison of their right-hand sides, one notic
that

t
d

dt
Rm~ t !5umup0~ t !Rm8 ~ t !,

which gives, after summation, the expression for the con
tional coherence length

L8~ t !5
t

p0~ t !

d

dt
r~0,t !

in terms of the quasimomentum distribution atp50. Use of
Eq. ~5.9! then gives
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L8~ t !5
G1t

I 0~G1t ! FeG1t2E
0

t

dt8
eG1~ t2t8!

t8
I 1~G1t8!G .

This conditional coherence length increases indefinitely
contrast to its average counterpart~5.12!. Therefore, in order
to obtain atomic states with a large coherence length, it
be advantageous to wait for a long dark time interval rat
than taking an arbitrary moment in time. Long dark perio
are rare, except in the presence of a dark state.

VI. SPATIAL DISTRIBUTIONS AND DIFFUSION

A. Photon and atom distributions

An atom that is initially localized in a Wannier state w
get delocalized due to a combination of coherent tunne
through the barriers and incoherent diffusion due to pho
emission. This spreading of the atomic state shows up in
time dependence of the populations of the Wannier state

rn~ t !5^fnur~ t !ufn&.

Alternatively, the atomic delocalization reveals itself in t
spatial distribution of the emitted photons

Pn~ t !5
f n~ t !

f ~ t !
,

which differs fromrn unless the decay rateG(p) is uniform.
From the master equation~3.2! it follows that the partial

detection rates~3.8! are related to the partial waiting-tim
distributions~4.7! by

f n~ t !5wn~ t !1(
n8

E
0

t

dt8wn2n8~ t2t8! f n8~ t8!.

The generating functions

F~q,t !5(
n

e2p inqf n~ t !, W~q,t !5(
n

e2p inqwn~ t !

are connected through their Laplace transforms as

11F̂~q,n!5
1

12Ŵ~q,n!
.

The spreading of the state of an atom can be characterize
the spatial widthD(t), defined by

D2~ t !5(
n

n2Pn~ t !.

The diffusion constantD, defined by@33#

D2~ t !'Dt for t→`,

can be calculated from

D5 lim
n↘0

2n2

4p2 f̄

d2F̂

dq2
~0,n!5

2 f̄

4p2

d2Ŵ

dq2
~0,0!. ~6.1!

From the explicit expression~4.7! one derives
n

n
r

s

g
n
e

by

21

4p2

d2Ŵ

dq2
~0,n!52 tan2a@~G01n! p̂0~n!21#1 f̂ ~n!2

f̄

n

24A2F ~G01n! p̂0
3~n!2

G0

f̄ 3 G ,

with the complex parameterAeia5 iE1 1
2 G1 . Inversion to

the time domain gives an expression containing integ
over the jump ratef (t) and overp0(t). The diffusion con-
stant~6.1! is

D5~2 tan2a11!~G02 f̄ !5
8E21G1

2

G01 f̄
.

The dependence ofD on both tunneling ratesE and G1 is
monotonically increasing, so that diffusion is maximal wh
a dark state is present. The dependence on the uniform c
ponentG0 is inverse, showing that a large overall decay ra
hampers the spatial diffusion. This may be understood
arising from the localizing effect of spontaneous emission
fact, since spontaneous emission may be regarded as a
tion measurement of the atom, the reduction of spatial dif
sion by large values ofG0 is analogous to the quantum Zen
effect.

B. Uniform decay rate

In the special case of a uniform decay rateG(p)5G0 the
partial waiting-time distribution is explicitly

wn~ t !5G0e2G0tJn
2~Et!,

which has the Laplace transformed generating function

Ŵ~q,n!5
G0

A~n1G0!21~2E sinpq!2
.

The time-dependent width obeys the simple expression

D2~ t !5Dt1
D

G0
~e2G0t21!

in terms of the diffusion coefficientD54E2/G0 .

C. Conditional spatial distributions

The conditional population in welln is obtained from the
pure state~4.3! with Eq. ~A2! in terms of Bessel functions
with a complex argument

rn8~ t !5
1

I 0~G1t !
uI n~Ateia!u2.

It describes how far an atom can travel between two jum
The width of the atomic wave function a timet after the last
photon detection is found as

AtAR18~ t !

G1t
.
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In contrast to the coherence lengthL8, this width depends
not only onG1 but also on the coherent tunneling rateE. The
width of both the coherent and the incoherent atomic dis
butionsrn8 andrn initially increases linearly.

The conditional distribution

Pn8~ t !5
f n8~ t !

f 8~ t !
5

wn~ t !

w~ t !

describes the probability distribution of the detected pho
over the locationsn. HencePn8 give the probability that the
pure stateuc(t)& is reduced to the Wannier stateufn& by a
localized photon detection. With Eq.~4.7! the corresponding
width can be evaluated, with the result

D82~ t !5G1

R̄12R1~ t !

4w~ t !
1

A2t

G1

G0R18~ t !2G1

f 8~ t !
1

2E2

G1

R18~ t !

f 8~ t !
.

Note that the initial value is (G02 f̄ )/4G0 , so that rapid
photon emissions can force the atom to move fast to a
ferent well.

In the case of a uniform decay rate, the distributions
both the atom and the first detected photon

rn8~ t !5Pn8~ t !5Jn
2~Et!

equal the Wannier populations in the solution~2.9! for pure
Hamilton evolution. A nonuniform decay rate strong
damps the oscillatory behavior ofrn8 andPn8 , so that also the
conditional distributions behave diffusively on long tim
scales. This can be seen in Fig. 5.

VII. CONCLUSION

We analyze the quantum-mechanical transport prope
of atoms in an optical lattice. The atomic dynamics may
viewed as resulting from the balance between Hamilton
evolution, which gives a spreading of the wave packet o
many lattice sites, and optical pumping, which tends to

FIG. 5. Conditional Wannier populationsrn8(t) in well n50,
and 1, and 2 as a function of time. The coherent tunneling rat
E54G1 .
i-

n

f-

f

es
e
n
r
-

calize the atom. The atoms are assumed to be tightly bo
in a single Bloch band in a single adiabatic potential. Th
the internal state of the atoms is fully eliminated and t
system is parametrized in terms of just a few relevant qu
tities. Key quantities are the energy bandwidth 2E and the
variation of the optical-pumping rate over the band. T
transport behavior of the atom is governed by a master eq
tion for the density operator and the evolution is conv
niently represented as an ensemble of pure-state quan
trajectories, where the coherent evolution of the wave fu
tion is randomly interrupted by quantum jumps. Individu
trajectories depend strongly on whether the jumps co
spond to the detection of a photon with a well-defined m
mentum or at a well-defined location. The first case lead
the recoil picture, where the atom is in a Bloch state at
times and jumps simply transfer the atom from one Blo
state to another one. In the second case, a quantum j
localizes the atom in a single potential well, which in th
tight-binding limit corresponds to a Wannier state. In b
tween jumps, the atom can tunnel through the barriers fr
one well to the next one. In the steady state, the den
operator is diagonal in the Bloch states, so that it is tran
tionally invariant. The coherence length, which indicates
degree of quantum localization, remains finite. We der
analytical expressions for the jump statistics, such as
time-dependent jump rate and the waiting-time distributio
The coherence length as a function of time is expresse
terms of the quasimomentum distribution. Also the net d
fusion coefficient for the spreading of the atom over the l
tice can be expressed analytically. The spatial distributi
of the atoms and of the emitted photons are related, but
identical. The special case of a dark state is modeled
setting the jump rate equal to zero at zero quasimoment
This describes the situation of coherent population trapp
that is selective in the quasimomentum. The average wai
time is infinite, even though the waiting-time distribution
normalized to one, and each jump is followed by a next o
in the long run. The jump statistics, which is governed
Lévy statistics, can still be treated analytically.
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APPENDIX: LAPLACE TRANSFORMS

Laplace transforms are denoted as in

f̂ ~n!5E
0

`

dte2nt f ~ t !.

We summarize a few identities that allow us to evalu
Laplace inversions occurring in the text. We consider
Fourier series

sinhb

coshb2cos2pp
5(

m
e2umube2p imp, ~A1!

is
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which follows from direct summation. We expandr0(p,t) in
modified Bessel functions as

e2G0t1G1t cos2pp5(
m

e2G0tI m~G1t !e2p imp, ~A2!

while noticing that the Laplace transform of this equation h
the samep dependence as Eq.~A1!. A comparison of these
two summation leads to the identity

e2umub~n!

G1sinhb~n!
5E

0

`

dte2nte2G0tI m~G1t !, ~A3!

where n and b are related by the identity coshb(n)5(n
1G0)/G1. Equation~A3! determines the Laplace inversion
its left-hand side in terms of a modified Bessel function. O
easily checks that Eq.~A3! is simply proportional to the
derivative of exp(2umub) with respect ton, since db/dn
51/(G1sinhb). Recall that differentiating a Laplace tran
form with respect ton is equivalent to multiplying the origi-
nal time-dependent function by2t. Conversely, differentiat-
ing a time-dependent function is equivalent to multiplying
Laplace transform withn, provided that the function disap
pears att50. This way one can prove from Eq.~A3! that for
mÞ0,
-Y

R

ys

. I

on

ys

d

C

y

s

e

e2umub~n!

n
5umu E

0

`

dte2ntE
0

t

dt8
e2G0t8

t8
I m~G1t8!. ~A4!

The asymptotic behavior for large times follows from th
behavior of the Laplace transform aroundn50. One checks
that if and only if

f ~ t !'
se2gt

Apt
F 1

tn 1OS 1

tn11D1••• G for t→`,

wheresÞ0, then

lim
n↘0

AnS 2d

dn D n

f̂ ~n2g!5s. ~A5!

In the special caseg50, n50, this is easily demonstrated b
using that 1/An is the Laplace transform of 1/Apt. The ex-
tension to positive values ofg andn follows with standard
Laplace rules.
T.

en,

tt.

p-

s.

oc.

C.

pt.

nd
@1# N. P. Bigelow and M. G. Prentiss, Phys. Rev. Lett.65, 29
~1990!.

@2# P. Verkerk, B. Lounis, C. Salomon, C. Cohen-Tannoudji, J.
Courtois, and G. Grynberg, Phys. Rev. Lett.68, 3861~1992!.

@3# P. Jessen, C. Gerz, P. D. Lett, W. D. Phillips, S. L. Rolston,
J. C. Spreeuw, and C. I. Westbrook, Phys. Rev. Lett.69, 49
~1992!.

@4# A. Hemmerich and T. W. Ha¨nsch, Phys. Rev. Lett.70, 410
~1993!.

@5# G. Grynberg and J.-Y. Courtois, Europhys. Lett.27, 41 ~1994!.
@6# P. S. Jessen and I. H. Deutsch, Adv. At. Mol. Opt. Phys.37, 95

~1996!.
@7# B. P. Anderson, T. L. Gustavson, and M. A. Kasevich, Ph

Rev. A 53, R3727~1996!.
@8# C. Jurczak, B. Desruelle, K. Sengstock, J.-Y. Courtois, C

Westbrook, and A. Aspect, Phys. Rev. Lett.77, 1727~1996!.
@9# M. B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salom

Phys. Rev. Lett.76, 4508~1996!.
@10# Q. Niu, X.-G. Zhao, G. A. Georgakis, and M. G. Raizen, Ph

Rev. Lett.76, 4504~1996!.
@11# S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Q. Niu, an

M. G. Raizen, Phys. Rev. Lett.76, 4512~1996!.
@12# S. Marksteiner, K. Ellinger, and P. Zoller, Phys. Rev. A53,

3409 ~1996!.
@13# F. Bardou, J. P. Bouchaud, O. Emile, A. Aspect, and

Cohen-Tannoudji, Phys. Rev. Lett.72, 203 ~1994!.
@14# N. W. Ashcroft and N. D. Mermin,Solid State Physics~Saun-

ders, Philadelphia, 1976!.
@15# T. Müller-Seydlitz, M. Hartl, B. Brezger, H. Ha¨nsel, C. Keller,

A. Schnetz, R. J. C. Spreeuw, T. Pfau, and J. Mlynek, Ph
Rev. Lett.78, 1038~1997!.
.

.

.

.

,

.

.

s.

@16# T. Esslinger, F. Sander, A. Hemmerich, and T. W. Ha¨nsch,
Opt. Lett.21, 991 ~1996!.

@17# H. Stecher, H. Ritsch, P. Zoller, F. Sander, T. Esslinger, and
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