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Quantum transport of atoms in an optical lattice
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Quantum-mechanical transport of atoms in an optical lattice in one dimension is described in an exactly
solvable model. The atoms are tightly bound and they are sufficiently cooled so that they are restricted only to
the lowest Bloch band in a single adiabatic potential. The coherent spreading of an atomic wave packet by
tunneling is counteracted by the localizing effect of photon emission that accompanies optical pumping. The
time evolution of the quasimomentum distribution, the coherence length, and the spatial width of the atomic
state are evaluated analytically. These quantities depend strongly on the statistics of photon emissions.
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I. INTRODUCTION dependent admixture of the excited state, which gives rise to
spontaneous emission. In the presence of sufficiently strong
A monochromatic radiation field, composed of a few cooling, this may be viewed as optical pumping within the
plane traveling waves, may present a periodic potential tdowest-energy band. The coherent process of tunneling be-
atoms as a result of spatially varying light shifts. In the pastween neighboring wells, which generally increases the co-
few years, it has become feasible to trap atoms in the poterfterence length, and the dissipative process of optical pump-
tials wells and to form an optical lattidl—6]. The long- iNg, Which tends to localize the atom, are the main
range order of this lattice is imposed by the radiation fieldingredients of the transport process. We apply the model in a
and it does not depend on the interatomic interactions. Morelrajectory description of the atomic motion, where optical
over, the filling factor of the lattice sites is usually low. In PUmping is represented as a quantum jump interrupting the
such a situation, the transport properties of atoms in an optoherent evolution between jumps. We compare two
tical lattice are governed entirely by the atom-field interac-complementary but equivalent pictures of optical pumping.
tion. Recently, the loss rate by spontaneous emission of Lin one, the momenta of the emitted photons are measured,
atoms trapped in an optical lattice has been measfifed Which resuilts in a Brownian motion of the atomic momen-
The successive escape of a Rb atom from a well and it§!m. In the other picture, the positions are measured from
recapture by a neighboring one have been investigated byhere the photons originate, which has the effect of localiz-
observing polarization-dependent intensity correlations ofnd the atom in a single well. The jump-free evolution allows
the emitted fluorescend@]. Other recent work of dynamics atoms to tunnel from one well to the next.
of atoms in periodic optical potentials include the observa- We also study the situation that a dark state is present in
tion of Bloch oscillationd9] and the observation of atomic the energy band. This case is modeled by setting the decay
Wannier-Stark ladder10,11]. rate at the bottom edge of the band equal to zero. For a
When an atom is deeply cooled, the wave nature of it1earby Bloch state, the average waiting time between two
translational degree of freedom must be accounted for anmps becomes infinite and the jumps are governed by Le
the wave function can be expected to extend over variou§tatistics[13].
lattice sites. The time-dependent evolution of an atomic

wave packet under the combipeq influence qf the periodic Il. BLOCH AND WANNIER STATES
potential and spontaneous emission can be viewed as a pro- IN A PERIODIC POTENTIAL
totypical case of quantum transport. In a recent pap&f,

Marksteineret al. study the anomalous diffusion of two-level A. General transformation properties

atoms in optical molasses by the quantum Monte Carlo The transiational motion of atoms in a spatially periodic
method. This anomalous diffusion, which can be pictured aggnt field with variation in one dimension is described by the

,

a Levy walk in space, occurs when atoms get excited tOxffective Hamiltonian
above the potential barrier.

In the present paper we consider a model system that is P2
sufficiently simple to be treated analytically and contains, H= ﬁJFV(X)v
nonetheless, essential ingredients of experimental situations.

The lattice is modeled as a periodic adiabatic potential in one .

dimension. We assume that cooling is sufficiently effective?Vith V(x) areal periodic potential with perical The energy

so that only the lowest-energy band in the potential is OCCLIgaigenstates can be chosen to be also eigenstates of the dis-

pied. We evaluate the time evolution of the translational stat@'aC€ment operatdr, which translates a wave function over

in the tight-binding limit, where the lowest state of the atom® &ccording to the relation
in one potential well is only coupled to its nearest neighbors.
The adiabatic internal state of the atom has a position- T|x)=|x+a).
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The combined eigenstates ldfand T have energy eigenval- . . ,
ueskE;(p) that separate in a discrete set of energy bands. The
energy eigenvalue equation is then

HIE;(p))=E;(p)|E;j(p)). (2.0

For each value of the discrete indgxthe energy is a func-
tion of the Bloch inde>p, which is determined by the unitary
eigenvalue ofT, according to the relatiofil4]

TIEj(p))=e"2"P|Ej(p)). (2.2

We shall assume that sub-Doppler cooling is sufficiently
strong so that only the first energy band is populated appre-
ciably. While this assumption may seem rather optimistic
compared to present-day experiments, it is not fully unreal-
istic, and progress in this direction is substanfitb—1§.
Then we consider only this lowest band and we suppress the
band indexj. We can restricp to the first Brioullin zone
[—3,3]. The quasimomentum of a state with Bloch ingex
is equal tobp, with b=27/a the reciprocal lattice constant.
Since the Hamiltonian is real in coordinate representation, it
obeys time-reversal invariance, so that the en&gg) is an
even function ofp.

The Bloch condition(2.2) definesp only mod1, so that
the eigenstate&(p) and eigenvector$E(p)) are periodic
functions of the Bloch indep with period 1. Therefore, they
can be expanded as Fourier series. This gives for the energy
band

E(p)=2>, e""PE,, (2.3 z

) o . FIG. 1. Sketch of energy bands and Wannier and Bloch wave
with real coefficients,=E_,. For the Bloch states we find fynctions in a cosine potenti#l(x). The barrier height is chosen as
2b2/m. The Wannier wave functior|g,,) are localized around the
|E(p)>= 2 eg,,inp| ). (2.4) potential minimax,=na, as demonstrated inlthe.top two figures for
n n=0 and 1. The Bloch statd&(0)) and|E(3)) lie at the bottom
and top of the first energy band. Their real wave functions are
The coefficients|¢,) form a discrete set of states, called extended over all the wells as indicated in the bottom two plots.
Wannier state§l4]. The inverse relation of Eq2.4) is
so that| ¢,,) is related by| ¢) by a translation ovena. The
B —omin properties of Bloch and Wannier states are illustrated in Fig.
0= | dpe = PlE(p). es &
Since the Wannier states form an orthonormal basis of
The integration ovep extends over the Brillouin zone in this States in the energy band, one may conclude that the single

and all subsequent integrals. state| ¢,) completely defines all states in the energy band.

Since the Bloch states are spatially unbounded, they mugthis statement is illustrated by expanding the Bloch state in
be normalized to & function, and we take plane wavegk). It is obvious from Eq.(2.2) that |E(p))

contains only the discrete set of plane-wave components

(E(p")|E(P))=8(p'—p). (2.6 |(n+p)b). To be specific, when the plane-wave states are

normalized agk’|k)=&(k’ —k), we find from Eq.(2.4) the
From the orthonormality relatio2.6) of the Bloch states equality
one shows that

(bl $n)=Burn. 2.7 [E(p))=b2 [(n+p)b)((n+Pp)b]bo).

so that the Wannier states are also orthonormal. This implies If we substitute the expansid.4) in the eigenvalue re-
that they have a finite spatial extent. Substitution of Bloch’slation (2.1) and take the inner product with the Wannier state
theorem(2.2) into Eq. (2.5 shows that {¢n|, we find with the orthonormality relatiof®.7) that

T|¢n>:|¢n+l>a <¢n’|H|¢n>:En—n’-
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Hence the Fourier coefficients,, of the energy coincide higher at positions with a high optical potential, which leads
with the matrix elements of the Hamiltonian between Wan-to a highly sensitive dependence of the net force on the ve-
nier states. locity. Then Bloch states that are better localized near the
potential minima can be expected to have smaller decay

B. Tight-binding model rates. This justifies the assumption that the rate of optical

. . umpingT'(p) of the Bloch statéE(p)) will depend on the
The relations beiween the Bloch and Wannier states al%dexp. In the tight-binding limit, it is reasonable to assume

d|scqsse(_j So far are exact. We want to consider in partlcul%at the decay operator couples only nearest-neighbor Wan-
the situation that the atoms are tightly bound near the botto ier states. In analogy to E€.8), this leads to the param-

of the potential wells, which can be assumed to be located Arization
the positionsx,=na. This tight-binding assumption is justi-

fied when the depth of the potential wells is large compared

to the minimal kinetic energy of a particle localized in a
well, which is of the order ob?/2m (2=1). Then we may
assume that the Wannier statg,) is mainly located within

a single well, which we can take to be the welbgt This
implies that the Fourier coefficients, fall off with increas-
ing values ofn, and we take only the coupling between
neighboring wells into account. The dispersion relaii2rd)

is then parametrized as

I'(p)=Ty—T1cos2rp (3.0

for the optical pumping rate.
Interesting effects can arise when the atom is pumped into
a dark state. This is the case when the carrier waves of the
optical lattice drive a transition between levels with angular
momentaJ—J—1 and J—J for integerJ values. In this
case an effective periodic potential can still arise due to a
magnetic field[5] or due to nonadiabatic interactioh20].
E(p)=—E cos2rp, (2.89  We will also consider the case of the presence of an exact
black state to study velocity-selective coherent population
with E=—2E;>0. The energy band extends from the trapping(VSCPT). We model this situation by taking(0)
ground state|E(0)), with Bloch indexp=0 and energy =0. The resulting tight-binding forn3.1) with I'y=T"; is
—E, to the statéE(})), which is located at energfy at the ~ realized in the periodic gauge potential of the VSCPT system
top of the band edge. These states are sketched in Fig. 120]- In this case, also the fori2.8) for the energy holds.
along with the Wannier statdgs,) and|e,). The dynamics in the fundamental energy band is gov-
When spontaneous emission is neglected and the tot§rned by the master equation for the reduced density operator
evolution is governed by the Hamiltonian, the spreading of? for the first energy band alone:
an initially localized state in this tight-binding limit is very
simple. When the initial statpy(0))=|¢g) is localized in
well 0, the time-dependent state is immediately found after
using the expansiof2.5) in Bloch states and using the en-
ergy eigenvalue relatio(®.1). After using the defining rela- whereT" is an optical pumping operator. On the basis of
tion of the Bessel functions, , which follows from Eq(A2)  Bloch states, the Hamiltonian and the optical pumping op-

after substitutind™;=iE while usingl (I';t)=i"J,(Et), we erators are diagonal, so that
obtain the time-dependent state

d
gt PO=ilp(t),H]— 2[Cp()+p(OT]+Gp(t), (3.2

HIE(p))=E(P)|E(p)), TIE(P))=T(p)|E(P)),
() =2 i"I(ED)| ). (2.9 o
n where the energ¥(p) is given by Eq.(2.8) and the decay

. . . . . ratel’(p) by Eq.(3.1. The(supejoperatorg, which acts on
This result describes the time-dependent spreading of an in ensity matrices, describes the gain that results from the op-

tially localized state over the wells by tunneling through the_; ; g e
: i L tical pumping process. Its action is the multiplication of the
barriers. The resulting distribution over the wells has an ana; bumping p b

vtic behavi imilar to the distributi ¢ atomic wave function with the mode function of the optical
ytic behavior very similar to the distribution over transverse e from which the atom absorbs a photon and the com-
momentum of atoms diffracted by a standing wat8).

plex conjugate of the mode function in which the atom emits.
The net result of the optical pumping cycle is a momentum
lll. SPONTANEOUS DECAY recoil of the atom, which we model by a shift of the wave
gt_mction in quasimomentum space fy In the spirit of our
ssumption that the atomic state remains in the lowest-
nergy band, this effect is modeled by changing the state

As noted above, the present model is based on the a
sumption that an atom is at all times in the internal state?
corresponding to an adiabatic periodic potential and that i . .
resides in the lowest-energy band in this potential. Due to th _(P» into the s_tate_iE(_p—q)). When we assume for_s_|m-
small excited-state amplitudes in the adiabatic internal statd/ICty that the distribution over the momentum recqilis
the atom has a finite probability of spontaneous emission. |Hn|form over the Brillouin zone, both the loss and the gain
the presence of a sub-Doppler cooling mechanism we caff'™M in the master equatiof8.2) can be expressed in the
assume that this emission process corresponds to opticdrdependent operatax(q) defined by
pumping within the lowest-energy band. Typical for situa-
tions of sub-Doppler cooling is that the rate of optical pump- A(Q)|E(p))=|E(p—a))VT'(p). 3.3
ing depends on both position and velocity. For example, Si-
syphus cooling requires that the optical pumping rate isNe may write
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not localize the atom exactly in the Wannier stptg), but
gp=j dgA(a)pA'(q), F:J dgA’(a)A(a). (34 in a linear superposition of neighboring states.
The two sets of jump operatofgq) andA,, as given by
After substitution of Eq(3.4), the master equatiof8.2 has  Egs. (3.9 and (3.6), may be viewed as corresponding to
its standard Lindblad form, where the operaté(s]) serve detection of a photon with a well-determined momentugn

as the jump operatofg1]. The total photon emission rate  or a photon at a well-determined location This may be
identified by a detection in the far or the near field. The

f(t)=trGp(t)=trTp(t) (3.5  relation betweerA(q) and A, generalizes a similar distinc-
. ) ] ] ) tion between two detection schemes as discussed by Holland
is the integral over the partial rate with recqil et al.[25] for free atoms.
f(a.H) =trA@)p(HAT(). IV. TRAJECTORIES

The decomposition of the master equation in jump opera- The master equatiof3.2) is equivalent to the integral
tors is not unique and the general form remains invariangquation of the Dyson type

under an arbitrary unitary transformatiole2-24. A

complementary expansion of the gain and loss terms is ob- t, , ,
tained by the unitary transformation p(t)=po(t) + Odt Ut=t")gp(t"), (4.9)
A =f dqe™"IA(q) (3.6 where the first term
n . .
po(t)=U(t)p(0) (4.2

The gain operator and the optical pumping operé@of) can o ) )
alternatively be expressed in terms of the jump operaqrs ~ represents the contribution to the density matrix from the

with the result situation of zero jumps in the time interved t] in terms of
the linear evolution operat@f(t), defined by
Qp=2 AnpAI, F=2 AﬁAn- (3.7) u(t)pze—th—rt/zpe+th—rt/2_
n n

. ) . The norm of the operatopy(t) =trpg(t) is the zero-jump
The operatoA, represents optical pumping, where the emit-5papility. The iterated solution of the Dyson equatidrl)
ted photon is detected near the welkat=na. As aresult of  represents the density matrix directly as a weighted average
this detection, the atom is localized in the Wannier stat&,yer pure state§26]. In this way the concept of quantum
| #n). This can be seen by expressing the operator in terms Qfjectories as pure-state realizations of the evolution of the
the Wannier states. After substituting Eg.4) in the right- system is recoverel®2,24,27. Each trajectory consists of a

hand side of Eq(3.3), one finds from Eq(3.6) continuous evolution during finite time intervals, which are
separated by quantum jumps at random instants of time. For
An|¢n’>:|¢n>f dp\T(p)e2™(n-n"p, an initially pure state py(0)=|¢(0)){#(0)|, the time-
dependent normalized pure-state density matrix up to the in-

For a uniform decay raté(p) =Ty, the operatoA, is equal stant of the first jump is

to \/F—O times the projector on the Wannier stéi,). In this p' () =]y(t)) (1), 4.3
case, optical pumping does not lead to diffusion of the atom
(see Sec. VIR where the state vector can be chosen as

The detection rate of photons that localize the atom in
|pn) is ly(t))= ! e M2 40)).

Fo() = trAp(DAT, (38 VPo(t)

, , The time dependence ¢#(t)) is governed by a nonlinear

which adds up to the total detection rdg&5), as evolution equatiorf26]. The instant of the first jump is sto-
chastically determined by the waiting-time distribution
f<t>=f daf(g,t) =2 fa(t). q
" W(t)=— g Pol(t) =trGpo(t) =trTpo(t),  (4.4)

When the jump raté’ is independent op, the operatoA, is

simply a projector on the Wannier stdi,). In this case a which is thea priori probability density that the first jump
localized photon detection is just equivalent to the detectioroccurs at timd. A quantity of physical interest is the jump
of the atom in the corresponding Wannier state. Due tqthe rate at timet under the condition that no jump has occurred
dependence ofF, also the population of neighboring statesin the interval 0,t]. This conditional photon emission rate is
contributes to the photon detection rdtgt). When the dis- denoted as

tribution over the values of the recailis not uniform over

the Brillouin zone, the jump rat€ in Eq. (3.3) will be a w(t)

function of bothp andq. In that case, the operatés, will r=tgp'()= po(t)”
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In this and following equations, the prime indicates the no- Wn(t):thnPo(t)Arﬁ

jump condition. When the gain and loss operators are ex- )
pressed as an integral owgr or as a summation overas in _ E(Pt-T(P2. [Ty a2minp

Eq. (3.4) or (3.7), the waiting-time distributionw(t) is sepa- =|] dpe F'(ple - 49

rated into partial waiting-time distributions, (t) or w(q,t). _ _ _ _
With the form (3.3) of the jump operatoA(q), it is easy to  Naturally, this depends only on the difference in locatipn

check that The total conditional emission rate is then
_ Fooy , [1(T"1t)
w(q,t)=trA(q)po()A'(a)=w(t), fr(t)=Tog—T1——, (4.9
lo(T'1t)

so that the partial waiting-time distributiom(q,t) is always  which is the sum of the conditional partial emission rates
uniform over the recoil. The conditional rates are likewise

separated into partial contributiorfg(t) or f’(q,t). Note , , t + wy(t)

that po(t), w(t), f'(t), as well as the partial distributions fa(t) =trAnp" (DAL= ((1) |ArA (1)) = 0o(D)

and rates depend in general on the initial state at the begin-

ning of the time interval. These partial emission rates as a function of time reflect the

A realization of a trajectory is generated by drawing aspreading of an initially localized atomic state during a
series of random numbees from the interval[0,1]. After a  jump-free time interval.

jump, at the beginning of each jump-free interval at time A trajectory is thus completely determined by the series
the length of the jump-free interval=t; ;—t; to the next of events at timeg,,t,,..., where the atom is detected at
jump at timet; , ; can be determined fromy(t)=¢;. In this  well n;,n;+n,,.... Immediately after the jump at timg,

way the jump times are distributed according to the waiting-the atom is localized in a Wannier state.
time distributionw(t). At each jump instant, the value of the

recoil g or the locationn of the emitted photon has to be B. Recoil picture
determined by drawing another random number, according

to the relative probabilities of these values. The jumps are DEtection at time of a photon with momenturbq gives
then described by applying the jump operata(g|) or A, . a recoil on the atomic state, as expressed by the jump opera-

The resulting quantum trajectories are quite different, delor

pending on which one of the two photon detection schemes

is chosen for representing the gain term in the master equa- ) — A ).

tion. Trajectories corresponding to a localized photon detec- (1) vi'(q,t) (@ly(ty

tion have also been applied to evaluate anomalous diffusion

in optical latticeq12]. When the initial state at time zero is the Bloch stdép)),

the state is unchanged until the first jump. The zero-jump

A. Localization picture probability is then

When a photon is detected at tirhat the locatiom, the po(t)=e (P!
atom is localized in the Wannier stdig,,), as expressed by
the jump operator and the partial waiting-time distribution is
1 w(g,t)=w(t)=T(p)e " P,
|¢(t)>‘>fAn|¢(t)>:|¢n> (4.5
V() This implies that the conditional jump rate
For an initial Wannier statgy(0))=|¢,) at time zero, the f(q,)=F"(t)=T(p)

zero-jump probability is given b
tmp p yisg y is constant in time and uniform in the recoil. These quantities

give the statistics of the jump instarttgt,,... and theval-
po(t) = f dpe TPt=g=Tot| (T,1), (4.6) ues of th_e r(_acoilsql,qz,_. o which con_1p|e_te|y determine the_

trajectories in the recoil picture. In this picture, the atom is in

a Bloch state at all times. Although the distribution over the

wherel , are the modified Bessel functions. The last equalityduasimomentum shify is uniform, the statistics of the wait-
follows from the particular form(3.1) of the decay rate Ing times depends on the indgx, which is different for

['(p). For the waiting-time distribution we find with Eq. €ach jump-free time interval. A Bloch state has an infinite
(4.4) coherence length and a homogeneous spatial distribution.

Therefore, a single trajectory in the recoil picture does not
give information on the evolution of spatial distribution or
spatial coherence. On the other hand, the ensemble average
of the trajectories in each picture coincides with the solution
which is the sum over the partial distributions for the nextof the master equation and therefore contains complete infor-
detection of a photon at location mation.

w(t)=e "o [Tolo(Tyt) =Tl 4(Tt)],
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V. MOMENTUM DISTRIBUTION R 1 1
AND COHERENCE LENGTH 1+f(v)

= = = ~ y 5
L W) vPo(v) 59
A. General expressions ) ] ]
which expresses thé to py in the Laplace domain. The

_The localization picture of trajectories can be conve-p,,mentm distribution(p) in Laplace transform is found
niently applied to discuss the evolution of the spatial coherf¥Om Eq.(5.4) as

ence properties of an atom, as described by the solution o

the full master equatiori3.2). For a given density matrix . ) . po(p,v)
p(t), we introduce the distribution over the Bloch states p(p,v)=po(p,¥)[1+f(v)]= oo(?)
p(p,t)=(E(p)|p(t)|E(p)). (5.1)

Use of Eq.(A3) in the Appendix form=0 gives the
Laplace transform of the zero-jump probabili®.6) in the

The spatial coherence is characterized by the functions form

Rm(t)Ig <¢n|l’(t)|¢n+m>:f dpe 2™MPp(p,t), ()= 1 _ 1
(5.2 O J(r+Tg?—12 TisinhB(v)’

which are the Fourier coefficients of the quasimomentunmivhere the parametgs is defined as cosfi(v)=(v+Tg)/T’;.
distribution (5.1). This shows that a narrow quasimomentum Then Eq.(5.5) gives the Laplace transform of the jump rate
distribution corresponds to a wide characteristic widtiRgf I T.e B0
as a function oim, which reflects a large coherence length. f(v)= o "1

We consider the solution of the master equation with 4
Wannier state¢,) as the initial state. Hence the initial mo-
mentum distribution is uniform, according to E®.4). In
this case, we wish to evaluate the momentum distributio

: (5.6

and by using Eg.(5.3, we obtain for the Laplace-
ﬁransformed momentum distribution

p(p,t) and the total emission rafét). First, we notice that 1 sinh3(v)
the time-dependent zero-jump momentum distribution corre- p(p,v)=— .
sponding to the zero-jump density mat(i&.2) is v costB(v) —cos2rp

According to Eq(5.2), the coefficients in the expansi¢al)
are precisely the Laplace transforms of the coherence func-
Hons Ry, so that we find

po(P.t)=(E(p)|po(t)|E(p))=e" P, (5.3

When we take the diagonal elements of the Dyson equatio

(4.1) for a Bloch state, while using E3.5), we obtain the ) e~ ImB(m)
equation Ry(v)= E— (5.7
p(P.t)=po(p,t) + Jtdt'Po(p,t—t’)f(t')_ (5.4) By using Eq.(A4) for m=1 one obtains an explicit inte-
0 gral expression for the jump rafe by Laplace inversion of

Eq. (5.6), with the result
We used that in the forni3.7) of the gain operatog, each

summand projects the atom in a Wannier statg), with a t e Tot'

uniform momentum distribution immediately after the jump. f(t)=ro—F1J’ dt’ —7— 1 (I'yt"). (5.9
As we have shown befof@8], a relation similar to Eq(5.4) 0

holds for the density matrix in the case of a master equatior nstitution of Eq(5.9) into Eq. (5.4) gives the correspond-

when the gain term puts the system in a unique target staig,q integral expression for the momentum distribution
In the present case, the momentum distribution following a

jump is always the same, at least when the jumps are repre- 1—e T(mt

sented in the localization picture. Equatitfi4) expresses p(p,t)y=e TPy FOT)

the momentum distributiop(p) in the zero-jump distribu- P

tion po(p) and the jump ratd. In its turn, the jump rate is t e Tot' 1—e TM(t=t)

determined by the waiting-time distributiom. Substitution —F1J dt’ " () [(Tqt").

of Eq. (5.4) into Eq. (3.5 while using Eq.(4.4) leads to the 0 P

integral equation for the jump rate (5.9

e , , Integral expressions for the coherence functi@gt) fol-
f(t)=w(t)+ fodt w(t—t")f(t"). low directly after Laplace inversion of E@¢5.7), by applica-
tion of Eq. (A4). The result is

B. Jump rate, momentum distribution, and coherence length t e Lo’ ]
. ) i Ry(t)=|m| | dt/ ——I1(T1t") if m=#0.
For the Laplace transforms of these quantities, defined in 0 t

the Appendix, we obtain the standard relati¢pp8—30 (5.10
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102 , , , diagonal in Bloch states. Hengeis fully determined by the
steady-state quasimomentum distributjg(p).

The asymptotic behavior df for t—« is found from Eqg.
(5.6) by applying Eq.(A5) in the casen=1 and y=1I'(0)
10y =I'y—T4. The result is

_e—F(O)t\/F\l
ot) 1 ' fO=1=Two) Ve

The asymptotic behavior of the momentum distribution is
found in the same fashion, with the result

1071 f —
P—p)~ T pso
1] - B Ay | ]
10_120—2 10|—1 1 10 102 — e 'Ot o1,
Lit P(Oat)_P(O)%_—F(O) ?

FIG. 2. Quasimomentum distributigs(p,t) plotted as a func-  The population in all the Bloch states wii#0 decreases
tion of time on a double logarithmic scale fpr=0 to p=3 with ~ asymptotically towards their steady-state value.
stepsss. Parameter§,,T'; are such thaf'(3)=100(0). ~ As areasonable measure for the coherence length we de-
fine the quantity

Note that the coherence functions are non-negative at all

times. These expressiofs.8)—(5.10 can be directly evalu- A(t)=2 ImR,(1)]. (5.11
ated numerically. Some results are plotted in Figs. 2 and 3. m

The integrals in Eqs(5.8—(5.10 vanish whenI';=0, so

Its Laplace transform
that I'(p) =TIy is uniform over the Brillouin zone. Theh P

=Ty, p(p)=1, andR,,=0 at all times. - 1 1
The steady-state values bf p(p), andR,, are found by A(v)= > W
multiplying their Laplace transforms witlr and taking the
limit »\,0, with the result follows directly after using Eq5.7). Laplace inversion gives
- the simple expression
(= I Sl I,
o PPy TemlT ) A= (1", (512

Since the lattice sites are fully equivalent, the steady-stat&hich demonstrates that the time-dependent coherence
density operatop is translationaly invariant, so that it is length increases exponentially to its steady-state value
I'1/T'(0). We notice that the variation of the raté(p) of
the optical pumping with the quasimomentum is essential for
10 ' ' ' the creation of both a nonuniform momentum distribution
and a finite coherence length. The finite steady-state value
may be viewed as resulting from the balance between an
unbound increase during a jump-free periede Sec. V D

Bn(t) 1 and the localizing effect of quantum jumps.
X C. Dark state and Levy statistics
10 The periodic potentia¥/(x) does not have to arise from a
position-dependent light shift. As demonstrated by Dum and
Ol'shanii[20], even for a dark internal state at all positions a
1072 gauge potential arises due to nonadiabatic effects. The
ground state in this gauge potential does not decay at all,
which gives rise to velocity-dependent coherent population
s trapping[31].
10 10-2 10-1 1 10 102 In the expressions so far it has been tacitly assumed that
Lit the decay ratd’(p) is positive for all values of the Bloch

parametep. Now we consider the situation that the atom in

FIG. 3. Spatial coherence functioRs,(t) as a function of time, ~ the lattice has a nondecaying ground state-a0, which is
for m=0 (top curve to m=6 (bottom curve, with the same pa- the case whet’y=I";. In the presence of a dark state, one
rameters as in Fig. 2. might expect that the overlap of the initial state with the dark
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In the localization picture of quantum trajectories, each
quantum jump puts the atom in a Wannier state, which has a
uniform distribution over the quasimomentum Hence a
guantum jump corresponds to a complete reset of the system.
101 . The duration of the jump-free time intervals is governed by
the single waiting-time distributiow(t) and the behavior of
the quasimomentum distribution is the same during each in-
terval. Nevertheless, the ensemble-averaged quasimomentum
density neap=0 increases with time&. This can be ex-
plained by noticing that the probability that the last jump
took place a long time ago increases with timd his favors
101+ 3 small values of the quasimomentum. In the recoil picture of
the trajectories the perspective is dramatically different. Then
the quasimomentum has a constant well-defined value during
each jump-free period, which suffers a random change at a

102 . T .

p(p,t) 1 .

10‘1"’0_2 10‘_1 1 1‘0 102 guantum jump. Atoms accumulate near the dark state simply
Lt because there the jump rate is vanishingly low.
1
FIG. 4. Time-dependent behavior pfp,t) in the presence of a D. Conditional distributions

dark ground state. The values pfare the same as in Fig. 2. " . . .
grod valesp g The quantities calculated in the previous subsections were

averaged over the full ensemble of trajectories, which corre-
esponds to the solution of the master equati@m®). It is
illuminating to compare these results to the evolution corre-
sponding to the conditional density operapd(t), defined in

Eq. (4.3), which refers only to the subensemble of trajecto-
ries with no photon emission in the timi@,t]. These inter-

state gives a nonzero probabilipy(ec) that no jump occurs
at any time[28]. In the present case, however, the dark stat
corresponds to a single value in a continuum ang@g(°)
=0. As follows from Eq.(5.5) in the limit v, 0, this means
that the total number of jumplg0) is infinite. The waiting-

time distributionw is normalized to one, but it decays S0 \ 515 can be selected in principle by a continuous observation
slowly that the average waiting time for the next jump be- ¢ 6 atom with photon detectof82]. The uniform compo-
comes infinite, which implies that the time-averaged Jumpyeni 1 of the emission rate affects the zero-jump density
ratef is zero[28]. Then the jump statistics is described by a gperatorp, only as an overall factor, so that the conditional
Levy distribution[13]. o _ _ density operatop’ does not depend of,. The conditional
The Levy statistics does not give rise to a stationary d's'jump ratef'(t) has already been given in E¢.8). The
tribution over the quasimomentum. F@=0, the time-  cqngitional coherence functior®,(t) are defined as in Eq.
N5.2), with p’ replacingp. From the Fourier expansidim2)

(5.9). SinceI'(0)=0 for the ground state, the zero-jump of po(p) and the normalization constaft.6) we obtain

momentum distribution5.3) is unity for p=0 and we obtain

with Eq. (5.9 | (Tt
Rty L)
t lo(T'1t)
p(O,t)=1+f dt’f(t'),

° Notice thatR(t) is positive definite.

which grows monotonically and indefinitely. The long-time  The corresponding conditional coherence lengtft) as

behavior is found by applying EqA5) in the Appendix, defined in analogy to Eq5.11) can be calculated after no-

which gives for the jump rate ticing that Eq. (A3) gives the Laplace transform of
Po(t)R(t), while Eq. (A4) is the Laplace transform of
2T, Rmn(t). By comparison of their right-hand sides, one notices
fO~\— that

and for the quasimomentum distribution d ,
a t g R(0) =[mlpo(DRA(D),

f(t) . /8Tt
B~—— if 0, 0t)~ . . . . . .
p(p.Y) I'(p) it p# p(00) T which gives, after summation, the expression for the condi-

tional coherence length
This distribution is plotted in Fig. 4. The distinctly different

asymptote forp=0 shows up most prominently on the t d
double logarithmic scale. The width of the distribution de- A(t)y=—= d—p(O,t)
creases to zero fdr—. The coherence lengtitb.11) now Po(t) dt

increases linearly in time, according to
in terms of the quasimomentum distributionpat 0. Use of
A(t)=T"qt. Eq. (5.9 then gives



3958 P. M. VISSER AND G. NIENHUIS 56

Lot | o ([, e ~1 d?wW P ) R f
4 = 1 — ! 4 _— = — —_ =
NO=pg e fodt (T3t |. yo= dqz(o,u) 2 tarfaf (To+ ) polv) 11+ ()~ =
This conditional coherence length increases indefinitely, in 5 3 |
contrast to its average counterpéstl?d. Therefore, in order —4A% (T'o+v)py(v) — it

to obtain atomic states with a large coherence length, it can
be advantageous to wait for a long dark time interval rather

. ] l .
than taking an arbitrary moment in time. Long dark periodsW'th the complex parameteke®=iE+ 3T . Inversion to

are rare, except in the presence of a dark state. the time .domam gives an expression con;amn_wg integrals
over the jump ratef(t) and overpy(t). The diffusion con-

stant(6.1) is

VI. SPATIAL DISTRIBUTIONS AND DIFFUSION

A. Photon and atom distributions __  8E2+ Fi
R : . : . D=(2tarfa+1)(I'y—f )= ——.
An atom that is initially localized in a Wannier state will o+ f

get delocalized due to a combination of coherent tunneling
through the barriers and incoherent diffusion due to photorrhe dependence dd on both tunneling rate§ andT'; is
emission. This spreading of the atomic state shows up in thgonotonically increasing, so that diffusion is maximal when
time dependence of the populations of the Wannier states g dark state is present. The dependence on the uniform com-
ponentl’y is inverse, showing that a large overall decay rate
pn()={(dnlp(t)| pp). hampers the spatial diffusion. This may be understood as
arising from the localizing effect of spontaneous emission. In
fact, since spontaneous emission may be regarded as a posi-
tion measurement of the atom, the reduction of spatial diffu-

Alternatively, the atomic delocalization reveals itself in the
spatial distribution of the emitted photons

fo(t) sion by large values df; is analogous to the quantum Zeno
Pa(t)= =", effect.
f(t)
which differs fromp, unless the decay ral&(p) is uniform. B. Uniform decay rate

From the master equatidi.2) it follows that the partial
detection rateg3.8) are related to the partial waiting-time
distributions(4.7) by

In the special case of a uniform decay r&tg)=1T", the
partial waiting-time distribution is explicitly
¢ Wy (1) =T e T I2(EL),
fo () =w,(t)+ > fodt’wn_n,(t—t’)fn,(t’).
nl

which has the Laplace transformed generating function

The generating functions r
N 0
W(q,»)

. . - + 2+ 1 2 '
FqO=3 ™™ (1), W(a,0=3 ey (1) V(v +To)" (2€ sinmq)
n n

The time-dependent width obeys the simple expression
are connected through their Laplace transforms as

D
A%(t)=Dt+ F—O(e—Fo‘—l)

1+F(q,v)= ——.
1-W(aq,») . e .

in terms of the diffusion coefficierd =4E?/T .
The spreading of the state of an atom can be characterized by

the spatial widthA(t), defined by C. Conditional spatial distributions
) ) The conditional population in welt is obtained from the
A2(t)=2 n?Py(1). pure state(4.3) with Eq. (A2) in terms of Bessel functions

" with a complex argument

The diffusion constanD, defined by{33]

1 _
n(1)= ==l (Ate*)|%
A%(t)~Dt for t—w, pa(V |o(F1t)| ol |
can be calculated from It describes how far an atom can travel between two jumps.
R . The width of the atomic wave function a timeafter the last
. =2 dF —f d?w photon detection is found as
D=Ilim 2——2(0,1!):—2—2(0,0). (6.1)
~0 4t dq 477 dq 7
Ry(1)

- : . At .
From the explicit expressiof#.7) one derives It
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10 , . . calize the atom. The atoms are assumed to be tightly bound
in a single Bloch band in a single adiabatic potential. Then
the internal state of the atoms is fully eliminated and the
system is parametrized in terms of just a few relevant quan-
tities. Key quantities are the energy bandwidth and the
variation of the optical-pumping rate over the band. The
transport behavior of the atom is governed by a master equa-
tion for the density operator and the evolution is conve-
niently represented as an ensemble of pure-state quantum
trajectories, where the coherent evolution of the wave func-
tion is randomly interrupted by quantum jumps. Individual
trajectories depend strongly on whether the jumps corre-
spond to the detection of a photon with a well-defined mo-
mentum or at a well-defined location. The first case leads to
L the recoil picture, where the atom is in a Bloch state at all
10_130-2 10'_1 1 10 102 times and jumps simply transfer the atom from one Bloch
Lt state to another one. In the second case, a quantum jump
localizes the atom in a single potential well, which in the
FIG. 5. Conditional Wannier populations,(t) in well n=0, tight-binding limit corresponds to a Wannier state. In be-
and 1, and 2 as a function of time. The coherent tunneling rate i§ween jumps, the atom can tunnel through the barriers from
E=4T,. one well to the next one. In the steady state, the density
operator is diagonal in the Bloch states, so that it is transla-
In contrast to the coherence lenght, this width depends tionally invariant. The coherence length, which indicates the
not only onI'; but also on the coherent tunneling reieThe  degree of quantum localization, remains finite. We derive
width of both the coherent and the incoherent atomic distri-analytical expressions for the jump statistics, such as the

1072

butionsp,, and p,, initially increases linearly. time-dependent jump rate and the waiting-time distribution.
The conditional distribution The coherence length as a function of time is expressed in
terms of the quasimomentum distribution. Also the net dif-

fa(t)  wy(t) fusion coefficient for the spreading of the atom over the lat-

Pa(t)= mz W tice can be expressed analytically. The spatial distributions

of the atoms and of the emitted photons are related, but not
describes the probability distribution of the detected photoridentical. The special case of a dark state is modeled by
over the locations. HenceP,, give the probability that the ~Setting the jump rate equal to zero at zero quasimomentum.
pure statd y(t)) is reduced to the Wannier stafté,) by a This describes the situation of coherent population trapping
localized photon detection. With E¢4.7) the corresponding that is selective in the quasimomentum. The average waiting

width can be evaluated, with the result time is infinite, even though the waiting-time distribution is
normalized to one, and each jump is followed by a next one
R_l_ Ry(t) A2 ToRL()-T; 2E2Ri(t) in the long run. The jump statistics, which is governed by
,2 — - e s - ’ . . B .
A'e(t)=T" aw(o) + T, (D) + VREOR Levy statistics, can still be treated analytically.
Note that the initial value is Ho—f_)/4Fo, so that rapid ACKNOWLEDGMENTS
photon emissions can force the atom to move fast to a dif-
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ferent well.
In the case of a uniform decay rate, the distributions oft
both the atom and the first detected photon

pr(t)=Pp(t)=J2(ED)

APPENDIX: LAPLACE TRANSFORMS
equal the Wannier populations in the soluti@9) for pure
Hamilton evolution. A nonuniform decay rate strongly
damps the oscillatory behavior pf, andP;,, so that also the
conditional distributions behave diffusively on long time %(v)zjwdte*“f(t).
scales. This can be seen in Fig. 5. 0

Laplace transforms are denoted as in

VIl. CONCLUSION We summarize a few identities that allow us to evaluate

. . Laplace inversions occurring in the text. We consider the
We analyze the quantum-mechanical transport propertieg ) rier series

of atoms in an optical lattice. The atomic dynamics may be

viewed as resulting from the balance between Hamiltonian _

evolution, which gives a spreading of the wave packet over sinh3 :z e~ ImBg2mimp (A1)
many lattice sites, and optical pumping, which tends to lo- costB—cosZzrp ‘7 ’
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e

Tot’
7 Im(T'at"). (Ad)

modified Bessel functions as

which follows from direct summation. We expapgl(p,t) in e~ ImlBw) x t
=|m|f dte*”tf dt’
0 0

e~ Tot+TIt cos2rp _ z e Tot| m(l“lt)eZWimp, (A2)
m The asymptotic behavior for large times follows from the

while noticing that the Laplace transform of this equation ha&havior of the Laplace transform aroune: 0. One checks

the samep dependence as EGAL). A comparison of these that if and only if
two summation leads to the identity

e~ ImB) - S I se +O( 1 N or t
_ _pt— ~ _ o0}

W— fo dte™ e o' (T'1t), (A3) (t) \/H n 1 or t—oo,
where v and B are related by the identity cogtv)=(v
+T'o)/T';. Equation(A3) determines the Laplace inversion of wheres# 0, then
its left-hand side in terms of a modified Bessel function. One
easily checks that EqA3) is simply proportional to the _4\n
derivative of expf|m|8) with respect tov, since dg/dv lim \/;(_) f(v—y)=s. (A5)
=1/(I"4sinhB). Recall that differentiating a Laplace trans- v\.0 dv

form with respect tav is equivalent to multiplying the origi-

nal time-dependent function byt. Conversely, differentiat-

ing a time-dependent function is equivalent to multiplying its In the special casg=0, n=0, this is easily demonstrated by
Laplace transform withy, provided that the function disap- using that 1{/v is the Laplace transform of {frt. The ex-
pears at=0. This way one can prove from E@A3) that for  tension to positive values of andn follows with standard
m#0, Laplace rules.
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